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COMMITMENT VS. FLEXIBILITY

BY MANUEL AMADOR, IVÁN WERNING, AND GEORGE-MARIOS ANGELETOS1

We study the optimal trade-off between commitment and flexibility in a consump-
tion–savings model. Individuals expect to receive relevant information regarding tastes
and thus they value the flexibility provided by larger choice sets. On the other hand,
they also expect to suffer from temptation, with or without self-control, and thus they
value the commitment afforded by smaller choice sets. The optimal commitment prob-
lem we study is to find the best subset of the individual’s budget set. This problem
leads to a principal–agent formulation. We find that imposing a minimum level of sav-
ings is always a feature of the solution. Necessary and sufficient conditions are derived
for minimum-savings policies to completely characterize the solution. We also discuss
other applications, such as the design of fiscal constitutions, the problem faced by a
paternalist, and externalities.

KEYWORDS: Intertemporal preferences, commitment, flexibility, hyperbolic dis-
counting, social security, temptation, self-control.

1. INTRODUCTION

A COMMONLY ARTICULATED JUSTIFICATION for government involvement in
retirement income is the belief that an important fraction of the population
saves inadequately when left to their own devices (Diamond (1977)). From a
worker’s perspective most pension systems, pay-as-you-go and capitalized sys-
tems alike, effectively impose a minimum-savings requirement. One purpose
of this paper is to see if such minimum-savings policies are optimal in a model
where agents suffer from the temptation to overconsume.

More generally, if people suffer from temptation and self-control problems,
what should be done to help them? Current models that emphasize such prob-
lems lead to a simple but extreme answer: It is optimal to completely remove
all future choices. In particular, in the intertemporal choice framework it is
best to commit individuals to a particular consumption path, removing all fu-
ture savings choices—full commitment is optimal. In these models, the desire
to commit is simply overwhelming.

Eliminating all ex post choices is unlikely to be a good idea when new in-
formation regarding preferences or other variables is expected to arrive in the

1We are grateful to a co-editor and the referees for detailed feedback that greatly improved
the paper. We are thankful for comments and suggestions from Daron Acemoglu, Andy Atke-
son, Paco Buera, V. V. Chari, Peter Diamond, Doireann Fitzgerald, Narayana Kocherlakota, and
especially Pablo Werning. We also thank seminar and conference participants at the University
of Chicago, University of Rochester, Harvard, MIT, Stanford, University of Pennsylvania, Berke-
ley, New York University, Yale University, University of Maryland, University of Austin–Texas,
Torcuato di Tella, Pompeu Fabra (CREI), Bocconi, L.S.E, Stanford Institute for Theoretical Eco-
nomics, American Economic Association, Society of Economic Dynamics, CESifo Venice Sum-
mer Institute, the Central Bank of Portugal, and the Federal Reserve Banks of Cleveland and
Boston. We thank Emily Gallagher for valuable editing assistance.
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future. In these circumstances, individuals value the flexibility to act on their
information. Indeed, in the absence of temptation or self-control problems
maintaining all future savings choices implements the optimal allocation—full
flexibility is optimal and strictly preferable to full commitment.

This paper studies the design of optimal commitment devices in situations
where eliminating all choices is not necessarily optimal. We introduce a value
for flexibility and study the resulting trade-off with commitment, defined as the
removal of some future choices. Our model combines a preference for flexibil-
ity and a preference for commitment by introducing taste shocks into both a
time-inconsistent quasi-hyperbolic discounting framework (Phelps and Pollack
(1968), Laibson (1997)) and the temptation and self-control model of Gul and
Pesendorfer (2001). The resulting preferences belong to a class introduced by
Dekel, Lipman, and Rustichini (2001).

The individual we model suffers from temptation for higher present con-
sumption. Each period a taste shock is realized that affects the individual’s
desire for current versus future consumption.2 Importantly, taste shocks are
privately observed by the individual. If, instead, taste shocks were observable
and verifiable by an outside party, one could simply contract upon them in a
way that avoids all temptation and achieves the unconstrained ex ante opti-
mum. However, when the shocks are private information, only the agent can
act upon them, introducing a trade-off between commitment and flexibility.
Commitment is valued because it reduces temptation; flexibility is valued be-
cause it allows the use of valuable private information.

The optimal commitment problem we study selects a subset of the individ-
ual’s budget set to maximize ex ante utility, taking into account the ex post
temptation problem individuals experience facing that set. The commitment
problem does not allow insurance or transfers across taste shocks. Although
this restriction is not without loss of generality, it is a natural starting point for
at least three reasons. First, it is useful to isolate the problem of commitment—
defined as a reduction of choices from the individual’s budget constraint—from
the problem of insurance or redistribution, which is beyond the scope of this
paper. Second, individuals may have access to commitment technologies, such
as an illiquid asset, but not insurance contracts. Thus, it is important to under-
stand what the ideal commitment device, not featuring insurance, looks like.
Finally, the possibility of transferring resources across different types is simply
absent in some reinterpretations of our model discussed in Section 5.

Commitment devices are valuable in this framework for two distinct reasons.
First, by affecting the allocation toward higher savings, they counteract the
overconsumption from temptation. In the time-inconsistent quasi-hyperbolic

2Our analysis focuses on taste shocks, but the crucial feature is the arrival of any new infor-
mation relevant to the savings decision. Flexibility would also be valuable if one modeled health,
employment, and income shocks. As we later show in detail, with constant absolute risk aversion
preferences, a model with income shocks is isomorphic to a model with taste shocks.
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model this is the only gain. In addition, in the model with costly self-control,
commitment devices may reduce the self-control costs of resisting the tempta-
tion.

We set up the optimal commitment problem as a principal-agent problem,
where the “principal” has the individual’s ex ante preferences and the “agent”
has the ex post preferences.

A very simple commitment device in this setting is a minimum-savings rule,
which restricts individuals to save above some level, allowing complete flexibil-
ity otherwise. Facing such a rule, individuals with low enough taste shocks will
be unconstrained, saving above the imposed minimum; those with high enough
taste shocks will be constrained by the minimum-savings level, and as a result
they all choose the same consumption and savings bundle.

Our main result concerns the optimality of such simple commitment devices.
We provide a necessary and sufficient condition on the distribution of taste
shocks for a minimum-savings rule to completely characterize the solution to
the commitment problem. To establish this result it is necessary to ensure two
things. First, that it is not desirable to have individuals who consume strictly be-
low the budget line—that is, “money burning” is not optimal. Second, that the
best subset of the budget line is simply all those points above some minimum-
savings level.

More generally, we show that the optimal commitment device always shares
a key feature with minimum-savings rules: types above some threshold have
the same consumption and savings bundle. This bunching result has a strong
economic intuition. If instead agents at the very top are separated, then they
would surely be consuming more than what the principal would for any taste
shock. Thus, at the top there is no trade-off between commitment and flexibil-
ity, and locally no flexibility is provided.

Our analysis is also useful for other applications, quite different from the
consumption–savings model we focus on, and we discuss some examples. The
first concerns fiscal constitutional design, where citizens value government
spending, but ruling administrations value it even more. Our results translate
to conditions for simple spending caps to be optimal. Second, we discuss pater-
nalism, whereby a principal cares about an agent but has some disagreement
with the agent’s preferences. Our results may then be relevant for thinking
about minimum-schooling laws. Finally, we discuss an environment where in-
dividuals impose consumption externalities on each other: a utilitarian planner
maximizes average welfare and internalizes these externalities, but individu-
als acting privately do not. These examples illustrate how our results may be
applicable to other situations featuring a trade-off between commitment and
flexibility.

This paper relates to several choice-theoretical papers in the literature.
Models with time-inconsistent preferences solved as a competitive game, as
in Strotz (1956), were the first to formalize a value for commitment. In
particular, the hyperbolic discounting model has proven useful for model-
ing the possibility of undersaving and the desirability of commitment devices
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(Phelps and Pollack (1968), Laibson (1997)). In a series of recent papers,
Gul and Pesendorfer (2001, 2004a, 2004b) and Dekel, Lipman, and Rustichini
(2001, 2004) have provided axiomatic foundations for preferences that value
commitment and have derived useful representation theorems. Kreps (1979)
provided an early axiomatic foundation for a preference for flexibility and
showed that these preferences can always be represented by including taste
shocks in an expected-utility framework.

Our paper contributes to work on optimal social security design, especially
that which incorporates a concern for possible undersaving by individuals.
To the best of our knowledge, modeling the trade-off between commitment
and flexibility is novel in this context. For example, Laibson (1998) studies
corrective Pigouvian taxation in a deterministic representative–agent model
with quasi-hyperbolic discounting. Interestingly, Krusell, Kuruşçu, and Smith
(2005) show that linear taxation is not an effective instrument for resolving the
temptation problems faced by agents who have some self-control. In contrast,
the pure commitment mechanisms we consider here would attain the first-best
allocation in these environments; this underscores the importance of modeling
a desire for flexibility. On the other hand, with nondegenerate taste shocks,
our focus on pure commitment mechanisms, which do not allow for transfers
across types, is restrictive. A natural next step is to incorporate a value for
flexibility (e.g., with taste shocks) while also allowing for transfers.

