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We study how much data a Bayesian observer needs to correctly
infer the relative likelihoods of two events when both events
are arbitrarily rare. Each period, either a blue die or a red die is
tossed. The two dice land on side 1 with unknown probabilities
p1 and g4, which can be arbitrarily low. Given a data-generating
process where p1 > cqq, we are interested in how much data are
required to guarantee that with high probability the observer’s
Bayesian posterior mean for p; exceeds (1 — §)c times that for q-.
If the prior densities for the two dice are positive on the interior
of the parameter space and behave like power functions at the
boundary, then for every € > 0, there exists a finite N so that the
observer obtains such an inference after n periods with probabil-
ity at least 1 — e whenever npy > N. The condition on n and p; is
the best possible. The result can fail if one of the prior densities
converges to zero exponentially fast at the boundary.

rare event | Bayes etimate | uniform consistency | multinomial
distribution | signaling game

S uppose a physician is deciding between a routine surgery and
a newly approved drug for her patient. Either treatment can,
in rare cases, lead to a life-threatening complication. She adopts
a Bayesian approach to estimate the respective probability of
complication, as is common among practitioners in medicine
when dealing with rare events; see, for example, refs. 1 and 2
on the “zero-numerator problem.” She reads the medical litera-
ture to learn about n patient outcomes associated with the two
treatments and chooses the new drug if and only if her poste-
rior mean regarding the probability of complication due to the
drug is lower than (1 — §) times that of the surgery. As the true
probability of complication becomes small for both treatments,
how quickly does n need to increase to ensure that the physician
will correctly choose surgery with probability at least 1 — e when
surgery is in fact the safer option?

Phrased more generally, we study how much data are required
for the Bayesian posterior means on two probabilities to respect
an inequality between them in the data-generating process,
where these true probabilities may be arbitrarily small. Each
period, one of two dice, blue or red, is chosen to be tossed. The
choices can be deterministic or random, but have to be indepen-
dent of past outcomes. The blue and red dice land on side & with
unknown probabilities p, and gi, and the outcomes of the tosses
are independent of past outcomes. Say that the posterior beliefs
of a Bayesian observer satisfy (¢, §) monotonicity for side % if his
posterior mean for pj exceeds (1 — §)c times that for ¢; when-
ever the true probabilities are such that p; > cgz. We assume
the prior densities are continuous and positive on the interior
of the probability simplex and behave like power functions at the
boundary. Then we show that, under a mild condition on the fre-
quencies of the chosen colors, for every e > 0, there exists a finite
N so that the observer holds a (¢, §)-monotonic belief after n
periods with probability at least 1 — e whenever np;, > N. This
condition means that the expected number of times the blue die
lands on side £ must exceed a constant that is independent of
the true parameter. Examples show that the sample size condi-
tion is the best possible and that the result can fail if one of the
prior densities converges to zero exponentially fast at the bound-
ary. A crucial aspect of our problem is the behavior of estimates
when the true parameter value approaches the boundary of the
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parameter space, a situation that is rarely studied in a Bayesian
context.

Suppose that in every period, the blue die is chosen with the
same probability and that outcome % is more likely under the
blue die than under the red one. Then, under our conditions, an
observer who sees outcome £ but not the die color is very likely
to assign a posterior odds ratio to blue vs. red that is not much
below the prior odds ratio. That is, the observer is unlikely to
update her beliefs in the wrong direction. This corollary is used
in ref. 3 to provide a learning-based foundation for equilibrium
refinements in signaling games.

The best related result known so far is a consequence of
the uniform consistency result of Diaconis and Freedman in
ref. 4. Their result leads to the desired conclusion only under
the stronger condition that the sample size is so large that the
expected number of times the blue die lands on side k exceeds a
threshold proportional to 1/p;. That is, the threshold obtained
from their result explodes as p; approaches zero.

