
A Bayesian Mixed Logit-Probit Model for Multinomial
Choice ∗

Martin Burda,† Matthew Harding,‡ Jerry Hausman,§

April 18, 2008

Abstract

In this paper we introduce a new flexible mixed model for multinomial discrete choice where the

key individual- and alternative-specific parameters of interest are allowed to follow an assumption-

free nonparametric density specification while other alternative-specific coefficients are assumed to

be drawn from a multivariate normal distribution which eliminates the independence of irrelevant

alternatives assumption at the individual level. A hierarchical specification of our model allows us

to break down a complex data structure into a set of submodels with the desired features that are

naturally assembled in the original system. We estimate the model using a Bayesian Markov Chain

Monte Carlo technique with a multivariate Dirichlet Process (DP) prior on the coefficients with

nonparametrically estimated density. We bypass a problem of prior non-conjugacy by employing a

”latent class” sampling algorithm for the DP prior. The model is applied to supermarket choices

of a panel of Houston households whose shopping behavior was observed over a 24-month period

in years 2004-2005. We estimate the nonparametric density of two key variables of interest: the

price of a basket of goods based on scanner data, and driving distance to the supermarket based on

their respective locations, calculated using GPS software. Supermarket indicator variables form the

parametric part of our model.
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1. Introduction

Discrete choice models are widely used in economics and the social sciences to analyze choices

made by individuals among a set of alternatives. In this paper we introduce a new flexible mixed

model for multinomial discrete choice where the key individual- and alternative-specific parameters

of interest are allowed to follow an assumption-free nonparametric density specification while other

alternative-specific coefficients are assumed to be drawn from a multivariate normal distribution.

Two advantages arise from this specification. First, we do not require the correct a priori specifica-

tion of the distribution of taste parameters. Independent Normal distributions have typically been

used, but Harding and Hausman (2007) demonstrate that this choice can lead to biased estimates in

the presence of correlations between tastes for product attributes. Second, the use of choice specific

coefficients drawn from a multivariate distribution eliminates the independence of irrelevant alter-

natives (IIA) that holds at the individual level in almost random coefficients logit models. Hausman

and Wise (1978) employed a multivariate Probit model without the IIA assumption. However, the

model proved difficult to estimate in the likelihood context if the number of choices exceeded four.

A hierarchical specification of our model allows us to break down a complex data structure into a

set of sub-models with the desired features that are naturally assembled in the original system.

Such model structure is directly amenable to estimation by Bayesian methods on Gibbs sampling

utilizing recent advances in Markov Chain Monte Carlo (MCMC) techniques. Estimation of the

nonparametric density of a subset of the model coefficients is facilitated by specifying a multivariate

Dirichlet Process (DP) prior on these coefficients.

Much of the work on nonparametric Bayesian modeling traces its origins to the seminal papers

of Freedman (1963), Fergusson (1973a), Fergusson (1973b), and Blackwell and MacQueen (1973),

though applications were quite limited until the late 1980s. Fuelled by advances in computation, the

last two decades witnessed an explosion of interest in nonparametric Bayesian models (for a recent

review see e.g. Müller and Quintana 2004).

Dirichlet Process Mixture models (DPM) (Escobar and West 1995) form an important part of

this literature. Some recent applications of univariate DPMs include epidemiology (Dunson 2005),

genetics (Medvedovic and Sivaganesan 2002), medicine (Kottas, Branco, and Gelfand 2002), fi-

nance (Kacperczyk, Damien, and Walker 2003), and stochastic volatility modeling (Jensen and

Maheu 2007). In the microeconometric literature, the univariate DPM has been used in several

studies. Hirano (2002) estimated a Bayesian random effects autoregressive model with nonpara-

metric idiosyncratic shocks. Chib and Hamilton (2002) analyzed the effect of a binary treatment
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variable on a continuous outcome in a panel data model with treatment- and outcome-specific in-

dividual random effects without distributional assumptions. Jochmann and León-González (2004)

estimated the demand for health care with panel data with nonparametric random effects under the

DP prior.

A multinomial discrete choice model with Bayesian estimation strategy has been analyzed recently

by Athey and Imbens (2007). Although these authors consider a richer model than ours, allowing

for unobserved and observed individual and alternative-specific characteristics, their model is fully

parametric with key parameters of interest drawn from a multivariate normal distribution. Although

we focus on observed characteristics only, our model setup can be readily extended to include the

unobserved characteristics as well.

In Bayesian analysis, significant technical simplifications result from choosing a prior family of

density functions that, after multiplication by the likelihood, produce a posterior distribution of the

same family - a so-called conjugate prior. In such cases, only the parameters of the prior change

to form the posterior with accumulation of data, not its mathematical form. In the conjugate case

the DP prior is relatively straightforward to implement but such models are necessarily limited in

their application to a highly restricted class of likelihood functions. In contrast, the non-conjugate

case is more involved in terms of model specification and estimation strategy, but can be applied

to essentially any model with an arbitrary likelihood function. All the literature cited above have

confined themselves to the relatively simple conjugate scenario. Indeed, we are not aware of any

work in the social science where this approach would not be the case.

In this paper, we venture into the realm of non-conjugate models due to a rather complicated

nature of the likelihood function arising from our flexible panel limited dependent variable model

specification. To deal with non-conjugacy, in one of our Gibbs blocks we employ an algorithm for

non-conjugate DP priors developed recently by Neal (2000). Non-conjugacy is bound to occur in

many other economic models where the likelihood function form departs from basic density families

and hence the method presented in this paper is applicable to a wide range of alternative model

specifications. Non-conjugate sampling methods are currently subject to active research in the

statistics and machine learning literature are only slowly spilling over to other areas (Jain and

Neal 2005) and (Dahl 2005).

Another important feature of our model is its hierarchical structure with respect to parameters.

Hierarchical models provide a natural environment for application of DP priors. However, in the

context of discrete choice models only parametric Bayesian analysis involving finite mixture models

has been utilized so far (Imai and van Dyk 2005), (Rossi, Allenby, and McCulloch 2005).
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Finally, all previous studies utilizing the DPM in the social sciences estimated non-parametrically

parameter densities along a single dimension, leaving out the multivariate case for a theoretical

discussion. In contrast, in our paper we implement the full multivariate DPM case allowing for

arbitrary correlation among parameters of interest drawn from nonparametric densities. In our

simulation and empirical studies, we consider the bivariate case for ease of graphical presentation, but

given the estimation mechanism higher dimensionality is easily accommodated by simply increasing

the matrix sizes of the model parameters.

2. Dirichlet Process Mixture Model

2.1. Parametric vs. Nonparametric Bayesian Modelling

Econometric models are often specified by a distribution F (∙;ψ), with associated density f(∙;ψ),

known up to a set of parameters ψ ∈ Ψ ⊂ Rd. Under the Bayesian paradigm, ψ are treated as

random variables which implies further specification of their respective probability distribution.

Consider an exchangeable sequence z = {zi}ni=1 of realizations of a set of random variables Z =

{Zi}ni=1 defined over a measurable space (Φ,D) where D is a σ-field of subsets of Φ. In a parametric

Bayesian model, the joint distribution of z and the parameters is defined as

Q(∙;ψ,G0) = F (∙;ψ)G0

where G0 is the (so-called prior) distribution of the parameters over a measurable space (Ψ,B) with

B being a σ-field of subsets of Ψ. Conditioning on the data turns F (∙;ψ) into the likelihood function

L(ψ|∙) and Q(∙;ψ,G0) into the posterior density K(ψ|G0, ∙).