Other work features similar trade-offs between some form of commitment
and flexibility. For example, following Holmström (1977, 1984) many papers
have addressed the problem of managerial delegation to a biased but informed
agent. Early work proceeded under various simplifying assumptions: quadratic
payoff functions, a one-dimensional action to be delegated, and the delegation
set restricted to be an interval; recent work has relaxed the latter assumption
(Melumad and Shibano (1991), Martimort and Semenov (2004)). Also related
is Athey, Atkeson, and Kehoe (2005), who emphasize a trade-off between rules
and discretion in the context of a time-inconsistent benevolent government.
We believe that our results and methods, which apply powerful Lagrangian
optimization techniques, may prove useful for these and other applications.

The rest of the paper is organized as follows. Section 2 lays out the basic
model with quasi-hyperbolic preferences. Section 3 studies optimal commit-
ment and derives the main results. Section 4 extends the results to preferences
that display temptation and self-control. We discuss other interpretations of
our model and applications of our results in Section 5. The final section con-
cludes.

2. BASIC CONSUMPTION–SAVINGS PROBLEM

In this section, we introduce the basic consumption–saving setup with time-
inconsistent preferences. There are two periods and a single consumption good
each period. We denote first- and second-period consumption by c and k, re-
spectively. Given total resources y , the consumer is constrained by the budget
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set B ≡ {(c!k) ∈ R2
+ | c + k ≤ y}, where we have normalized the net interest

rate to zero.
In the first period individuals receive a taste shock θ from a bounded set Θ

with distribution function F(θ), normalized so that E[θ] = 1. The taste shock
affects the marginal utility of current consumption: higher θ makes current
consumption more valuable. Taste shocks are assumed to be the individual’s
private information.

We follow Strotz (1956), Phelps and Pollack (1968), Laibson (1997), and oth-
ers by modeling the agent in each period as different selves with different pref-
erences. For the ensuing games played between selves we consider subgame
perfect equilibria as our solution concept.

The utility for self-1 from periods t= 1!2 with taste shock θ is then

θU(c)+βW (k)!

where U : R+ → R and W : R+ → R are increasing, concave, and continuously
differentiable, and 0 < β≤ 1. Utility for self-0 from periods t= 1!2 is given by

E[θU(c)+W (k)]%

This setup represents a two-period version of quasi-geometric discounting. We
associate 1 − β with the strength of temptation toward present consumption.

There is disagreement among the different selves on discounting, but agree-
ment regarding taste shocks. The tension is between tailoring consumption to
the taste shock and self-1’s constant desire for higher current consumption.
This tension generates the trade-off between commitment and flexibility from
the point of view of self-0. Indeed, this is the central feature of the model, which
can be reinterpreted and applied to other situations with similar trade-offs (see
Section 5).

The taste shock distribution can be interpreted in two ways. Under an ob-
jective interpretation, it represents the actual probability distribution over ex
post ordinal preferences. Under a subjective interpretation, in contrast, the
distribution encompasses both subjective probability assessments on ordinal
preferences and the cardinality from state-dependent utility.

Taste shocks are a tractable way to introduce a value for flexibility, and may
also capture the significant variation in consumption and savings behavior ob-
served in the data, after conditioning on all available variables. Other shocks,
such as unobservable income or health, can also generate a value for flexibil-
ity. Indeed, a model with privately observed income shocks is equivalent to a
model with privately observed taste shocks when the utility function is expo-
nential. We discuss such equivalence in Section 5.4.

A useful benchmark allocation is the ex ante first-best allocation, (cfb(θ)!
kfb(θ)), defined by the solution to max(c!k)∈B{θU(c) + W (k)}. This allocation
would be feasible if taste shocks were not private information and were con-
tractible. Another benchmark allocation is that obtained with full flexibility or
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no commitment: self -1 is constrained only by the resource constraint and solves
max(c!k)∈B[θU(c)+βW (k)]. We denote the unique solution to this problem by
(cf (θ)!kf (θ)).

3. OPTIMAL COMMITMENT WITHOUT SELF-CONTROL

Commitment entails reducing the set of available choices. The optimal com-
mitment problem is to choose a subset C ⊂ B of the budget set that maximizes
the expected utility of self-0 given that choices are in the hands of self-1, that is,
that the allocation is the outcome of a subgame perfect equilibrium. Formally,
we choose C ∈ B so as to maximize

∫
[θU(c(θ)) + W (k(θ))]dF(θ) subject to

c(θ)!k(θ) ∈ arg max(c!k)∈C(θU(c)+βW (k)).
Finding the best subset C is equivalent to the following principal–agent prob-

lem directly over allocations c(θ) and k(θ):

max
c!k

∫ [
θU(c(θ))+W (k(θ))

]
dF(θ)

subject to

θU(c(θ))+βW (k(θ)) ≥ θU(c(θ′))+βW (k(θ′)) for all θ!θ′ ∈Θ!(1)

c(θ)+ k(θ)≤ y for all θ ∈Θ%(2)

Given total resources y , the problem is to maximize expected utility from the
point of view of self-0 (henceforth, the principal) subject to the constraint that
θ is private information of self-1 (henceforth, the agent). The incentive com-
patibility constraint (1) ensures that the agent reports the shock truthfully.3

3.1. Two and Three Types

We begin by studying the optimal commitment problem with only two taste
shocks and then turn to the case with a continuum. When taste shocks take
only two possible values, the optimum can be fully characterized as follows.

PROPOSITION 1: Suppose Θ = {θl! θh} with θl < θh. There exists a β∗ ∈
(θl/θh!1) such that for β ∈ [β∗!1] the first-best allocation is implementable. Oth-
erwise:

3Several recent papers study principal–agent problems where the agents have nonstandard
preferences. For example, Della-Vigna and Malmendier (2004), Eliaz and Spiegler (2004),
Esteban and Miyagawa (2005), and Sarafidis (2005) study optimal nonlinear pricing contract-
ing problems with agents who suffer from time-inconsistency or self-control problems; none of
these papers examines the design of optimal commitment devices as in this paper. Some authors
have studied the problem of commitment through the manipulation of information or memory
instead of explicit contracts (e.g., Carrillo and Mariotti (2000), Benabou and Tirole (2002)).
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(i) If β ≥ θl/θh, separation is optimal, i.e., c∗(θh) > c∗(θl) and k∗(θh) <
k∗(θl).

(ii) If β ≤ θl/θh, bunching is optimal, i.e., c∗(θl) = c∗(θh) and k∗(θl) =
k∗(θh).
In both cases, the optimum can be attained without burning money: c∗(θ) +
k∗(θ) = y for θ= θh! θl.

The proof is given in the Appendix.
The result that the first-best allocation is incentive compatible for low

enough levels of temptation relies on the discrete difference in taste shocks
and does not hold with a continuum of shocks. For higher temptation the first-
best allocation is no longer incentive compatible and the proposition shows
that the solution takes one of two forms. For intermediate levels of temptation
it is optimal to separate the agents. To achieve separation the principal must
offer bundles that yield to the agent’s ex post desire for higher consumption,
giving them higher consumption in the first period than the first best. For high
enough temptation, however, separating the agents requires too much first-
period consumption and bunching both types becomes preferable. Bunching
resolves the commitment problem at the expense of flexibility. The optimal
amount of flexibility depends negatively on the degree of disagreement relative
to the dispersion of taste shocks. The proposition also shows that the optimum
can be attained on the frontier of the budget set, so that money burning is not
required.

Unfortunately, with more than two types, extending these conclusions is not
straightforward. For example, consider three taste shocks, θl < θm < θh, with
respective probabilities pl, pm, and ph. In this case bunching may occur be-
tween any consecutive pair of shocks. Money burning for the middle type may
be optimal if pm is small enough and β ∈ (β∗! θl/θm), where β∗ is as defined
by the proposition above with two types, θl and θh. This captures the intuition
that if the middle shock occurs with very low probability, money burning is not
very costly and might be preferable for incentive purposes. If β /∈ (β∗! θl/θm)
money burning is never optimal for small enough pm. However, we have found
numerically that when β< β∗ money burning may be optimal for an intermedi-
ate range of pm.4 These results help illustrate that money burning is a possible
feature of the solution and that conditions on the distribution are required to
rule it out.

3.2. Continuous Distribution of Types

For the rest of the paper we assume that the distribution of types is rep-
resented by a continuous density f (θ) over the bounded interval Θ ≡ [θ! θ̄].
It is convenient to change variables from (c(θ)!k(θ)) to (u(θ)!w(θ)), where
u(θ) ≡ U(c(θ)) and w(θ) ≡ W (k(θ)), and we term either pair of functions an

4More precise statements and proofs of these results are available in an online supplementary
document (http://www.econometricsociety.org/ecta/supmat/5090results.pdf).
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allocation. Let C ≡ U−1 and K ≡ W −1, which are then increasing and convex
functions.

