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Many schools in large urban districts have more applicants than seats. Centralized
school assignment algorithms ration seats at over-subscribed schools using randomly
assigned lottery numbers, non-lottery tie-breakers like test scores, or both. The New
York City public high school match illustrates the latter, using test scores and other
criteria to rank applicants at the city’s screened schools, combined with lottery tie-
breaking at the rest. We show how to identify causal effects of school attendance in
such settings. Our approach generalizes regression discontinuity methods to allow for
multiple treatments and multiple running variables, some of which are randomly as-
signed. The key to this generalization is a local propensity score that quantifies the
school assignment probabilities induced by lottery and non-lottery tie-breakers. The
utility of the local propensity score is demonstrated in an assessment of the predictive
value of New York City’s school report cards. Schools that earn the highest report card
grade indeed improve SAT math scores and increase graduation rates, though by much
less than OLS estimates suggest. Selection bias in OLS estimates of grade effects is
egregious for screened schools.

KEYWORDS: Propensity score, school choice, research design, school quality, de-
ferred acceptance.

1. INTRODUCTION

LARGE SCHOOL DISTRICTS increasingly use sophisticated centralized assignment mecha-
nisms to match students to schools. In addition to producing fair and transparent admis-
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sions decisions, centralized assignment offers a unique resource for research on schools:
the data these systems generate can be used to construct unbiased estimates of school
value-added. This research dividend arises from the tie-breaking embedded in centralized
assignment. Many school assignment schemes rely on the deferred acceptance (DA) al-
gorithm, which takes as input information on applicant preferences and school priorities.
In settings where seats are scarce, DA rations seats at over-subscribed schools using tie-
breaking variables, thereby generating quasi-experimental variation in school assignment.

Many DA-implementing districts break ties with a uniformly distributed random vari-
able, often described as a lottery number. Abdulkadiroğlu et al. (2017a) show that DA
with lottery tie-breaking assigns students to schools as if in a stratified randomized trial.
That is, conditional on preferences and priorities, the assignments generated by such sys-
tems are randomly assigned and therefore independent of potential outcomes. In prac-
tice, however, preferences and priorities, which we call applicant type, are too finely dis-
tributed for full nonparametric conditioning to be useful. We must therefore pool appli-
cants of different types, while avoiding any omitted variables bias that might arise from
the fact that type predicts outcomes.

The key to type pooling is the DA propensity score, defined as the probability of school
assignment conditional on applicant type. In a mechanism with lottery tie-breaking, con-
ditioning on the scalar DA propensity score is sufficient to make school assignment inde-
pendent of potential outcomes. Moreover, the distribution of the scalar propensity score
turns out to be much coarser than the distribution of types.1

This paper generalizes the propensity score to DA-based assignment mechanisms in
which tie-breaking variables may include something other than randomly assigned lottery
numbers. Selective exam schools, for instance, admit students with high test scores, and
students with higher scores tend to have better achievement and graduation outcomes re-
gardless of where they enroll. We refer to such scenarios as involving general tie-breaking.2
Matching markets with general tie-breaking raise challenges beyond those addressed in
the Abdulkadiroğlu et al. (2017a) study of DA with lottery tie-breaking.

The most important complication raised by general tie-breaking arises from the fact
that seat assignment is no longer independent of potential outcomes conditional on ap-
plicant type. This problem is intimately entwined with the identification challenge raised
by regression discontinuity (RD) designs, which typically compare candidates for treat-
ment on either side of a qualifying test score cutoff. In particular, non-lottery tie-breakers
play the role of an RD running variable and are likewise a source of omitted variables bias.
The setting of interest here, however, is more complex than the typical RD design: DA
may involve many treatments, tie-breakers, and cutoffs.

1The propensity score theorem says that for research designs in which treatment status, Di , is independent
of potential outcomes conditional on covariates,Xi , treatment status is also independent of potential outcomes
conditional on the propensity score, that is, conditional on E[Di|Xi]. In work building on Abdulkadiroğlu et al.
(2017a), the DA propensity score is used to study schools (Bergman (2018)), management training (Abebe
et al. (2019)), and entrepreneurship training (Pérez Vincent and Ubfal (2019)).

2The non-lottery tie-breaking embedded in centralized assignment schemes is used in econometric research
on schools in Chile (Hastings, Neilson, and Zimmerman (2013), Zimmerman (2019)), Ghana (Ajayi (2014)),
Italy (Fort, Ichino, and Zanella (2020)), Kenya (Lucas and Mbiti (2014)), Norway (Kirkeboen, Leuven, and
Mogstad (2016)), Romania (Pop-Eleches and Urquiola (2013)), Trinidad and Tobago (Jackson (2010, 2012),
Beuermann, Jackson, and Sierra (2016)), and the United States (Abdulkadiroğlu, Angrist, and Pathak (2014),
Dobbie and Fryer (2014), Barrow, Sartain, and de la Torre (2016), Abdulkadiroğlu et al. (2017)). These stud-
ies treat individual schools and tie-breakers in isolation, without exploiting centralized assignment. Related
methodological work exploring regression discontinuity designs with multiple assignment variables and multi-
ple cutoffs includes Papay, Willett, and Murnane (2011), Zajonc (2012), Wong, Steiner, and Cook (2013a) and
Cattaneo et al. (2016).
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A further barrier to causal inference comes from the fact that the propensity score in
a general tie-breaking setting depends on the unknown distribution of non-lottery tie-
breakers conditional on type. Consequently, the distribution of propensity scores under
general tie-breaking may be no coarser than the underlying high-dimensional type distri-
bution. When the score distribution is no coarser than the type distribution, score condi-
tioning is pointless.

These problems are solved here by introducing a local DA propensity score that quanti-
fies the probability of school assignment induced by a combination of non-lottery and lot-
tery tie-breakers. This score is “local” in the sense that it is constructed using the fact that
continuously distributed non-lottery tie-breakers are locally uniformly distributed. Com-
bining this property with the (globally) known distribution of lottery tie-breakers yields a
formula for the assignment probabilities induced by any DA match. Conditional on the
local DA propensity score, school assignments are shown to be asymptotically randomly
assigned. Moreover, like the DA propensity score for lottery tie-breaking, the local DA
propensity score has a distribution far coarser than the underlying type distribution.

Our analytical approach extends Hahn, Todd, and Van der Klaauw (2001) and other
pioneering nonparametric analyses of RD designs. We also build on the more recent lo-
cal random assignment interpretation of nonparametric RD.3 The resulting theoretical
framework allows us to quantify the probability of school assignment as a function of a
few features of student type and tie-breakers, such as proximity to the admissions cut-
offs determined by DA and the identity of key cutoffs for each applicant. By integrating
nonparametric RD with Rosenbaum and Rubin (1983)’s propensity score theorem and
large-market matching theory, our theoretical results provide a framework suitable for
causal inference in a wide variety of applications.

The research value of the local DA propensity score is demonstrated through an anal-
ysis of New York City (NYC) high school report cards. This analysis aims to determine
whether schools awarded “Grade A” on the district’s school report cards are indeed high
quality in the sense that they boost their students’ achievement and improve other out-
comes. Alternatively, the good performance of most Grade A students may reflect omit-
ted variables bias. The distinction between causal effects and omitted variables bias is es-
pecially interesting in light of an ongoing debate over access to New York’s academically
selective schools, also called screened schools, which are especially likely to be graded
A (see, e.g., Brody (2019) and Veiga (2018)). We identify the causal effects of Grade A
school attendance by exploiting the NYC high school match. The NYC high school match
employs a DA mechanism integrating non-lottery screened school tie-breaking with a
common lottery tie-breaker at unscreened “lottery schools”. In fact, NYC screened high
schools design their own tie-breakers based on middle school transcripts, test scores, in-
terviews, and other factors.

The effects of Grade A school attendance are estimated using instrumental variables
constructed from the school assignment offers generated by the NYC high school match.
Specifically, our two-stage least squares (2SLS) estimators use assignment offers as in-
strumental variables for Grade A school attendance, while controlling for the local DA
propensity score. The resulting estimates suggest that Grade A attendance boosts SAT
math scores modestly and may increase high school graduation rates a little. But these
Grade A effects are much smaller than the corresponding ordinary least squares (OLS)
estimates.

3See, among others, Frolich (2007), Cattaneo, Frandsen, and Titiunik (2015), Cattaneo, Titiunik, and
Vazquez-Bare (2017), Frandsen (2017), Sekhon and Titiunik (2017); Frolich and Huber (2019); and Arai et al.
(2019).
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We also compare 2SLS estimates of Grade A effects computed separately for NYC’s
screened and lottery schools. Perhaps surprisingly, this comparison shows the two sorts of
schools to have similar (equally modest) causal effects. This finding therefore implies that
OLS estimates showing a large Grade A screened school advantage are especially mis-
leading, an important result in view of the ongoing debate over NYC school access and
quality. Our estimates suggest that the public concern with screened school enrollment
opportunities may be misplaced. On the methodological side, evidence of limited hetero-
geneity supports our assumption of constant treatment effects conditional on covariates.4

The next section shows how DA can be used to identify causal effects of school atten-
dance. Section 3 illustrates key ideas through the example of a DA match with a single
non-lottery tie-breaker. Section 4 derives a formula for the local DA propensity score in a
matching market with general tie-breaking. This section also establishes a key identifica-
tion result and derives a consistent estimator of the local propensity score. Section 5 uses
these theoretical results to estimate causal effects of attending Grade A schools.5

2. USING CENTRALIZED ASSIGNMENT TO ELIMINATE OMITTED VARIABLES BIAS

The NYC school report cards published from 2007 to 2013 graded high schools on
the basis of student achievement, graduation rates, and other criteria. These grades were
part of an accountability system meant to help parents choose high-quality schools. In
practice, however, report card grades computed without extensive control for student
characteristics reflect students’ ability and family background as well as school quality.
Systematic differences in student body composition are a powerful source of bias in school
report cards. It is therefore worth asking whether a student who is randomly assigned to a
Grade A high school indeed learns more and is more likely to graduate as a result.

We answer this question using instrumental variables derived from NYC’s DA-based
assignment of high school seats. The NYC high school match generates a single school as-
signment for each applicant as a function of applicants’ preferences over schools, school-
specific priorities, and a set of tie-breaking variables that distinguish between applicants
who share preferences and priorities.6 Because they are a function of student character-
istics like preferences and test scores, NYC assignments are not randomly assigned. We
show, however, that conditional on the local DA propensity score, DA-generated assign-
ment of seats at school s provides a credible instrument for enrollment at s. This result
motivates a two-stage least squares (2SLS) procedure that instruments enrollment at any
Grade A school with a dummy indicating DA-generated offers of a Grade A school seat.

4The analysis here allows for treatment effect heterogeneity as a function of observable student and school
characteristics. Our working paper shows how DA in markets with general tie-breaking identifies average
causal affects for applicants with tie-breaker values away from screened-school cutoffs (Abdulkadiroğlu et al.
(2019)). We leave an in-depth investigation of heterogeneous effects for future work.

5Our theoretical analysis covers any mechanism that can be computed by student-proposing DA. This DA
class includes serial dictatorship, the immediate acceptance (Boston) mechanism (Abdulkadiroğlu and Sönmez
(2003), Ergin and Sönmez (2006)), China’s parallel mechanisms (Chen and Kesten (2017)), England’s first-
preference-first mechanisms (Pathak and Sönmez (2013)), and the Taiwan mechanism (Dur et al. (2018)).
In large markets satisfying regularity conditions that imply a unique stable matching, the relevant DA class
includes school-proposing as well as student-proposing DA (these conditions are spelled out in Azevedo and
Leshno (2016)). The DA class excludes the Top Trading Cycles (TTC) mechanism defined for school choice by
Abdulkadiroğlu and Sönmez (2003).