Our improvement of the sample size condition is made pos-
sible by a pair of inequalities that relate the Bayes estimates to
observed frequencies. Like the bounds of ref. 4, the inequalities
apply to all sample sequences without exceptional null sets and
they do not involve true parameter values. Our result is related to
arecent result of ref. 5, which shows that, under some conditions,
the posterior distribution converges faster when the true param-
eter is on the boundary. Our result is also related to ref. 6, which
considers a half space not containing the maximum-likelihood
estimate of the true parameter and studies how quickly the pos-
terior probability assigned to the half space converges to zero.

Bayes Estimates for Multinomial Probabilities

We first consider the simpler problem of estimating for a sin-
gle K-sided die the probabilities of landing on the various
sides. Suppose the die is tossed independently n times. Let
X, denote the number of times the die lands on side k. Then

Significance

Many decision problems in contexts ranging from drug safety
tests to game-theoretic learning models require Bayesian com-
parisons between the likelihoods of two events. When both
events are arbitrarily rare, a large data set is needed to reach
the correct decision with high probability. The best result in
previous work requires the data size to grow so quickly with
rarity that the expectation of the number of observations of
the rare event explodes. We show for a large class of pri-
ors that it is enough that this expectation exceeds a prior-
dependent constant. However, without some restrictions on
the prior the result fails, and our condition on the data size is
the weakest possible.

Author contributions: D.F,, K.H., and L.A.l. designed research, performed research, and
wrote the paper.

Reviewers: K.H., Pennsylvania State University; D.P.,, University of California, Berkeley;
and B.S., Northwestern University.

The authors declare no conflict of interest.
"To whom correspondence should be addressed. Email: drew.fudenberg@gmail.com.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1618780114/-/DCSupplemental.

PNAS Early Edition | 1of5

S8
EU
(=3
gu.l
v
o
wlﬂ

STATISTICS


mailto:drew.fudenberg@gmail.com
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1618780114/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1618780114/-/DCSupplemental
http://www.pnas.org/cgi/doi/10.1073/pnas.1618780114
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1618780114&domain=pdf&date_stamp=2017-04-25

L T

/

1\

=y

X" =(X7,..., Xg) has a multinomial distribution with param-
eter n € N and unknown parameter p = (p1,. .., px) € A, where
N is the set of positive integers and A= {p € [0, 1] : p1 + - +
px =1}. Let No=N U {0}. Let © be a prior density on A
with respect to the Lebesgue measure A on A, normalized by
AMA)=1/(K —1)l. Let «(:|X™) be the posterior density after
observing X".

Motivated by applications where some of the p; can be arbi-
trarily small, we are interested in whether the relative error of
the Bayes estimator px(X") = [ pem(p|X™)dA(p) is small with
probability close to 1, uniformly on large subsets of A. Specif-

ically, given k€ {1,..., K} and € >0, we seek conditions on n
and p and the prior, so that
Pp(1Ds(X") = prl <pre) = 1 —e. (1

A subscript on P or E indicates the parameter value under which
the probability or expectation is to be taken.

For a wide class of priors, we show in Theorem I that there is
a constant N that is independent of the unknown parameter so
that [1] holds whenever E, (X;’) > N. Denote the interior of A
by int A.

Condition P: We say that a density 7 on A satisfies Condition
P(a), where a = (a1, ..., ax) € (0,00)%, if

m(p)
HkK:I Pt -
is uniformly continuous and bounded away from zero on int A.
We say that r satisfies Condition P if there exists a € (0, 00)” so
that 7 satisfies Condition P(c).

For example, if K =2, then 7 satisfies Condition P(«) if and
only if 7 is positive and continuous on int A and the limit
lim,, 0 7(p)/pe* " exists and is positive for & = 1, 2. For every
K >2, every Dirichlet distribution has a density that satisfies
Condition P. Note that Condition P does not require that the
density is bounded away from zero and infinity at the boundary.
The present assumption on the behavior at the boundary is simi-
lar to Assumption P of ref. 5.

Theorem 1. Suppose = satisfies Condition P. Then for every ¢ >0,
there exists N € N so that

Py(p1(X™) — pu| > pre) <€ [2]
if npr, > N.

