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Abstract

We study the informational events that trigger equilibrium shifts in coordination

games with incomplete information. Assuming that the distribution of the changes in

fundamentals has fat tails, we show that majority play shifts either if fundamentals

reach a critical threshold or if there are large common shocks, even before the threshold

is reached. The fat-tail assumption matters because it implies that large shocks make

players more unsure about whether their payoffs are higher than others. This feature

is crucial for large shocks to matter.
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1 Introduction

On July 26th, 2012, Mario Draghi gave a speech in which he promised "....to do whatever

it takes to preserve the euro. And believe me, it will be enough....". Many commentators

have credited the "whatever it takes..." speech with shifting the Eurozone economy from a

self-fulfilling "bad equilibrium"– with high sovereign debt spreads and growing fiscal deficits

mutually reinforcing each other, to a self-fulfilling "good equilibrium"– with low spreads and

sustainable fiscal policy.1 There are many other economic and social contexts in which strate-

gic complementarities are thought to give rise to the possibility of self-fulfilling equilibria in

the form of currency crises, economic booms, financial panics and revolutions.

In this paper we ask: which informational events trigger a shift in self-fulfilling equilibria,

such as a crisis and a recovery? We identify two distinct kinds of informational events that

can trigger a crisis (or, symmetrically, a recovery). First, fundamentals fall below some

critical threshold. Second, fundamentals deteriorate sharply to a level where they are

somewhat weak, but still better than the critical threshold guaranteeing a crisis. The first

trigger is a level effect: independent of whether fundamentals are worse than expected, or

by how much, suffi ciently bad fundamentals trigger a crisis. The second trigger is a change

effect and corresponds to the main large shock result of the paper. Over a wide range of

levels of fundamentals, it is the size of the negative shocks that moved the economy to that

level of fundamental that determines whether a crisis is triggered.

We consider a canonical coordination game with a continuum of players making a binary

choice between a "good" action, namely "invest," and a "bad" action, namely "not invest".

The payoff from not investing is normalized to zero. Each player’s payoff from investing

is increasing in the proportion of others investing and also increasing in a fundamental

state, which we call "return". There is incomplete information about returns. Each player’s

return from investing is the sum of two components, a common component that affects every

player’s return, and an idiosyncratic noise term. Each player observes his own return but

cannot identify the common component of fundamentals. Our key assumption is that the

common component of fundamentals has fat tails (the density of the tails exceeds a power

law distribution), while the idiosyncratic noise has thinner tails.

This assumption has a key statistical implication: a player who observes a large shock

will be convinced that the shock is mainly due to the common component of fundamentals.

1See Brunnermeier, James, and Landau (2016) for one discussion.
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In particular, the level of his shock will tell a player little about the size of the idiosyncratic

component of his return. Thus a player who observes a large shock will not know whether

his return is higher than other players’returns. He will have nearly "uniform rank beliefs":

if asked what his rank, or percentile, in the population is with respect to his return, any

percentile between 0 and 1 will be (nearly) equally likely. Thus large shocks create diffuse

beliefs about what other players’information is, our key statistical observation.

Uniform rank beliefs pin down strategic behavior. For a player who has not observed a

large shock and whose rank belief is not nearly uniform, invest can be rationalized for a wide

range of returns by the belief that others’returns are higher than his. But consider a player

who has experienced a large negative shock, and thus has nearly uniform rank beliefs and

believes that other players are investing if and only if they have a higher return than him.

This player would have a nearly uniform belief on the proportion of other players who are

investing. He would invest only if invest is "risk dominant", in that it is a best response

to a uniform belief over the proportion of his opponents choosing each action. This implies

that invest can be rationalizable after the player observes a large negative shock only if it is

risk dominant. Thus if invest is not risk dominant and there is a large negative shock, not

invest is uniquely rationalizable. This is the large shock result.

Our large shock result uses the key argument from the "global games" literature (Carlsson

and Van Damme (1993)) but in a novel context, and it is useful to contrast the results. A

classic benchmark result in the global game literature is the following. Suppose that players

observe the payoffs of a game drawn according to a smooth prior, with a small amount of

idiosyncratic noise. Look at the equilibria of the sequence of games as the amount of noise

goes to zero. In the limit as the noise goes to zero, there is "global uniqueness": each

player has a unique rationalizable action whatever signal she observes. In a binary action

symmetric payoff game, the unique rationalizable action is the risk dominant action. The

global uniqueness and the selection of the risk dominant action are consequences of the fact

that, as the noise goes to zero, rank beliefs always become uniform and thus there is common

certainty of uniform rank beliefs.2

2Carlsson and Van Damme (1993) showed limit global uniqueness and risk dominant selection in two

player two action games. Frankel, Morris, and Pauzner (2003) show limit global uniqueness in a class of

supermodular global games and risk dominant selection in binary action symmetric payoffs games (see also

Morris and Shin (2003)). Morris, Shin, and Yildiz (2016) formalize the idea that global uniqueness and risk

dominant selection follow from common certainty of uniform rank beliefs.
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In this paper, we do not study the case where idiosyncratic noise goes to zero, and we

therefore do not have common certainty of uniform rank beliefs and we do not have global

uniqueness. We instead identify some situations where there is a unique rationalizable

behavior but in other cases there are multiple rationalizable actions. Thus, we identify a

novel set of conditions under which uniform rank beliefs arise: after a large shock when the

common component of fundamentals has fat tails. A player who observes a large shock has

uniform rank beliefs and knows that all players observing larger shocks also have uniform

rank beliefs. This allows us to establish a "local uniqueness" result: after observing a large

shock, it is uniquely rationalizable to play the risk dominant action. We believe that this

more selective use of the global game reasoning is best able to generate insights about which

informational events trigger equilibrium shifts.

Our main results described above concern when we can identify the unique rationalizable

behavior for a player in a static game as a function of the level of fundamentals and the size

of his individual shock. This is the analytic contribution of the paper. In order to relate

our results more closely to our broader motivation, we also discuss the implications of this

analysis for aggregate behavior in a dynamic model where the static game is played repeatedly

with evolving fundamentals. In this dynamic setup large shocks lead to equilibrium shifts.