6Seat assignment at some of NYC’s selective enrollment “exam schools” is determined by a separate match.
NYC charter schools use school-specific lotteries. Applicants are free to seek exam school and charter school
seats as well as an assignment in the traditional sector.
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Our identification strategy builds on the large-market “continuum” model of DA de-
tailed in Abdulkadiroğlu et al. (2017a). The large-market model is extended here to
allow for multiple and non-lottery tie-breakers. To that end, let s = 0�1� � � � � S index
schools, where s = 0 represents an outside option. The set of applicants is the unit inter-
val [0�1], where each applicant i is labeled by a number in the interval. The large-market
model is large by virtue of this assumption. Seating is constrained by a capacity vector,
q = (q0� q1� q2� � � � � qS), where qs ∈ [0�1] is defined as the proportion of the unit interval
that can be seated at school s. We assume q0 = 1, signifying a freely available outside
option.

Applicant i’s preferences over schools constitute a strict partial ordering, �i, where
a�i b means that i prefers school a to school b. Each applicant is also granted a priority
at every school. For example, schools may prioritize applicants who live nearby or with
currently enrolled siblings. Let ρis ∈ {1� � � � �K�∞} denote applicant i’s priority at school
s, where ρis < ρjs means school s prioritizes i over j. We use ρis = ∞ to indicate that i
is ineligible for school s. The vector ρi = (ρi1� � � � � ρiS) records applicant i’s priorities at
each school. Applicant type is then defined as θi = (�i� ρi), that is, the combination of an
applicant’s preferences and priorities at all schools. Let �s denote the set of types, θ, that
ranks s.

In addition to applicant type, DA matches applicants to seats as a function of a set of
tie-breaking variables. Leaving DA mechanics for Section 4, at this point, it is enough to
establish notation for DA inputs. Most importantly, our analysis of markets with general
tie-breaking requires notation to keep track of tie-breakers. Let v ∈ {1� � � � � V } index tie-
breakers and let Sv be the set of schools using tie-breaker v. We assume that each school
uses a single tie-breaker. Scalar random variable Riv denotes applicant i’s tie-breaker
v. Some of these are uniformly distributed lottery numbers. The profile of non-lottery
Riv used at schools ranked by applicant i is collected in the vector Ri. Without loss of
generality, we assume that ties are broken in favor of applicants with the smaller tie-
breaker value. DA uses θi, Ri, q, and the set of lottery tie-breakers for all i to assign
applicants to schools.

We are interested in using the assignment variation resulting from DA to estimate the
causal effect of Ci, a variable indicating student i’s attendance at (or years of enrollment
in) any Grade A school. Outcome variables, denoted Yi, include SAT scores and high
school graduation status. In a DA match like the one in NYC, Ci is not randomly assigned,
but rather reflects student preferences, school priorities, and tie-breaking variables, as
well as decisions whether or not to enroll at school s when offered a seat there in the
match. Selection bias arising from the process determining Ci can be eliminated by an
instrumental variables strategy that exploits the structure of matching markets.

The instruments used for this purpose are a function of individual school assignments,
indicated by Di(s) for the assignment of student i to a seat at school s. Because DA
generates a single assignment for each student, a dummy for any Grade A assignment,
denoted DAi, is the sum of dummies indicating all assignments to individual Grade A
schools. DAi provides a natural instrument for Ci. In particular, we estimate the effect of
Ci on Yi in the context of a linear constant-effects causal model that can be written as

Yi = βCi + f2(θi�Ri� δ) +ηi� (1)

where β is the causal effect of interest and the associated first-stage equation is

Ci = γDAi + f1(θi�Ri� δ) + νi� (2)
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The terms f1(θi�Ri� δ) and f2(θi�Ri� δ) in these equations are functions of type and non-
lottery tie-breakers, as well as a bandwidth, δ ∈R, that is integral to the local DA propen-
sity score. In a constant-effects causal framework, observed outcomes are determined by
Yi = Y0i + βCi, where Y0i is applicant i’s potential outcome when Ci is zero, modeled as
Y0i = f2(θi�Ri� δ) +ηi.

Our goal is to specify f1(θi�Ri� δ) and f2(θi�Ri� δ) so that 2SLS estimates of β are
consistent. Because (1) is seen as a model for potential outcomes rather than a regression
equation, consistency requires that DAi and ηi be uncorrelated. The relevant identifica-
tion assumption can be written

E[ηiDAi] ≈ 0� (3)

where ≈ means asymptotic equality as δ→ 0, in a manner detailed below. Briefly, our
main theoretical result establishes limiting local conditional mean independence of school
assignments from applicant characteristics and potential outcomes, yielding (3). This re-
sult specifies f1(θi�Ri� δ) and f2(θi�Ri� δ) to be easily-computed functions of the local
propensity score and elements of Ri.

Abdulkadiroğlu et al. (2017a) derives the relevant DA propensity score for a scenario
with lottery tie-breaking only. Lottery tie-breaking obviates the need for a bandwidth and
control for components of Ri. Many applications of DA use non-lottery tie-breaking,
however. The next section derives the propensity score for elaborate matches like that
in NYC, which combines lottery tie-breaking with many school-specific non-lottery tie-
breakers. The resulting estimation strategy integrates propensity score methods with both
the nonparametric approach to RD (introduced by Hahn, Todd, and Van der Klaauw
(2001)), and the local random assignment model of RD (discussed by Frolich (2007),
Cattaneo, Frandsen, and Titiunik (2015), Cattaneo, Titiunik, and Vazquez-Bare (2017),
and Frandsen (2017), among others). Our theoretical results can also be seen as gener-
alizing nonparametric RD to allow for many treatments (in the form of schools), many
running variables (in the form of tie-breakers), and many cutoffs.

3. RANDOM ASSIGNMENT FROM NON-LOTTERY TIE-BREAKING IN SERIAL DICTATORSHIP

An analysis of a market with a single, shared non-lottery tie-breaker and no priorities
illuminates key elements of our approach. DA in this case is called serial dictatorship. Like
the local propensity score for DA in general, the serial dictatorship local score depends
on only a handful of features, specifically, whether applicant i’s tie-breaker is above, near,
or below each of two key cutoffs. Conditional on this local propensity score, school as-
signment offers are randomly assigned in a limiting sense explained below.

Serial dictatorship can be described as follows:
Order applicants by tie-breaker. Proceeding in order, assign each applicant to his or her most preferred
school among those with seats remaining.

Serial dictatorship is used in Boston, Chicago, and NYC to allocate seats at selective pub-
lic exam schools.

Because serial dictatorship relies on a single tie-breaker, notation for the set of non-
lottery tie-breakers, Ri, can be replaced by a scalar, Ri. As in Abdulkadiroğlu et al.
(2017a), tie-breakers for individuals are modeled as stochastic, meaning they are drawn
from a distribution for each applicant. For instance, when the tie-breaker is an exam score,
the observed tie-breaker value is drawn from the distribution generated by retesting the
applicant, just as a lottery number can be drawn repeatedly for each applicant. Although
Ri is not necessarily uniform, we assume that it is distributed with positive density over
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[0�1], with continuously differentiable cumulative distribution function, FiR. These com-
mon support and smoothness assumptions notwithstanding, tie-breakers may be corre-
lated with type, so that Ri and Rj for applicants i and j are not necessarily identically
distributed, though they are assumed to be independent of one another. The probability
that type θ applicants have a tie-breaker below any value r is FR(r|θ) ≡ E[FiR(r)|θi = θ],
where FiR(r) is FiR evaluated at r.

The serial dictatorship allocation is characterized by a set of tie-breaker cutoffs, denoted
τs ∈ [0�1] for school s. For any school s that is filled to capacity, τs is given by the tie-
breaker of the last (highest tie-breaker value) student assigned to s. Otherwise, τs = 1, a
non-binding cutoff reflecting excess capacity. Abdulkadiroğlu et al. (2017a) shows how to
compute tie-breaker cutoffs in large-market models of the sort employed here.

Cutoffs are fudamental determinants of assignment rates, that is, of the probability of
being seated at s. We say an applicant qualifies at s when they have a tie-breaker value
that clears cutoff τs. Under serial dictatorship, students are assigned to s if and only if
they:

• qualify at s (since seats are assigned in tie-breaker order),
• fail to qualify at any school they prefer to s (since serial dictatorship assigns available

seats at preferred schools first).
In large markets, moreover, cutoffs are constant, so the probability an individual applicant
is seated at s is determined by the distribution of his or her tie-breaker alone.

3.1. The Serial Dictatorship Propensity Score

Which cutoffs matter for assignment probabilities? Under serial dictatorship, the as-
signment probability faced by an applicant of type θ at school s is determined by the
cutoff at s and by cutoffs at schools preferred to s. By virtue of single tie-breaking, it is
enough to know only one of the latter. In particular, an applicant who fails to clear the
highest cutoff among those at schools preferred to s surely fails to do better than s. This
leads us to define most informative disqualification (MID), a scalar parameter for each
applicant type and school. MID tells us how the tie-breaker distribution among type θ
applicants to s is truncated by disqualification at the schools type θ applicants prefer to s.

Formally, MID for type θ at school s is a function of the set of schools θ prefers to s, a
set defined as follows:

Bθs =
{
s′|s′ �θ s

}
for each θ ∈�s� (4)

For each type and school, MIDθs is then given by:

MIDθs ≡
{

0� if Bθs = ∅�
max{τb|b ∈ Bθs}� otherwise.

(5)

MIDθs is zero when school s is ranked first, since Bθs is then empty. The second line in
the definition of MIDθs captures the fact that an applicant who ranks s second is seated
there only when disqualified at the school they have ranked first, while applicants who
rank s third are seated there when disqualified at their first and second choices, and so
on. Qualification at these schools is determined by qualification at the school with the
highest cutoff, that is, by max{τb|b ∈ Bθs}. For example, applicants who fail to qualify at a
school with a cutoff of 0.6 are disqualified at a school with cutoff 0.4.

Note that an applicant of type θ cannot be seated at s when MIDθs > τs. This is the
scenario sketched in the top panel of Figure 1, which illustrates the forces determining
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FIGURE 1.—Assignment probabilities in serial dictatorship. Notes: This figure describes assignment prob-
abilities for type θ applicants to school s. Probabilities are characterized as a function of τs , the cutoff at s,
MIDθs , the most informative disqualification cutoff faced by type θ applicants to s, and the single tie-breaker
distribution.

serial dictatorship assignment rates. Assignment rates when MIDθs ≤ τs are given by the
probability that

MIDθs < Ri ≤ τs�
an event described in the middle panel of Figure 1. These facts are collected in the fol-
lowing proposition, which is implied by a more general result in Appendix C in the Sup-
plemental Material (Abdulkadiroğlu, Angrist, Narita, and Pathak (2022)).

PROPOSITION 1—The Propensity Score in Serial Dictatorship: Suppose that seats in
a large market are assigned by serial dictatorship. Assume that Ri is distributed with posi-
tive density over [0�1], with a continuously differentiable cumulative distribution function.
Let ps(θ) = E[Di(s)|θi = θ] denote the type-θ propensity score for assignment to s. For all
schools s and type θ ∈�s, we have

ps(θ) = max
{
0�FR(τs|θ) − FR(MIDθs|θ)

}
�

Proposition 1 says that the serial dictatorship assignment probability, positive only when
the tie-breaker cutoff at s exceeds MIDθs, is given by the size of the group withRi between
MIDθs and τs. This is

FR(τs|θ) − FR(MIDθs|θ)�

With a uniformly distributed lottery number, the serial dictatorship propensity score sim-
plifies to τs − MIDθs, a scenario noted in Panel B of Figure 1. Thus, seats under serial
dictatorship with lottery tie-breaking are randomly assigned as if in a randomized trial
stratified by type, with treatment probability equal to τs − MIDθs.
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3.2. Serial Dictatorship Goes Local

With non-lottery tie-breaking, the serial dictatorship propensity score depends on the
conditional distribution function, FR(·|θ) evaluated at τs and MIDθs, rather than on cut-
offs alone. This dependence leaves us with two econometric challenges. First, FR(·|θ) is
unknown, so we can’t compute the propensity score by repeatedly sampling from FR(·|θ).
Second, FR(·|θ), is likely to depend on θ, so the score in Proposition 1 need not have
coarser support than θ. This is in spite of the fact that many applicants with different
values of θ share the same MIDθs. Finally, although controlling for ps(θ) eliminates con-
founding from type, assignments are a function of tie-breakers as well as type. Confound-
ing from non-lottery tie-breakers remains even after conditioning on ps(θ).