The proofs of the results in this section are given in S/
Appendix.

The proof of Theorem 1 uses bounds on the posterior means
given in Proposition 1 below. These bounds imply that there is an
N € N so that if npr, > N and the maximum-likelihood estimator
LX is close to py, then [pr(X™) — px| < pre. It follows from
Chernoff’s inequality that the probability that L X" is not close
to py is at most e.

Inequality 2 shows a higher accuracy of the Bayes estima-
tor pp(X™) when the true parameter p; approaches 0. To
explain this fact in a special case suppose that K =2 and the
prior is the uniform distribution. Then pg (X™) = (X +1)/(n+
2) and the mean squared error of pr(X") is [npr(1—pi)+
(1 —2p1)?]/(n + 2)?, which converges to 0 like L when p €

(0,1) is fixed and like - when p; = . Moreover, by Markov’s

inequality, the probability in [2] is less than (npi + 1)/(n”pie€’),

so that in this case we can choose N = 2/¢3. In general, we do not
have an explicit expression for the threshold N, but in Remark 2
we discuss the properties of the prior that have an impact on the
N we construct in the proof.

Condition P allows the prior density to converge to zero at
the boundary of A like a power function with an arbitrarily large
exponent. The following example shows that the conclusion of
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Theorem 1 fails to hold for a prior density that converges to 0
exponentially fast.
Example 1: Let K =2, w(p) oc e~ '/?1, and § > 0. Then for every

N €N, there exist p € A and 7 € Nwith n2+9p, > N so that
Pp([p1(X™) = pr[>p1) = 1.

The idea behind this example is that the prior assigns very
little mass near the boundary point where p1 =0, so if the true
parameter p; is small, the observer needs a tremendous amount
of data to be convinced that p; is in fact small. The prior den-
sity in our example converges to 0 at an exponential rate as
p1 — 0, and it turns out that the amount of data needed so that
P1(X™)/p1 is close to 1 grows quadratically in 1/p;. For every
fixed N €N and ¢ > 0, the pairs (n, p1) satisfying the relation

nato p1 = N involve a subquadratic growth rate of n with respect
to 1/p1. So we can always pick a small enough p; such that the
corresponding data size n is insufficient.

The next example shows that the sample size condition of
Theorem 1, npr > N, cannot be replaced by a weaker con-
dition of the form ((n)p; >N for some function ¢ with
limsup,,_, ., ¢(n)/n = oco. Put differently, the set of p for which
[2] can be proved cannot be enlarged to a set of the form {p :
P> ¢c(n)} with 6 (n) = o(1/n).

Example 2: Suppose 7 satisfies Condition P. Let ( : N— (0, c0)
be so that limsup,, , . ¢(n)/n =oc. Then for every N € N, there
exist p € A and n € Nwith (n)p; > N so that

Pp(|p1(X™) = p1| >p1) = 1.

The following proposition gives fairly sharp bounds on the pos-
terior means under the assumption that the prior density satisfies
Condition P. The result is purely deterministic and applies to all
possible sample sequences. The bounds are of interest in their
own right and also play a crucial role in the proofs of Theorems 1
and 2.

Proposition 1. Suppose T satisfies Condition P(c). Then for every
€ > 0, there exists a constant vy > 0 such that

nk+ak<fpk (Hf;lpzl’)ﬂ(p)d)\(p)g(l E)nk-f—’y

(1—¢) <
nET T (T pl) 7() dAG) "t

[3]

fork=1,...,Kandall n,ni,...,nkg € Ng with Zfil n; =n.
Remark 1: If 7 is the density of a Dirichlet distribution with
parameter « € (0,00)%, then the inequalities in [3] hold with
e=0andy= )" szl o, and the inequality on the left-hand side
is an equality. If 7 is the density of a mixture of Dirichlet distribu-
tions and the support of the mixing distribution is included in the
interval [a, A}K, 0<a< A<oo, then for all k and ny, ..., nk
with S5 n; = n,

n, + a < S pe (Hf{ﬂpz’”) 7(p) dA(p) _ + A'
nH KA (I o) m(p) da(p) o Ke

The proofs of our main results, Theorems I and 2, apply to all
priors whose densities satisfy inequalities 3 or 4. In particular,
the conclusions of these theorems and of their corollaries hold if
the prior distribution is a mixture of Dirichlet distributions and
the support of the mixing distribution is bounded.