When the fundamentals exceed a critical threshold or invest is risk dominant and there was a

large shock to the fundamentals, a majority of players invest. Thus, the above events trigger

a shift to majority investing if they were not doing so in the previous period. Likewise, if

the fundamentals go below a critical threshold or not invest is risk dominant and there was

a large negative shock to the fundamentals, a majority of players stop investing, triggering

a "crisis".

Our results rely on the following key feature of our model: after a large shock the players

become highly uncertain about the environment, resulting in a uniform distribution on their

own ranking among other players. Such increased uncertainty after large shocks has been

well-documented empirically (see for example Bloom (2009)). We use fat-tailed common

shocks and thinner tailed idiosyncratic shocks as a practical way of modeling such beliefs.

We discuss evidence that key economic variables have fat tailed distributions as well as the

interpretation of idiosyncratic shocks in Section 6.

Our mechanism is relevant especially when there is model uncertainty. For example,

when players do not know the economic impact of a new policy (such as a new tax cut),

they may attribute large shocks to their private returns to a large impact of the policy
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even though they know that aggregate variations under a fixed policy are very small. Fat-

tailed distributions often arise when there is uncertainty about the data-generating process

(aka model uncertainty). For example, if the common shock is normally distributed but its

variance is unknown and distributed with an inverse χ2-distribution, then the common shock

has a t-distribution, which has fat tails. More generally, when a player has a scale-invariant

prior about a multiplicative distribution parameter, his posteriors will always have fat tails

regardless of how many observations he makes from that distribution (Schwarz (1999)).3

In the next section, we introduce our model. In Section 3, we define and characterize

the rank belief functions that will drive our results, and give our basic characterization of

equilibria and rationalizable behavior. In that section, we also illustrate our key results

graphically assuming the shocks are normally distributed and the variance of common shock

may not be known. Our main results are reported in Section 4. We present a dynamic

application of the model in Section 5. In Section 6, we review what happens if we relax the

assumption that common shocks have a fat-tailed distribution, motivate our assumptions

further, and present the literature on fat tails and model uncertainty. We discuss our broader

contribution to the global games literature in Section 7. Some proofs are relegated to the

Appendix.

2 Model

We study the following Bayesian game, parametrized by real numbers y and σ > 0. There

is a continuum of players i ∈ N = [0, 1]. Simultaneously, each player i chooses between

actions invest and not invest; the chosen action is denoted by ai. The payoff from not invest

is normalized to zero. The payoff from invest depends on a type zi ∈ R and the fraction A
of individuals who invest:

u (A, zi) = y + σzi + A− 1. (1)

The type zi has two components:

zi = η + εi, (2)

a common shock η that affects all players’payoffs, and an idiosyncratic shock εi that affects

only the payoff of player i. Player i (privately) knows the sum zi, but not its components.

3Assuming that such a multiplicative parameter evolves so that the players remain uncertain, this can

explain many well-known puzzles in finance (Weitzman (2007)).
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We also refer to zi as player i’s (overall) shock.

We write

xi = y + σzi (3)

for the private return from investment for type zi. The shock zi will have zero mean. Hence,

the ex-ante expectation of the return is y, which we call the prior mean. The sensitivity

of the return to shock zi is σ, which we call shock sensitivity. Note that the coordination

motives are inversely proportional to the shock sensitivity (i.e. ∂u
∂A
/ ∂u
∂zi

= 1/σ). We will pay

a special attention to the case of small σ, when the coordination motives are large.

Remark 1 Throughout the paper, we will vary the prior mean y while we fix the shock

sensitivity σ and the distributions F and G. In particular, for a given return xi, we will vary

the associated shock zi = (xi − y) /σ by varying the prior mean y.

We assume that εi and η are independently drawn– across the players– from distributions

F and G, respectively, with positive continuous densities f and g everywhere on the real

line. We will assume that these distributions are symmetric around zero, i.e., f (ε) = f (−ε)
and g (η) = g (−η), and that f and g are weakly decreasing on (0,∞). By symmetry, the

idiosyncratic shock εi has zero mean and F (ε) = 1 − F (−ε). Likewise, the common shock
η has zero mean and G (η) = 1−G (−η).

Our key distributional assumptions are:

1. the distribution of idiosyncratic shocks is log-concave (i.e., log f is concave), and

2. the distribution of common shocks has regularly-varying tails, i.e.,

lim
λ→∞

g (λη)

g (λη′)
∈ (0,∞) for all η, η′ ∈ (0,∞) . (4)

The log-concavity of f implies that the idiosyncratic shocks have light tails (thinner than

the tail of an exponential distribution, i.e.
∫
ec|ε|f (ε) dε is finite for some c > 0). Common

distributions with light tails, such as normal and exponential distributions, are log-concave.

In contrast, the second part states that g has regularly-varying (i.e. fat) tails, as in Pareto

and t-distributions. In that case, g (η) is approximately proportional to η−α for some α > 1

when η is large, and the tails are thicker than the exponential function. Taken together, we

assume that the common shock has thicker tails than the idiosyncratic shocks, reflecting our

assumption that there is more tail uncertainty about the common shock. The log-concavity



6

of f also ensures that each player’s belief about other players’ types is increasing in his

own type in the sense of the first-order stochastic dominance, making our game monotone

supermodular. While such monotonicity and the tail properties are important in our analysis,

log-concavity is assumed for exposition. (See the introduction and Section 6 for a motivation

and a review of the empirical evidence for these assumptions.)

We now introduce some useful terminology. Each player i has a strictly dominant strategy

to invest if xi is strictly more than one, has a strictly dominant strategy to not invest if

xi < 0 and otherwise no action is strictly dominated. We will therefore refer to [0, 1] as the

undominated region and 0 and 1 as the dominance triggers. When the returns are publicly

observable and remain in the region [0, 1], there are multiple equilibria: all invest and all

not invest. Game theoretic analysis suggests refinements to select among equilibria. An

action is said to be risk-dominant if it is a best response when each action is equally likely

to be played by other players. Invest is the risk-dominant action when xi > 1/2; and not

invest is the risk-dominant action when xi < 1/2. More generally, we say that an action is

p-dominant if it is a best response when a player’s expectation of the proportion of others

taking the same action is at least p. An action is strictly dominant if it is 0-dominant, and

it is risk dominant if it is 1
2
-dominant.

We make a host of simplifying assumptions, such as a continuum of players and indepen-

dence of idiosyncratic shocks. We do not have a theoretical foundation for these assumptions.