In the class of nonparametric Bayesian models5 considered here, the joint distribution of data and

parameters is defined as a mixture

Q(∙;ψ,G) =
∫
F (∙;ψ)G(dψ)

where G is the mixing distribution over ψ. It is useful to think of G(dψ) as the conditional distribu-

tion of ψ given G. The distribution of the parameters, G, is now random which leads to a complete

flexibility of the resulting mixture. The model parameters ψ are no longer restricted to follow any

given pre-specified distribution as was stipulated by G0 in the parametric case. The parameter space

now also includes the random infinite-dimensional G with the additional need for a prior distribution

for G. The Dirichlet Process prior is a popular alternative due to its numerous desirable properties;

we proceed with its description in the next section.

5A commonly used technical definition of nonparametric Bayesian models are probability models with

infinitely many parameters (Bernardo and Smith 1994).
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2.2. Dirichlet Process Prior

In a seminal paper, Fergusson (1973a) introduced the Dirichlet process (DP) prior for random

measures whose support is large enough to span the space of probability distribution functions and

that leads to analytically manageable posterior distributions. Antoniak (1974) further elaborated

on using the DP as the prior for the mixing proportions of a simple distribution.

A DP prior for G is determined by two parameters: a distribution G0 that defines the ”location”

of the DP prior, and a positive scalar precision parameter α. The distribution G0 may be viewed

as a baseline prior that would be used in a typical parametric analysis. The flexibility of the DP

prior model environment stems from allowing G – the actual prior on the model parameters – to

stochastically deviate from G0. The precision parameter α determines the concentration of the prior

for G around the DP prior location G0 and thus measures the strength of belief in G0. For large

values of α, a sampled G is very likely to be close to G0, and vice versa.

More specifically, let M(Ψ) be a collection of all probability measures on Ψ endowed with the

topology of weak convergence. The space M(M(Ψ)) is then the collection of all probability

measures (i.e. priors) on M(Ψ) together with the topology of weak convergence derived from

M(Ψ). Let G0 ∈ M(Ψ) and let α be a positive real number. Following Fergusson (1973a), a

Dirichlet Process on (Ψ,B) with a base measure G0 and a concentration parameter α, denoted by

DP (G0, α) ∈ M(M(Ψ)), is a distribution of a random probability measure G ∈ M(Ψ) over (Ψ,B)

such that, for any finite measurable partition {Ψi}Ji=1 of the sample space Φ, the random vector

(G(Ψ1), ..., G(ΨJ)) is distributed as (G(Ψ1), ..., G(ΨJ)) ∼ Dir(αG0(Ψ1), ..., αG0(ΨJ)) where Dir(∙)

denotes the Dirichlet distribution. We write G ∼ DP (G0, α) if G is distributed according to the

Dirichlet process DP (G0, α). A Bayesian model with such feature is commonly referred to as a

Dirichlet Process Mixture (DPM) model.6 Since realizations of the DP are discrete with probability

one, a DPM can be viewed as a countably infinite mixture (Fergusson 1983).

Having specified a flexible nonparametric prior, the subsequent estimation method crucially depends

on whether the prior is conjugate with respect to the model. In general terms, a family of prior

probability distributions is said to be conjugate to a family of likelihood functions if the resulting

posterior distributions are in the same family as the prior distributions. The conjugate case is

typically much easier to handle since only the parameters of the prior change to create the posterior

with accumulation of data, not the mathematical form of the prior. However, the class of likelihood

functions that can be specified for such case is arguably quite limited as these need to adhere to the

6A specific subset of the literature, e.g. Antoniak (1974) and MacEachern and Müller (1998) refer to

these models as ”Mixture of Dirichlet Process models” (MDP).
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class of the prior. The exponential family of functions are a typical example. Since we do not utilize

the conjugate DP prior, its brief technical description has been relegated into the Appendix.

In contrast, the non-conjugate case is usually more involved in terms of estimation methodology, but

can be applied to essentially any model specification with an arbitrary likelihood function. The more

flexible and hence complicated a model becomes, the higher the chances that it will fall outside the

restrictive conjugate case and call for a non-conjugate estimation technique. Indeed, the functional

form of the multinomial logit likelihood specified in the empirical section of this paper necessitates

adopting the non-conjugate approach. The resulting estimation strategy undertaken in this paper

is thus applicable to a general class of Bayesian hierarchical models.

Sampling strategies for non-conjugate DP priors is currently an active research field. We utilize the

methodology proposed recently by Neal (2000), which builds on MacEachern and Müller (1998), due

to its superior efficiency properties. Other methods include Walker and Damien (1998), Green and

Richardson (2001), Dahl (2005), and Jain and Neal (2007). However, these methods are considerably

more complex; it is not clear whether the additional benefit in terms of Markov chain convergence

speed would justify their implementation for the present purpose.

In the approach suggested by Neal (2000), the key to dealing with the non-conjugacy of G0 and L is

to bypass the need for integrating out G0 in the first place. The DPM is obtained as a limiting case

of a random ”latent class” finite mixture model as the number of stochastic mixture components

approaches infinity. The object that is being integrated over are the mixing proportions of these

latent classes. Specifically, suppose z = {zi}ni=1 are drawn independently from some unknown

distribution. We can model such distribution as a mixture of simple distributions such that

(2.1) P (z) =

C∑

c=1

pcf(z|γc)

Here, pc are the mixing proportions, and f is a simple class of distributions, such as the Normal.

If we assume that the number of mixing components, C, is finite, then a typical prior for pc is the

symmetric Dirichlet distribution, Dir(α/C, ..., α/C), where

P (p1, ..., pC) =
Γ(α)

Γ(α/C)C

C∏

c=1

p(γ/C)−1c

with pc ≥ 0 and
∑
pc = 1. The parameters γc are assumed to be independent with the prior

distribution G0. Using mixture identifiers ci, the model (2.1) can be represented as follows (Neal

2000):
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zi|ci, γ ∼ F (∙; γci)

ci|p1, ..., pC ∼ Discrete(p1, ..., pC)

p1, ..., pC ∼ Dir(α/C, ..., α/C)(2.2)

γc ∼ G0

where ci indicates which latent class is associated with zi. For each class c the parameters γc

determine the distribution of observations from that class. The collection of all such γc is denoted

by γ. By integrating out over the Dirichlet prior, the mixing proportions pc can be eliminated to

obtain the following conditional distribution for ci:

(2.3) P (ci = c|c1, ..., ci−1) =
ni,c + α/C

i− 1 + α

where ni,c is the number of cj for j 6= i that are equal to c. When C goes to infinity, the conditional

probabilities (2.3) reach the following limits:

P (ci = c|c1, ..., ci−1)→
ni,c

i− 1 + α

P (ci 6= cj |c1, ..., ci−1)→
α

i− 1 + α

As a result, the conditional probability for ψi, where ψi=γci , becomes

(2.4) ψi|ψ1, ..., ψi−1 ∼
1

i− 1 + α

∑

j<i

δ(ψj) +
α

i− 1 + α
G0

which is equivalent to the conditional probabilities (5.1) implied by the DPM. In other words, the

limit of the finite mixture model (2.2) is equivalent to the DPM model as the number of mixture

components C goes to infinity. G is the distribution over ψ and has the DP prior. The parameter α

of the DP prior controls the number of components in the mixture, such that a larger αs results in a

larger number of components. In contrast to the conjugate case, a different object is being integrated

out than in (5.1), bypassing the need for conjugacy between the DP prior and the likelihood function.

The resulting estimation procedure with the DP prior can be embedded in a wider model and applied

only to its well-defined submodel while other procedures can be used for the remainder. We take

advantage this feature in our semiparametric model specification by handling the non-parametric

model component with the DP prior, while the parametric alternative-specific indicator variable

block of parameters is estimated with a standard MCMC Gibbs sampling procedure.
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2.3. Estimation Strategy for Non-conjugate Dirichlet Process Prior

2.3.1. The Chinese Restaurant Process

In order to develop some intuition behind the estimation mechanism of the Gibbs sampling procedure

based on (2.2) and (2.3), we will briefly describe the heuristics of the popular ”Chinese restaurant”

process that is often used to describe the behavior of estimating algorithms for models with DP

priors. In general, each latent class in (2.2) can be thought of as a table in a Chinese restaurant.