Remark 2: Condition P(«) implies that the function w(p)/
[15, p2* ", p €intA, can be extended to a continuous function
7(p) on A. The proof of Proposition 1 relies on the fact that 7 can
be uniformly approximated by Bernstein polynomials. An inspec-
tion of the proof shows that the constant «y in [3] can be taken to

[4]

Fudenberg et al.
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be m + Zszl ay, where m is so large that h.,, the mth-degree
Bernstein polynomial of 7, satisfies

min{7(p) : p € A}.

max{|hn(p) — 7(p)| : p € A} < T+ 2e1

Hence, in addition to a small value of ¢, the following properties
of the density 7 result in a large value of v: (i) if Z,f:l ay, is large,
(i) if 7 is a “rough” function so that 7 is hard to approximate and
m needs to be large, and (iii) if 7 is close to 0 somewhere. The
threshold N in Theorem 1 depends on the prior through the con-
stant -y from Proposition 1 and the properties of 7 just described
will also lead to a large value of N.

In particular, N — oo if Eszl ay, — oo. For example, consider
a sequence of priors 7% for K =2, where 7/ is the density of
the Dirichlet distribution with parameter (4, 1), so that =) satis-
fies Condition P(a) with an = j. As j — oo, ) converges faster
and faster to 0 as p; — 0, although never as fast as in Example
1, where no finite N can satisfy the conclusion of Theorem 1. If
n=4j and p1 = 5, then under 710, p1(X™) = (X" + j)/(n +
J + 1) >2p, so for every € € (0, 1), the probability in Theorem
1 is 1. Thus, the smallest NV for which the conclusion holds must
exceed 45 x 5 =1.
Remark 3: Using results on the degree of approximation by
Bernstein polynomials, one may compute explicit values for the
constants « in Proposition 1 and N in Theorem 1. Details are
given in in SI Appendix, Remarks 3’ and 3”.
Remark 4: Suppose K >2 and the statistician is interested in
only one of the probabilities px, say p;. Then, instead of using
Pr(X™), he may first reduce the original (K — 1)-dimensional
estimation problem to the problem of estimating the one-
dimensional parameter (pg, >,z pr) of the Dirichlet distribu-
tion of (X;', >,z Xi"). He will then distinguish only whether

or not the die lands on side & and will use the induced one-
dimensional prior distribution for the parameter of interest.
If the original prior is a Dirichlet distribution on A, both
approaches lead to the same Bayes estimators for pz, but in gen-
eral, they do not. ST Appendix, Proposition 2 shows that whenever
the original density 7 satisfies Condition P, then the induced den-
sity satisfies Condition P as well. However, it may happen that the
induced density satisfies Condition P even though the original
density does not. For example, if K =3 and 7(p) o< e~ /71 + po,
then 7 does not satisfy Condition P, but for each k=1, 2, 3, the
induced density does.

Comparison of Two Multinomial Distributions

Here we consider two dice, blue and red, each with K > 2 sides.
In every period, a die is chosen. We first consider the case where
the choice is deterministic and fixed in advance. We later allow
the choice to be random. The chosen die is tossed and lands
on the kth side according to the unknown probability distribu-
tions p = (p1,...,px) and ¢=(q,. .., gx) for the blue and the
red die, respectively. The outcome of the toss is independent of
past outcomes. The parameter space of the problem is A% The
observer’s prior is represented by a product density 7(p)o(q)
over A?; that is, he regards the parameters p and ¢ as realiza-
tions of independent random vectors.