Our motivation is rather pragmatic. For example, the independence assumption ensures that

the common shock is the only source of correlation among returns. Likewise, the continuum

and independence assumptions together allow us to obtain a deterministic aggregate behavior

as a function of the average returns.

3 Rank Beliefs and Equilibrium Structure

In this section, we present the main ingredients of our analysis. We formally introduce the

rank beliefs and identify their important properties for our analysis. Rank beliefs are key to

our analysis as they determine how a player thinks his return relates to others’returns. We

then describe the structure of equilibria and rationalizable strategies: rationalizable strate-

gies are bounded by symmetric equilibria in cutoff strategies, and the return is equal to

the rank belief at the equilibrium cutoffs. Finally, we illustrate these results on a canon-

ical example in which common and idiosyncratic shocks have t and normal distributions,
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respectively.

3.1 Rank Beliefs

We define the rank belief of player i as the probability he assigns to the event that another

player’s type zj is lower than his own:

R (z) = Pr (zj ≤ zi|zi = z) =

∫
F (ε) f (ε) g (z − ε) dε∫
f (ε) g (z − ε) dε

. (5)

We refer to the function R as the rank-belief function. While we define the rank belief to be

the probability that a player assigns to one other player having a lower type, it is also equal

to his expectation of the proportion of players with a lower type.

Note that the rank belief function depends only on the distributions F and G of idiosyn-

cratic and common shocks, and it is independent of the prior mean y and shock sensitivity

σ. The following properties of rank belief functions will be important for us.

Symmetry A rank belief function is said to be symmetric if

R (−z) = 1−R (z) .

That is, R is symmetric around 1/2 for positive and negative values. In that case, we

have R (0) = 1/2.

Single-Crossing Property A rank belief function is said to satisfy the single-crossing prop-

erty if R (z) > 1/2 > R (−z) whenever z > 0. That is, R takes the value of 1/2 at

z = 0 and remains above 1/2 for positive z, and symmetrically remains below 1/2 for

negative z.

Uniform Limit Rank Beliefs A rank belief function is said to have uniform limit rank

beliefs if

R (z)→ 1

2
as z →∞.

That is, as z → ∞, the rank belief converges back to 1/2. Uniformity of limit rank

beliefs implies immediately some further properties. The rank belief R is bounded

away from 0 and 1. We write R̄ < 1 for the upper bound. And the rank belief is

decreasing over some interval.
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Figure 1: A typical rank belief function. (Horizontal axis: shock z; vertical axis: rank belief

R (z).)

Rank beliefs exhibit these properties in our model:

Lemma 1 The function R is differentiable, symmetric, and satisfies single-crossing and

uniform limit rank belief properties.

Here, differentiability follows from having a density that is decreasing on positive reals;

rank belief function is continuous as long as the densities are continuous. (We only use con-

tinuity.) Symmetry and single crossing properties follow from the symmetry of the densities.

Uniformity of limit rank beliefs is special and is the key property. We explained in the

introduction how it follows from our assumption that the common shock has fat tails, and

the idiosyncratic shocks have thinner tails. We plot a typical rank belief function R in Figure

1 as a function of shock z. At z = 0, by symmetry, the rank belief is 1/2. As z increases, R

first gets larger by single-crossing property, and finally it goes back to 1/2 by uniformity of

limit rank beliefs. By symmetry, R behaves symmetrically for negative shocks.

3.2 Structure of Equilibria and Rationalizable Behavior

A (Bayesian Nash) equilibrium is defined as usual by requiring each type to play a best

response. We first characterize a class of symmetric "threshold" equilibria. Suppose that

each player would invest only if his type zi were greater than a critical threshold ẑ. Consider
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a player whose type was that critical threshold ẑ. His payoff to investing would be

own return︷ ︸︸ ︷
y + σẑ +

expected proportion of others investing︷ ︸︸ ︷
1−R (ẑ) − 1.

The threshold type ẑ will be indifferent only if this payoff is equal to 0, i.e.,

R (ẑ) = y + σẑ. (6)

This is thus a necessary condition for there to be a ẑ-threshold equilibrium. But this is

also suffi cient for equilibrium. Suppose that a player anticipated that all other players were

going to play a ẑ-threshold strategy, and was therefore indifferent between investing and

not investing when his type was ẑ. If his type were zi > ẑ, he would have higher incentive

to invest since both his return from investment would be higher and his expectation of the

proportion of the others who invest would be higher (by log-concavity of f).

The largest and smallest threshold strategy equilibria will play a key role in our analysis.

Write z∗ and z∗∗ for the smallest and the largest solutions to (6), respectively; see Figure 2

for an illustration. We write x∗ = σz∗ + y and x∗∗ = σz∗∗ + y for the corresponding returns.

Define symmetric strategies s∗ and s∗∗ associated with these cutoffs by

s∗i (zi) =

{
Invest if zi ≥ z∗

Not Invest otherwise

s∗∗i (zi) =

{
Invest if zi ≥ z∗∗

Not Invest otherwise.

Our next result establishes that s∗ and s∗∗ are Bayesian Nash equilibria and they bound all

rationalizable (and hence equilibrium) strategies. In particular, s∗ is the equilibrium with

the most investment, while s∗∗ is the equilibrium with the least investment.

Lemma 2 s∗ and s∗∗ are Bayesian Nash equilibria. Moreover, invest is uniquely rationaliz-

able whenever zi > z∗∗, and not invest is uniquely rationalizable whenever zi < z∗.

Thus the set of rationalizable actions is as follows. When z∗ ≤ zi ≤ z∗∗, both actions

are rationalizable, and there is a unique rationalizable action otherwise. The unique ratio-

nalizable action is invest when zi > z∗∗, and it is not invest when zi < z∗. In the appendix,

we prove this result by checking that our game is monotone supermodular (Milgrom and

Roberts (1990), Van Zandt and Vives (2007)), and thus the Bayesian Nash equilibria and
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the rationalizable strategies are bounded by monotone Bayesian Nash equilibria. The key

step in the proof is to show that, under log-concave f , the beliefs about the common shock

are increasing in zi (i.e. Pr (η ≤ η̄|zi) is decreasing in zi for any η̄).

3.3 Example: t Distribution

We now graphically illustrate the key properties of rank beliefs and the equilibrium structure

with an example which also motivates our fat tail assumption with model uncertainty (model

uncertainty as a foundation for fat tails is further discussed in Section 6).