We now characterize the incentive compatibility constraints (1). Facing a
direct mechanism given by (u(θ)!w(θ)), an agent with taste shock θ maxi-
mizes over the report and obtains utility V (θ) ≡ maxθ′∈Θ{(θ/β)u(θ′)+w(θ′)}.
If truth-telling is optimal, then V (θ) = (θ/β)u(θ) + w(θ) and by integrating
the envelope condition V ′(θ) = u(θ)/β one obtains the standard integral con-
dition

θ

β
u(θ)+w(θ)=

∫ θ

θ

1
β
u(θ̃)dθ̃+ θ

β
u(θ)+w(θ)%(3)

Incentive compatibility of (u!w) also requires u to be a nondecreasing function
of θ: agents who are more eager for current consumption cannot consume
less. Thus, condition (3) and the monotonicity of u are necessary for incentive
compatibility. As is standard, these two conditions are also sufficient.

The principal’s problem is thus to maximize
∫ θ̄

θ
(θu(θ) + w(θ))f (θ)dθ sub-

ject to the budget constraint C(u(θ)) + K(w(θ)) ≤ y , the incentive compati-
bility constraint (3), and monotonicity u(θ′) ≥ u(θ) for θ′ ≥ θ. Note that this
problem is convex because the objective function is linear and the constraint
set is convex.

Substituting the incentive compatibility constraint (3) into the objective
function and the resource constraint, and integrating by parts allows us to sim-
plify the problem by dropping the function w(θ), except for its value at θ. Con-
sequently, the principal’s problem reduces to finding a function u :Θ→ R and
a scalar w that solves5

max
w!u∈Φ

{
θ

β
u(θ)+w+ 1

β

∫ θ̄

θ

(1 − G(θ))u(θ)dθ

}
!(4)

subject to

W
(
y − C(u(θ))

)
+ θ

β
u(θ)− θ

β
u(θ)− w − 1

β

∫ θ

θ

u(θ̃)dθ̃≥ 0(5)

for all θ ∈Θ!
where

Φ=
{
w!u |w ∈W (R+)!u :Θ→ U(R+)!u nondecreasing

}

and
G(θ)≡ F(θ)+ θ(1 − β)f (θ)%

5The objective function and the left-hand side of the constraint are well defined for all
(w!u) ∈Φ, because monotonic functions are integrable and the product of two integrable func-
tions, 1 − G(θ) and u(θ), is integrable (Rudin (1976, Theorems 6.9 and 6.13)).
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Any allocation (w!u) ∈Φ uniquely determines an incentive compatible di-
rect mechanism using (3). An allocation (w!u) is feasible if (w!u) ∈Φ and the
budget constraint (5) holds.

3.3. Minimum Savings

This section shows that minimum-savings rules are necessarily part of the
optimum.

Bunching at the top can be achieved by removing bundles previously offered
for types above some threshold θ̂, who then move to the bundle of θ̂, which
is the one nearest still available. That is, for any feasible allocation (w!u) and
θ̂ ∈ Θ, take the allocation (w! û) given by û(θ) = u(θ) for θ < θ̂ and û(θ) =
u(θ̂) for θ ≥ θ̂. Thus, bunching the upper tail is always feasible; we now show
that it is also always optimal.

PROPOSITION 2: An optimal allocation (w!u∗) satisfies u∗(θ) = u∗(θp) for
θ≥ θp, where θp is the lowest value in Θ such that

∫ θ̄

θ̂

(1 − G(θ̃))dθ̃≤ 0

for θ̂≥ θp. It is optimal for the budget constraint (5) to hold with equality at θp.

PROOF: The contribution to the objective function from types with θ≥ θp is
(1/β)

∫ θ̄

θp
(1−G(θ))u(θ)dθ. Substituting u(θ)=

∫ θ

θp
du+u(θp) and integrating

by parts, we obtain

u(θp)
1
β

∫ θ̄

θp

(1 − G(θ))dθ+ 1
β

∫ θ̄

θp

∫ θ̄

θ

(1 − G(θ̃))dθ̃du%(6)

Note that, for the second term,
∫ θ̄

θ
(1 − G(θ̃))dθ̃ ≤ 0 for all θ ≥ θp. It follows

that it is optimal to set du= 0 or, equivalently, u(θ)= u(θp) for θ≥ θp.
When θp = θ, all types are pooled at the same bundle and it is clearly not

optimal to be in the interior of the budget set. If θp is interior, then the first
term in (6) is zero, so u(θp) can always be increased up to the point where
the budget constraint binds without affecting the objective function. Thus, it is
optimal not to have money burning at θp. Q.E.D.

This result states that, for any bounded distribution of taste shocks, a positive
mass of upper agents gets the same bundle of consumption and savings, which
lies on the budget line. A minimum-savings rule that binds for some types has
the property that top types are bunched. Thus, this section of the allocation can
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be implemented by a minimum-savings rule that is binding for precisely these
agents. It follows that minimum-savings are necessarily part of the optimum.

To gain some intuition for this result, note that self-1 with taste shock θ≤ βθ̄
shares the preferences of self-0 with a higher taste shock equal to θ/β. That is,
the indifference curves of θu+βw and (θ/β)u+w are equivalent. Informally,
these types can make a case for their preferences. In contrast, self-1 types with
θ > βθ̄ display a blatant desire for current consumption from self-0’s point of
view. That is, there is no possible taste shock for self-0 that justifies self-1’s
preferences. Separating such types requires consumption to increase with θ,
but this cannot be optimal since they are overconsuming from self-0’s point of
view. Thus, these agents should be bunched. In other words, at the very top
of the distribution, for θ≥ βθ̄, there is no trade-off between commitment and
flexibility. The result shows that bunching goes further, that is, in the neighbor-
hood of βθ̄, the value of commitment continues to dominate that of flexibility:
θp < βθ̄.6

3.4. Simple Minimum-Savings Policies

We showed above that minimum-savings are necessarily part of the opti-
mum. We now investigate whether minimum-savings policies may fully charac-
terize the optimum. The results with discrete types suggest the need for some
condition on the distribution of taste shocks. The following condition turns out
to be exactly what is needed.

ASSUMPTION A: For all θ≤ θp, G(θ) ≡ (1 − β)θf (θ)+ F(θ) is nondecreas-
ing.

When the density f is differentiable, Assumption A, is equivalent to a lower
bound on its elasticity:

θ
f ′(θ)

f (θ)
≥ −2 − β

1 − β%

The lower bound is negative and continuously decreasing in β. The condition
is satisfied for any density f with θf ′/f bounded below when β is close enough
to 1. Moreover, many densities satisfy this condition for all β ∈ [0!1]. For ex-
ample, it is trivially satisfied for all density functions that are nondecreasing,
and holds for the exponential distribution, the log-normal, and the Pareto and
Gamma distributions for a subset of their parameters.

6The assumption that taste shocks are bounded above, equivalent to assuming that consump-
tion in the second period is bounded away from zero under full flexibility, ensures that θp is well
defined. For distributions with unbounded support, θp may not be well defined and full flexibility
may be optimal; for example, with a Pareto distribution F(θ) = 1 − (b/θ)α for x ≥ b, implying
G(θ) = 1 + ((1 − β)a − 1)(b/θ)α. For α ≥ (1 − β)−1 one obtains that θp = b, so it is optimal
to pool all agents. However, for α < (1 − β)−1 there is no solution to θp and, it turns out, it is
optimal to provide full flexibility.
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It is important to recall the two possible interpretations for taste shocks
when considering Assumption A. Given the state-dependent utility function,
θU(c)+βW (k), an objective interpretation of the distribution of shocks, F(θ),
implies that it can be identified from ex post behavior. For example, if individ-
uals have full flexibility and choose freely along the budget line, the observed
distribution of consumption and savings choices, cf (θ) and kf (θ), identifies
the distribution of taste shocks, given the utility functions and the temptation
parameter. In contrast, under a subjective interpretation, information regard-
ing taste shocks must be elicited directly ex ante from the individual, which is
likely to be empirically more challenging.

Our next result shows that, under Assumption A, agents with θ≤ θp are of-
fered their ex post unconstrained optimum from the budget line and agents
with θ ≥ θp are bunched at the unconstrained optimum for θp. That is, the
optimal mechanism offers the whole budget line to the left of the point
(cf (θp)! kf (θp)) and corresponds to a simple minimum-savings rule that im-
poses k ≥ kf (θp). Denote the proposed allocation in terms of utility assign-
ments by (w∗!u∗), with w∗ = W (kf (θ)), u∗(θ) = U(cf (θ)) for θ ≤ θp and
u∗(θ)= U(cf (θp)) for θ> θp.