These challenges are met here by focusing on assignment probabilities for applicants
with tie-breaker realizations close to key cutoffs. Specifically, for each τs, define an in-
terval, (τs − δ�τs + δ], where parameter δ is a bandwidth analogous to that used for
nonparametric RD estimation. The local propensity score treats the qualification status
of applicants inside this interval as randomly assigned. This assumption is justified by
the fact that, given continuous differentiability of tie-breaker distributions, non-lottery
tie-breakers inside the bandwidth have a limiting uniform distribution as the bandwidth
shrinks to zero.

The following proposition uses this fact to characterize the local serial dictatorship
propensity score.

PROPOSITION 2—The Local Serial Dictatorship Propensity Score: Suppose seats in a
large market are assigned by serial dictatorship and let Wi be any applicant characteristic
other than type that is unchanged by school assignment.7 Finally, assume τs �= τs′ for all s �= s′
unless both cutoffs equal 1. Then, E[Di(s)|θi = θ�Wi =w] = 0 if τs <MIDθs. Otherwise,

E
[
Di(s)|θi = θ�Wi =w�Ri ≤ MIDθs − δ

] =E[
Di(s)|θi = θ�Wi =w�Ri > τs + δ

] = 0�

E
[
Di(s)|θi = θ�Wi =w�Ri ∈ (MIDθs + δ�τs − δ]

] = 1�

and

lim
δ→0

E
[
Di(s)|θi = θ�Wi =w�Ri ∈ (MIDθs − δ�MIDθs + δ]

]
= lim

δ→0
E

[
Di(s)|θi = θ�Wi =w�Ri ∈ (τs − δ�τs + δ]

] = 0�5�

This follows from a more general result for DA presented in the next section.
Proposition 2 describes a key conditional independence result: the limiting local prob-

ability of seat assignment in serial dictatorship takes on only three values and is unrelated
to applicant characteristics. Note that the cases enumerated in the proposition (when
τs > MIDθs) partition the tie-breaker line as sketched in the bottom panel of Figure 1.
Applicants with tie-breaker values above the cutoff at s are disqualified at s and so can-
not be seated there, while applicants with tie-breaker values below MIDθs are qualified
at a school they prefer to s and so will be seated elsewhere. Applicants with tie-breakers

7Let Wi = 
sDi(s)Wi(s), where Wi(s) is the value of Wi observed when Di(s) = 1. We say Wi is unchanged
by school assignment when Wi(s) = Wi(s′) for all s �= s′. Examples include demographic characteristics and
potential outcomes that satisfy an exclusion restriction.
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strictly between MIDθs and τs are surely assigned to s. Finally, type θ applicants with tie-
breakers near either MIDθs or the cutoff at s are seated with probability approximately
equal to 1

2 . Nearness in this case means inside the interval defined by bandwidth δ.
The driving force behind Proposition 2 is the assumption that the tie-breaker distribu-

tion is continuously differentiable. In a shrinking window, the tie-breaker density there-
fore approaches that of a uniform distribution, so the limiting qualification rate is 1

2 (see
Abdulkadiroğlu et al. (2017b) or Bugni and Canay (2018) for proof of this claim). The
assumption of a continuously differentiable tie-breaker distribution is analogous to the
continuous running variable assumption invoked in Lee (2008) and to a local smoothness
assumption in Dong (2018). Continuity of tie-breaker distributions implies that the con-
ditional expectation functions of potential outcomes given running variables are continu-
ous at cutoffs. The latter condition features in Hahn, Todd, and Van der Klaauw (2001)
and much of the subsequent theoretical analysis of nonparametric identification in RD.
We favor the stronger continuity assumption because the implied local random assign-
ment provides a scaffolding for construction of assignment probabilities in more elaborate
matching scenarios.8

4. THE LOCAL DA PROPENSITY SCORE

Many school districts assign seats using a version of student-proposing DA, which can be
described like this:

Each applicant proposes to his or her most preferred school. Each school ranks these proposals, first by
priority, then by tie-breaker within priority groups, provisionally admitting the highest-ranked applicants
in this order up to its capacity. Other applicants are rejected.

Each rejected applicant proposes to his or her next most preferred school. Each school ranks these new
proposals together with applicants admitted provisionally in the previous round, first by priority and then by
tie-breaker. From this pool, the school again provisionally admits those ranked highest up to capacity,
rejecting the rest

The algorithm terminates when there are no new proposals (some applicants may remain unassigned).

Different schools may use different tie-breakers. For example, the NYC high school
match includes a diverse set of screened schools. These schools admit applicants using
school-specific tie-breakers that are derived from interviews, auditions, or GPA in earlier
grades, as well as test scores. The NYC match also includes many unscreened schools,
referred to here as lottery schools, that use a uniformly distributed lottery number as tie-
breaker. Lottery numbers are distributed independently of type and potential outcomes,
but non-lottery tie-breakers like entrance exam scores almost certainly depend on these
variables.

4.1. Assumptions and Theorem

We assume the match of interest involves V distinct tie-breakers, adopting the conven-
tion that tie-breaker indices are ordered so that lottery tie-breakers come first. Specif-
ically, let v ∈ {1� � � � �U} index U lottery tie-breakers, where U ≤ V . Each lottery tie-

8The connection between continuity of running variable distributions and conditional expectation functions
has been noted by Dong (2018) and Arai et al. (2019). Antecedents for the local random assignment idea
include an unpublished appendix to Frolich (2007) and an unpublished draft of Frandsen (2017). See also
Cattaneo, Frandsen, and Titiunik (2015) and Frolich and Huber (2019).
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breaker,Riv for v={1� � � �U}, is uniformly distributed over [0�1]. Non-lottery tie-breakers
are indexed by v ∈{U + 1� � � � � V }. The set of tie-breakers is restricted as follows:

ASSUMPTION 1:
(i) For any tie-breaker indexed by v ∈{1� � � � � V } and applicants i �= j, tie-breakersRiv and

Rjv are independent, though not necessarily identically distributed.
(ii) The joint distribution of non-lottery tie-breakers, {Riv;v=U + 1� � � � � V } for applicant

i, is continuously differentiable with positive density over [0�1].

Assumption 1 implies that the tie-breaker distribution for any subset of applicants is con-
tinuously differentiable. This follows from Assumption 1 since the integral of continuously
differentiable distributions is also continuously differentiable.

Let v(s) be a function that returns the index of the tie-breaker used at school s. By
definition, s ∈ Sv(s) . To combine applicants’ priority status and tie-breaking variables into
a single number for each school, we define applicant position at school s as

πis = ρis +Riv(s)�

Since the difference between any two priorities is at least 1 and tie-breaking variables are
between 0 and 1, applicant order by position at s is lexicographic, first by priority, then
by tie-breaker. We distinguish between tie-breakers and priorities because the latter are
fixed, while the former are random variables, redrawn each time we run the match.

Cutoffs are also generalized to incorporate priorities; these DA cutoffs are denoted
ξs. For any school s that ends up filled to capacity, ξs is given by supi{πis|Di(s) = 1}.
Otherwise, we set ξs = K + 1 to indicate that s has slack (recall that K is the lowest
possible priority for eligible applicants).

DA assigns a seat at school s to any applicant i ranking s who has

πis ≤ ξs and πib > ξb for all b�i s� (6)

This is a consequence of the fact that the student-proposing DA is stable.9 In large mar-
kets, ξs is constant. DA-determined school assignment rates are therefore determined by
the distribution of stochastic tie-breakers evaluated at fixed school cutoffs. Condition (6)
nests our characterization of seat assignment under serial dictatorship since we can set
ρis = 1 for all applicants and use a single tie-breaker to determine position. Statement (6)
then says that Ri ≤ τs and Ri >MIDθs for applicants with θi = θ.

The DA propensity score is the probability of the event described by (6). This probabil-
ity is determined in part by marginal priority at school s, denoted ρs and defined as int(ξs),
the integer part of the DA cutoff. Conditional on rejection by all preferred schools, ap-
plicants to s are assigned s with certainty if ρis < ρs, that is, if they clear marginal priority.
Applicants with ρis > ρs have no chance of finding a seat at s. Applicants for whom ρis = ρs
are marginal: these applicants are seated at s when their tie-breaker values fall below tie-
breaker cutoff τs. The tie-breaker cutoff can therefore be written as the decimal part of
the DA cutoff:

τs = ξs − ρs�

9In particular, if an applicant is seated at s but prefers b, she must be qualified at s and not have been
assigned to b. Since DA-generated assignments at b are made in order of position, applicants not assigned to
b must be disqualified there.
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Applicants with marginal priority have ρis = ρs, so their πis ≤ ξs if and only if Riv(s) ≤ τs.
In addition to marginal priority, the local DA propensity score conditions on applicant

position relative to intervals defined around screened school cutoffs. To describe this con-
ditioning, define a set of classification variables, tis(δ), as follows:

tis(δ) =

⎧⎪⎨
⎪⎩
n if ρθs > ρs or, if v(s) >U�ρθs = ρs and Riv(s) > τs + δ�
a if ρθs < ρs or, if v(s) >U�ρθs = ρs and Riv(s) ≤ τs − δ�
c if ρθs = ρs and, if v(s) >U� Riv(s) ∈ (τs − δ�τs + δ]�

where the mnemonic value labels n, a, c stand for never seated, always seated, and condi-
tionally seated. It is convenient to collect these variables in a classification vector,

Ti(δ) = [
ti1(δ)� � � � � tis(δ)� � � � � tiS(δ)

]
�

Elements of Ti(δ) for unscreened schools are a function only of the partition of types
determined by marginal priority. For screened schools, however, the classification vector
Ti(δ) also encodes the proximity of applicant tie-breakers to cutoffs. Never-seated appli-
cants to s cannot be seated there, either because they fail to clear marginal priority at s or
because they are too far above the cutoff when s is screened. Always-seated applicants to
s are assigned s for sure when they cannot do better, either because they clear marginal
priority at s or because they are well below the cutoff at s when s is screened. Finally,
conditionally-seated applicants to s are randomized marginal priority applicants. Ran-
domization is by lottery number when s is a lottery school or by non-lottery tie-breaker
within the bandwidth when s is screened.

Define the propensity score for a fixed bandwidth as

ζs(θ�T�δ) =E[
Di(s)|θi = θ�Ti(δ) = T ]

�

for any fixed δ > 0 and T = [t1� � � � � ts� � � � � tS], where ts ∈ {n�a� c} for each s. ζs(θ�T�δ)
describes assignment probabilities as a function of type and cutoff proximity determined
by bandwidth value δ. With this notation in hand, the local DA propensity score is given by
the limit

ψs(θ�T ) = lim
δ→0

ζs(θ�T�δ)�

As in Proposition 2, our formal characterization ofψs(θ�T ) assumes tie-breaker cutoffs
are distinct:

ASSUMPTION 2: τs �= τs′ for all s �= s′ unless τs = τs′ = 1.

The formula characterizing ψs(θ�T ) also requires an extension of most informative
disqualification to a general tie-breaking regime and DA with priorities. To that end, the
set of schools θ prefers to s is partitioned by by defining Bvθs ≡ {b ∈ Sv|b �θ s} for each
tie-breaker, v. We then have

MIDv
θs =

⎧⎪⎨
⎪⎩

0 if ρθb > ρb for all b ∈ Bvθs or if Bvθs = ∅�
1 if ρθb < ρb for some b ∈ Bvθs�
max

{
τb|b ∈ Bvθs and ρθb = ρb

}
otherwise.
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MIDv
θs quantifies the extent to which qualification for seats in the set of schools that type

θ applicants prefer to s and that use tie-breaker v(s) truncates the tie-breaker distribution
among applicants contending for seats at s.

Next, define

ms(θ�T ) = ∣∣{v > U : MIDv
θs = τb and tb = c for some b ∈ Bvθs

}∣∣�
This quantity counts the number of RD-style experiments created by the screened schools
that type θ prefers to s. An RD experiment is created for type θ applicants at a screened
school these applicants prefer to s when this school’s cutoff is the relevant MIDv

θs for type
θ applicants in the bandwidth around this cutoff.