We assume that the idiosyncratic shocks have the standard normal distribution. We

assume that the common shock is also normally distributed but its variance is not known:

the reciprocal of its variance has a χ2 distribution. Such variance uncertainty leads to a

t-distribution, and this distribution satisfies all of our distributional assumptions. We can

interpret this as model uncertainty: the player does not know what is the true data generating

function for a parameter that affects everybody.

There will be two effects of an increase in a player’s shock on this rank belief. First,

there will be the reversion to mean effect: a player will attribute some of the shock to his

return to the common shock and some of it to his own idiosyncratic shock. Because of the

last attribution, a player’s expectation of the common shock will be further from his own

shock as his own shock increases. This effect increases the rank belief as a player’s shock

increases. But second, there will be a learning effect. When the variance of the common

shock is unknown, a large shock will lead a player to conclude that the variance of the

common shock is higher, and he will attribute an increasing portion of his payoff shock to

the common shock. This effect will tend to decrease rank beliefs. The shape of the rank

belief function will then depend on which of these two effects predominates. Figure 1 plotted

the rank belief function for this example: when a player’s shock becomes large, he attributes

it almost entirely to the common shock; the learning effect will predominate and the rank

belief will approach 1/2.

The extremal cutoffs are plotted on the same rank belief function in Figure 2. They

correspond to the extremal intersections of non-monotone rank belief function R and the

line that represents the private return y + σz as a function of shock z. For any given y,

invest is uniquely rationalizable when the shock is larger than z∗∗ or equivalently when the

return is above x∗∗. Similarly, not invest is uniquely rationalizable when there is a large
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Figure 2: Extremal cutoffs when the variance of the common shock is unknown. (Horizontal

axis: shock z; vertical axis: rank belief R (z), non-linear function, and return x = y + σz,

linear function.)

negative shock so that the return is below x∗. There will be multiplicity otherwise.

In our paper, we will study the rationalizable behavior as a function of shock zi and

return xi by adjusting the prior mean y accordingly. In the above example, the rationalizable

behavior is as plotted in Figure 3 as a function of the shock and the return. Invest is uniquely

rationalizable in the shaded region on the upper part of the figure, while not invest is uniquely

rationalizable in the shaded region on the lower part of the figure. There is multiplicity in

the unshaded area. First observe that invest is uniquely rationalizable for every shock when

the return is more than R̄, where R̄ is the maximum possible rank belief; this is marked on

Figure 2 and is approximately 0.738. This is the level effect we discussed in the introduction.

This is simply because the returns x∗ and x∗∗ at the extremal cutoffs are always in between

1−R̄ and R̄. Second, for any given return xi > 1/2 at which invest is risk dominant, invest is

uniquely rationalizable (i.e. xi > x∗∗) whenever there was a suffi ciently large positive shock.

This is the change effect we discussed in the introduction. This is simply because the rank

belief approaches 1/2 as the shock goes to ∞, and thus as we decrease y, the return x∗∗ at
the upper cutoff approaches 1/2. Finally, invest is uniquely rationalizable when the prior

mean is very high, so that the return is above the line that is tangent to the rank belief

function. The last effect is less relevant when the coordination motives are strong (i.e. when

σ is small). We will next establish these generally, as our main results.
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Figure 3: Rationalizable behavior as a function of shock zi and return xi.

4 Rationalizable Behavior and the Role of Shocks

Suppose that a player has a private return x, having received a shock z and thus having a

prior mean y = x − σz. Which actions are rationalizable? In particular, are both actions

rationalizable or is invest or not invest the uniquely rationalizable action? We will show that

the answers to these questions are as in Figure 3. Invest is uniquely rationalizable when the

return is above the maximum rank belief, or invest is risk dominant and either there was a

large shock or the prior mean was very high. Since the model is entirely symmetric between

the two actions, we report formal necessary and suffi cient conditions for invest to be the

uniquely rationalizable action and the rest of the characterization will follow by symmetry.

These characterizations will follow easily from our characterization of the rank belief function

in Lemma 1 and rationalizable behavior in Lemma 2. In particular, we will be able to explain

the results by appeal to the simple geometry of Figure 2.4

4.1 Large Shocks– Suffi cient Conditions

We first observe that when a player’s private return exceeds the maximum rank belief R̄,

or equivalently when invest is
(
1− R̄

)
-dominant, invest will be uniquely rationalizable in-

4Figure 2 has further properties that are not established in Lemma 1, such as single-peakedness on the

positive orthant. These properties will not be used– unless they are explicitly assumed.
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Figure 4: Effect of shocks; shock size is above the critical value on the left panel and below

the critical value on the right panel. (Horizontal axis: shock zi; vertical axis: rank belief

R (zi) and return xi = y + σzi.)

dependent of what his shock was. The critical level R̄ depends only on the distributions F

and G of the shocks and does not depend on the prior mean y and the shock sensitivity σ.

Proposition 1 (Level Trigger) Invest is uniquely rationalizable if it is minimum rank

belief dominant (i.e. xi > R̄).

Proof. Observe that, for any σ and y,

x∗∗ = R (z∗∗) ≤ R̄,

where the equality is by definition of x∗∗ and the inequality is by definition of R̄. Therefore,

whenever xi > R̄, we have xi > x∗∗ and invest is uniquely rationalizable.

But we also see from Figure 3 that even if a player’s return is less than R̄, invest will

be uniquely rationalizable when there is a large shock. In particular, invest is uniquely

rationalizable whenever xi > 1/2 and zi exceeds some threshold z̄ where z̄ is a function of

xi.

For each xi > 1/2, at which invest is risk-dominant, define the cutoff

z̄ (xi) = maxR−1 (xi) , (7)

where R−1 (xi) = {z|R (z) = xi} is the pre-image of R at xi. The cutoff z̄ (xi) is illustrated in

Figure 4, where we only show the part of Figure 2 where invest is risk-dominant and zi ≥ 0.
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As seen in the figure, for xi ≤ R̄, z̄ (xi) is the maximum level of shock under which a player’s

rank belief is xi. (For xi > R̄, z̄ (xi) = −∞ by the convention that maximum of the empty

set is −∞.) Once again the critical level z̄ (xi) depends only on the distributions F and G

of shocks and is independent of the prior mean y and the shock sensitivity σ.