The table location and size represent a current draw of a parameters of interest. Consider a snapshot

of time in the life of the restaurant when some tables (or clusters) have attracted many customers

while other tables may by occupied by one customer only (so-called ”singletons”). At each small

discrete time period, one customer decides to either stay at his current table or move to another

table that would suit him or her ”better”. This may involve the restaurant setting up new tables at

customer requests or taking away tables that have been completely vacated. After each customer has

made their decision, a new state of the system is recorded by the restaurant management to make

inference about the true underlying distribution of customers’ tastes. The whole customer moving

decision process starts anew in the next Monte Carlo (MC) iteration. As a stylized fact, tables with

more customers wield higher probability of attracting additional customers and vice versa, resulting

in the clustering property of the Chinese restaurant social scene. We will keep referring to this

heuristic analogy throughout the description of the estimation algorithm to guide our intuition.

2.3.2. Estimation Algorithm

Before formally stating the estimation procedure, we will describe its heuristics in general terms.

The estimation algorithm is composed of two basic steps in each MC iteration:

(1) Given the state of the system, update the assignment of zi to the latent classes ci. New

classes can be created and existing classes can vanish; the cluster structure is endogenous to

the data and the likelihood function, rendering the estimation procedure non-parametric.

This step is tantamount to customers switching tables in the Chinese restaurant process.

(2) For each latent class, draw new values of parameters γci using a Metropolis-Hastings update.

In the Chinese restaurant analogy, this step enables the management to make inference about

the underlying distribution of customers’ tastes.

Step (1) is composed of two stages: First, the entire parameter space is being examined with positive

probability for suggestions of creation of potential new classes, labeled as c∗i . These suggestions are

drawn from the base distribution G0. Those zi that are not ”singletons”, i.e. share a latent class with

other zj , j 6= i, change their latent class membership ci for the newly created c
∗
i with a probability

proportional to the ratio L(γc∗i |zi)/L(γci |zi) where L(γci |zi) is the likelihood of zi being distributed
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as F (zi; γci). Singleton zi, on the other hand, are re-distributed among the existing latent classes

with probability proportional to their respective likelihood ratios. The analogy here is the Chinese

restaurant management offering to set up tables with new menus aiming to rescue customers from

fixation on unlikely choices. This part in itself would be sufficient to produce a Markov Chain that

is ergodic, i.e. convergent (in a sense) with respect to the stationary target posterior distribution.

The resulting chain would sample inefficiently, though, since it can move zi from one existing class

to another by passing through a possibly unlikely state of zi being a singleton. Therefore, in the

second stage of Step (1), partial Gibbs updates are applied only to those observations that are

not singletons, and which are now allowed to change ci directly for another existing latent class,

generically denoted by c, with probability proportional to the likelihood L(γc|zi). As a result, the

mixing properties of the chain improve substantially. Having (potentially) switched around the

membership of observations among latent classes, in Step 2 the parameters of each latent class are

updated.

The convolution of these latent class densities changes in every MC step and the entire MC chain

convolves into the resulting stable non-parametric form of the density of ψ. Endogeneity of the

number and form of these cluster-specific densities in each MC step leads to the ability of the

convolution to approximate any form of the true density of ψ to arbitrary accuracy that depends

only on the number of MC draws, conditional on the dataset and model specification.

The full form of the Algorithm 7 (Neal 2000) is as follows:

Let the state of the Markov chain consist of c = (c1, ..., cn) and γ = (γc : c ∈

{c1, ..., cn}). Repeatedly sample as follows:

• For i = 1, ..., n, update ci as follows: If ci is not a singleton (i.e. ci = cj for

some j 6= i), let c∗i be a newly created component, with γc∗ drawn from G0.

Set the new ci to this c
∗
i with probability

a(c∗i , ci) = min

[

1,
α

n− 1

L(γc∗i |zi)

L(γci |zi)

]

.

Otherwise, when ci is a singleton, draw c∗i from c−i, choosing c
∗
i = c with

probability n−i,c/(n− 1). Set the new ci to this c∗i with probability

a(c∗i , ci) = min

[

1,
n− 1
a

L(γc∗i |zi)

L(γci |zi)

]

.

If the new ci is not set to c
∗
i , it is the same as the old ci.

• For i = 1, ..., n : If ci is a singleton (i.e. ci 6= cj for all j 6= i), do noth-

ing. Otherwise, choose a new value for ci from {c1, ..., cn} using the following
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probabilities:

P (ci = c|c−i, yi, γ, ci ∈ {c1, ..., cn}) = b
n−i,c

n− 1
L(γc|zi)

where b is the appropriate normalizing constant.

• For all c ∈ {c1, ..., cn} : Draw a new value from γc|zi such that ci = c, or

perform some other update to γc that leaves this distribution invariant.

2.4. Example of Multimodal Density Estimation

Owing to its generality that is not constrained by the requirements of conjugacy, this estimation

approach can be applied to any model scenario for sampling posterior distributions of parameters of

interest - univariate or multivariate. Arguably the simplest such scenario arises when the “param-

eter” is taken as the random variable itself in nonparametric density estimation. Before discussing

our limited dependent variable model, we took the estimation strategy described above to the test of

estimating highly irregular densities formulated in Marron and Wand (1992). One example is shown

in Figure 1 which is given by 0.5 N(0, 1) +
∑4
l=0 0.1N(l/2− 1, 0.001). The chosen distribution is a

mixture of Normals, but as we shall see it is not the aim of this procedure to estimate the parameters

of the mixture. Our procedure works rather differently as we shall show below.
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Figure 1. Left: trial true functional form of “the claw” posterior density of Marron and Wand
(1992). Right: Histogram of a sample draw, N = 1,000.

In Figure 1 we show the “target” true density from which we draw a sample of N = 1, 000 observa-

tions. In Figure 2 we plot the DPM density estimated as a result of our procedure which provides

a good approximation to a very difficult problem. With this opportunity we can discuss some of

the properties of this method which might be immediately apparent from our description of the

estimation algorithm.

First, it is important to note that the procedure shares features with both estimation by mixtures

of Normals and kernel estimation based on the Normal kernel (Ferguson, 1983). At every step of
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the Markov chain the procedure partitions the observations into n latent classes, which is equivalent

to fitting a Normal mixture with n components. One such typical configuration of the mixture is

shown in the right panel of Figure 2. The aim of the procedure is not to obtain a final “optimal”

configuration, but rather to let the mixtures vary over repeated Monte Carlo draws. In the left

panel of Figure 3 we show the evolution of the number of latent classes over the MC chain. The

number of classes varies between 6 and 19 over repeated draws and at each step a different mixture

is computed with a different number of components and corresponding parameters. Recall that

in Section 2 we characterized a nonparametric Bayesian method as one which integrates over a

range of prior distributions using a distribution G over these prior distributions. We modeled this

distribution G by the Dirichlet Process. Thus, in order to obtain the posterior distribution in Figure

2 we average the resulting mixture distributions over thousands of MC draws, each which results in

a different mixture. Moreover, each configuration of the latent classes depends on earlier draws by

virtue of the Markov chain design.
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Figure 2. Left: DPM density estimate based on the sample in Figure 1, with 10,000 MC
steps. Right: A typical snapshot of latent class positions scaled by the class membership intensity.