The last preliminary to a formulation of local DA propensity scores uses MIDv
θs and

ms(θ�T ) to compute disqualification rates at all schools preferred to s. We break this into
two pieces: variation generated by screened schools and variation generated by lottery
schools. As the bandwidth shrinks, the limiting disqualification probability at screened
schools in Bθs converges to

σs(θ�T ) = 0�5ms (θ�T )� (7)

The disqualification probability at lottery schools in Bθs is

λs(θ) =
U∏
v=1

(
1 − MIDv

θs

)
� (8)

without regard to bandwidth.
To recap: the local DA score for type θ applicants is determined in part by the screened

schools θ prefers to s. Relevant screened schools are those determining MIDv
θs, and at

which applicants are close to tie-breaker cutoffs. The variablems(θ�T ) counts the number
of tie-breakers involved in such close encounters. Applicants drawing screened school tie-
breakers close to τb for some b ∈ Bvθs face qualification rates of 0�5 for each tie-breaker v.
Since screened school disqualification is locally independent over tie-breakers, the term
σs(θ�T ) computes the probability of not being assigned a screened school preferred to s.
Likewise, since the qualification rate at preferred lottery schools is MIDv

θs, the term λs(θ)
computes the probability of not being assigned a lottery school preferred to s.

The following theorem combines these in a formula for the local DA propensity score:

THEOREM 1—The Local DA Propensity Score With General Tie-breaking: Suppose
seats in a large market are assigned by DA with tie-breakers indexed by v, and that Assump-
tions 1 and 2 hold. For all schools s, applicant types θ, tie-breaker classifications T , and
values of w in the support of Wi (as defined in Proposition 2), we have

ψs(θ�T ) = lim
δ→0

E
[
Di(s)|θi = θ�Ti(δ) = T�Wi =w

]
�

Moreover, if (a) ts = n, or (b) tb = a for some b ∈ Bθs, ψs(θ�T ) = 0. Otherwise,

ψs(θ�T ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
σs(θ�T )λs(θ) if ts = a�
σs(θ�T )λs(θ) max

{
0�
τs − MIDv(s)

θs

1 − MIDv(s)
θs

}
if ts = c and v(s) ≤U�

0�5σs(θ�T )λs(θ) if ts = c and v(s) >U�

(9)
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Theorem 1, proved in the Appendix, starts with a scenario where applicants to s are ei-
ther disqualified there or assigned to a preferred school for sure. In this case, we need not
worry about whether s is a screened or lottery school. In other scenarios where applicants
are surely qualified at s, the probability of assignment to s is determined entirely by dis-
qualification rates at preferred screened schools and by truncation of lottery tie-breaker
distributions at preferred lottery schools. These forces combine to produce the first line of
(9). The conditional assignment probability at any lottery s, described on the second line
of (9), is determined by the disqualification rate at preferred schools and the qualification
rate at s, where the latter is given by τs − MIDv(s)

θs (to see this, note that λs(θ) includes
the term 1 − MIDv(s) in the product over lottery tie-breakers). Similarly, the conditional
assignment probability at any screened s, on the third line of (9), is determined by the
disqualification rate at preferred schools and the qualification rate at s, where the latter
is given by 0�5.

The theorem covers the non-lottery tie-breaking serial dictatorship scenario sketched
in the previous section. With a single non-lottery tie-breaker, λs(θ) = 1. When ts = n or
tb = a for some b ∈ Bθs, the local propensity score at s is zero. Otherwise, suppose tb = n
for all b ∈ Bθs, so that ms(θ�T ) = 0. If ts = a, then the local propensity score is 1. If ts = c,
then the local propensity score is 0�5. Suppose, instead, that MIDθs = τb for some b ∈ Bθs,
so that ms(θ�T ) = 1. In this case, ts �= c because cutoffs are distinct (Assumption 2). If
ts = a, then the local propensity score is 0�5. Appendix B in the Supplemental Material
illustrates the theorem in other scenarios.

Theorem 1 implies that the causal effect of Grade A attendance in equation (1) is
identified in a general DA setting. To see this, let SA denote the set of Grade A schools.
Because DA generates a single offer, the local DA propensity score for assignment to any
Grade A school, denoted ψA(θ�T ), is

ψA(θ�T ) =
∑
s∈SA

ψs(θ�T )� (10)

Likewise, define the probability of Grade A assignment for applicants classified using a
fixed bandwidth as

ζA(θ�T�δ) =
∑
s∈SA

ζs(θ�T�δ)�

Note that ψA(θ�T ) = limδ→0 ζA(θ�T�δ). We then have the following corollary to Theo-
rem 1:

COROLLARY 1—Identification: Suppose Assumptions 1 and 2 hold and that Grade A
causal effects are given by a constant, β, so that observed outcomes are determined by
Yi = Y0i + βCi. Assume that DAi affects Yi solely by changing Ci, so that Theorem 1 holds
for Wi = Y0i. Assume also that there exists some p ∈ (0�1) such that limδ→0(E[Ci|DAi =
1� ζA(θ�T�δ) = p] − E[Ci|DAi = 0� ζA(θ�T�δ) = p]) �= 0, where the conditional expec-
tations are assumed to exist. Then β is uniquely determined by the joint distribution of
(Yi�θi�Ri�DAi�Ci).

This result is a consequence of the fact that, conditional on the local propensity score
characterized in Theorem 1, Grade A assignment is independent of applicant character-
istics. The corollary postulates that potential outcomes are unchanged by school assign-
ment, an exclusion restriction which, in combination with Theorem 1, implies assignment
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is independent of Y0i as well. Therefore, assuming the probability of Grade A assignment
falls strictly between zero and 1 and that the resulting offer variation changes Grade A
enrollment, a simple instrumental variables estimand gives the causal effect of Grade A
attendance on outcome variable, Yi.

4.2. Score Estimation

Theorem 1 characterizes the theoretical probability of school assignment in a large
market with a continuum of applicants. In reality, of course, the number of applicants
is finite and propensity scores must be estimated. We show here that, in an asymptotic
sequence that increases market size with a shrinking bandwidth, a sample analog of the
local DA score described by Theorem 1 converges to the corresponding local score for a
finite market. Our empirical application establishes the relevance of this asymptotic result
by showing that applicant characteristics are balanced by assignment status conditional on
estimates of the local DA propensity score.

The asymptotic sequence for the estimated local DA score works as follows: randomly
sample N applicants from a continuum economy with a fixed vector of school capaci-
ties, qs, giving the proportion of N seats that can be seated at s. We observe realized
tie-breaker values for each applicant, along with applicant type, but not the underlying
distribution of non-lottery tie-breakers. The (finite) set of schools is unchanged along this
sequence.

Fix the number of seats at school s in a sampled finite market to be the integer part
of Nqs and run DA with these applicants and schools. Let τ̂s be the realized cutoff at
school s. We consider the limiting behavior of an estimator computed using the estimated
cutoffs, τ̂s, the corresponding MIDv

θis
for an applicant of of type θi, and marginal pri-

orities generated by this single realization (note that MIDv
θis

is an estimated quantity).
Also, given a bandwidth δN > 0, we compute tis(δN) for each i and s, collecting these in
classification vector Ti(δN). These statistics then determine

m̂s

(
θi�Ti(δN)

) = ∣∣{v >U :MIDv
θis

= τ̂b and tib(δN) = c for some b ∈ Bvθis
}∣∣�

Our local DA score estimator, denoted ψ̂s(θi�Ti(δN)), is constructed by plugging these
ingredients into the formula in Theorem 1. That is, if (a) t̂is(δN) = n, or (b) t̂ib(δN) =
a for some b ∈ Bθis, then ψ̂s(θi�Ti(δN)) = 0. Otherwise,

ψ̂s
(
θi�Ti(δN)

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
σ̂s

(
θi�Ti(δN)

)
λ̂s(θi) if tis(δN) = a�

σ̂s
(
θi�Ti(δN)

)
λ̂s(θi) max

{
0�
τ̂s −MIDv(s)

θis

1 −MIDv(s)
θis

}
if tis(δN) = c and v(s) ≤U�

0�5σ̂s
(
θi�Ti(δN)

)
λ̂s(θi) if tis(δN) = c and v(s) >U�

(11)

where

σ̂s
(
θi�Ti(δN)

) = 0�5m̂s (θi�Ti(δN ))

and

λ̂s(θi) =
U∏
v=1

(
1 −MIDv

θis

)
�
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As a theoretical benchmark for the large-sample performance of ψ̂s, consider the true
local DA score for a finite market of size N . This is

ψNs(θ�T ) = lim
δ→0

EN
[
Di(s)|θi = θ�Ti(δ) = T ]

� (12)

where EN is the expectation induced by the joint tie-breaker distribution for applicants in
the finite market. This quantity is defined by fixing the distribution of types and the vector
of proportional school capacities, as well as market size. ψNs(θ�T ) is then the limit of the
average of Di(s) across infinitely many tie-breaker draws in ever-narrowing bandwidths
for this finite market. Because tie-breaker distributions are assumed to have continuous
density in the neighborhood of any cutoff, the finite-market local propensity score is well-
defined for any positive δ.

For all θi = θ and classification vectors Ti(δN) = T , we are interested in the gap between
the estimator ψ̂s(θi�Ti(δN)) and the true local scoreψNs(θ�T ) asN grows and δN shrinks.
We aim to show that ψ̂s(θi�Ti(δN)) converges to ψNs(θ�T ) in our asymptotic sequence.
This result uses a regularity condition:

ASSUMPTION 3—Rich Support: In the population continuum market, for every school
s and every priority ρ held by a positive mass of applicants who rank s, the proportion of
applicants i with ρis = ρ who rank s first is also positive.

Convergence of ψ̂s(θi�Ti(δN)) is formalized in the theorem below:

THEOREM 2—Consistency of the Estimated Local DA Propensity Score: In the asymp-
totic sequence described above, and maintaining Assumptions 1–3, the estimated local DA
propensity score ψ̂s(θi�Ti(δN)) is a consistent estimator of ψNs(θ�T ) in the following sense:
Take any sequence such that δN → 0 and NδN → ∞ as N → ∞. For any type θ and
tie-breaker classification T , consider applicants with θi = θ and Ti(δN) = T . Then, for all
schools s,

∣∣ψ̂s(θi�Ti(δN)
) −ψNs(θ�T )

∣∣ p−→ 0�

Theorem 2 is proved in Appendix C in the Supplemental Material. The proof shows
that ψNs(θ�T ) converges to ψs(θ�T ), and so ψ̂s(θi�Ti(δN)) converges to ψs(θ�T ) as well
as to ψNs(θ�T ).

4.3. Treatment Effect Estimation

Theorems 1 and 2 and Corollary 1 provide a foundation for causal inference. In com-
bination with the exclusion restriction invoked for the corollary, these results imply that a
dummy variable indicating Grade A assignment is asymptotically independent of poten-
tial outcomes (represented by the residuals in equation (1)), conditional on an estimate of
the Grade A local propensity score. As with the theoretical local score, the local propen-
sity score for Grade A assignment can be computed as

ψ̂A
(
θi�Ti(δN)

) =
∑
s∈SA

ψ̂s
(
θi�Ti(δN)

)
�
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In other words, the estimated local score for Grade A assignment is the sum of the esti-
mated (type-specific) scores for all Grade A schools in the match.