It turns out that the cutoff z̄ (xi) is the critical threshold for a shock to be effective in

making the risk-dominant action uniquely rationalizable. This is formally established in our

next result– the main result of our paper.

Proposition 2 (Large Shocks) Invest is uniquely rationalizable if it is risk-dominant (i.e.

xi > 1/2) and the shock is suffi ciently large, i.e.,

zi > z̄ (xi) . (8)

Proof. The special case of xi > R̄ is covered in Proposition 1. Hence, assume that

R̄ ≥ xi > 1/2 and zi > z̄ (xi)– as in the left panel of Figure 4. Then, for all z ≥ zi we have

R (z) < xi = y + σzi ≤ y + σz,

where the strict inequality is by definition of z̄ (xi) and z > z̄ (xi). Hence, z∗∗ < zi. Therefore,

invest is uniquely rationalizable at zi.

Proposition 2 provides suffi cient conditions for invest to be uniquely rationalizable: it is

risk-dominant (i.e., xi > 1/2) and there was a large positive shock with size more than critical

level z̄ (xi). By symmetry, this also establishes that not invest is uniquely rationalizable if

it is risk-dominant (i.e. xi < 1/2) and there was a large negative shock– with size more

than z̄ (1− xi). We will refer to z̄ (xi) as the critical shock size. As in the case of critical

level trigger R̄, the critical shock size depends only on the distributions F and G of the

shock, through the rank belief function. It is independent of the prior mean y and the shock

sensitivity σ. This renders the critical shock size on returns, σz̄ (xi), proportional to σ.

Hence, the latter threshold can be arbitrarily small for small σ and arbitrarily large for large

σ. For example, when coordination motives are strong, a very small positive jump in his

return will lead a player to invest if investing is risk-dominant. Likewise, a very small drop

in his return will lead a player not to invest if not investing is risk-dominant. Such behavior

also arises in highly stable environments where one does not expect large shifts in returns.

In the remainder of the paper, by a "large shock", we mean a shock of size that exceeds a

critical shock size.
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Figure 5: Equilibrium cutoffs when prior mean is above ȳ. (Horizontal axis: shock z; vertical

axis: rank belief R (z) and return x = y + σz.)

The proof of Proposition 2 is as illustrated on the left panel of Figure 4. Here, xi = 0.63

and hence invest is risk-dominant. Moreover, the shock zi exceeds the critical shock size

z̄ (xi). Now, for any shock level z ≥ zi, since z is strictly greater than z̄ (xi), the rank belief

R (z) is strictly below xi (by definition of z̄ (xi)). But clearly for any such z, the return y+σz

is above xi. Hence, the returns remain strictly above the rank beliefs for all z ≥ zi. Thus,

the maximal equilibrium cutoff z∗∗ is strictly smaller than zi. Therefore, invest is uniquely

rationalizable at zi. In contrast, the case on the right panel illustrates that invest may not

be uniquely rationalizable without a large shock. Here, the return is still as in the left panel

(xi = 0.63), but the shock zi is now smaller than the critical level z̄ (xi). In that case, the

equilibrium cutoff z∗∗ is above zi, and thus the cutoff x∗∗ is above xi, leading to multiplicity

at xi.

In Figure 2, the rank belief function R(·) crossed the return y+σz in the positive orthant.

But if the prior mean y was high enough, the return would exceed the rank belief function

for all positive shocks. This is illustrated in Figure 5. We can define cutoff ȳ as the largest

y for which there exists z > 0 such that

R (z) ≥ σz + y. (9)
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We will refer to y as the prior investment threshold.5 Define also cutoff y = 1 − ȳ. These
cutoffs play a prominent role in the the remainder of the paper. When the prior mean is above

the cutoff ȳ, the return remains strictly above the rank belief for non-negative shocks and

hence the cutoff z∗∗ is negative and x∗∗ < 1/2. Therefore, invest is uniquely rationalizable

whenever it is risk dominant, regardless of the size of the shock, and it can be uniquely

rationalizable even when it is not risk dominant and there is a negative shock.

Proposition 3 (Ex-ante Level) Invest is uniquely rationalizable if it is risk-dominant

(i.e. xi > 1/2) and the prior mean exceeds the prior investment threshold (i.e., y > y).

Proof. For any y > ȳ, by definition of ȳ, the return exceeds the rank beliefs for all

positive shocks: σz + y > R (z) for all z > 0. Hence, z∗∗ < 0 as it is the largest z with

R (z) = σz + y. Thus,

x∗∗ = R (z∗∗) < 1/2,

where the equality is by definition of x∗∗ and the inequality is by the single-crossing property

of rank beliefs in Lemma 1. Therefore, invest is uniquely rationalizable at each xi > 1/2.

We have thus shown three suffi cient conditions for invest to be uniquely rationalizable:

(i) it is minimum rank belief dominant; (ii) it is risk-dominant and there was a large shock,

and (iii) it is risk dominant and the prior mean was above ȳ. Symmetrically, not invest is

uniquely rationalizable when (i) it is minimum rank belief dominant (xi < 1 − R̄); (ii) it is
risk-dominant (xi < 1/2) and there was a large negative shock, and (iii) it is risk dominant

and the prior mean was below y.

We next consider a stark parametric example in which the cutoffs above have simple

explicit form. This example does not satisfy our continuity assumptions but has an intuitive

motivation.

Example 1 Idiosyncratic shocks are drawn from the uniform distribution on [−1/2, 1/2].

There is uncertainty about the distribution of the common shock: with probability π, there

is no common shock (i.e. η = 0), but with complementary probability 1 − π, the common

shock takes any value on the real line with an improper uniform distribution. The rank belief

5The cutoff ȳ lies between 1/2 and R̄. It is R̄ in the limit σ → 0, and it decreases towards 1/2 as σ

increases. When σ < supz (R (z)− 1/2) /z, the cutoff ȳ is determined by the tangency of the line σz + y to

R and is strictly above 1/2– as in Figure 5. In contrast, ȳ = 1/2 when σ > supz R
′ (z).
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function is given by6

R (zi) =

{
1
2

+ πzi if zi ∈ [−1/2, 1/2]
1
2

otherwise.