One very important feature of the procedure becomes important at this point. The number of latent

classes stays small and bounded over repeated MC draws. Moreover, the right panel in Figure 3

shows the distribution of members of the latent classes. This distribution decays very fast and most

of the observations are allocated between a few classes. This is due to two forces inherent in the

construction of the Dirichlet Process. Notice from Equation 2.6 that the probability of allocating

an observation to an existing cluster is proportional to the size of the cluster. This implies that

new observations are strongly attracted by large existing clusters and are much less likely to start

new clusters of their own. This property is often referred to preferential attachment or “the rich get

richer property”. Depending on applications this property of the random partitions induced by the

Dirichlet process may prove advantageous or not. Recently, alternative prior process specifications

such as the uniform process or the Pitman-Yor process have been proposed which do not have this

clustering feature (Dicker and Jensen, 2008).
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Figure 3. α = 1. Left: Evolution of the number of latent classes over the MC chain. Right:
Average number of latent class members, sorted by size.

The clustering property is also controlled by the parameter α. On the one hand it measures the

weight placed on the prior base distribution G0. Small values of α correspond to more weight

being placed on the prior base distribution G0, while large values give more weight to the empirical

observations. In the context of density estimation, Ferguson (1983) shows that in the limit for

α = 0 the method fits the parametric density estimate under the functional form given by G0. The

parameter α also controls the relative decay in class membership as one moves between classes. A

small value of α corresponds to more observations being clustered in each of the first few classes.

In the limit, this corresponds to all observations being attributed to a single class. As α increases

there will be many classes with few members and the class membership decays only very slowly.

To illustrate this property let us compare the distribution of class membership in the estimation of

the “claw” density under two different choices of α = 1 and α = 10 in Figures 3 and 4. We can see

that as we increase α the number of latent classes utilized also increases to between 25-65 classes.

Moreover, class membership decays much slower and we have a large number of classes with only a

few members.

Furthermore, it is possible to show that in the limit as α→∞ this procedure allocates one individual

per class. The distribution becomes a mixture of n Normal distributions, where each distribution

is the Bayesian density estimate based on a single observation with prior G0. Ferguson (1983)

shows that this yields a variable kernel estimator with constant window size but centered at a point

between the observation and the prior hypothesized mean. Thus, even in the limiting kernel case

the procedure maintains a certain degree of shrinkage towards the prior.
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Figure 4. α = 10. Left: Evolution of the number of latent classes over the MC chain. Right:
Average number of latent class members, sorted by size.

3. Semi-parametric Bayesian Logit-Probit Model

3.1. Model Environment

There are i = 1, ..., N individuals and an (unordered) set {1, ..., J} of alternative choices, indexed

by j, that each individual is facing. During a time period t, each individual chooses one or more

alternatives. The occasions on which an individual i made a choice during time t are indexed by q.

These choice occasions total to Qit ≥ 1. Each alternative j has associated with it a K−dimensional

column vector Xitqj of observed attributes (these may or may not be constant over q). Let B =
∑N
i=1

∑T
t=1Qit.

Consider the random utility model

Uitqj = g (Xitqj , βi, θi) + εitqj

where εijt is iid extreme value type I and Uitqj denotes the (unobserved) utility for an individual i

associated with choice j on occasion q during time t. Furthermore, β = (β1, ..., βN )
′
, θ = (θ1, ..., θN )

′

are vectors of unknown coefficients. The distribution of βi is modeled nonparametrically while θi –

coefficients on alternative specific indicator variables – are assumed to follow a multivariate normal

distribution. We will further assume in the model implementation that

g (Xitqj , βi, θi) = X
′
1itqjβi +X

′
2jθi

where Xitqj = (X1itqj , X2j). Since our estimation is applicable to any nonlinear parametrization of

g(∙) we will preserve the generic notation in this section.

The inclusion of these choice specific random normal variables forms the “probit” element of the

model. We introduce this extension of the standard logit model in order to eliminate the IIA as-

sumption at the individual level. In typical random coefficients logit models used to date, for a given

individual the IIA property still holds since the error term is independent extreme value. With the



13

inclusion of choice specific correlated random variables the IIA property no longer holds since a given

individual who has a positive realization for one choice is more likely to have a positive realization for

another positively correlated choice specific variable. Choices are no longer independent conditional

on attributes and hence the IIA property no longer holds. Thus, the logit part of the model allows

for ease of computation while the probit part of the model allows an unrestricted covariance matrix

of the stochastic terms in the choice specification.

An individual chooses the alternative j if the associated utility Uitqj is higher than that associated

with any of the alternatives. Let yitqj ∈ {1, ..., J} denote the observed choice outcome. For the

logistic specification of εijt, the probability of such choice is given by

(3.1) P (yitqj = j) =
exp(g (Xitqj , βi))

∑J
j=1 exp(g (Xitqj , βi))

(see e.g. Train 2003). The probability of an individual i choosing a set {yitqj = j}
Qit
q=1 at time t can

be expressed by the iid property of εitqj as

(3.2)

Qit∏

q=1

P (yitqj = j)

Using (3.1), (3.2) and the iid property of εitqj , the joint probability of observing the complete set

of yitqj is

P (y,X|β, θ) =
N∏

i=1

T∏

t=1

Qit∏

q=1

J∏

j=1

P (yitqj = j)
yitqj

=

N∏

i=1

T∏

t=1

Qit∏

q=1

J∏

j=1

(
exp(g (Xitqj , βi, θi))

∑J
j=1 exp(g (Xitqj , βi, θi))

)yitqj
(3.3)

Denote by #qitj the number of choices j that an individual i made during period t. The joint

likelihood obtained from (3.3) takes the form

(3.4) L(β, θ|y,X) =
N∏

i=1

T∏

t=1

J∏

j=1

(
exp(g (Xitqj , βi, θi))

∑J
j=1 exp(g (Xitqj , βi, θi))

)#qitj

This setup is a generalization of the multinomial mixed logit model that is obtained by setting

#qitj = 1 for each j, i, t. Mixed logit is a flexible discrete choice model that allows for random

coefficients and/or error components that induce correlation over alternatives and time.

Recalling the notation of the latent class DPM model (2.2), let zi = βi, ψ = {bβ ,Σβ}, and γc =

{bβc ,Σβc}. Let φ represent the Normal density. The hierarchical model structure is specified as
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follows:

βi|ci, γ, θi, yi, Xi ∼ F (∙; γci) ≡ N(bβci ,Σβci)

ci|p ∼ Discrete(p1, ..., pC)

p ∼ Dir(α/C, ..., α/C)

γc ∼ G0 ≡ BV N(b0β ,Σ0β)IW (v0, S0)

θi ∼ MVN(bθ,Σθ)

where

BV N(b0β ,Σ0β) = −
dβ

2
log(2π)−

1

2
log(|Σ0β |)−

1

2
(bβ − b0β)

′
Σ−10β (bβ − b0β)

IW (v0, S0) =
|S0|v0/2|Σβ |−(v0+dβ+1)/2 exp

(
−tr

(
S0Σ

−1
β

)
/2
)

2v0dβ/2Γdβ (v0/2)

with he multivariate gamma function specified as

Γdβ (v0/2) = π
dβ(dβ−1)/4

dβ∏

j=1

Γ(v0/2 + (1− j)/2)

In the context of a hierarchical logit model (see e.g. chapter 12 of Train 2003) with a diffuse prior

on {bθ,Σθ}, the value of the likelihood function to be used for updating ci is obtained as

L(γci |βi) = L(βi, θi|yi, Xi)φ(β|bβ ,Σβ)φ(θ|bθ,Σθ)

with individual components in log-form

log φ(β|bβ ,Σβ) = −
dβ

2
log(2π)−

1

2
log(|Σβ |)−

1

2
(β − bβ)