These considerations lead to a 2SLS procedure with second- and first-stage equations
that can be written in stylized form as

Yi = βCi +
∑
x

α2(x)di(x) + g2(Ri;δN) +ηi (13)

Ci = γDAi +
∑
x

α1(x)di(x) + g1(Ri;δN) + νi� (14)

where di(x) = 1{ψ̂A(θi�Ti(δN)) = x} and the set of parameters denoted α2(x) and α1(x)
provide saturated control for the local propensity score. As detailed in the next section,
functions g2(Ri;δN) and g1(Ri;δN) implement local linear control for screened school
tie-breakers for the set of applicants to these schools with t̂is(δN) = c. Linking this with
the empirical strategy sketched at the outset, equation (13) is a version of of equation (1)
that sets

f2(θi�Ri� δ) =
∑
x

α2(x)di(x) + g2(Ri;δN)�

Likewise, equation (14) is a version of equation (2) with f1(θi�Ri� δ) defined similarly.
Our score-controlled instrumental variables estimator adapts a simple procedure dis-

cussed by Calonico et al. (2019). Specifically, using a mix of simulation evidence and the-
oretical reasoning, Calonico et al. (2019) argues that additive linear control for covariates
in a local linear regression model requires fewer assumptions and is likely to have better
finite sample behavior than more elaborate estimators (e.g., allowing covariate controls
to change at cutoffs). The covariates of primary interest to us are dummies for values in
the support of the Grade A local propensity score.10

Note that saturated regression-conditioning on the local propensity score eliminates
applicants with estimated score values of zero or 1. This is apparent from an analogy with
a fixed-effects panel model. In panel data with multiple annual observations on individ-
uals, estimation with individual fixed effects is equivalent to estimation after subtracting
person means from regressors. Here, the “fixed effects” are coefficients on dummies for
each possible score value. When the score value is 0 or 1 for applicants of a given type,
assignment status is constant and observations on applicants of this type drop out. We
therefore say an applicant has Grade A risk when ψ̂A(θi�Ti(δN)) ∈ (0�1). The sample with
risk contains applicants contributing to parameter estimation in models with saturated
score control.

Propensity score conditioning facilitates control for applicant type in the sample with
risk. This is because local propensity score conditioning yields considerable dimension
reduction relative to full-type conditioning, as we would hope. The 2014 NYC high school
match, for example, involved 52,208 applicants of 47,153 distinct types (among those with
baseline test scores and other covariates). Of these, 42,527 types listed at least one Grade
A school on their application to the high school match. By contrast, the estimated local
propensity score for Grade A school assignment takes on only 1,843 values.

10Calonico et al. (2019) discusses both sharp and fuzzy RD designs, drawing similar conclusions for both.
Equations (13) and (14) are said here to be stylized because they omit a number of implementation details
supplied in the following section.
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5. A BRIEF REPORT ON NYC REPORT CARDS

5.1. Doing DA in the Big Apple

Since the 2003–2004 school year, the NYC Department of Education (DOE) has used
DA to assign rising ninth graders to high schools. Many high schools in the match host
multiple programs, each with their own admissions protocols. Applicants are matched to
programs rather than schools. Each applicant for a ninth grade seat can rank up to twelve
programs. All traditional public high schools participate in the match, but charter schools
and NYC’s specialized exam high schools have separate admissions procedures.11

The NYC match is structured like the general DA match described in Section 4: lot-
tery programs use a common uniformly distributed lottery number, while screened pro-
grams use a variety of non-lottery tie-breaking variables. Screened tie-breakers are mostly
distinct, with one for each school or program, though some screened programs share a
tie-breaker. In any case, our theoretical framework accommodates all of NYC’s many
tie-breaking protocols.12

Our analysis uses Theorems 1 and 2 to compute propensity scores for programs rather
than schools since programs are the unit of assignment. For our purposes, a lottery school
is a school hosting any lottery program. Other schools are defined as screened.13

In 2007, the NYC DOE launched a school accountability system that graded schools
from A to F. This mirrors similar accountability systems in Florida and other states.
NYC’s school grades were determined by achievement levels and, especially, achieve-
ment growth, as well as by survey- and attendance-based features of the school environ-
ment. Growth looked at credit accumulation, Regents test completion and pass rates;
school performance measures were derived mostly from four- and six-year graduation
rates. Some schools were ungraded. Figure 2 reproduces a school progress report from
this era.14

The 2007 grading system was controversial. Proponents applauded the integration of
multiple measures of school quality while opponents objected to the high-stakes conse-
quences of low school grades, such as school closure or consolidation. Rockoff and Turner
(2011) provides a partial validation of the grading system by showing that low grades seem
to have sparked school improvement. In 2014, the NYC DOE replaced the 2007 scheme
with school quality measures placing less weight on test scores and more weight on cur-
riculum characteristics and subjective assessments of teaching quality. The relative merits
of the old and new systems continue to be debated.

The results reported here use application data from the 2011–2012, 2012–2013, and
2013–2014 school years (students in these application cohorts enrolled in the following

11Some special needs students are also matched separately. The centralized NYC high school match is de-
tailed in Abdulkadiroğlu, Pathak, and Roth (2005, 2009). Abdulkadiroğlu, Angrist, and Pathak (2014) describes
NYC exam school admissions.

12Screened tie-breakers are reported as an integer variable encoding the underlying tie-breaker order rather
than a raw score on, say, a screened-school admissions test or portfolio evaluation. We scale these to lie in
(0�1] by computing [Riv − minj Rjv + 1]/[maxj Rjv − minj Rjv + 1] for each tie-breaker v. This transformation
produces a positive cutoff at s when only one applicant is seated at s and a cutoff of 1 when all applicants who
rank s are seated there.

13Some NYC high schools sort applicants by a coarse screening tie-breaker that allows ties, breaking these
ties using the common lottery number. Schools of this type are treated as lottery schools, with priority groups
defined by values of the screened tie-breaker. Seats in NYC’s ed-opt programs are allocated to two groups, one
of which screens applicants using a single non-lottery tie-breaker and the other using the common lottery tie-
breaker. Appendix D in the Supplemental Material explains how ed-opt programs are handled by our analysis.

14Walcott (2012) details Bloomberg-era grading methodology.



BREAKING TIES 135

FIGURE 2.—A Sample NYC school report card.

school years). Our sample includes first-time applicants seeking ninth grade seats, who
submitted preferences over programs in the main round of the NYC high school match.
We obtained data on school capacities and priorities, lottery numbers, and screened
school tie-breakers, information that allows us to replicate the match. Details related to
match replication appear in Appendix D in the Supplemental Material.15

Students at Grade A schools have higher average SAT scores and higher graduation
rates than do students at other schools. Such differences feature in popular accounts
of socioeconomic differences in school access (see, e.g., Harris and Fessenden (2017)
and Disare (2017)). Grade A students are also more likely than students attending other
schools to be deemed “college- and career-prepared” or “college-ready.”16 These and
other school characteristics appear in Table I, which reports statistics separately by re-

15Our analysis assigns report card grades to a cohort’s schools based on the report cards published in the
previous year. For the 2011–2012 application cohort, for instance, we used the grades published in 2010–2011.

16These composite variables are determined as a function of Regents and AP scores, course grades, voca-
tional or arts certification, and college admission tests.
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TABLE I

NEW YORK CITY HIGH SCHOOL PERFORMANCE AND CHARACTERISTICS.

Grade A schools Grade B–F
Schools

Ungraded
SchoolsAll Screened Lottery

(1) (2) (3) (4) (5)

Panel A. Average Performance Levels
SAT Math (200–800) 531 606 481 464 440
SAT Reading (200–800) 522 587 479 465 449
Graduation rate 0.83 0.92 0.77 0.70 0.47
College- and career-prepared 0.65 0.84 0.54 0.39 0.27
College-ready 0.59 0.82 0.45 0.34 0.24

Panel B. School Characteristics
Black 0.20 0.12 0.25 0.32 0.39
Hispanic 0.35 0.26 0.41 0.40 0.43
Special Education 0.12 0.06 0.16 0.17 0.27
Free or Reduced Price Lunch 0.68 0.55 0.76 0.77 0.75
In Manhattan 0.27 0.49 0.12 0.16 0.28
Number of grade 9 students 420 430 414 413 86
Number of grade 12 students 374 413 348 351 53
High school size 1596 1700 1527 1509 426
Inexperienced teachers 0.11 0.10 0.12 0.11 0.28
Advanced degree teachers 0.53 0.59 0.49 0.50 0.30
New school 0.00 0.00 0.01 0.00 0.21

School-year observations 355 119 236 694 715

Note: This table reports student-weighted average performance levels and characteristics of NYC high schools. Panel A shows
performance measures for cohorts enrolled in ninth grade in 2012–2013, 2013–2014, and 2014–2015. Panel B shows school charac-
teristics for these years. A screened school is defined as any school without lottery programs. Inexperienced teachers have 3 or fewer
years of experience; advanced degree teachers have a master’s or higher degree. Specialized and charter high schools admit applicants
in a separate match and are coded as screened and lottery schools, respectively.

port card grade and admissions regime. Achievement gaps between students attending
screened and lottery Grade A schools are especially large, likely reflecting selection bias
induced by test- and GPA-based screening.

Screened Grade A schools have a majority white and Asian student body, the only
group of schools described in Table I to do so (the table reports shares Black and His-
panic). These schools are also over-represented in Manhattan, a borough that includes
most of New York’s wealthiest neighborhoods (though average family income is higher
on Staten Island). Excepting ungraded (and mostly newer) schools, teacher experience is
similar across school types, while screened Grade A schools have somewhat more teach-
ers with advanced degrees.

The first column of Table II describes the roughly 180,000 ninth graders enrolled in
the 2012–2013, 2013–2014, and 2014–2015 school years. These statistics can be compared
with the statistics in column 2, which describe the approximately 47,000 students enrolled
in a Grade A school (including students enrolled in the Grade A schools assigned outside
the match). Grade A students have higher baseline scores than the general population
of ninth graders and are less likely to be Black or Hispanic (Baseline scores are from
tests taken in sixth grade and standardized to the population of test-takers). The 153,000
eighth graders who applied for ninth grade seats are described in column 3 of the table.
Roughly 130,000 listed a Grade A school for which seats are assigned in the match on
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their application form and a little over a third of these were offered a Grade A seat.17

Match participants have baseline scores above the overall district mean. As can be seen
by comparing columns 3 and 4 in Table II, however, the average characteristics of Grade
A applicants are mostly similar to those of the entire applicant population.

The statistics in column 5 of Table II show that applicants enrolled in a Grade A school
(among schools participating in the match) are less likely to be Black and have higher
baseline scores than those in the total applicant pool. These gaps likely reflect systematic
differences in offer rates by race at screened Grade A schools. Column 5 of Table II also
shows that most of those attending a Grade A school were assigned there, and that most
Grade A students ranked a Grade A school first. Grade A students are more than twice
as likely to go to a lottery school than to a screened school. Interestingly, enthusiasm for
Grade A schools is far from universal: just under half of all applicants in the match ranked
a Grade A school first.

5.2. Balance and 2SLS Estimates

Because the NYC high school match uses a common lottery tie-breaker for all un-
screened schools, the disqualification probability at lottery schools described by equation
(8) simplifies to

λs(θ) = (
1 − MID1

θs

)
�

where MID1
θs is most informative disqualification at schools using the common lottery

tie-breaker, Ri1. The local DA score described by equation (9) is then

ψs(θ�T ) =

⎧⎪⎨
⎪⎩
σs(θ�T )

(
1 − MID1

θs

)
if ts = a�

σs(θ�T ) max
{
0� τs − MID1

θs

}
if ts = c and v(s) = 1�

0�5σs(θ�T )
(
1 − MID1

θs

)
if ts = c and v(s) > 1�

(15)

Estimates of the local DA score based on (15) reveal that roughly 33,000 applicants
have Grade A risk, that is, an estimated local DA score value strictly between 0 and 1.
As can be seen in column 6 of Table II, applicants with Grade A risk have mean baseline
scores and demographic characteristics much like those of the sample enrolled at a Grade
A school (Grade A risk is estimated using the first bandwidth discussed below). The ratio
of screened to lottery offers among those with Grade A risk is also similar to the corre-
sponding ratio in the sample of enrolled students (compare 13.9/33.6 in the former group
to 27.9/63.4 in the latter). Figure D.1 in the Supplemental Material plots the distribution
of Grade A assignment probabilities for applicants with risk. The modal Grade A offer
probability is 0�5, reflecting the fact that roughly 25% of those with Grade A risk rank a
single Grade A school and that this school is screened.