It is non-monotone: it starts at 1/2 for zi < −1/2, drops to (1− π) /2 at zi = −1/2,

increases to (1 + π) /2 until zi = 1/2 after which it drops back to 1/2. The return level that

triggers investment as a unique rationalizable action is

R̄ =
1

2
+
π

2
.

The critical shock size that triggers a unique rationalizable action is

z̄ = 1/2

for each return xi ∈
(
1/2, R̄

)
. When the shock sensitivity, σ, is below π, the prior investment

threshold is

ȳ =
1

2
+
π − σ

2
.

When σ < π/2, the suffi cient conditions (i-iii) above characterize the rationalizable behavior:

in all the remaining cases, both actions are rationalizable, and we have multiple equilibrium

behavior. In particular, for any prior mean y between 1− ȳ and ȳ, both actions are rational-
izable whenever the shock size falls below the critical level.

The rationalizable behavior is similar if σ is in between π/2 and π. When σ > π, the

rationalizable behavior is quite different: the game is dominance solvable, and the unique

rationalizable action is invest when the return is above a cutoff x∗ and not invest when the

return is below the cutoff x∗. Depending on y, the cutoff x∗ can take any value between

1− R̄ and R̄. Thus, the unique rationalizable action is not determined by risk dominance or
shock size.

6Intuitively, when zi 6∈ [−1/2, 1/2], player i learns that there is a common component and thus η is

uniformly distributed on the real line. Then, the rank belief is 1/2 as in standard global games. When

zi ∈ [−1/2, 1/2], a player does not learn anything about whether there is a common component. With

probability 1 − π, there is a common component and rank beliefs are 1/2. With probability π, there is no
common component (i.e. η = 0), and zj is uniformly distributed on [−1/2, 1/2] independent of zi, yielding

the rank belief zi+ 1/2. His rank belief, 12 +πzi, is the weighted average of zi+ 1/2 and 1/2. This updating

conditional on an improper common prior follows Taraldsen and Lindqvist (2016).
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4.2 Small Shocks– A Characterization

The example illustrates the fact that when the shock sensitivity is small, the three suffi cient

conditions characterize unique rationalizability. In general, however, we see that there is a

gap. As in this example, in general, when shock sensitivity is high, invest can be uniquely

rationalizable without being risk dominant. In particular, when σ > supz R
′ (z), the ratio-

nalizable action is unique, and it depends only on whether the return is above or below the

rank belief, independent of the size of the shock and the risk dominant action. We next rule

out such scenarios (by requiring that σ ≤
(
R̄− y

)
/z̄
(
R̄
)
), and obtain a characterization:

Proposition 4 (Characterization) Assume R is single peaked on R+ and y ≤ R̄−σz̄
(
R̄
)
.

Then, invest is uniquely rationalizable if and only if it is risk-dominant and zi > z̄ (xi).

That is, invest is uniquely rationalizable if and only if it is risk dominant and there was

a large positive shock– as in Proposition 2. This also includes the case in Proposition 1

because when the return is above the maximum rank belief R̄, the critical shock size is −∞,
and all shocks are considered large. In Proposition 3, invest was uniquely rationalizable

whenever it was risk dominant and the prior mean was above the cutoff ȳ, even if there was

a negative shock and the return was below the maximum rank belief. This case is ruled out

by the condition that y ≤ R̄−σz̄
(
R̄
)
in the hypothesis. Once that case is ruled out, for any

given return level xi > 1/2, the rationalizable behavior is a monotone function of shock zi:

both actions are rationalizable when zi ≤ z̄ (xi) and invest is uniquely rationalizable when

zi > z̄ (xi).

We must note that the condition y ≤ R̄ − σz̄
(
R̄
)
is crucial for this characterization.

In general, rationalizable behavior is non-monotone in shock zi for any fixed return level

xi > 1/2. For example, in Figure 3, for any fixed xi ∈ (0.6, ȳ), invest is uniquely rationalizable

when zi < − (ȳ − xi) /σ; both actions are rationalizable when − (ȳ − xi) /σ ≤ zi ≤ z̄ (xi),

and invest is uniquely rationalizable once again when zi > z̄ (xi). As the shock sensitivity

gets smaller, the lower cutoff gets smaller, making our characterization more relevant. In

the limit σ → 0, the lower cutoff approaches −∞, and the rationalizable behavior is as in
our characterization.

This characterization is obtained by establishing a converse to our main result under the

additional conditions in the hypothesis. The proof of the converse is depicted in the right

panel of Figure 4. In this figure, invest is risk dominant, but the shock zi is smaller than the
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critical level z̄ (xi). The additional conditions for the converse are also met in this example:

R is single-peaked, and y ≤ R̄− σz̄
(
R̄
)
, so that R is decreasing at the cutoff z∗∗, where the

line y+σz cuts R. Then, as in the figure, the equilibrium cutoff z∗∗ must be at least as large

as zi, and thus x∗∗ must be above xi.7 Therefore, not invest is rationalizable.

We next focus on the case of small shocks to the returns. In that case, rationalizable

actions depend only on the position of the prior mean relative to the cutoffs ȳ and y.

Proposition 5 (Small Shocks) For any σ < supz (R (z)− 1/2) /z, there exists ∆ > 0

such that whenever |xi − y| ≤ ∆, invest is uniquely rationalizable if and only if y > y and

not invest is uniquely rationalizable if and only if y < y.

For suffi ciently small shock sensitivity σ, Proposition 5 establishes that, without a large

shock, invest is uniquely rationalizable when y > ȳ and not invest is uniquely rationalizable

when y < y. But equilibrium play will depend on equilibrium selection when y is in the

intermediate range
[
y, ȳ
]
, as the action choice depends on which equilibrium is played. When

the prior mean is within this range, by definition, z∗ < 0 < z∗∗ and hence both actions are

rationalizable when the shock is suffi ciently small. The proposition provides a uniform bound

that guaranties multiplicity: the bound ∆ is independent of y although it may depend on σ

and the rank belief function.

Figure 6 illustrates the qualitative properties we have established so far as a function of

prior mean y and return xi. In this figure, we plot equilibrium cutoffs and regions in which

invest and not invest are uniquely rationalizable for the t-distribution example, assuming

σ < supz (R (z)− 1/2) /z. When y ∈
[
y, ȳ
]
, the upper equilibrium cutoff x∗∗ is above

max {y, 1/2} and approaches max {y, 1/2} as σ → 0 by Proposition 2. Hence, when y > 1/2,

a large shock makes invest uniquely rationalizable. Since x∗∗ > y, if the positive shock is

suffi ciently small, then both actions are rationalizable and can be played in equilibrium.