We next show that this simple allocation is optimal if and only if Assump-
tion A holds. Our strategy involves applying Lagrangian theorems, which re-
quire verifying that our problem is sufficiently convex and differentiable. Once
this is established, the argument is simple: we impose the necessary and suffi-
cient first-order conditions at the conjectured allocation and back out the im-
plied Lagrangian multipliers; the required nonnegativity of these multipliers
turns out to be equivalent to Assumption A.7,8

Define the Lagrangian function as

L(w!u|Λ) ≡ θ

β
u(θ)+w + 1

β

∫ θ̄

θ

(1 − G(θ))u(θ)dθ

+
∫ θ̄

θ

(
W

(
y − C(u(θ))

)
+ θ

β
u(θ)

−
(
θ

β
u(θ)+w

)
−

∫ θ

θ

1
β
u(θ̃)dθ̃

)
dΛ(θ)!

where the function Λ is the Lagrange multiplier associated with the incen-
tive compatibility constraint.9 Without loss of generality we set Λ(θ̄)= 1. Note

7One virtue of this approach is that we do not need to restrict the maximization with ad hoc
“technical conditions” such as piecewise differentiability or continuity.

8Our approach allows us to incorporate the monotonicity condition implied by incentive com-
patibility directly. It differs from the common approach of neglecting monotonicity and trying to
guarantee that the solution to the relaxed problem turns out to be monotone.

9Intuitively, the Lagrange multiplier Λ can be thought of as a cumulative distribution function
that determines the importance of the resource constraints. If Λ is representable by a density λ,
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that we do not need to incorporate the monotonicity constraint into the La-
grangian. Instead, we work directly with Φ, which includes the monotonicity
condition. Integrating the Lagrangian by parts yields

L(w!u|Λ) =
(
θ

β
u(θ)+w

)
Λ(θ)+ 1

β

∫ θ̄

θ

(Λ(θ)− G(θ))u(θ)dθ

+
∫ θ̄

θ

(
W

(
y − C(u(θ))

)
+ θ

β
u(θ)

)
dΛ(θ)%

The next lemma exploits the convexity of the problem to show that appro-
priate first-order conditions are necessary and sufficient for optimality.

LEMMA OF OPTIMALITY: (i) If an allocation (w0!u0) ∈Φ is optimal with u0

continuous, then there exists a nondecreasingΛ0 such that the following first-order
conditions in terms of Gateaux differentials,10

∂L(w0!u0;w0!u0|Λ0)= 0!(7)

∂L(w0!u0;hw!hu|Λ0)≤ 0!(8)

hold for all (hw!hu) ∈Φ and hu continuous.
(ii) Conversely, if there exists a nondecreasing Λ0 such that the first-order con-

ditions (7) and (8) hold for all (hw!hu) ∈Φ, then (w0!u0) is optimal.

See the Appendix for the proof.
Using the second expression for the Lagrangian, the Gateaux differential at

the proposed allocation (w∗!u∗) is given by

∂L(w∗!u∗;hw!hu|Λ)(9)

=
(
θ

β
hu(θ)+ hw

)
Λ(θ)+ 1

β

∫ θ̄

θ

(Λ(θ)− G(θ))hu(θ)dθ

+ θp
β

∫ θ̄

θp

(
θ

θp
− 1

)
hu dΛ(θ)

then the constraints can be incorporated as the familiar integral of the product with the density
function λ(θ). Although this is a common approach, in general, Λ may have points of disconti-
nuity. Indeed, the multiplier we construct has two points of discontinuity.

10Given a function T :Ω→ Y , where Ω ⊂ X , and X and Y are normed spaces, if for x ∈ Ω
and h ∈ X the limit

lim
α↓0

1
α

[T(x+ αh)− T(x)]

exists, then it is called the Gateaux differential at x with direction h and is denoted by ∂T(x;h).



COMMITMENT VS. FLEXIBILITY 377

for all (hw!hu) ∈ Φ. The next proposition uses this lemma to prove that a
minimum-savings rule is the optimum under Assumption A.

PROPOSITION 3: The minimum-savings allocation (w∗!u∗) is optimal if As-
sumption A holds.

PROOF: We show that there exists a nondecreasing multiplier Λ∗ such that
the proposed (w∗!u∗) satisfies the first-order conditions (7) and (8) for all
(hw!hu) ∈ Φ. Let Λ∗(θ) = 0, Λ∗(θ) = G(θ) for (θ!θp], and Λ∗(θ) = 1 for
θ ∈ (θp! θ̄]. Note that Λ∗ is not continuous; it has an upward jump at θ and
a jump at θp. We need to show that the jump at θp is upward. Indeed,

lim
θ↓θp

Λ∗(θ)−Λ∗(θp)= 1 − G(θp)≥ 0!

which follows from the definition of θp. To see this, note that if θp = θ, the
result is immediate, because then Λ∗ would jump from 0 to 1 at θ. Otherwise,
by definition θp is the lowest θ̂ such that

∫ θ̄

θ̂
(1 − G(θ̃))dθ̃ ≤ 0 for all θ ≥ θ̂,

which implies that 1 − G(θp)≥ 0.
Substituting the proposed multiplier Λ∗ into the Gateaux differential (9)

yields

∂L(w∗!u∗;hw!hu|Λ∗) = 1
β

∫ θ̄

θp

(1 − G(θ))hu(θ)dθ

= 1
β

∫ θ̄

θp

[∫ θ̄

θ

(1 − G(θ̃))dθ̃

]
dhu(θ)!

where the last equality follows by integrating by parts, which can be done given
the monotonicity of hu and by the definition of θp. This Gateaux differential
is zero at the proposed allocation and, by the definition of θp, it is nonpositive
for all hu nondecreasing. It follows that the first-order conditions (7) and (8)
are satisfied for all (hw!hu) ∈Φ. Q.E.D.

Proposition 3 shows that the optimal allocation can be very simple and
implemented by imposing a minimum level of savings. The next proposition
shows that more complicated schemes are optimal if Assumption A does not
hold.

PROPOSITION 4: If Assumption A does not hold, then no minimum-savings
rule is optimal. That is, the allocation (ŵ! û)|xp , defined by û(θ) = U(cf (θ)) for
θ< xp, û(θ) = U(cf (xp)) for θ≥ xp and ŵ = W (kf (θ)), is not optimal for any
xp ∈Θ.
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PROOF: Let a!b ∈Θ be such that a < b < θp and G(a) >G(b) (so Assump-
tion A does not hold).

The proof proceeds by contradiction. Suppose that (ŵ! û)|xp is optimal for
some xp. Then by part (i) of the Lemma of Optimality, there has to exist a
nondecreasing Lagrange multiplier Λ̂ such that the conditions for optimality
(7) and (8) are satisfied at the proposed allocation for all (hw!hu) ∈Φ and hu

continuous. Condition (8) with hu = 0 requires that Λ̂(θ)= 0 because hw is un-
restricted. Using Λ̂(θ) = 0 and integrating (9), with xp in place of θp, by parts
(Theorem 6.20 in Rudin (1976) guarantees this step given that hu continuous)
leads to

∂L(ŵ! û;hw!hu|Λ̂)= γ(θ)hu(θ)+
∫ θ̄

θ

γ(θ)dhu(θ)(10)

with

γ(θ)≡ 1
β

∫ θ̄

θ

(Λ̂(θ̃)− G(θ̃))dθ̃+ xp

β

∫ θ̄

max{θ!xp}

(
θ̃

xp

− 1
)
dΛ̂(θ̃)%

By condition (8), it follows that γ(θ)≤ 0 for all θ ∈Θ is necessary for optimal-
ity.

Then (7) implies that γ(θ) = 0 for θ ∈ [θ!xp], i.e., wherever û is strictly in-
creasing. It follows then that Λ̂(θ) = G(θ) for all θ ∈ (θ!xp]. The proposed
allocation (ŵ! û) thus determines a unique candidate multiplier Λ̂ in the sep-
arating region (θ!xp]. This implies that xp ≤ b otherwise the associated multi-
plier Λ̂(θ) would be decreasing: Λ(a) >Λ(b). Integrating by parts the second
term of the previous equation, we obtain

γ(θ)= 1
β

∫ θ̄

θ

(1 − G(θ̃))dθ̃+ 1
β
(θ− xp)(1 −Λ(θ)) for all θ≥ xp%

By definition of θp there must exist a θ ∈ [xp! θp) such that the first term
is strictly positive; since Λ(θ) ≤ 1, the second term is nonnegative; hence
γ(θ) > 0, contradicting a necessary condition for optimality. Hence no mini-
mum-savings rule is optimal. Q.E.D.

A minimum-savings allocation does not entail money burning. Recall that
with three types, money burning may be optimal. A situation with three types
can be approximated by continuous types taking a sequence of continuous den-
sities that become increasingly peaked around θl, θm, and θh. However, the
distributions in the sequence would eventually violate Assumption A, which
requires a density with bounded slope. Thus, with continuous distributions that
violate Assumption A, money burning may be optimal.
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Even if one restricts attention to allocations that do not involve money burn-
ing, an improvement over the minimum-savings policy can be constructed by
removing intervals in the separating regions wherever the monotonicity con-
dition in Assumption A fails.11 This construction also yields intuition into
Assumption A. Suppose its condition is not satisfied for θa < θ < θb ≤ θp.
When one removes the open interval between cf (θa) and cf (θb), all types with
θ ∈ (θa! θb) move from their unconstrained optimum to one of the two ex-
tremes cf (θa) or cf (θb). The change in welfare depends critically on how many
of such types moved to the left versus the right, because welfare rises from
those moving left and falls from those moving right, for a small enough inter-
val. The slope of the density function affects precisely this, explaining its role
in Assumption A.