Let X™ be a random vector that describes the outcomes, i.e.,
colors and sides, of the first n tosses. Let b, denote the number
of times the blue die is tossed in the first n periods. Let 7w(-|X™)
and o(-|X™) be the posterior densities for the blue and the red
die after observing X". Let p,(X")= [ prm(p|X™)dX(p) and
@ (X™) = [ qeo(q|X™)dA(q). The product form of the prior
density ensures that the marginal posterior distribution for either
die is completely determined by the observations on that die and
the marginal prior for that die.

Fudenberg et al.

We study the following problem. Fix a side k€ {1,..., K}
and a constant ¢ € (0, 00). Consider a family of environments,
each characterized by a data-generating parameter vector ¥ =
(p, ) € A% and an observation length n. In each environment,
we have p; > cq;, and we are interested in whether the Bayes
estimators reflect this inequality. In general, one cannot expect
that the probability that pz (X™) > cg; (X ™) is much higher than
% when p;, = cq;. We therefore ask whether in all of the environ-
ments, the observer has a high probability that pz (X") > ¢(1 —
8)gr(X™) for a given constant § € (0, 1).

Clearly, as pj approaches 0, we will need a larger observation
length n for the data to overwhelm the prior. But how fast must
n grow relative to p; ? Applying the uniform consistency result of
ref. 4 to each Bayes estimator separately leads to the condition
that n must be so large that the expected number of times the
blue die lands on side k, that is, b, p;, exceeds a threshold that
explodes when pj; approaches zero. The following theorem shows
that there is a threshold that is independent of p, provided the
prior densities satisty Condition P.

Theorem 2. Suppose that T and o satisfy Condition P. Let k €
{1,...,K},c€(0,00),and ¢, §,n € (0,1). Then there exists N € N
so that for every deterministic sequence of choices of the dice to be
tossed,

Py (Pr(X") 2 (1 -6)gz(X")) > 1 —e (51
)

for all 9= (p, q) € A® with p; > cq;; and all n €N with b, pj, >
Nand b, /n<1-—n.

We prove Theorem 2 in the next section.

Note that the only constraints on the sample size here are that
the product of b, with p; be sufficiently large and the propor-
tion of periods in which the red die is chosen be not too small.
However, p;, and gz can be arbitrarily small. This is useful in ana-
lyzing situations where the data-generating process contains rare
events.

In the language of hypothesis testing, Theorem 2 says that
under the stated condition on the prior, the test that rejects the
null hypothesis p; > cg; if and only if p (X™) < c(1 — 8) g (X ™)
has a type I error probability of at most ¢ provided p; > N /b,
(and b,/n <1 —n). For every n, the bound on the error proba-
bility holds uniformly on the specified parameter set. Note that
such a bound cannot be obtained for a test that rejects the
hypothesis whenever pz(X") < cgz (X™).

We now turn to the case where the dice are randomly chosen.
The probability of choosing the blue die need not be constant
over time but must not depend on the unknown parameter .
Let the random variable B,, denote the number of times the blue
die is tossed in the first n periods.

Corollary 1. Suppose that 7 and o satisfy Condition P. Let k €
{1,...,K}, c€(0,00), and €,6 €(0,1). Suppose that in every
period, the die to be tossed is chosen at random, independent of
the past, and that

lim inf M

n— oo n

>0, lim sup <1 [6]

n— 00

E(By)

Then there exists N € N so that
Py (pr(X") > c(1 =0)q(X"™)) > 1—e (71

forall 9 = (p, q) € A* with p;, > cqi, and all n € N with npj, > N.
The proof of Corollary 1 is given at the end of the next section.
In the decision problem described at the beginning, Theorem 2

and Corollary 1 ensure that whenever surgery is the safer option,
the probability that the physician actually chooses surgery is at
least 1 — e unless the probability of complication due to the drug
is smaller than N /n. Except for this last condition, the bound
1 — € holds uniformly over all possible parameters.
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In the rest of this section we assume that in every period the
blue die is chosen at random with the same probability 5. The
value of ;5 need not be known; we assume only that 0 < up <1,
so that condition 6 is met.