The potential for local propensity score conditioning to eliminate omitted variables bias
is evaluated using score-controlled differences in covariate means for applicants who do
and do not receive Grade A assignments. We estimate score-controlled differences by
Grade A assignment status using a model that includes a dummy indicating assignment
to ungraded schools as well as a dummy for Grade A assignment, controlling for the
propensity scores for both. This ensures that estimated Grade A effects compare schools

17The difference between total ninth grade enrollment and the number of match participants is accounted
for by special education students outside the main match, direct-to-charter enrollment, and a few schools that
straddle ninth grade.
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TABLE II

NYC NINTH GRADERS.

Ninth Grade Students Applicants for Ninth Grade Seats

All
Enrolled in

Grade A All
Listed

Grade A
Enrolled in

Grade A
At Risk at
Grade A

(1) (2) (3) (4) (5) (6)

Demographics
Black 30.7 19.5 29.1 29.3 22.4 22.1
Hispanic 40.2 33.6 38.9 39.3 38.2 39.4
Female 49.2 53.2 51.5 52.5 54.1 51.3
Special education 19.0 5.6 7.6 7.3 6.4 5.9
English language learners 7.5 4.3 6.0 5.7 5.1 4.8
Free lunch 78.6 69.5 77.3 77.2 73.2 75.2

Baseline scores
Math (standardized) 0.056 0.547 0.207 0.233 0.348 0.362
English (standardized) 0.022 0.484 0.168 0.196 0.301 0.297

Offer rates
Grade A school 85.0 29.4 34.6 91.3 47.5
Grade A screened school 29.8 9.9 11.7 27.9 13.9
Grade A lottery school 55.3 19.5 22.9 63.4 33.6

Listed Grade A first 83.9 47.3 55.6 85.9 78.0
9th grade enrollment

Grade A school 29.5 100 31.1 35.8 100 48.1
Grade A screened school 11.4 40.8 12.9 14.6 29.2 17.2
Grade A lottery school 18.1 59.2 18.2 21.2 70.8 30.9

Students 182,249 46,682 153,211 130,242 38,156 32,866
Schools 603 175 571 568 159 159
School-year observations 1,672 355 1,588 1,565 319 319

Note: This table describes the population of NYC ninth graders and applicants to the high school match. Columns 1 and 2 show
statistics for students enrolled in ninth grade in the 2012–2013, 2013–2014, and 2014–2015 school years (for those with non-missing
demographic variables and baseline test score data). Columns 3–6 show statistics for ninth grade match participants in these cohorts.
Grade A status for columns 4–6 is defined to include only schools that participate in the main NYC high school match, omitting
specialized high schools and charters. The sample used for column 6 is limited to applicants with an estimated Grade A propensity
score strictly between 0 and 1. Estimated scores are computed as described in the text. Baseline test scores are from sixth grade and
demographic variables are from eighth grade.

with high and low grades, omitting the ungraded.18 Let DAi denote Grade A assignments
as before, and let D0i indicate assignments at ungraded schools. Assignment risk for each
type of school is controlled using sets of dummies denoted dAi(x) and d0i(x), respectively,
for score values indexed by x.

The covariates of interest here, denoted by Wi, are those that are unchanged by school
assignment and should therefore be mean-independent of DAi in the absence of selec-
tion bias. The balance test results reported in Table III are estimates of parameter γA in
regressions of Wi on DAi of the form

Wi = γADAi + γ0D0i +
∑
x

αA(x)dAi(x) +
∑
x

α0(x)d0i(x)

+ g(Ri;δN) + νi� (16)

18Ungraded schools were mostly new when grades were assigned or otherwise had data insufficient to de-
termine a grade.
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Local piecewise linear control for screened tie-breakers is parameterized as

g(Ri;δN) =
∑
s:v(s)>1

ω1sais

+ kis
[
ω2s +ω3s(Riv(s) − τs) +ω4s(Riv(s) − τs)1(Riv(s) > τs)

]
� (17)

where s : v(s) > 1 indexes screened programs, ais indicates whether applicant i applied to
screened program s, and kis = 1[t̂is(δN) = c]. The sample used to estimate (16) is limited
to applicants with Grade A risk.

Parameters in (16) and (17) vary by application cohort (three cohorts are stacked in
the estimation sample). Bandwidths are estimated two ways, as suggested by Imbens and
Kalyanaraman (2012) (IK) using a uniform kernel, and using methods and software de-
scribed in Calonico et al. (2017) (CCFT). These bandwidths are computed separately for
each program, for the set of applicants in the relevant marginal priority group.19

As can be seen in column 2 of Table III, which reports raw differences in means by
Grade A assignment status for applicants listing a Grade A school, applicants offered a
Grade A seat are much more likely than other applicants to have ranked a Grade A school
highly. Those receiving Grade A assignments are also more likely to rank a screened
Grade A school first or among their top three. Demographic characteristics differ sharply
by Grade A offer status. Those offered a Grade A seat are less likely than other applicants
to be Black, Hispanic, or free-lunch-eligible. Consistent with this, applicants offered a
Grade A seat have markedly higher baselines scores, with gaps of 0.3–0.4 in favor of those
offered Grade A. These raw differences notwithstanding, our theoretical results suggest
that estimates of γA in equation (16) should be close to zero.

This is borne out by the estimates reported in column 4 of of Table III, which shows
small, mostly statistically insignificant differences in covariates by assignment status con-
ditional on the local DA propensity score, when the score is estimated using Imbens and
Kalyanaraman (2012) bandwidths. The estimated covariate gaps in column 6, computed
using Calonico et al. (2017) bandwidths, are similar. These estimates establish the empir-
ical relevance of both the large-market model of DA and the local DA propensity score
formula derived from it.20

Causal effects of Grade A attendance are estimated by 2SLS using assignment dummies
as instruments for years of exposure to schools of a particular type. As in the setup used to
establish covariate balance, however, the 2SLS estimating equations include two endoge-
nous variables, CAi for Grade A exposure and C0i measuring exposure to an ungraded

19The IK bandwidths used here are computed as described by Armstrong and Kolesár (2018) and in the
RDhonest package. Bandwidths are computed separately for each outcome variable; we use the smallest of
these for each program. The bandwidth for screened programs is set to zero when there are fewer than five
in-bandwidth observations on one or the other side of the relevant cutoff. Bandwidths that extend beyond
the available data on one side or the other of a cutoff are trimmed to be symmetric. The control function
g(Ri;δN) is unweighted and can therefore be said to use a uniform kernel. We also explored bandwidths
designed to produce balance as in Cattaneo, Vazquez-Bare, and Titiunik (2016). These results proved to be
sensitive to implementation details such as the p-value used to establish balance.

20Our balance assessment relies on linear models to estimate mean differences rather than comparisons of
distributions. The focus on means is justified because the IV reduced form relationships we aspire to validate
are themselves regressions. Recall that in a regression context, reduced form causal effects are unbiased pro-
vided omitted variables are mean-independent of the instrument, DAi . Since DAi is a dummy, the regression
of omitted control variables on it is given by the difference in conditional control variable means computed
with DAi switched on and off.
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TABLE III

STATISTICAL TESTS FOR BALANCE.

Applicants Listing
Grade A Schools

Applicants With Grade A Risk

IK CCFT

Non-offered
mean

Offer
gap

Non-offered
mean

Offer
gap

Non-offered
mean

Offer
gap

(1) (2) (3) (4) (5) (6)

Panel A. Application Covariates
Grade A listed first 0�393 0�483 0�752 0�009 0�788 0�015

(0�002) (0�005) (0�006)
Grade A listed top 3 0�777 0�211 0�970 0�002 0�973 0�002

(0�002) (0�002) (0�003)
Screened Grade A listed first 0�188 0�207 0�257 0�003 0�148 0�004

(0�003) (0�005) (0�005)
Screened Grade A listed top 3 0�372 0�137 0�421 0�004 0�281 −0�001

(0�003) (0�005) (0�006)

Panel B. Baseline Covariates
Black 0�339 −0�130 0�228 −0�002 0�253 0�001

(0�003) (0�006) (0�008)
Hispanic 0�406 −0�055 0�397 −0�001 0�453 0�002

(0�003) (0�007) (0�009)
Female 0�527 0�003 0�516 −0�002 0�506 −0�010

(0�003) (0�007) (0�009)
Special education 0�078 −0�019 0�059 −0�003 0�076 −0�006

(0�001) (0�004) (0�005)
English language learners 0�061 −0�014 0�047 0�003 0�061 −0�000

(0�001) (0�003) (0�005)
Free lunch 0�807 −0�100 0�774 −0�008 0�795 −0�013

(0�003) (0�007) (0�008)
Baseline scores

Math (standardized) 0�109 0�379 0�301 0�006 0�114 −0�006
(0�005) (0�010) (0�012)

English (standardized) 0�080 0�349 0�232 0�017 0�069 0�019
(0�006) (0�012) (0�014)

N 130,242 32,866 21,964
Number of program-year

combinations
1,025 1,001

Average number of students
in bandwidth

131 38

Note: This table reports covariate means and differences in means by Grade A offer status, computed by regressing covariates on
dummies indicating a Grade A school offer and an ungraded school offer. Column 2 shows raw gaps by Grade A offer status for match
applicants listing a Grade A school. Regression estimates of offer gaps in columns 4 and 6 control for Grade A and ungraded school
propensity scores and running variables, as described in the text. Bandwidths used for column 4 are as computed suggested by Imbens
and Kalyanaraman (IK; 2012) with a uniform kernel; bandwidths used for column 6 are from the Stata implementation of Calonico
et al. (CCFT; 2019). The sample is limited to applicants with non-missing demographic information and baseline test scores. Robust
standard errors appear in parentheses.

school. Exposure is measured as years enrolled for SAT outcomes; otherwise, CAi and C0i

are enrollment dummies. As in equation (16), local propensity score controls consist of
saturated models for Grade A and ungraded propensity scores, with local linear control
for screened tie-breakers as described by equation (17). These equations also control for
baseline math and English scores, free lunch, special education, and English language
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learner dummies, and gender and race dummies (estimates without these controls are
similar, though less precise).21

OLS estimates of Grade A effects, reported as a benchmark in the second column of
Table IV, indicate that Grade A attendance is associated with higher SAT scores and
graduation rates, as well as increased college and career readiness. The OLS estimates in
Table IV are from models that omit propensity score controls, computed in a sample that
includes all participants in the high school match without regard to Grade A assignment
risk. OLS estimates of the SAT gains associated with Grade A enrollment are around
6–7 points. Estimated graduation gains are similarly modest at 2.4 points, but effects on
college and career readiness are substantial, running 7–10 points on a base rate around 40.

The first-stage effects of Grade A assignment on Grade A enrollment, reported in
columns 4 and 6 of Panel A in Table IV, show that Grade A offers boost Grade A en-
rollment by about 1.8 years between the application and SAT test-taking dates (roughly
3/4 of NYC high schoolers take the SAT; scores from tests taken before ninth grade are
dropped). Grade A assignment boosts the likelihood of any Grade A enrollment by about
65–67 percentage points. This can be compared with Grade A enrollment rates of 16–18
percent among those not assigned a Grade A seat in the match.22

In contrast to the OLS estimates in column 2, the 2SLS estimates shown in columns 4
and 6 of Table IV suggest that most of the SAT gains associated with Grade A attendance
reflect selection bias. Computed with either bandwidth, 2SLS estimates of SAT math gains
are around 2 points, though still significantly different from zero. 2SLS estimates of SAT
reading effects are even smaller and not significantly different from zero, though esti-
mated with similar precision. At the same time, the 2SLS estimate for graduation status
shows a statistically significant gain of 3–4 percentage points, exceeding the corresponding
OLS estimate. The estimated standard error of 0�010 associated with the graduation es-
timate in column 4 seems especially noteworthy, as this suggests that our research design
has the power to uncover even modest improvements in high school completion rates.23

The strongest Grade A effects appear in estimates of effects on college and career pre-
paredness and college readiness. This may in part reflect the fact that Grade A schools
are especially likely to offer advanced courses, the availability of which contributes to
the college- and career-related composite outcome variables (Appendix D in the Supple-
mental Material details the construction of these variables). 2SLS estimates of effects on
these outcomes are mostly close to the corresponding OLS estimates (three out of four
are smaller). Here, too, switching bandwidth matters little for magnitudes. Throughout
Table IV, however, 2SLS estimates computed with an IK bandwidth are more precise
than those computed using CCFT.