Taken together, the previous two propositions imply that minimum-savings
policies completely characterize the optimum if and only if the distribution
of taste shocks satisfies Assumption A, which is the case for a wide class of
distributions. Recall that for low enough levels of temptation, for β close to 1,
Assumption A is satisfied for essentially all distributions. In this sense, simple
minimum-savings policies are especially likely to be optimal for modest levels
of temptation.12

Our result is also relevant for thinking about the market’s provision of com-
mitment devices. Indeed, simple market arrangements may be able to mimic
the optimal one. Under Assumption A, the optimal allocation can be imple-
mented with a particular form of illiquid asset. Suppose the consumer initially,
at t= 0, divides his wealth between two assets: liquid and illiquid. Both assets
have the same rate of return, but funds invested in the illiquid asset cannot be
used for consumption at t= 1; they can only be consumed at t= 2. Thus, in-
vesting in the illiquid asset represents a self-imposed minimum level of savings
and in this way the individual can implement the optimal allocation.

In an earlier version of this paper (Amador, Werning, and Angeletos (2003))
we showed that all our results extend to finitely many periods with independent
and identically distributed taste shocks. By using a dynamic programming argu-
ment, each stage is similar to the two-period problem in (4) and (5). Minimum-
savings are always part of the solution, and a simple minimum-savings policy
completely characterizes the solution if and only if Assumption A holds. This
result also establishes that the commitment afforded by the illiquid asset struc-
ture studied by Laibson (1997) may, in fact, be fully optimal.

We turn next to comparative statics with respect to the strength of temp-
tation. As β decreases, θp decreases so that more types are bunched and the
minimum-savings level increases.

11A formal statement and proof of this “drilling” result is contained in the supplementary
material (Amador, Werning, and Angeletos (2006)).

12Of course, for small levels of temptation the minimum-savings level will also be small, be-
cause θp converges to θ̄ as β→ 1.
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PROPOSITION 5: The bunching point θp increases with β. The minimum-
savings level kmin = y − C(u(θp)) decreases with β.

PROOF: That θp is weakly increasing follows directly from its definition. To
see that kmin is decreasing, note that it solves (θp/β)U ′(y −kmin)/W ′(kmin)= 1
and that an interior θp solves θp/β= E[θ | θ≥ θp]. Combining these, we obtain

E[θ | θ≥ θp]
U ′(y − kmin)

W ′(kmin)
= 1%

Given that E[θ | θ≥ θp] is increasing in θp, the result follows from the concav-
ity of U and W . Q.E.D.

4. OPTIMAL COMMITMENT WITH SELF-CONTROL

In this section we study an individual facing temptation, but with some power
of self-control. This model captures the idea that individuals may partially re-
sist temptations, but that it is costly to do so. In this framework commitment
devices are valuable not only because they affect equilibrium behavior, but also
because they may reduce the costs of exerting self-control.

Dekel, Lipman, and Rustichini (2001, 2004) and Gul and Pesendorfer (2001)
consider ex ante preferences defined over choice sets made available to the
agent ex post. Our specification for the ex ante utility of set C is

P(C) = E
[

max
(c!k)∈C

(
θU(c)+W (k)+ϕ(θU(c)+βW (k))

)
(11)

− ϕ max
(c!k)∈C

(θU(c)+βW (k))
]
!

which is adopted from Krusell, Kuruşçu, and Smith (2005). The parameter
ϕ> 0 captures the cost of self-control, whereas (1 − β) captures the strength
of the temptation to consume in the current period. This specification has
the convenient property that as ϕ → ∞, preferences converge to the quasi-
hyperbolic model. Indeed, we shall show that slightly modified versions of our
previous results and analysis from the quasi-hyperbolic case apply here.

Up to this point we have allowed only the taste shock θ to be uncertain.
We now pursue a generalization that allows the levels of temptation and self-
control costs to be uncertain as well. There are two motivations for such a
generalization. First, in a recent paper Dekel, Lipman, and Rustichini (2004)
provided natural examples that illustrate the need for uncertain temptation
and provide axiomatic foundations for it. Second, the generalization also al-
lows us to capture the commonly held view that differences in savings may be
partly due to differences in temptation or self-control costs (Diamond (1977)).
We assume θ, β, and ϕ are drawn from a continuous joint distribution over
some bounded rectangular support [θ! θ̄] × [β! β̄] × [ϕ! ϕ̄], where β> 0.
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The optimal commitment problem can be stated as maximizing P(C) by
choosing a subset C ⊂ B, where B = {(c!k) | c + k ≤ y} is the budget con-
straint. As before, we seek to rewrite this as a principal–agent problem. The
objective function in (11) can be written as

E
{
(1 +βϕ) max

(c!k)∈C
[(θ/β̂)U(c)+W (k)]

− ϕβ max
(c!k)∈C

[(θ/β)U(c)+W (k)]
}
!

where we let β̂ be (1 + βϕ)/(1 + ϕ). Define the random variables ẑ and z
by ẑ ≡ θ/β̂ and z ≡ θ/β, and let the extended support Θ̂ be the union of the
supports for z and ẑ, so that Θ̂ ≡ [x! x̄] ≡ [θ(1 + φ)/(1 + β̄φ)! θ̄/β]. Let an
allocation over the extended support Θ̂ be given by a pair of functions u : Θ̂→
U(R+) and w : Θ̂→ W (R+).

The principal–agent formulation of the commitment problem is to find an
allocation that maximizes

E
[
(1 +βϕ)(ẑu(ẑ)+w(ẑ))− βϕ(zu(z)+w(z))

]
(12)

subject to C(u(x))+K(w(x))≤ y and

xu(x)+w(x)≥ xu(x′)+w(x′) for all x!x′ ∈ Θ̂%(13)

Let α(x)≡ E[(1+βϕ)|ẑ = x] and κ(x) ≡ E[βϕ|z = x]. Denote by h1(ẑ) and
h2(z) the densities of ẑ and z, respectively. By the law of iterated expectations,
we have that the new objective function (12) can be written as

∫

Θ̂

(xu(x)+w(x))ĝ(x)dx!(14)

where the density ĝ(x) ≡ α(x)h1(x) − κ(x)h2(x) can be negative or posi-
tive. This alternative expression for the utility function (11) corresponds to
the signed measure representation theorem of Dekel, Lipman, and Rustichini
(2001).

The incentive compatibility constraints (13) are equivalent, as before, to

xu(x)+w(x)= xu(x)+w+
∫ x

x

u(x′)dx′(15)

with the monotonicity constraint that u be nondecreasing. We can now sub-
stitute (15) into the objective function (14) and the resource constraints. Let
Ĝ(x) =

∫ x

x
ĝ(z)dz (where Ĝ(x̄) = 1). Integrating the objective function by

parts then yields the program

max
(w!u(·))∈Φ̂

{
xu(x)+w +

∫

Θ̂

[1 − Ĝ(x)]u(x)dx
}

(16)
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subject to

W
(
y − C(u(x))

)
+ xu(x)− xu(x)− w −

∫ x

x

u(x′)dx′ ≥ 0!(17)

where

Φ̂≡
{
w!u |w ∈W (R+)!u : Θ̂→ U(R+)!u nondecreasing

}
%

With the problem mapped into a version that is formally equivalent to the
problem at the end of Section 3.2, the following propositions are direct trans-
lations of our previous results.

PROPOSITION 6: An optimal allocation (w∗!u∗) satisfies u∗(x) = u∗(xp) for
x≥ xp, where xp is the lowest value in Θ̂ such that

∫

x̂

(1 − Ĝ(x))dx≤ 0

for all x̂ ≥ xp. It is optimal for the budget constraint to hold with equality at xp.

Define the full flexibility allocation as (uf (x)!wf(x)) ∈ arg maxu!w{xu + w}
subject to C(u) + K(w) ≤ y . Let the proposed allocation be given by w =
wf(x), and u∗(x) = uf (x) if x < xp and u∗(x) = uf (xp) if x ≥ xp. We intro-
duce the following assumption analogous to that of Assumption A.

ASSUMPTION B: For all x ≤ xp, Ĝ(x) is nondecreasing.

The next proposition states that minimum-savings rules are optimal under
Assumption B.

PROPOSITION 7: The allocation (w∗!u∗) is optimal if Assumption B holds.
If Assumption B does not hold, no minimum-savings rule fully characterizes the
optimum.

PROOF: The proof of the first statement is identical to that in Proposition 3,
except that the multiplierΛ does not jump at the bottom x (because here Ĝ(x)
is zero at x). The second statement follows the proof of Proposition 4. Q.E.D.