′
Σ−1β (β − bβ)

log φ(θ|bθ,Σθ) = −
dθ

2
log(2π)−

1

2
log(|Σθ|)−

1

2
(θ − bθ)

′
Σ−1θ (θ − bθ)

Consequently, our estimation is based on the following Gibbs blocks:

(1) Given the state of the system:

(a) Update latent classes ci using the scheme described in Algorithm 7 of Neal (2000)

(b) bβci |βi,Σβci , θi, bθ,Σθ ∀i s.t. ci = c

(c) Σβci |βi, bβci , θi, bθ,Σθ ∀i s.t. ci = c

(2) βi, θi|bβci ,Σβci , θi, bθ,Σθ ∀i

(3) bθ|βi, bβci ,Σβci , θi,Σθ

(4) Σθ|βi, bβci ,Σβci , θi, bθ

The Gibbs updates in blocks 1b and 3 are implemented using result A in Train (2003), p. 298, and

the updates in blocks 1c and 4 are implemented using result B in Train (2003), p. 300. The updates

in block 2 are performed using the likelihood (3.4) with random walk Metropolis-Hastings steps (see



15

e.g. Train 2003). Further details on the implementation of the DPM estimation procedure for our

model are discussed further below.

3.2. Example 1: Estimation of skewed preferences with and without DPM

Before applying the estimation procedure to real data we estimate two challenging models with

preference heterogeneity using simulated data. We fix the number of observations to N = 675 and

T = 24 since these are the dimensions of the data we’ll employ in the next section. We simulate

the data using the model specification described in Section 3.1. We generate two variables X1 and

X2 as random draws from Uniform [-5,5] distribution. Consumers can choose between six different

alternative and we also generate choice specific effects θ ∼ MVN(0, I5). We also assume that each

consumer undertakes seven shopping trips in each period.

In the first example we want to capture the intuition that in some models it is important to account

for skewed preferences. Consumers may feel very strongly about a particular product characteristic

and hence their preferences will be skewed on one side of the real line with almost no probability

mass in the opposite tail. These distributions cannot be modeled as Normal distributions and thus

we would expect a parametric model to fail to capture them. In order to simulate preferences which

have this skewness property we need to draw βi from a distribution with these features. Harding

and Hausman (2007b) show that a flexible parametric form which allows for skewness and which can

be easily implemented numerically can be constructed from the convolution of a normal kernel with

a skewing function. Thus, in order to simulate the data, consumer taste parameters βi are drawn

from the multivariate distribution f consisting of a normal kernel φ and a logistic function G, such

that

(3.5) f(β; b,Σ, λ) = 2φ(β; b,Σ)G(λ′ (β − b)),

φ is the probability density of a Normal distribution with mean b and covariance matrix Σ, G is the

cdf of a logistically distributed random variable with mean 0 and variance π2/3:

(3.6) G(y) =
1

1 + exp(−y)

λ is a p-dimensional vector of skewness parameters. We call f the skew-Normal-logistic, SNL (b,Σ, λ)

distribution. Note in particular that the distribution of β approaches that of the Half-Normal dis-

tribution |β| as λ→∞. In the first example preferences are assumed to follow a SNL(0, I2, [50, 50])

distribution. We plot these preferences in Figure 5, where the left panel shows the 3D density while

the right panel shows the corresponding contour plot. It is easy to see that these preferences are

skewed towards the first quadrant.

We apply both a parametric Bayesian estimation procedure that imposes a Normal prior on the pref-

erence distribution of β and the nonparametric DPM procedure. The resulting posterior estimates
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are plotted in Figure 6 and the corresponding Markov chains for the DPM estimation are shown

in Figure 7. Notice how estimating the model under the Normality assumption fails to capture the

skewness which characterizes the underlying preferences. The DPM on the other hand recovers a

posterior which is closed to the original skewed preference generating process.
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Figure 5. Plot of the trial density function out of which simulated βi were drawn.
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Figure 6. DPM estimate of the density of βi. N = 675, T = 24, trips per one time period
= 7. Overlay: parametric bivariate normal estimate.
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Figure 7. bθ chain and Σθ chain with true values indicated by lines.

3.3. Example 2: Estimation of multimodal preferences with and without DPM

For our second example we choose an even more challenging example which allows for multimodal

preferences. This is a plausible assumption in cases where consumers have extremely polarized

preferences over a given set of product attributes. It is possible to imagine situations where different

segments of the consumer population feel very differently about a certain characteristic. Consider

a product which contains nuts. Some consumers may love the extra crunchiness, many will feel

indifferent and some may be allergic to them. Additionally each segment may have different degrees

of skewness. In this example, β1 ∼ SNL(1, 1, 40) and β2 ∼ SNL(−2, 1, 80) for 25% of the data, β1 ∼

SNL(−2, 1, 70) and β2 ∼ SNL(−2, 1, 70) for another 25% of the data, and β1 ∼ SNL(1, 1,−50)

and β2 ∼ SNL(1, 1,−50) for the remaining 50% of the data. The distribution of these simulated

preferences is shown in Figure 8.
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Figure 8. Plot of the trial density function out of which simulated βi were drawn.

We estimate these preferences using both the parametric Normal model and the non-parametric

DPM model. The estimated preferences from the DPM model are shown in Figure 9 with an overlay
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of the parametric bivariate Normal model. Figure 10 shows the Markov chain parameter draws

for alternative-specific indicator variable coefficients and their variance-covariance matrices with the

true values indicated by red lines, which in the vast majority of cases lie within the standard errors

of the estimates.

The aim of this simulation is not to show that the parametric Normal model cannot capture these

complex preferences which is something we could have expected. Rather we want to exemplify the

power of the non-parametric approach in capturing a complex preference structure.
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Figure 9. DPM estimate of the density of βi. N = 675, T = 24, trips per one time period
= 7. Overlay: parametric bivariate normal estimate.

Figure 10. bθ chain and Σθ chain with true values indicated by lines.
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4. Application: Store Choice

4.1. Data Description

In order to explore the performance of our method in practice we now introduce a stylized yet real-

istic application to consumers’ choice of grocery stores. Our dataset consists of observations on 675

households in the Houston area whose shopping behavior was tracked using store scanners over 24

months during the years 2004 and 2005 by AC Nielsen. We only consider each household as having

a choice among 5 different stores (H.E. Butt, Kroger, Randall’s, Walmart, PantryFoods7). We also

allow for an additional category labelled “Other” which encompasses all other stores that fall under

the standard grocery format, but exclude club stores or convenience stores.

Most consumers shop in at least two different stores in a given month with the average number of

trips to their first choice store being approximately once a week. The mean number of trips per

month conditional on shopping at a given store for the stores in the sample is: H.E. Butt (4.05),

Kroger (4.60), Randall’s (3.21), Walmart (4.07), PantryFoods (2.91), Other (3.91). The historgram

in Figure 11 summarizes the frequency of each trip count for the households in the sample. The

mode of the distribution is 7.
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Figure 11. Histogram of the total number of trips to a store per month for

the households in the sample.

7PantryFoods stores are owned by H.E. Butt and are typically limited-assortment stores with reduced

surface area and facilities.
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We employ two key variables, price, which corresponds to the price of a basket of goods in a given

store-month and distance, which corresponds to the estimated driving distance for each household

to the corresponding supermarket. Since the construction of these variables from individual level

scanner data is not immediate some further details are in order to understand the meaning of these

variables.

Product Category Weight

Bread 0.0804

Butter and Margarine 0.0405

Canned Soup 0.0533

Cereal 0.0960

Chips 0.0741

Coffee 0.0450

Cookies 0.0528

Eggs 0.0323

Ice Cream 0.0663

Milk 0.1437

Orange Juice 0.0339

Salad Mix 0.0387

Soda 0.1724

Water 0.0326

Yogurt 0.0379

Table 1. Product categories and the weights used in the construction of

the price index.