21After replacingWi on the left-hand side of (16) with outcome variable Yi , equations (16) and (17) describe
the reduced form for 2SLS estimates of causal Grade A effects. All parameters (including coefficients on
score controls) are estimated in the sample with Grade A risk. Among applicants whose risk of Grade A
assignment is determined solely by non-lottery tie-breakers, the estimation sample is therefore limited to be
those near a screened-school cutoff. In a study using DA with lottery tie-breaking to estimate charter school
effects, Abdulkadiroğlu et al. (2017a) compared additive score-controlled 2SLS estimates with semiparametric
instrumental variables estimates based on Abadie (2003). The former are considerably more precise than the
latter.

22The gap between assignment and enrollment arises from several sources. Applicants remaining in the
public system may attend charter or non-match exam schools. Applicants may also reject a main round offer,
applying in a supplementary round or via an ad hoc administrative assignment process later in the year.

23Estimates reported in Table D.V in the Supplemental Material show little difference in outcome avail-
ability between applicants who are and are not offered a Grade A seat. The 2SLS estimates in Table IV are
therefore unlikely to be compromised by differential attrition.
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TABLE IV

GRADE A ATTENDANCE EFFECTS.

All Applicants
Applicants With Grade A Risk

IK CCFT

Non-enrolled
mean OLS

Non-offered
mean 2SLS

Non-offered
mean 2SLS

(1) (2) (3) (4) (5) (6)

Panel A. First-Stage Estimates
Years enrolled 0.528 1.80 0.453 1.85
(SAT outcomes) (0.022) (0.028)
Ever enrolled 0.180 0.649 0.158 0.666
(dummy outcomes) (0.006) (0.008)

Panel B. Second-Stage Estimates
SAT Math 474 7.44 517 1.96 489 2.42
(200–800) (103) (0.153) (109) (0.694) (98) (0.855)
SAT Reading 474 5.88 512 0.228 489 0.992
(200–800) (90) (0.139) (93) (0.639) (85) (0.780)

N 124,902 24,707 15,445
Graduated 0.739 0.024 0.825 0.029 0.790 0.042

(0.002) (0.010) (0.013)
N 183,526 31,976 21,253

College- and
career-prepared

0.429 0.101 0.595 0.085 0.499 0.117
(0.003) (0.014) (0.019)

College-ready 0.374 0.070 0.550 0.051 0.446 0.048
(0.003) (0.013) (0.018)

N 121,416 20,664 13,421

Note: This table reports estimates of the effects of Grade A high school attendance on SAT scores, high school graduation, and
college and career readiness. OLS estimates are from models that omit propensity score controls and include all students in the
three match cohorts. 2SLS estimates are from models in which enrollment in both Grade A and ungraded schools are treated as
endogenous, estimated in the sample with Grade A assignment risk. Estimates in column 4 use bandwidths calculated as suggested
by Imbens and Kalyanaraman (IK; 2012) with a uniform kernel. Estimates in column 6 use the Stata implementation of Calonico et
al. (CCFT; 2019). Attendance is measured as years enrolled for SAT outcomes, and as a dummy for ever enrolled for graduation and
college outcomes. All models include controls for baseline math and English scores, free lunch status, SPED and ELL status, gender,
and race/ethnicity indicators. Robust standard errors appear in parentheses below estimated Grade A effects; standard deviations are
reported in parentheses below non-offered means.

5.3. Screened versus Lottery Grade a Effects

In New York, education policy discussions often focus on access to academically selec-
tive screened schools such as Townsend Harris in Queens, a school consistently ranked
among the top American high schools by U.S. News and World Report. Public interest in
screened schools motivates an analysis that distinguishes screened from lottery Grade A
effects. The possibility of different effects within the Grade A sector is also relevant to
the exclusion restriction underpinning a causal interpretation of 2SLS estimates. In our
causal model of Grade A effects, the exclusion restriction fails when the offer of a Grade
A seat moves applicants between schools of different quality within the Grade A sector.
We therefore explore multi-sector models that distinguish causal effects of attendance at
different sorts of Grade A schools, focusing on differences by admissions regime, since
this is widely believed to matter for school quality.

The multi-sector estimates reported in Table V are from models that include separate
endogenous variables for screened and lottery Grade A schools, along with a third en-
dogenous variable for the ungraded sector. Instruments in this just-identified setup are
two dummies indicating each sort of Grade A offer, as well as a dummy indicating the of-
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fer of a seat at an ungraded school. 2SLS models include separate saturated local propen-
sity score controls for screened Grade A offer risk, unscreened Grade A offer risk, and
ungraded offer risk. These multi-sector estimates are computed in a sample limited to
applicants at risk of assignment to either a screened or lottery Grade A school. In view of
the relative precision of estimates using IK bandwidth, multi-sector estimates using CCFT
bandwidths are omitted.

OLS estimates again provide an interesting benchmark. As can be seen in the first two
columns of Table V, screened Grade A students appear to reap a large SAT advantage
even after controlling for baseline achievement and other covariates. In particular, OLS
estimates of Grade A effects for schools in the screened sector are on the order of 14–17
points. At the same time, Grade A lottery schools appear to generate achievement gains
under 2 points. Yet, the corresponding 2SLS estimates, reported in columns 3 and 4 of
the table, suggest the achievement gains yielded by enrollment in both sorts of Grade A
schools are equally modest. The 2SLS estimates here run around 2 points for math scores,
with smaller estimates for reading.

The remaining 2SLS estimates in the table likewise show similar screened-school and
lottery-school effects. With one marginal exception, p-values in the table reveal estimates
for the two sectors to be statistically indistinguishable. As in Table IV, the 2SLS estimates
in Table V suggest that screened and lottery Grade A schools boost graduation rates by
about 3 points. Effects on college and career preparedness are larger for lottery schools
than for screened, but this ordering is reversed for effects on college readiness. On the
whole, Table V leads us to conclude that OLS estimates showing a large screened Grade
A advantage are driven by selection bias.

6. SUMMARY AND NEXT STEPS

Centralized student assignment opens new opportunities for the measurement of
school quality. The research potential of matching markets is enhanced here by marry-
ing the conditional random assignment generated by lottery tie-breaking with RD-style
variation at screened schools. The key to this intermingled empirical framework is a lo-
cal propensity score that controls for differential assignment rates in DA matches with
general tie-breakers. This new tool allows us to exploit all sources of quasi-experimental
variation arising from any mechanism in the DA class.

Our propensity-score-based analysis of NYC school report cards suggests Grade A
schools boost SAT math scores and high school graduation rates by a few points. OLS
estimates, by contrast, show considerably larger effects of Grade A attendance on test
scores. Grade A screened schools enroll some of the city’s highest achievers, but this is
not a causal effect: large OLS estimates of achievement gains from attendance at these
schools appear to be an artifact of selection bias. Concerns about access to such schools
(expressed, for example, in Harris and Fessenden (2017)) may therefore be overblown.
On the other hand, Grade A attendance increases measures of college and career pre-
paredness. These results may reflect the greater availability of advanced courses in Grade
A schools, a feature that should be replicable at other schools.

In principle, Grade A assignment may move applicants between schools within the
Grade A sector as well as boosting overall Grade A enrollment. Offer-induced movement
between screened and lottery Grade A schools violate the exclusion restriction that un-
derpins our 2SLS results if schools within the Grade A sector vary in quality. We therefore
explore the question of whether screened and lottery Grade A schools have the same ef-
fect. Perhaps surprisingly, our analysis supports the idea that screened and lottery Grade
A schools have similar causal effects.
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TABLE V

GRADE A EFFECTS BY ADMISSIONS REGIME.

OLS 2SLS

Screened
Grade A

Lottery
Grade A

Screened
Grade A

Lottery
Grade A

(1) (2) (3) (4)

SAT Math 17�0 1�96 2�07 1�84
(200–800) (0�227) (0�167) (1�17) (0�736)

p-value 0.848
SAT Reading 13�8 1�33 1�04 −0�091
(200–800) (0�208) (0�152) (1�07) (0�675)

p-value 0.301
N 124,902 26,844

Graduated 0�033 0�019 0�031 0�023
(0�002) (0�002) (0�013) (0�010)

p-value 0.546
N 183,526 34,429

College- and career-
prepared

0�140 0�082 0�075 0�090
(0�004) (0�003) (0�020) (0�015)

p-value 0.478
College-ready 0�140 0�039 0�085 0�045

(0�004) (0�003) (0�020) (0�014)
p-value 0.057

N 121,416 22,205

Note: This table reports OLS and 2SLS estimates of models that allow for distinct screened and lottery Grade A attedance effects.
OLS estimates are from models omitting propensity score controls, estimated in a sample that includes all students in the three match
cohorts. 2SLS estimates are from models that treat Grade A lottery, Grade A screened, and ungraded school attendance variables as
endogenous, estimated in a sample limited to applicants with either screened or lottery Grade A assignment risk. Screened program
bandwidths are calculated as suggested by Imbens and Kalyanaraman (IK; 2012) with a uniform kernel. All models include baseline
covariate controls, described in the notes to Table IV. Reported p-values are for tests that the screened and lottery Grade A effects in
columns 3 and 4 are equal. Robust standard errors appear in parentheses.

Our provisional agenda for further research prioritizes investigation of econometric
implementation strategies for DA-founded research designs. This work is likely to build
on the asymptotic framework in Bugni and Canay (2018) and the study of RD designs
with multiple tie-breakers in Papay, Willett, and Murnane (2011), Zajonc (2012), Wong,
Steiner, and Cook (2013b), and Cattaneo, Titiunik, and Vazquez-Bare (2020). It may be
possible to extend the reasoning behind doubly robust nonparametric estimators, such as
discussed by Rothe and Firpo (2019) and Rothe (2020), to our setting.

Statistical inference in Section 5 relies on conventional large-sample reasoning of the
sort widely applied in empirical RD applications. As a non-asymptotic alternative, it
seems natural to consider permutation or randomization inference along the lines sug-
gested by Cattaneo, Frandsen, and Titiunik (2015), Cattaneo, Titiunik, and Vazquez-Bare
(2017) and Canay and Kamat (2017). Related avenues worth exploring include the op-
timal inference and estimation strategies introduced by Armstrong and Kolesár (2018)
and Imbens and Wager (2019). In closely related work, Narita (2021) derives propensity
scores for markets employing a wide range of non-DA algorithmic assignment schemes.
Finally, we look forward to exploring the implications of heterogeneous treatment effects
for identification strategies of the sort considered here.
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APPENDIX A: PROOFS

A.1. Proof of Theorem 1

Let Fiv(r) denote the cumulative distribution function (CDF) of Riv evaluated at r and
define

Fv(r|θ) =E[
Fiv(r)|θi = θ

]
� (18)

This is the fraction of type θ applicants with tie-breaker v below r (set to zero when type
θ ranks no schools using tie-breaker v).

Recall that the joint distribution of tie-breakers for applicant i is assumed to be contin-
uously differentiable with positive density (Assumption 1). This assumption implies that
the conditional distribution of tie-breaker v, Fv(r|e), is continuously differentiable, with
F ′
v(r|e) > 0 at any r = τ1� � � � � τS . Here, the conditioning event e is any event of the form
θi = θ, Riu > ru for u= 1� � � � � v− 1, and Ti(δ) = T .

Take any large market with the general tie-breaking structure in Section 4. For each
δ > 0 and each tie-breaker v=U + 1� � � � � V , let e(v) be short-hand notation for “θi = θ,
Riu > MIDu

θs for u = 1, ���� v − 1�Ti(δ) = T , and Wi = w.” Similarly, e(1) is short-hand
notation for “θi = θ, Ti(δ) = T , and Wi =w.”