We now discuss two results that obtain when the strength of temptation
and the self-control costs are not random. The first result connects the condi-
tion behind Assumption A (from Section 3) with Assumption B: it shows that
relative to the time-inconsistent quasi-hyperbolic model, the possibility of self-
control strengthens the case for minimum-savings policies to characterize the
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full optimum. The second result shows that, as is natural, higher temptation
and lower self-control costs raise the minimum-savings level, increasing com-
mitment at the expense of flexibility. Proofs for both results are contained in
the Appendix.

PROPOSITION 8: When β and ϕ are certain, Assumption B holds if G(θ) is
nondecreasing on [θ! β̂xp].

PROPOSITION 9: The minimum savings point K(w(xp)) decreases with β and
increases with ϕ.

5. OTHER APPLICATIONS

In this section we discuss applications of our results to situations distinct
from the intertemporal consumption model that also feature a trade-off be-
tween commitment and flexibility. The last subsection extends the bunching at
the top result to utility functions that are not additively separable.

5.1. Optimal Fiscal Constitutions

Consider an economy where a ruling government decides the allocation of
resources between private and public consumption. Ex post, the government
obtains valuable information regarding the social value of public services, but is
biased toward higher public spending. Ex ante, society faces the constitutional
problem of restricting the fiscal choices available to its government.

The welfare of the citizens is given by θU(g) + W (c), where c denotes pri-
vate consumption and g denotes public services. The government, on the other
hand, wishes to maximize β−1θU(g)+W (c), where β−1 > 1 parameterizes the
government’s bias towards public spending. The realization of the value of pub-
lic services θ is private information of the government. The resource constraint
is B = {(c!g) ∈ R2

+ | c+ g ≤ y}. A fiscal constitution is a subset C ⊆B that con-
strains the government to choose (c!g) ∈ C .

Note that our restriction to pure commitment mechanisms, with no transfers
across types, seems especially natural in this application. The optimal constitu-
tion is a subset C that maximizes society’s welfare given the (mis)behavior of
the government. Proposition 2 shows that it is always optimal to limit govern-
ment spending. Proposition 3 implies that, under Assumption A, only an upper
cap on government spending is needed.

5.2. Optimal Paternalism

Few would argue that parents are not, at times, literally paternalistic toward
their children. Much government regulation—such as minimum-schooling
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laws, and drinking and drug restrictions or prohibitions—is also largely jus-
tified on paternalistic grounds. Paternalism involves disagreement regarding
preferences between individuals, instead of within an individual as is the case
with temptation. However, the crucial feature in our model is a form of dis-
agreement, not any particular source for this disagreement. Consequently, our
results can be applied to some paternalistic situations as well.

As an example, consider the case of a child who must divide time between
schooling s and leisure l, constrained by a time endowment s + l ≤ 1. The
child has utility function θU(l) + βW (s) with β< 1. The parameter θ affects
the marginal valuation of leisure and is the child’s private information. The
paternalist—parent or government—cares about the child, but has a different
preference over his allocation of time and maximizes θU(l)+W (s); she values
schooling relatively more than the child does.

This setup focuses on the time allocation dimension for which pure commit-
ment mechanisms that rule out transfers across types are natural. The problem
faced by the paternalist maps directly into our setup. Our result then provides
conditions under which imposing a minimum-schooling level is optimal.13

5.3. Externalities

There are two consumption goods, c and k. The population is composed of
a continuum of agents indexed by θ, distributed according to F(θ). The utility
of agent θ is given by

V (θ) ≡ θU(c(θ))+βW (k(θ))+ (1 − β)
∫

W (k(θ̃))dF(θ̃)!

where β < 1 and (c(θ)!k(θ)) represents the allocation in the population.
The last term captures a positive externality generated by the consumption of
good k. For example, it may represent the possible externality imposed from
the appearance of neighbors’ houses.

Agents do not internalize the externality and maximize θU(c) + βW (k).
A utilitarian planner, however, maximizes

∫
V (θ)dF(θ)=

∫ [
θU(c(θ))+W (k(θ))

]
dF(θ)%

This welfare function is equivalent to one without externalities, but where a
utilitarian planner assigns utility θU(c) + W (k) to agent θ. If the only instru-
ment available to the government is the removal of consumption opportuni-
ties, then this maps directly into our framework. Our main result then provides

13An interesting extension, which we have not explored here, would add a consumption good
and allow for transfers across types in this good. In such a model, a natural conjecture is that the
optimal mechanism would feature some monetary incentives to schooling.
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conditions for the optimality of a rule that imposes a minimum level of con-
sumption for the good, generating positive externalities.14

5.4. An Income Shock Interpretation for Taste Shocks

Returning to the intertemporal consumption application, suppose that in-
stead of taste shocks, the individual experiences an income shock q in the first
period, with distribution F(q) over Q ≡ [q! q̄]. We focus on pure commitment
mechanisms that offer no insurance, so the budget constraint of each consumer
imposes

c(q)+ k(q) ≤ y + q for all q ∈Q%

We assume the realization of q is private information to the agent. The planner
does observe the savings decision k(q) = y + q − c(q). The agent’s incentive
constraints are

u(c(q))+βw(k(q))

≥ u(c(q′)+ q− q′)+βw(k(q′)) for all q!q′ ∈Q%

To obtain a perfect mapping to our taste shock framework, we adopt the expo-
nential utility function u(c) = −e−c . The incentive constraints are then equiv-
alent to

u(c(q)+ q− q)+βw(k(q)) ≥ u(c(q′)+ q− q′)+βw(k(q′))!

equ(c(q)− q)+βw(k(q)) ≥ equ(c(q′)− q′)+βw(k(q′))%

Define θ≡ e−q, and let ĉ(θ) ≡ c(−ln(θ))+ ln(θ) and k̂(θ)≡ k(−ln(θ)). Then
the problem can be written as

max
ĉ!k̂

E
[
θu(ĉ(θ))+w(k̂(θ))

]

subject to

θu(ĉ(θ))+w(k̂(θ))≥ θu(ĉ(θ′))+w(k̂(θ′))!

ĉ(θ)+ k̂(θ)≤ y%

14Perhaps this relates to housing codes, which restrict the use of homeowners’ property. How-
ever, more generally, the restriction to no transfers may be less natural for some cases given the
more standard Pigouvian tax approach to externalities. For example, in the case of pollution,
monetary incentives have been employed in addition to maximum quantity restrictions.
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The problem is then identical to our main setup. This example is important
because it provides an objective reinterpretation of the taste shocks. Assump-
tion A imposes a restriction on the distribution of income shocks, which might
be identified directly, or indirectly from observable savings behavior.

5.5. Bunching for More General Utility Functions

We now extend the bunching result to preferences that are not additively
separable between c and k. In particular, let U(c!k! θ) and V (c!k! θ) denote
the utility functions for the agent and principal, respectively. As before, θ ∈
Θ≡ [θ! θ̄].

We assume that the taste shocks provide an ordering in that higher θ tilts
preferences, for both agent and principal, toward higher current consumption.
We also assume that the agent, relative to the principal, is biased toward cur-
rent consumption, at least at the top. These assumptions can be formalized as
single-crossing conditions.

ASSUMPTION C: The utility functions U(c!k! θ) and V (c!k! θ) satisfy the fol-
lowing conditions:

(i) If U(ca!ka! θ) ≥ U(cb!kb! θ) for ca > cb, then U(ca!ka! θ′) > U(cb!
kb! θ′) for all θ′ ∈Θ such that θ′ > θ.

(ii) If V (ca!ka! θ) ≥ V (cb!kb! θ) for ca > cb, then V (ca!ka! θ′) > V (cb!
kb! θ′) for all θ′ ∈Θ such that θ′ > θ.

(iii) There exist a θb < θ̄ such that for any ca > cb, if V (ca!ka! θ̄) ≥ V (cb!
kb! θ̄), then U(ca!ka! θb) > U(cb!kb! θb).

The first two conditions state that higher types single-cross lower types for
both utility functions. The third condition ensures a form of bias at the top: It
states that there exists an interior taste shock, such that the preferences of the
agent with this shock single crosses that of the planner with the highest taste
shock. Note that these conditions are all satisfied in the additively separable
case considered previously.

For any allocation (c!k), define (ĉ! k̂) as

(ĉ(θ)! k̂(θ))=
{
(c(θ)!k(θ))! if θ≤ θb,
(c(θb)!k(θb))! if θ> θb.

The following result states that some bunching is always optimal.

PROPOSITION 10: Suppose Assumption C holds. Then, for any feasible alloca-
tion (c!k), the allocation (ĉ! k̂) is a feasible improvement.

The proof is given in the Appendix.
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The proof of this result relies on the fact that an allocation that separates
all types must be offering bundles for the highest types that ensure that these
are overconsuming, from the principal’s point of view (this is the role of con-
dition (iii)). Removing an upper portion leads these types to bunch at the re-
maining bundle with the highest available current consumption (the role of
assumption (i)). This reallocation is also preferred by the principal (the role of
assumption (ii)).