In order to construct the price variable we first normalized observations from the price paid to a

dollars/unit measure, where unit corresponds to the unit in which the idem was sold. Typically,

this is ounces or grams. For bread, butter and margarine, coffee, cookies and ice cream we drop all

observations where the transaction is reported in terms of the number of units instead of a volume or

mass measure. Fortunately, few observations are affected by this alternative reporting practice. We

also verify that only one unit of measurement was used for a given item. Furthermore, for each pro-

duce we drop observations for which the price is reported as being outside two standard deviations

of the standard deviations of the average price in the market and store over the periods in the sample.

We also compute the average price for each product in each store and month in addition to the

total amount spent on each produce. Each product’s weight in the basket is computed as the total

amount spent on that product across all stores and months divided by the total amount spent across

all stores and months. We look at a subset of the total product universe and focus on the following
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product categories: bread, butter and margarine, canned soup cereal, chips, coffee, cookies, eggs, ice

cream, milk, orange juice, salad mix, soda, water, yogurt. The estimated weights are given in Table

1.

For a subset of the products we also have available directly comparable product weights as reported

in the CPI. As shows in Table 2 the scaled CPI weights match well with the scaled produce weights

derived from the data. The price of a basket for a given store and month is thus the sum across

product of the average price per unit of the product in that store and month multiplied by the

product weight.

Product Category 2006 CPI Weight Scaled CPI Weight Scaled Product Weight

Bread 0.2210 0.1442 0.1102

Butter and Margarine 0.0680 0.0444 0.0555

Canned Soup 0.0860 0.0561 0.0730

Cereal 0.1990 0.1298 0.1315

Coffee 0.1000 0.0652 0.0617

Eggs 0.0990 0.0646 0.0443

Ice Cream 0.1420 0.0926 0.0909

Milk 0.2930 0.1911 0.1969

Soda 0.3250 0.2120 0.2362

Table 2. Comparison of estimated and CPI weights for matching product categories.

In order to construct the distance variable we employ GPS software to measure the arc distance

from the centroid of the census tract in which a household lives to the centroid of the zip code in

which a store is located. For stores in which a household does not shop in the sense that we don’t

observe a trip to this store in the sample, we take the store at which they would have shopped to

be the store that has the smallest arc distance from the centroid of the census tract in which the

household lives out of the set of stores at which people in the same market shopped. If a household

shops at a store only intermittently, we take the store location at which they would have shopped

in a given month to be the store location where we most frequently observe the household shopping

when we do observe them shopping at that store. The store location they would have gone to is the

mode location of the observed trips to that store. Additionally, we drop households that shop at a

store more than 200 miles from their reported home census tract.

4.2. Implementation Notes

The estimation results along with auxiliary output are presented in below. In implementation of the

DPM algorithm, for the univariate case, the starting parameter values for β and θ were obtained

by draws from a standard normal distribution with a random assignment to 10 initial latent classes.
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For the bivariate case, the individual logit estimates were taken as starting values binned to 10

initial latent classes. The maximum number of latent classes was set to 50 but this artificial ceiling

was never a binding constraint: the mean number of actual latent classes was 9.19 with a standard

deviation of 2.32 in the univariate case and 18.07 classes with a standard deviation of 1.96 in the

bivariate case. We subjected the RW-MH updates in the second Gibbs block to scale parameters

ρbeta = 0.5 for βi and ρtheta = 0.1 (for a discussion, see e.g. p. 306 in Train 2003) which resulted

desired acceptance rates of approximately 0.3.

All chains appear to be mixing well and having converged. In contrast to frequentist methods, the

draws from the Markov chain converge in distribution to the true posterior distribution, not to point

estimates. For assessing convergence, we use the criterion given in Allenby, Rossi, and McCulloch

(2005) characterizing draws as having the same mean value and variability over iterations. Plots of

individual chains are not reported here due to space limitations but will can be provided on request.

The estimated DPM posterior also appeared relatively insensitive to the choice of the DPM prior

scalar parameter α. This is illustrated in Figures (14) and (15) showing the bivariate DPM estimates

for the values of α = 1 and α = 10, respectively. Following Neal (2000), we set α = 1 throughout

the analysis. In principle, one could incorporate learning about α using the algorithm of Escobar

and West (1995).

During the MC run, for small values of v0 (the shape parameter in the prior on Σβci implying a diffuse

prior when small), one latent class tended to eventually span the parameter space which resulted in

significant oversmoothing of the final estimate. We have not encountered such phenomenon in any

of the simulated cases. In our logit-probit model, the goal was to group individuals of similar tastes

into latent classes in each MC step that can be locally well-defined without subsuming the entire

parameter space. The resulting density estimate should also be capable of differentiating sufficient

degree of local variation. Hence, we imposed an flexible upper bound on the variance of each latent

class: if any such variance exceeded double the prior on Σβci , the strength of the prior belief expresses

as v0 was raised from the default minimum until the constraint was satisfied. This left the size of the

latent classes to vary freely up to double the prior variance. No bound was imposed on covariances

in the bivariate case. We took the composition of the innate cluster structure of the individual logit

estimates as the source of prior information for determining a suitable prior on Σβci . Thus the prior

was set to 0.2 for the variance of β1ci and 0.05 for β1ci . Priors on all means were set to zero and

variance of 25 to reach high diffusion in location.

Each model was subjected to 10,000 MC draws out of which the first 5,000 was discarded as a burn-in

section. The overall runtime was approximately 10 minutes and 30 minutes for the univariate and

bivariate DPM, respectively, on a 2.4 GHz Unix workstation using the PGI 6.1 Fortran 90 compiler.
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4.3. Estimation results

In order to explore the performance of the DPM estimator in real data we estimate a series of

stylized econometric models. We choose a subset of commonly employed econometric models for

discrete choices in order to observe how the estimation results change as we progressively relax

a series of assumptions. Thus, we estimate both fixed and random coefficients models and also

compare parametric and nonparametric estimates. In order to avoid confounding effects we restrict

our attention to a series of univariate and bivariate models in price and distance using the dataset

described in the previous section.

Consumers incur a cost of time as they travel to the store. We expect this cost of time to interact

with the savings in price. Thus, we define the main variable of interest as price*distance. In all

specifications the employed variables are defined in logs of the original values. This removes the

effect of outliers and produces a more robust specification. Throughout we have found the models

to have excellent numerical properties as recorded by the convergence of the Markov chains. 8

Additionally we include five indicator variables for each of the main stores H.E. Butt, Kroger,

Randall’s, Walmart and PantryFoods, leaving out the Other category of grocery stores.

The simplest model we can run is the standard fixed coefficients logit model as implemented in

numerous software packages including STATA. We report the estimated coefficients in Table 3, where

β1 corresponds to the coefficient on the price*distance variable while θ1 through θ5 correspond to the

coefficients on the store indicator variables. As we would expect from economic theory, the estimated

coefficient β1 on the shopping cost variable is negative. The reported asymptotic standard error is

very small. The estimated coefficients on the store indicator variables have a mixed sign pattern.

The coefficients for Kroger and Walmart imply a positive store effect relative to the Other category

while the coefficients for H.E. Butt, Randall’s and PantryFoods are negative.

Variable bβ1 bθ1 bθ2 bθ3 bθ4 bθ5

Mean -2.829 -0.377 0.930 -0.258 0.165 -2.061

Std. Dev. (0.029) (0.176) (0.189) (0.205) (0.181) (0.191)

Table 3. Fixed coefficients logit point estimates. Standard errors are in brackets.