The following example shows that the conditions on the prior
densities cannot be omitted from Corollary 1.

Example 3: Suppose K =2 and 0 < g < 1. Suppose = satisfies
Condition P and o(q) o e ~/% . Let ¢ > 0. Then for every N € N,
there exist ¥ = (p, q) € A% with p; > cq1 and n € Nwith np; > N
so that
P N P 1
Po (1 (X")< Sa(X7)) >3

The next example shows that the sample size condition of

Corollary 1, np;, > N, is the best possible for small pz. It can-
not be replaced by a weaker condition of the form n¢(p;) > N
for some function ¢ with lim; 04 ((¢)/t = co. In particular, tak-
ing ¢ to be a constant function shows that there does not exist
N €N so that n > N implies that [7] holds uniformly for all 9
with pi > cqy.
Example 4: Suppose that 0 < pp < 1 and that 7 and p satisfy Con-
dition P. Let ¢ > 0. Let ¢ be a nonnegative function on [0, 1] with
lim; 04 ¢(¢)/t =occ. Then there exists €9 > 0 so that for every
N €N, there exist 9 = (p, q) € A? with p; > cq and n € N with
n¢(p1) > N so that

Py (@1(X")<§q1(x")) > €.

Examples 3 and 4 are proved in SI Appendix.

Suppose that after data X" the observer was told that the next
outcome was k but not which die was used. Then Bayes’ rule
implies the posterior odds ratio for “blue” relative to “red” is

5 [pem(p|X™) dA(p)
pr faro(alX™) dX(q)’

where yr=1—pus.

Corollary 2. Suppose that w and ¢ satisfy Condition P. Then there
exists N € N such that whenever pg > q; and npj > N, there is
probability at least 1 — € that the posterior odds ratio of blue rel-
ative to red exceeds (1 —¢) - U2 when the (n + 1)th die lands on
side k.

Corollary 2 is used by Fudenberg and He in ref. 3, who pro-
vide a learning-based foundation for equilibrium refinements in
signaling games. They consider a sequence of learning environ-
ments, each containing populations of blue senders, red senders,
and receivers. Senders are randomly matched with receivers
each period and communicate using one of K messages. There
is some special message k, whose probability of being sent by
blue senders always exceeds the probability of being sent by red
senders in each environment. Suppose the common prior of the
receivers satisfies Condition P and, in every environment, there
are enough periods that the expected total observations of blue
sender playing k£ exceed a constant. Then at the end of every
environment, by Corollary 2 all but ¢ fraction of the receivers
will assign a posterior odds ratio for the color of the sender not
much less than the prior odds ratio of red vs. blue, if they were
to observe another instance of k sent by an unknown sender,
regardless of how rarely the message k is observed. A leading
case of receiver prior satisfying Condition P is fictitious play, the
most commonly used model of learning in games, which corre-
sponds to Bayesian updating from a Dirichlet prior, but Corol-
lary 2 shows that the Dirichlet restriction can be substantially
relaxed.

Proofs of Theorem 2 and Corollary 1

We begin with two auxiliary results needed in the proof of Theo-
rem 2. Lemma 1 is a large deviation estimate that gives a bound
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on the probability that the frequency of side % in the tosses of
the red die exceeds an affine function of the frequency of side &
in the tosses of the blue die. Lemma 2 implies that, with proba-
bility close to 1, the number of times the blue die lands on side
k exceeds a given number when b, p;; is sufficiently large. The
proofs of Lemmas I and 2 are in SI Appendix.

Lemma 1. Let S,, be a binomial random variable with parameters
n and p, and let Ty, be a binomial random variable with param-
eters m and q. Let 0 < ¢’ < c and d > 0. Suppose S,, and T,, are
independent, and p > cq. Then

N\ ¢ d/(c"+1)
P(&ziﬁJr d )g(c—) .
m c n nAm c

Lemma 2. Let M < oo and € > 0. Then there exists N € N so that
if Sy is a binomial random variable with parameters n and p and
np > N, then

P,(S, < M) < e.