6. CONCLUSIONS

Our consumer values commitment to avoid the temptation of current con-
sumption, and flexibility to respond to taste shocks. The resulting trade-off
makes the design of an optimal commitment device nontrivial.

We find that a minimum-savings rule is always part of the optimal commit-
ment policy. Moreover, a minimum-savings rule completely characterizes the
optimum when a condition on the distribution of taste shocks is satisfied. The
minimum-savings level then increases with the strength of temptation. These
results are robust to the way temptation is modeled, and can be extended to
situations with uncertain levels of temptation and self-control, as well as to
longer time horizons.

Our model and results can be applied to other situations that feature similar
trade-offs between commitment and flexibility, such as paternalism, the design
of fiscal constitutions to control government spending, and externalities. An-
other potential application is to problems of time inconsistency of government
policy to examine the trade-off of rules vs. discretion.

To isolate the problem of commitment as one that reduces available choices
from the budget set, this paper ignored the possibility of transfers across types.
An interesting direction for future research is to consider insurance and taxes
that allow these transfers so as to provide a more complete characterization
of the optimal tax and social security policies for the class of environments we
have considered in this paper.15
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APPENDIX

PROOF OF PROPOSITION 1: With β = 1, the incentive constraints are slack
at the first-best allocation. Define β∗ < 1 to be the value of β for which the
incentive constraint of agent θl holds with equality at the first-best allocation.
Then for β> β∗ both incentive constraints are slack at the first-best allocation
and β∗ > θl/θh follows because

β∗ ≡ θl
U(cfb(θh))− U(cfb(θl))

W (y − cfb(θl))− W (y − cfb(θh))

> θl
U ′(cfb(θh))(cfb(θh)− cfb(θl))

W ′(y − cfb(θh))(cfb(θh)− cfb(θl))

= θl
U ′(cfb(θh))

W ′(y − cfb(θh))
= θl
θh
%

Now, consider the case where β> θl/θh and suppose that c(θh)+k(θh) < y .
Then an increase in c(θh) and a decrease in k(θh) that holds (θl/β)U(c(θh))+
U(k(θh)) unchanged and increases c(θh)+ k(θh) up to y , increases the objec-
tive function. Such a change is incentive compatible because it strictly relaxes
the incentive constraint of the high type pretending to be a low type, leaving
the incentive constraint of the low type unchanged. It follows that we must
have c(θh)+ k(θh)= y at an optimum.

Similarly, c(θl) + k(θl) < y cannot be optimal, because lowering c(θl) and
raising k(θl) while holding θlU(c(θl)) + βW (k(θl)) constant would then be
feasible. Such a variation does not affect the incentive constraint of the low
type and relaxes the incentive constraint of the high type, yet it increases the
objective function because θlU(c(θl)) + W (k(θl)) increases. This also shows
that separating is optimal in this case, proving part (i). Analogous arguments
establish part (ii). Q.E.D.

Lemma of Optimality and First-Order Conditions

We first show that the maximization of the Lagrangian is a necessary and suf-
ficient condition for optimality of an allocation. This is stated in the following
two results:

RESULT (i) —Necessity: If an allocation (w0!u0) ∈ Φ with u0 continuous is
optimal, then there exists a nondecreasing Λ0 such that the Lagrangian is maxi-
mized:

L(w0!u0;hw!hu|Λ0)(18)

≤L(w0!u0;w0!u0|Λ0) for all (hw!hu) ∈Φ! hu continuous%
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RESULT (ii)—Sufficiency: An allocation (w0!u0) ∈Φ is optimal if there exists
a nondecreasing Λ0 such that

L(w0!u0;hw!hu|Λ0)≤L(w0!u0;w0!u0|Λ0) and all (hw!hu) ∈Φ%(19)

PROOF: Our optimization problem maps into the general problem studied
in Sections 8.3 and 8.4 of Luenberger (1969): maxx∈X Q(x) subject to x ∈ Ω
and G(x) ∈ P , where Ω is a subset of the vector space X , Q :Ω → R and
G :Ω→ Z; where Z is a normed vector space, and P is a positive nonempty
convex cone in Z.

For Result (ii), set

X = {w!u |w ∈ W (R+) and u :Θ→ R}!
Ω=

{
w!u | w ∈W (R+)!

u :Θ→ U(R+)! and u is nondecreasing
}

≡Φ!

Z =
{
z
∣∣z :Θ→ R with sup

θ∈Θ
|z(θ)| <∞

}

with the norm ∥z∥ = sup
θ∈Θ

|z(θ)|!

P = {z | z ∈ Z and z(θ)≥ 0 for all θ ∈Θ}%

We let the objective function in (4) be Q and let the left-hand side of the re-
source constraint in (5) be defined as G. Result (ii) then follows immediately
because the hypotheses of Theorem 1 in Luenberger (1969, p. 220) are met.

For Result (i), modify Ω and Z to require continuity of u:

Ω=
{
w!u | w ∈W (R+)!u :Θ→ U(R+)! and

u is continuous and nondecreasing
}
!

Z = {z | z :Θ→ R and z is continuous}!
with the norm ∥z∥ = sup

θ∈Θ
|z(θ)|!

with X , P , Q, and G as before. Note that Q and G are concave, that Ω is con-
vex, that P contains an interior point (e.g., z(θ)= 1 for all θ ∈Θ), and that the
positive dual of Z is the set of nondecreasing functions on Θ by the Riesz rep-
resentation theorem (see Luenberger (1969, Chap. 5, p. 113)). Finally, if w0!u0
is optimal within Φ and w0!u0 ∈Φ ∩ {u is continuous}, then w0!u0 is optimal
within the subset Φ ∩ {u is continuous} ≡ Ω. Result (i) then follows because
the hypotheses of Theorem 1 in Luenberger (1969, p. 217) are met. Q.E.D.

Once we have obtained Results (i) and (ii), to prove the Lemma of Opti-
mality, we need to show that the maximization conditions in (18) and (19) are
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equivalent to the appropriate first-order conditions. We first show that these
first-order conditions can indeed be computed. The following lemma helps do
this.

LEMMA A.1—Differentiability of Integral Functionals with Convex Inte-
grands: Given a measure space (Θ!Θ!µ) and a function ψ :X ×Θ→ R, where
X ⊂ Rn, suppose the functional T :Ω→ R, whereΩ is some subset of the space of
all functions mappingΘ into X , is given by T(x) =

∫
Θ
ψ(x(θ)! θ)µ(dθ). Suppose

that (i) for each θ ∈Θ, ψ(·! θ) :X → R is concave; (ii) that the derivative ψx ex-
ists and is a continuous function of (x! θ); and that (iii) x+αh ∈Ω for α ∈ [0! ε]
for some ε> 0. Then the h-directional Gateaux differential ∂T(x;h) exists and is
given by

∂T(x;h)=
∫

Θ

ψx(x(θ)! θ)h(θ)µ(dθ)

if the right-hand side expression is well defined.

PROOF: Adding and subtracting
∫
Θ
ψx(x(θ)! θ)h(θ)µ(dθ) from the defini-

tion of the Gateaux differential,

∂T(x;h)

=
∫

Θ

ψx(x(θ)! θ)h(θ)µ(dθ)

+ lim
α↓0

∫

Θ

[
1
α

[
ψ(x(θ)+ αh(θ)! θ)− ψ(x(θ)! θ)

]

− ψx(x(θ)! θ)h(θ)

]
µ(dθ)%

We seek to show that the last term is well defined and vanishes.
For α< ε one can show that

∣∣∣∣
1
α

[
ψ(x(θ)+ αh(θ)! θ)− ψ(x(θ)! θ)

]
− ψx(x(θ)! θ)h(θ)

∣∣∣∣(20)

≤
∣∣∣∣
1
ε

[
ψ(x(θ)+ εh(θ)! θ)− ψ(x(θ)! θ)

]
− ψx(x(θ)! θ)h(θ)

∣∣∣∣

by concavity of ψ(·! θ). Whereas ψ(x(θ)+εh(θ)! θ), ψ(x(θ)! θ), and ψx(x(θ)!
θ)h(θ) are all integrable by hypothesis, it follows that 1

ε
[ψ(x(θ)+ εh(θ)! θ)−

ψ(x(θ)! θ)] − ψx(x(θ)! θ)h(θ) is also integrable. Because a function is inte-
grable if and only if its absolute value is integrable, then (20) provides the
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required integrable bound to apply Lebesgue’s dominated convergence theo-
rem, implying

lim
α↓0

∫

Θ

[
1
α

[
ψ(x(θ)+ αh(θ)! θ)− ψ(x(θ)! θ)

]

− ψx(x(θ)! θ)h(θ)

]
µ(dθ)

=
∫

Θ

[
lim
α↓0

1
α

[
ψ(x(θ)+ αh(θ)! θ)− ψ(x(θ)! θ)

]

−ψx(x(θ)! θ)h(θ)

]
µ(dθ)= 0

by definition of ψx. It follows that ∂T(x;h) =
∫
Θ
ψx(x(θ)! θ)h(θ)µ(dθ).

Q.E.D.