We next estimate a parametric Normal random coefficients model where we assume heterogeneity in

consumer preferences. The coefficient β1 on the price*distance variable is drawn from a univariate

Normal distribution, while the coefficients θ on the store indicator variables are drawn from a

8We do not report results on the convergence of the Markov chains in the paper but they are available

from the authors upon request.
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multivariate Normal distribution with covariance matrix Σ. We employ a standard Bayesian MCMC

estimation strategy to estimate these two Normal distributions and report the means and variance-

covariance matrices with their corresponding standard errors in Tables 4 and 5. The mean of the

estimated distribution for β1 is -0.292 which is roughly 10 times smaller than the estimate for β1

resulting from the fixed coefficients logit model. By contrast the standard error has also increased

by a factor of 10. The means of the distributions on the store indicator variables have the same

sign patterns as the estimates from the fixed coefficients model, but some of the magnitudes have

changed. In particular the negative store effects for H.E. Butt, Randall’s and PantryFoods increase

substantially.

The parametric Normal random coefficients model also estimates the covariance matrix between

the coefficients on the store indicator variables which is reported in Table 5. Since most consumers

appear to buy their groceries at more than one store over the course of a month, most of the

estimated covariances are positive.

Variable bβ1 bθ1 bθ2 bθ3 bθ4 bθ5

Mean -0.292 -1.616 0.437 -2.196 0.156 -3.799

Std. Dev. (2.066) (0.161) (0.130) (0.165) (0.132) (0.187)

Table 4. Parametric Normal random coefficients model. Means of MCMC (bβ , bθ) draws.
Standard errors are in brackets.

Σθ�1 Σθ�2 Σθ�3 Σθ�4 Σθ�5

Σθ1� 16.12 (0.99) 3.11 (0.61) 5.73 (0.71) 6.56 (0.64) 0.04 (0.77)

Σθ2� 9.71 (0.68) 6.04 (0.59) 4.36 (0.51) 2.44 (0.53)

Σθ3� 13.01 (1.03) 2.94 (0.58) -0.62 (0.64)

Σθ4� 11.12 (0.74) 2.98 (0.61)

Σθ5� 14.7 (1.12)

Table 5. Parametric Normal random coefficients model. Means of MCMC Σθ draws. Standard
errors are in brackets.

We now estimate the semiparametric Bayesian mixed logit-probit model for the univariate case

discussed above. We allow the distribution on the price*distance coefficient β1 to follow a Dirichlet

Process Mixture, while modeling the store effects by a multivariate Normal distribution with a

general covariance matrix Σθ. We plot the estimated preference distribution for the main variable in

Figure 12. In addition to a mode which is negative and close to zero the distribution estimated using

DPM appears to have another mode close to -5. This corresponds to a group of consumers who are

extremely sensitive to the cost of shopping as measured by our price*distance variable. We report
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the estimated mean coefficient estimates for β1 and θ1 through θ5 in Table 6. As we would expect

from the presence of the additional negative mode, the mean coefficient for the DPM estimate is now

-0.406 which more negative than the corresponding estimate from the parametric Normal model.

The estimate for the multivariate Normal distribution of store effects is very similar to that obtained

using the parametric Normal model. Once again we find an alternative sign pattern for the mean

store effects and positive covariances between most of the store effects.
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Figure 12. DPM estimate of the univariate density of β1.

Variable bβ1 bθ1 bθ2 bθ3 bθ4 bθ5

Mean -0.406 -1.613 0.431 -2.215 0.184 -3.544

Std. Dev. (2.234) (0.168) (0.128) (0.159) (0.136) (0.164)

Table 6. Bayesian DPM Logit-Probit Model. Means of MCMC (bβ , bθ) draws. Standard
errors are in brackets.

Σθ�1 Σθ�2 Σθ�3 Σθ�4 Σθ�5

Σθ1� 16.33 (1.12) 3.11 (0.61) 6.11 (0.80) 6.60 (0.73) 0.53 (0.70)

Σθ2� 10.01 (0.69) 6.38 (0.68) 4.46 (0.54) 2.42 (0.53)

Σθ3� 13.67 (0.99) 3.11 (0.57) -0.79 (0.61)

Σθ4� 11.02 (0.73) 3.27 (0.67)

Σθ5� 12.83 (0.92)

Table 7. Bayesian DPM Logit-Probit Model. Means of MCMC Σθ draws. Standard errors
are in brackets.

We now proceed to estimate a series of bi-variate models which include both price*distance and

distance as conditioning variables. In Table 8 we report coefficient estimates for the standard fixed

coefficients logit model. We denote the coefficient on price*distance by β1 and the coefficient on

distance by β2. We also include five indicator variables in order to capture the store effects for H.E.

Butt, Kroger, Randall’s, Walmart and PantryFoods, leaving out the Other category of grocery stores.
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Both main conditioning variables are significant enter with a negative sign. The store effects have

an alternating sign pattern which corresponds to the results for the univariate model. In particular

we find that Kroger and Walmart have a positive store effect over the excluded category of other

grocery stores.

Variable bβ1 bβ2 bθ1 bθ2 bθ3 bθ4 bθ5

Mean -1.950 -0.202 -0.413 0.858 -0.518 0.283 -1.937

Std. Dev. (0.467) (0.009) (0.018) (0.019) (0.023) (0.019) (0.020)

Table 8. Fixed coefficients logit model. Means of MCMC (bβ , bθ) draws. Standard errors are
in brackets.

We then estimate the parametric Normal random coefficients model. We let (β1, β2) be drawn from

a bivariate Normal distribution and allow for correlations between the two random coefficients. The

modeling of the correlation between taste parameters is necessary in this case given the definition

of our two variables as price*distance and distance respectively. Furthermore we model the store

effects θ as having a multivariate Normal distribution with full covariance matrix Σθ. In Figure

13 we plot the multivariate Normal density estimate for β1 and β2 and the corresponding contour

plot. We notice a wide dispersion of the preference parameters with a mode close to zero. Thus,

the median consumer is relatively price insensitive. The presence of negative correlation between

consumer attitudes to the cost of shopping and the distance traveled implies that consumers who

are more price sensitive are willing to travel longer distances in order to purchase their groceries.

In Table 9 and we report mean coefficients for the β and θ coefficients. The taste coefficients on

our two main explanatory variables have very different mean values and standard errors relative to

the fixed coefficients logit estimates. Similarly we see some variation in the estimates for the store

effects. The signs remain the same however for both sets of coefficients. We find that standard

errors have increased substantially in the random coefficients model relative to the fixed coefficients

logit model.

In Table 10 we report estimates for the covariance matrix of the store effects Σθ. These estimates

are comparable with what we obtained for the univariate model. In particular we find most of the

covariances to be positive as a result of the consumers’ propensity in the sample to buy groceries at

several different stores within the same time period. The only exception is the negative correlation

between Randall’s and PantryFoods.

We next estimate the mixed logit-probit model by specifying a Dirichlet Process Mixture for the

bivariate distribution of consumer preferences on the first two variables of interest while letting the

distribution for the store effects be specified parametrically by a multivariate Normal distribution.
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Figure 13. Parametric Normal random coefficients model estimate of the bivariate density of (βi1, βi2).

Variable bβ1 bβ2 bθ1 bθ2 bθ3 bθ4 bθ5

Mean -0.296 -0.086 -1.641 0.404 -1.982 0.165 -3.372

Std. Dev. (2.556) (0.749) (0.163) (0.124) (0.231) (0.143) (0.153)

Table 9. Parametric Normal random coefficients model. Means of MCMC (βi, θi) draws.
Standard errors are in brackets.