Let ζs(θ�T�δ;w) ≡ E[Di(s)|e(1)] be the assignment probability for an applicant with
θi = θ, Ti(δ) = T , and characteristics Wi =w. Our proofs use a lemma that describes this
assignment probability. To state the lemma, for v >U , let

�δ(v) ≡

⎧⎪⎨
⎪⎩

Fv
(
MIDv

θs|e(v)
) − Fv

(
MIDv

θs − δ|e(v)
)

Fv
(
MIDv

θs + δ|e(v)
) − Fv

(
MIDv

θs − δ|e(v)
) if tb(δ) = c for some b ∈ Bvθs�

1 otherwise.

We use this object to define �δ ≡ ∏U

v=1(1 − MIDv
θs)

∏V

v=U+1�δ(v). Finally, let

�′
δ ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
{

0�
Fv(s)

(
τs|e(V + 1)

) − Fv(s)

(
τs − δ|e(V + 1)

)
Fv(s)

(
τs + δ|e(V + 1)

) − Fv(s)

(
τs − δ|e(V + 1)

)}
if v(s) >U�

max
{

0�
τs − MIDv(s)

θs

1 − MIDv(s)
θs

}
if v(s) ≤U�

LEMMA 1: For any fixed δ > 0 such that δ <minθ�s�v|τs − MIDv
θ�s|, we have

ζs(θ�T�δ;w) =

⎧⎪⎨
⎪⎩

0 if ts(δ) = n or tb(δ) = a for some b ∈ Bθs�
�δ otherwise and ts(δ) = a�
�δ ×�′

δ otherwise and ts(δ) = c�

PROOF OF LEMMA 1: We start by verifying the first line in ζs(θ�T�δ;w). Applicants
who do not rank s have ζs(θ�T�δ;w) = 0. Among those who rank s, those of ts(δ) = n
have ρθs > ρs or, if v(s) �= 0, ρθs = ρs and Riv(s) > τs + δ. If ρθs > ρs, then ζs(θ�T�δ;w) =
0. Even if ρθs ≤ ρs, as long as ρθs = ρs and Riv(s) > τs + δ, student i never clears the cutoff
at school s so ζs(θ�T�δ;w) = 0.

Next, take as given that it is not the case that ts(δ) = n or tb(δ) = a for some b ∈ Bθs.
Applicants with tb(δ) �= a for all b ∈ Bθs and ts(δ) = a or c may be assigned b ∈ Bθs, where
ρθb = ρb. Since the (aggregate) distribution of tie-breaking variables for type θ students



146 ABDULKADİROĞLU, ANGRIST, NARITA, AND PATHAK

is F̂v(·|θ) = Fv(·|θ), conditional on Ti(δ) = T , the proportion of type θ applicants not as-
signed any b ∈ Bθs where ρθb = ρb is�δ = ∏U

v=1(1−MIDv
θs)

∏V

v=U+1�δ(v) since each�δ(v)
is the probability of not being assigned to any b ∈ Bvθs. To see why �δ(v) is the probability
of not being assigned to any b ∈ Bvθs, note that if tb(δ) �= c for all b ∈ Bvθs, then tb(δ) = n
for all b ∈ Bvθs so that applicants are never assigned to any b ∈ Bvθs. Otherwise, that is, if
tb(δ) = c for some b ∈ Bvθs, then applicants are assigned to s if and only if their values of
tie-breaker v clear the cutoff of the school that produces MIDv

θs, where applicants have
ts(δ) = c. This event happens with probability

Fv
(
MIDv

θs|e(v)
) − Fv

(
MIDv

θs − δ|e(v)
)

Fv
(
MIDv

θs + δ|e(v)
) − Fv

(
MIDv

θs − δ|e(v)
) �

implying that �δ(v) is the probability of not being assigned to any b ∈ Bvθs.
Given this fact, to see the second line, note that every applicant of type ts(δ) = a who

is not assigned a higher choice is assigned s for sure because ρθs < ρs or ρθs +Riv(s) < ξs .
Therefore, we have

ζs(θ�T�δ;w) =�δ�

Finally, consider applicants with ts(δ) = c. The fraction of those who are not assigned a
higher choice is �δ, as explained above. Also, for tie-breaker v(s), the tie-breaker values
of these applicants are larger (worse) than MIDv(s)

θs . If τs <MIDv(s)
θs , then no such applicant

is assigned s. If τs ≥ MIDv(s)
θs , then the fraction of applicants who are assigned s conditional

on τs ≥ MIDv(s)
θs is given by

max
{

0�
Fv(s)

(
τs|e(V + 1)

) − max
{
Fv(s)

(
MIDv(s)

θs |e(V + 1)
)
�Fv(s)

(
τs − δ|e(V + 1)

)}
Fv(s)

(
τs + δ|e(V + 1)

) − max
{
Fv(s)

(
MIDv(s)

θs |e(V + 1)
)
�Fv(s)

(
τs − δ|e(V + 1)

)}
}

if v(s) >U

and

max
{

0�
τs − MIDv(s)

θs

1 − MIDv(s)
θs

}
if v(s) ≤U�

If MIDv(s)
θs < τs, then δ <minθ�s�v|τs − MIDv

θ�s| implies MIDv(s)
θs < τs − δ. This in turn im-

plies

max
{
Fv(s)

(
MIDv(s)

θs |e(V + 1)
)
�Fv(s)

(
τs − δ|e(V + 1)

)} = Fv(s)

(
τs − δ|e(V + 1)

)
�

If MIDv(s)
θs > τs, then δ <minθ�s�v|τs − MIDv

θ�s| implies MIDv(s)
θs > τs + δ. By the definition

of e(V + 1), Riu >MIDu
θs for u= 1� � � � � V . Therefore, there is no applicant with Riv(s) >

MIDv(s)
θs and Riv(s) ∈ [τs − δ�τs + δ].

Hence, conditional on ts(δ) = c and not being assigned a choice preferred to s, the
probability of being assigned s is given by �′

δ. Therefore, for students with ts(δ) = c, we
have ζs(θ�T�δ;w) =�δ ×�′

δ. Q.E.D.
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LEMMA 2: For all s, θ, and sufficiently small δ > 0, we have

ζs(θ�T�δ;w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ts(0) = n or tb(0) = a for some b ∈ Bθs�
�∗
δ otherwise and ts(0) = a�

�∗
δ × Fv(s)

(
τs|e(V + 1)

) − Fv(s)

(
τs − δ|e(V + 1)

)
Fv(s)

(
τs + δ|e(V + 1)

) − Fv(s)

(
τs − δ|e(V + 1)

)
otherwise and ts(0) = c and v(s) >U�

�∗
δ × max

{
0�
τs − MIDv(s)

θs

1 − MIDv(s)
θs

}
otherwise and ts(0) = c and v(s) ≤U�

(19)

where

�∗
δ(v) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Fv
(
MIDv

θs + δ|e(v)
) − Fv

(
MIDv

θs|e(v)
)

Fv
(
MIDv

θs + δ|e(v)
) − Fv

(
MIDv

θs − δ|e(v)
)

if MIDv
θs = τb and tb = c for some b ∈ Bvθs�

1 otherwise�

and

�∗
δ ≡

U∏
v=1

(
1 − MIDv

θs

) V∏
v=U+1

�∗
δ(v)�

PROOF OF LEMMA 2: The first line follows from Lemma 1 and the fact that ts(0) =
n or tb(0) = a for some b ∈ Bθs imply ts(δ) = n or tb(δ) = a for some b ∈ Bθs for suffi-
ciently small δ > 0.

For the remaining lines, note first that conditional on ts(0) �= n and tb(0) �= a for all b ∈
Bθs, we have �∗

δ(v) =�δ(v) and so �∗
δ =�δ holds for small enough δ. �∗

δ therefore is the
probability of not being assigned to a school preferred to s in the last three cases.

The second line then follows by the fact that ts(0) = a implies ts(δ) = a for small enough
δ > 0. The third line follows from the fact that for small enough δ > 0,

�′
δ = max

{
0�

Fv(s)

(
τs|e(V + 1)

) − Fv(s)

(
τs − δ|e(V + 1)

)
Fv(s)

(
τs + δ|e(V + 1)

) − Fv(s)

(
τs − δ|e(V + 1)

)}

= Fv(s)

(
τs|e(V + 1)

) − Fv(s)

(
τs − δ|e(V + 1)

)
Fv(s)

(
τs + δ|e(V + 1)

) − Fv(s)

(
τs − δ|e(V + 1)

) �
where we invoke Assumption 2, which implies MIDv

θs �= τs. The last line follows directly
follows from Lemma 1. Q.E.D.

Lemma 2 is used to derive Theorem 1 by characterizing limδ→0 ζs(θ�T�δ;w) and show-
ing that this limit coincides with ψs(θ�T ) as defined in the text.

In the first case in Lemma 2, ζs(θ�T�δ;w) is constant at zero, and so limδ→0 ζs(θ�T�δ;
w) = 0 in this case.

To characterize limδ→0 ζs(θ�T�δ;w) for the remaining cases, note that by the differen-
tiability of Fv(·|e(v)) (recall the continuous differentiability of Fiv(r|e)) (Assumption 1),
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L’Hôpital’s rule implies

lim
δ→0

Fv(s)

(
τs|e(V + 1)

) − Fv(s)

(
τs − δ|e(V + 1)

)
Fv(s)

(
τs + δ|e(V + 1)

) − Fv(s)

(
τs − δ|e(V + 1)

) = F ′
v(s)

(
τs|e(V + 1)

)
2F ′

v(s)

(
τs|e(V + 1)

) = 0�5

and

lim
δ→0

Fv
(
MIDv

θs + δ|e(v)
) − Fv

(
MIDv

θs|e(v)
)

Fv
(
MIDv

θs + δ|e(v)
) − Fv

(
MIDv

θs − δ|e(v)
) = F ′

v

(
MIDv

θs|e(v)
)

2F ′
v

(
MIDv

θs|e(v)
) = 0�5�

This implies limδ→0�
∗
δ(v) = 0�5 if MIDv

θs = τb and tb = c for some b ∈ Bvθs or limδ→0�
∗
δ(v) =

1 otherwise since whether MIDv
θs = τb and tb = c for some b ∈ Bvθs does not depend on δ.

Therefore,

lim
δ→0

�∗
δ =

U∏
v=1

(
1 − MIDv

θs

)
0�5ms (θ�T )�

where ms(θ�T ) =|{v > U : MIDv
θs = τb and tb = c for some b ∈ Bvθs}|.

Combining these limits with the fact that the limit of a product of functions equals the
product of the limits of the functions, we obtain the following: limδ→0 ζs(θ�T�δ;w) = 0 if
(a) ts = n or (b) tb = a for some b ∈ Bθs. Otherwise,

lim
δ→0

ζs(θ�T�δ;w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
σs(θ�T )λs(θ) if ts = a�
σs(θ�T )λs(θ) max

{
0�
τs − MIDv(s)

θs

1 − MIDv(s)
θs

}
if ts = c and v(s) ≤U�

σs(θ�T )λs(θ) × 0�5 if ts = c and v(s) >U�

This expression coincides with ψs(θ�T ), completing the proof of Theorem 1.

A.2. Proof of Corollary 1

Theorem 1 implies the following limiting conditional independence property:

lim
δ→0

E
[
DAi|ζA(θ�T�δ)�Wi

] = lim
δ→0

E
[
DAi|ζA(θ�T�δ)

]
�

while the corollary presumes exclusion; that is, we assume this holds for Wi = Y0i. By the
symmetry of conditional independence (Dawid (1979)), and because Yi = Y0i +βCi, this
implies

lim
δ→0

(
E

[
Yi|DAi = 1� ζA(θ�T�δ) = p] −E[

Yi|DAi = 0� ζA(θ�T�δ) = p])
= β lim

δ→0

(
E

[
Ci|DAi = 1� ζA(θ�T�δ) = p] −E[

Ci|DAi = 0� ζA(θ�T�δ) = p])
�

where p is any value in (0�1) such that the first-stage effect limδ→0E[Ci|DAi = 1� ζA(θ�T�
δ) = p] − E[Ci|DAi = 0� ζA(θ�T�δ) = p] �= 0. Since we assume the first-stage effect is
nonzero, the conclusion follows.
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