We can apply Lemma A.1 because the Lagrangian functional is the sum of
three terms that can be expressed as integrals with concave differentiable in-
tegrands. Whereas the Lagrangian functional is defined over a convex cone Φ,
hypothesis (iii) of the lemma is met with any ε≤ 1 for any x ∈Φ and h = y − x
for y ∈Φ.

Furthermore, in our case
∫
ψu(u(θ)! θ)hu(θ)dΛ(θ) is well defined for any u

and hu such that (w!u) ∈ Φ and (hw!hu) ∈Φ for some w!hw ∈ R. This follows
because u and hu are nondecreasing on Θ, they are measurable and bounded,
and by standard arguments,ψu(u(θ)! θ)hu(θ) is also measurable and bounded,
and thus integrable.

These arguments establish that we can write the Gateaux differential of the
Lagrangian for (w!u), (hw!hu) ∈Φ as

∂L(w!u;hw!hu|Λ)

=
(
θ

β
hu(θ)+ hw

)
Λ(θ)+ 1

β

∫ θ̄

θ

(Λ(θ)− G(θ))hu(θ)dθ

+
∫ θ̄

θ

[
θ

β
− W ′(y − C(u(θ))

)
C ′(u(θ))

]
hu dΛ(θ)!

which collapses to (9) at the proposed allocation.
Finally, the following lemma, which is a simple extension of a result in

Lemma 1 in Luenberger (1969, p. 227), allows us to characterize the maxi-
mization conditions of the Lagrangian obtained in Results (i) and (ii) by the
appropriate first-order conditions.

LEMMA A.2 —Optimality and First-Order Conditions: Let f be a con-
cave functional on P , a convex cone in X . Take x0 ∈ P and define H(x0) ≡
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{h :h = x − x0 and x ∈ P}. Then δf (x0!h) exists for h ∈ H(x0). Assume
that δf (x0!α1h1 + α2h2) exists for h1!h2 ∈ H(x0) and δf (x0!α1h1 + α2h2) =
α1δf (x0!h1)+ α2δf (x0!h2) for all α1!α2 ∈ R.

A necessary and sufficient condition that x0 ∈ P maximizes f is that

δf (x0!x)≤ 0 for all x ∈ P!

δf (x0!x0)= 0%

In our case, all the hypotheses of Lemma A.2 are met for the Lagrangian,
because it is a convex functional over a convex cone, and because Lemma A.1
verifies the differentiability requirement, as discussed above. Thus, we obtain
that a necessary and sufficient condition for the Lagrangian to be maximized
at (w0!u0) over Φ is

∂L(w0!u0;w0!u0|Λ0)= 0!

∂L(w0!u0;hw!hu|Λ0)≤ 0

for all (hw!hu) ∈Φ.
Given Results (i) and (ii), the proof of the Lemma of Optimality follows.

PROOF OF PROPOSITION 8: Let F(·) be the cumulative distribution func-
tion of the taste shocks. We want to show that if G(x) ≡ F(x)+ x(1 − β)f (x)
is nondecreasing, then Ĝ(x) = (1 + βϕ)F(β̂x) − βϕF(βx) is nondecreasing.
After letting λ= 1/ϕ and differentiating, we obtain

∆(x!λ) ≡
(
λ+β
β

)
β̂(λ)f (β̂(λ)x)− βf (βx) ≥ 0

and note that ∆(x!0) = 0. Substituting the definition of G(·) yields the alter-
native expression

∆(x!λ) = λ+β
β(1 − β)x

[
G(β̂(λ)x)− F(β̂(λ)x)

]
− βf (βx)%

Define

∆̃(x!λ!z) ≡ λ+β
β(1 − β)x

[
G(z)− F(β̂(λ)x)

]
− βf (βx)%(21)

Note that ∆̃(x!λ!z) increases in z and that ∆̃(x!λ! β̂(λ)x) = ∆(x!λ).
To prove ∆(x!λ) ≥ 0, we write

∆(x!λ) = ∆̃(x!λ! β̂(λ)x) = ∆̃(x!0! β̂(λ)x)+
∫ λ

0
∆̃λ(x! λ̃! β̂(λ)x)dλ̃(22)
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and proceed to show that both terms on the right-hand side are nonnegative.
To see the sign of the first term in (22), note that because ∆̃ is increasing in z,

∆̃(x!0! β̂(λ)x) ≥ ∆̃(x!0!x)= ∆̃(x!0! β̂(0)x)= ∆(x!0)= 0%

For the integral term in (22) we compute the integrand by differentiating (21)
and rearranging using the definition of G(·):

∆̃λ(x!λ!z)

= 1
β(1 − β)x

×
[
G(z)− G(β̂(λ)x)+ λ

1 + λβ̂(λ)x(1 − β)f (β̂(λ)x)
]
%

Thus, for z ≥ β̂(λ̃)x, we have ∆̃λ(x! λ̃!z) ≥ 0. It follows that, for λ̃ ∈ [0!λ], we
have β̂(λ)x ≥ β̂(λ̃)x and, therefore, ∆̃λ(x! λ̃! β̂(λ)x) ≥ 0. Thus, the integral
term in (22) is nonnegative. Given that β̂(λ)xp(λ) is nondecreasing in λ, we
need G(x) to be nondecreasing up to β̂xp. Q.E.D.

PROOF OF PROPOSITION 9: Writing 1 − Ĝ(x) = (1 + βϕ)(1 − F(β̂x)) −
βϕ(1 − F(βx)), integrating, and rearranging yields

∫ x̄

x0

(1 − Ĝ(z))dz

= (1 +ϕ)β̂
∫ x̄

x0

(1 − F(β̂x))dx− βϕ
∫ x̄

x0

(1 − F(βx))dx

= (1 +ϕ)
∫ θ̄

β̂x0

(1 − F(θ))dθ− ϕ
∫ θ̄

βx0

(1 − F(θ))dθ

=
∫ θ̄

βx0

(1 − F(θ))dθ− (1 +ϕ)
∫ β̂x0

βx0

(1 − F(θ))dθ

=
∫ θ̄

βx0

(1 − F(θ))dθ−
∫ x0(1−β)

0

(
1 − F

(
y

1 +ϕ +βx0

))
dy%

The second equality uses the change in variables θ= β̂x for the first integral,
θ= βx for the second, and the fact that β̂x̄ > βx̄= θ̄. The third equality simply
rearranges the integrals. The fourth equality performs the change of variables
y = (1 +ϕ)(θ− θ0) using the fact that 1 +ϕ= (1 − β)/(β̂− β).

The comparative static with respect to ϕ is now straightforward: An increase
in ϕ raises the integrand 1 − F(y/(1 + ϕ) + βx0) so that xp must fall with ϕ.
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To obtain the comparative static with respect to β, we differentiate the last
expression:

∂

∂β

∫ x̄

x0

(1 − Ĝ(z))dz

=
[
F(β̂x0)− F(βx0)+

∫ x0(1−β)

0
f

(
1

1 +ϕy +βx0

)
dy

]
x0

> 0!

implying that xp rises with β.
Finally, note that the minimum-savings kmin is defined as the solution to

xp

U ′(y − kmin)

W ′(kmin)
= 1!

so that comparative statics for xp translate directly into kmin. In particular,
kmin is increasing in ϕ and decreasing in β. Q.E.D.

PROOF OF PROPOSITION 10: First note that part (i) of the single-crossing
assumption implies that for an allocation (c!k) to be incentive compatible,
c(θ) has to be nondecreasing.

To show that (ĉ! k̂) is feasible, first note that if the resource constraints were
satisfied at the original allocation (c!k), they are also satisfied at (ĉ! k̂). For
incentive compatibility, note that (ĉ! k̂) remains incentive compatible for all
types θ≤ θb given that (c!k) is incentive compatible. For type θb we have that

U
(
c(θb)!k(θb)! θb

)
≥U

(
c(θ)!k(θ)! θb

)
for all θ≤ θb%

Given that c(θ) is nondecreasing, it follows from part (i) of the single-crossing
assumption that

U
(
c(θb)!k(θb)! θ

′) ≥U
(
c(θ)!k(θ)! θ′) for all θ≤ θb ≤ θ′%

The new allocation (ĉ! k̂) is thus incentive compatible. We now show that it is
an improvement over the original allocation.

Note that

U
(
c(θb)!k(θb)! θb

)
≥U

(
c(θ)!k(θ)! θb

)
for all θ> θb%

From monotonicity and from part (iii) of the single-crossing assumption, it
follows that

V
(
c(θb)!k(θb)! θ̄

)
≥ V

(
c(θ)!k(θ)! θ̄

)
for all θ> θb%
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Using part (ii) of the single-crossing assumption,

V
(
c(θb)!k(θb)! θ

)
≥ V

(
c(θ)!k(θ)! θ

)
for all θ> θb%

So, in the new feasible allocation (ĉ! k̂), the value to the planner has weakly
improved for all types. The new allocation (ĉ! k̂) that bunches types above θb
is then a weak improvement over (c!k). Q.E.D.
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