Likewise, the lower cutoff x∗ is below min {y, 1/2} and approaches min {y, 1/2} as σ → 0.

Once again, large negative shocks make not invest uniquely rationalizable when y < 1/2,

while both actions are rationalizable under smaller shocks. Note that when y ∈
[
y, ȳ
]
, the

regions with uniquely rationalizable actions are confined to different sides of cutoff xi = 1/2,

7Indeed, suppose z∗∗ < zi. Then, since the straight line has positive slope, x∗∗ would have been strictly

below xi, and this would be a contradiction: R would be decreasing from x∗∗ at z∗∗ to the larger value xi
at z̄ (xi).



20

Figure 6: Equilibrium cutoffs and rationalizability as a function of prior mean y in the

t-distribution example (σ = 0.01). (Horizontal axis: prior mean y; vertical axis: return

x = y + σz.)

and only a risk-dominant action can be uniquely rationalizable. Outside of
[
y, ȳ
]
, a non-

risk-dominant action can be uniquely rationalizable. For example, when y > ȳ, the cutoff

x∗∗ (y) is slightly below 1/2. Whenever xi ∈ (x∗∗ (y) , 1/2), invest is uniquely rationalizable

although not invest is risk dominant.

4.3 Aggregate Implications

We now focus on the implications of our result on aggregate behavior, showing that there will

be a shift in aggregate investment when the size of the common shock exceeds the critical

level. We define the fundamental state (or fundamentals) as

θ = y + ση,

which is the average return– as a function of the common shock. Since we assume a con-

tinuum of players with independently distributed idiosyncratic shocks, there is no aggregate

uncertainty conditional on the fundamental state. In particular, conditional on common

shock η, the fraction of players with shocks below a given threshold z is F (z − η). Thus, the

effect of a shock on individuals’behavior directly translates as an effect of a common shock
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on majority behavior:8

Corollary 1 Invest is uniquely rationalizable for a majority if it is risk-dominant for the

median player (i.e. θ > 1/2) and, in addition, one of the following is true: (1) invest is

minimum rank belief dominant for the median player (i.e. θ > R̄); (2) there is a large

common shock (i.e., η > z̄ (θ)); or (3) the prior mean exceeds the prior investment threshold

(y > y).

Proof. Clearly, invest is uniquely rationalizable for a majority if and only if it is uniquely

rationalizable for the player with the median return, for which xi = θ and zi = η. We obtain

our corollary by substituting these equalities in Propositions 1, 2, and 3.

That is, under rationalizability a majority must invest if doing so is risk dominant for that

fundamental state and there was a large positive common shock. When the shock sensitivity

σ is small and the common shock is away from the critical level, nearly all players take the

same action. In that case, the aggregate investment is near 1 when investing is risk dominant

and there was a large common shock.

It is straightforward to extend this result to an arbitrary percentile of players. For any

p ∈ (0, 1) and for any θ ∈ (1/2 +σF−1 (p) , R̄], invest is uniquely rationalizable for a fraction

p of the players if the common shock η exceeds a critical shock size

z̄p,σ (θ) = z̄
(
θ − σF−1 (p)

)
+ F−1 (p) .

As σ → 0, the critical shock size, z̄p,σ (θ), decreases to

z̄p,0 (θ) = z̄ (θ) + F−1 (p) ,

a translation of the critical shock size for the majority.

5 Dynamic Application

Our motivation for studying this problem comes from thinking about a dynamic model. In

this section, we describe a dynamic model that is simply a sequence of players of the static

model. This analysis provides an interpretation of and a motivation for our earlier results.

8By a majority we mean a set of players whose Lebesgue measure is more than 1/2.
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For a fixed σ, the static game that we have analyzed can be parameterized by the prior

mean y, and we will denote that game by Γ (y). We will now consider the following dynamic

game. At the beginning of each period t ≥ 0, there is an expected return yt. In each period

t, the static game Γ (yt) is played by a continuum of players. That is, a common shock ηt
and idiosyncratic shocks εit are independently drawn across players, and players with types

zit = ηt + εit make investment choices as in the game Γ (yt). The expected return yt+1 at

period t+ 1 is a function of the fundamental state θt = yt + σηt at t:

yt+1 = Y (θt)

for some known function Y : R → R. At the beginning of t, the current expected return yt
and previous aggregate investment At−1– the fraction of players who invested in the previous

period– are publicly observable. Our interpretation is that yt is the expected productivity

in the economy. In each period, there is a common shock to productivity. The shock is

persistent, but there may be a reversion to a mean productivity, as in the example below.

We now identify equilibrium shifts– when does equilibrium play switch from investment

to non-investment and back– and the role the shocks play in such shifts. We will focus on

the hysteresis equilibrium: each player i invests at any period t if and only if zit > ẑt where

ẑt = z∗ (yt) if t = 0 or At−1 ≥ 1/2 and ẑt = z∗∗ (yt) otherwise. The cutoff ẑt is a function of

the current expected return and the previous aggregate investment. If a majority invested

in the previous period, each player invests as long as investing is rationalizable for him,

using the lowest equilibrium cutoff z∗ (yt) in the static game. Likewise, if majority did not

invest in the previous period, he does not invest unless investing is the only rationalizable

option for him. This leads to inertia in majority behavior: majority behavior changes if

and only if the action taken by a majority in the previous period is no longer rationalizable

for a majority. Combined with this simple characterization, our previous results lead to the

following description of equilibrium shifts under hysteresis. (We say that there is majority

investment at t− 1 if At−1 > 1/2 and there is minority investment if At−1 < 1/2.)

Corollary 2 Under the hysteresis equilibrium, at any t > 0, if there was minority invest-

ment in the previous period, equilibrium shifts to majority investment whenever invest is risk

dominant for the median player and, in addition, one of the following conditions hold: (1)

invest is minimum rank belief dominant (i.e. θt > R̄); (2) there is a large common shock

(i.e., ηt > z̄ (θt)); or (3) the prior mean exceeds the prior investment threshold (yt > y). If
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Figure 7: Equilibrium shifts on a typical sample path.