Proof of Theorem 2: Let 7, =n — b, be the number of times the
red die is tossed in the first n periods. Let Y, and Z, be the
respective number of times the blue and the red die land on side
k. Choose >0 and ¢’ € (0, c) so that
_1-8
(1+p8)(1-9)
By Proposition 1, there exists v > 0 so that for every n € N,

Pe(X") = ¢(bn, Yn),  @G(X") < (rn, Zn), 9]

>§ 14 (8]

where

Y zZ+y
b =(1—-p8)——— =(1 N
)= (=Bt U =048
Let d>0 be so that the bound in Lemma 1 satisfies
(c'fe) /D <
— 2’
We now show that for all b,7€N, y=0,...,b, and z=
0,...,r, the inequalities

z_ly d 2¢y r  3e(d+7)
r<c’b DA c,5<b<n, y>M._7&7 [10]
imply that
¢(b7y)>c(1 - 5)1/)(1”,2) [11]

It follows from the first and the third inequality in [10] that
Y rd
wir2) <v (2 + 50

e (Ests )

5
§(1+/3)(%+3—Z>.

Applying this result, inequality 8, twice the second, and finally
the fourth inequality in [10] we get

o(b,y) — c(1 = 8)y(r, 2)
(1=8)(1+5)

Sy 1-6 _c_cr)_M
b+y \(1-8A+p) ¢ b 3b

> Y (s_0)\_oM
T o+7y 2 3b

b
25 6M _
2

255 =0

proving [11].
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z

1\

=y

Let N={n € N: b,/n<1—n}, Ni=
every n € N with b, > N; define the events

Zn 1Y, d
Fp={Znc 2t
" {7"n<c’bn_'—bn/\rn}7

For all n € N, b, < r,,/n. Thus, if n € A" and b,, > Ny, the impli-
cation [10] = [11] yields that

Fr,N Gy CH{P(bn, Yn)>c(1 —8)(rn, Zn)}
Therefore, by inequalities 9,
Fn0 Gn CH{PR(X™) 2 e(1 = 0)gp(X™)}.

It follows from Lemma 1 and the deﬁnition of d that for every
¥ =(p, q) with p; > cqz, Ps(Fy) < 5. By Lemma 2, there exists
N2 €N so that Py(Gy) < § for all'n with bnpi > Na. Thus, if
pr > cqi, n €N, and b, py, > > N := max(Ni, N2), then

Po(pp(X") = (1 =0):(X")) 21 =Py (Fy) —Py(Gr) 21 —e.

Note that N does not depend on the sequence of the choices of
the dice. O

Remark 5: If K =2, then for every n > 1 and every fixed number
of times the red die is chosen in the first n periods, the Bayes
estimate of g; can be shown to be an increasing function of the
number of times the red die lands on side k. This fact can be
combined with Theorem 1 to give an alternative proof of Theorem

[2¢v/(c'6)], and for

Gn ={Y.>M}.
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2 for the case K =2. The monotonicity result does not hold for
K > 2 and our Proof of Theorem 2 does not use Theorem 1.

Proof of Corollary 1: By Chebyshev’s inequality, [B,, — E(B,)]/n
converges in probability to 0. Thus, by condition 6, there exists
n>0and N; € N so that the event F,, ={n < B,/n <1—n} has
probability P(F,,) >1— 5 for all n > Ni. By Theorem 2, there
exists Nz € N so that

™

Py (pr(X™) = ¢(1 = 8)4p(X")[Bn = bn) > 1 = 5

[\V]

for all ¥=(p,q) € A? with p; >cq; and all n€N and b, €
{1,...,n} with P(B,=10,)>0 and b,pg> N2 and b,/n<
1 —n.Let N = max(Ny, [N2/n]). Then for every ¥ with p; > cgj
and every ne€N with np; >N, F, C{Bnp; > N2, Br/n<
1—mn}, so that

Py (pr(X") > ¢(1 —6) g (X
which implies [7] because P(F,,) > 1
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