Σθ�1 Σθ�2 Σθ�3 Σθ�4 Σθ�5

Σθ1� 15.52 (1.67) 2.58 (0.92) 4.88 (2.09) 6.52 (0.87) 0.35 (0.72)

Σθ2� 9.30 (1.13) 4.79 (1.74) 4.08 (0.57) 1.94 (0.50)

Σθ3� 10.50 (3.01) 2.53 (1.06) -0.96 (0.60)

Σθ4� 10.77 (0.73) 2.70 (0.60)

Σθ5� 11.13 (1.14)

Table 10. Parametric Normal random coefficients model. Means of MCMC Σθ draws. Stan-
dard errors are in brackets.

We plot the resulting nonparametric estimate of the preference distribution in Figure 14, where we

also plot the corresponding contour diagram. Notice that the estimated distribution has pronounced

multi-modal features. While most consumers appear to be insensitive to the cost of shopping for

groceries both in terms of price and distance, the preference distribution estimates two additional

modes. The first mode corresponds to consumers who are particularly sensitive to the cost of

shopping for groceries and are willing to travel a longer distance searching for a better deal. The

other mode corresponds to consumers who value proximity to the store and are prepared to pay a

higher price
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Figure 14. DPM estimate of the bivariate density of (βi1, βi2), α = 1.

Variable bβ1 bβ2 bθ1 bθ2 bθ3 bθ4 bθ5

Mean -0.323 -0.032 -1.512 0.489 -2.208 0.194 -3.32

Std. Dev. (1.483) (2.818) (0.167) (0.121) (0.180) (0.135) (0.160)

Table 11. DPM model. Means of MCMC (bβ , bθ) draws. Standard errors are in brackets.

Σθ�1 Σθ�2 Σθ�3 Σθ�4 Σθ�5

Σθ1� 15.42 (1.06) 3.11 (0.57) 5.13 (0.71) 6.67 (0.69) 0.97 (0.85)

Σθ2� 8.77 (0.60) 5.00 (0.55) 4.13 (0.51) 2.11 (0.59)

Σθ3� 11.60 (1.11) 2.26 (0.59) -0.84 (0.70)

Σθ4� 10.70 (0.70) 2.84 (0.62)

Σθ5� 11.37 (0.94)

Table 12. DPM model. Means of MCMC Σθ draws. Standard errors are in brackets.

In Table 11 we report the mean coefficient estimates. Both of our main conditioning variables have

negative mean coefficients but large amounts of variation. The results are numerically different from

the results in the parametric Normal model but have comparable orders of magnitude. In particular

notice that the estimates for the store effects continue to have an alternating sign patterns with

Kroger and Walmart enjoying positive effects over the excluded category while H. E. Butt, Randall’s

and PantryFoods having large negative effects. Additionally we report the estimated covariance

matrix between the store effects in Table 12. We continue to find positive correlations between these

effects.
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As we noted in Section 2.4 the number of latent classes in the DPM model, while endogenous to

the data, also depends on the parameter α. At the present we do not have a theory for consistently

choosing α. As we previously discussed however we expect that larger values of α add additional

latent classes, thus improving the resolution of the estimated preference distribution. In Figure 15

we re-estimate the DPM model using a value of α = 10. Notice that while the overall shape of

the distribution remains the same, the higher value of α produces an increased number of localized

features and even indicates additional modes for a subset of the observations. The estimated means

and variances of the model parameters were however quantitatively very similar.
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Figure 15. DPM estimate of the bivariate density of (βi1, βi2) for α = 10.

One potential criticism of a model that includes both choice covariates and store indicator variables

is that the store indicator variables may capture most of the variation due to average differences in

the shopping cost at different stores. In Figure 16 we re-estimate the mixed DPM model without

including store effects in the specification. The resulting nonparametrically estimated bivariate

distribution for β has numerous modes and a complex structure. Adding store effects thus appears to

make a substantial difference to the estimated consumer preferences and adds additional smoothing

as it controls for some of the additional variation in outcomes across consumers. Adding store effects

provides a more focused estimate of consumer preferences.

In some circumstances it is possible to estimate individual coefficients for each consumer. Beggs,

Cardell and Hausman (1981) estimate individual logit coefficients and measure the dispersion in

preferences in assessing the potential demand for electric cars. In our data we can also estimate

some but not all of the individual coefficients by running a standard logit model individual by

individual. The large T feature of our data helps us to identify individual coefficients but the lack
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Figure 16. DPM estimate of the bivariate density of (βi1, βi2) without individual effects.
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Figure 17. Bivariate density of individual logit estimates of (βi1, βi2).

of variation in shopping behavior for some consumers prevents us from estimating coefficients for

some individuals.

In Figure 17 we plot the distribution of the identified coefficients using minimal smoothing. While

the distribution has numerous modes it is remarkably similar to the distributions estimated by the

DPM model above. Note that this distribution of individual logit coefficients was not employed

in any way in the computation of the DPM estimate. In particular it appears very similar to the

distribution in Figure 16. The DPM model appears to add additional smoothing and shrinkage and

also allows for the estimation the distribution of store effects.
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5. Conclusion

In this paper we have introduced a new flexible mixed model for multinomial discrete choice where the

key individual- and alternative-specific parameters of interest are allowed to follow an assumption-

free nonparametric density specification while the distribution of other alternative-specific coef-

ficients is parametrized by the multivariate normal. We estimated the model using a Bayesian

Markov Chain Monte Carlo Gibbs sampling technique with a multivariate Dirichlet Process prior

on the coefficients with nonparametric density. A latent class sampling algorithm was employed

in implementation of the DP prior in order to resolve a problem of non-conjugacy of the DP prior

with respect to the model likelihood function. Our model was applied to supermarket choices of a

panel of Houston households whose shopping behavior was tracked over a 24-month period in years

2004-2005. We estimated the nonparametric density of two key variables of interest: the price of

a basket of goods based on scanner data, and driving distance to the supermarket based on their

respective locations, calculated using GPS software. Supermarket indicator variables formed the

parametric part of our model.
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Appendix: The Case of the Conjugate Dirichlet Process Prior

In the conjugate case, the following model (Escobar and West 1995) has often been used as a

departure point for estimation:

yi|ψi ∼ F (∙;ψi)

ψi|G ∼ G

G ∼ DP (G0, α)

For this model, Blackwell and MacQueen (1973) have characterized the prior distribution for ψi

given ψj , i 6= j, by integrating out G as

(5.1) ψi|ψ1, ..., ψi−1 ∼
1

i− 1 + α

i−1∑

j=1

δ(ψj) +
α

i− 1 + α
G0

where δ(ψj) is the Dirac measure at ψj . Combining this prior with the likelihood for ψi that results

from zi having distribution F (∙;ψi), denoted as L(ψi|yi), leads to the following posterior:

(5.2) ψi|ψ−i, yi ∼
∑

j 6=i

qi,jδ(ψj) + riHi

where Hi is the posterior distribution for ψi based on the prior G0 and zi. The values qi,j and ri

are defined by

qi,j = bL(ψj |yi)

ri = bα

∫
L(ψ|yi)dG0(ψ)(5.3)

where b is a normalizing constant such that
∑
j 6=i qi,j + ri = 1. If the DP prior is conjugate to the

likelihood, then the integral defining ri can be derived analytically and the posterior (5.2) is directly

amenable to Gibbs sampling. Since the zi are exchangeable, one can treat each zi in turn as the last

member of a Markov Chain. This estimation method, often referred to as the Polya urn scheme,

was used by Escobar (1994), Escobar and West (1995) and subsequently by many researchers who

benefited from the conjugacy of the DP prior with respect to their likelihoods.

The Blackwell and MacQueen (1973) sampling scheme (or its variants) cannot easily be applied

to models where G0 is not the conjugate prior to L as the integral in (5.3) will usually not be

analytically tractable. Sampling from Hi in the posterior (5.2) may also be hard when the prior is

not conjugate.
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