R is single peaked on R+, then equilibrium shifts to majority investment can occur only if

(1) invest is minimum rank belief dominant (i.e. θt > R̄); (2) invest is risk dominant for the

median player and there is a large common shock (i.e., ηt > z̄ (θt)); or (3) the prior mean

exceeds R̄− σz̄
(
R̄
)
.

Proof. Equilibrium shifts to majority investment if and only if invest is uniquely ratio-

nalizable for the median type zit = ηt, i.e., ηt > z∗∗ (yt). Then, the corollary immediately

follows from Propositions 1-5.

Under hysteresis, Corollary 2 provides nearly a characterization of when equilibrium shifts

to majority investment occur: invest is risk-dominant under the median return and either

the expected return is above ȳ or there was a large positive shock at t. The converse rules

out an equilibrium shift for all but a few remaining cases discussed in Section 4.

The dynamics under the hysteresis equilibrium is illustrated in Figure 7.9 Time is on

the horizontal axis. A sample path of fundamentals and aggregate investment are plotted

on the vertical axis. Because shock sensitivity is small, aggregate investment is always

close to one or close to zero, so majority investment and minority investment correspond

to almost all investing and almost all not investing, respectively. There are two periods

9In this example, we take yt+1 = 1
2 + κ

(
θt − 1

2

)
with parameter κ = 0.99, so that fundamentals follow

an AR(1) process around 1/2: θt+1 − 1
2 = κ

(
θt − 1

2

)
+ σηt+1. The distributions of shocks are as in the

t-distribution example. We also take σ = 0.01.



24

0 2 4 6 8 10
time

0

0.2

0.4

0.6

0.8

1

fu
nd

am
en

ta
l &

 a
gg

re
ga

te
 in

ve
st

m
en

t

Figure 8: Aggregate investment under soft-landing (solid, ♦) and sudden drop (dashed, *).

of majority investment– the shaded areas– interspersed with minority investment. At the

beginning, there is majority investment with aggregate investment nearly 1. The majority

keeps investing due to hysteresis, although the fundamental drifts downward and investing

is not risk-dominant. The equilibrium shifts when the prior mean of the fundamental drifts

below y:10 the majority stop investing and aggregate investment drops near zero. This shift

illustrates level condition 3 in Corollary 2. This is the end of the first period of majority

investment. After that the fundamental fluctuates, but aggregate investment remains near

zero. In particular, in this no investment period, a large positive shock has no discernible

impact on aggregate investment as not invest remains risk dominant under the median

return. Later, the arrival of a major large positive shock makes investing risk dominant for

the median player and shifts equilibrium back to majority investment. Since investment also

becomes minimum rank belief dominant, both level condition 1 and shock condition 2 in

Corollary 2 make the shift necessary. Thereafter, fundamentals drift down with occasional

negative shocks, and a large negative shock ends the second investment period as it arrives

when not invest is risk dominant for the median player. This shift illustrates shock condition

2 in Corollary 2.

Our result implies that it is preferable to avoid large negative shocks in good times in

order to avoid crises, and preferable to have large positive shocks in the aftermath of a crisis

10This happens when Y (θt−1) < y– when θt−1 < 1/2 +
(
y − 1/2

)
/κ ∼= y in this particular example.
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especially after a substantial improvement of fundamentals in order to hasten the economic

recovery. This is illustrated in Figure 8, where we compare two alternative hypothetical paths

in our t-distribution example for σ = 0.01 and yt = θt−1. On both paths, the fundamental

state starts at 0.5 and drops to 0.35. The paths differ in terms of how that change happens.

On one path (in solid lines), fundamentals drop smoothly– as in soft landing of a bubble. In

that case, the aggregate investment remains nearly one throughout (marked with ♦). On the
other path (dashed lines), fundamentals drop suddenly after remaining high for a long while.

In that case, the negative shock triggers a long-lasting crisis, dropping aggregate investment

near zero (marked with *).

It is useful to compare the dynamics here to two usual solution concepts. First, consider

the hysteresis equilibrium where the returns are publicly observable and identical to each

other (as in Cooper (1994)) where (all) players switch their action only when the previous

action becomes inconsistent with equilibrium, switching to all investing when θ goes above 1

and switching to nobody investing when θ goes below 0. Under this equilibrium, in Figure 7,

the players keep investing throughout because the fundamental never drops below 0. There

are more equilibrium shifts in our model in general because equilibrium shifts even before

the fundamental reaches the cutoffs 0 and 1. Second, suppose players always play the risk

dominant action, as they do in the noise free limit in the classic global games analysis. The

equilibrium shifts as the fundamental crosses 1/2, resulting in frequent equilibrium shifts

when the fundamental is near 1/2 and no shift away from the cutoff. Our equilibrium is not

sensitive to the cutoff 1/2 per se, but the outcomes correlate because shocks revert to the

solution under risk dominance if they happen to be in the right direction.11

Hysteresis as a selection device is often assumed as a modelling device, see Krugman

(1991) and Cooper (1994) among others. Romero (2015) has tested hysteresis in the labo-

ratory, confirming its existence in a setting with evolving complete information payoffs. The

switches occur before dominance regions are reached, consistent with our results. Chamley

(1999) develops a dynamic model of global games in which hysteresis arises as a unique

equilibrium. In his model, players can learn about the previous fundamentals when the

fundamentals reach near dominance regions, when the equilibrium shifts occur. In another

11In our model, by Proposition 2, when y > 1/2, equilibrium shifts to majority investing whenever η >

z̄ (y). Hence, in the limit σ → 0, equilibrium shifts occur near the cutoff 1/2 almost surely. However, as in

Figure 7, even for σ = 0.01, equilibrium shifts typically occur away from the cutoff 1/2 (because the odds of

getting large shocks η > z̄ (1/2 + ε) are also very small for small ε).
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dynamic model with small amount of hysteresis in players’actions, Burdzy, Frankel, and

Pauzner (2001) obtain risk dominant selection as the unique equilibrium. Finally, Angele-

tos, Hellwig, and Pavan (2007) study a dynamic model of global games with regime change.

In their model, fundamentals do not change over time, but players learn about them as they

observe the outcomes of the past play; learning leads to multiple equilibria and interesting

dynamics.

6 Rank Beliefs, Fat Tails, and Model Uncertainty

We made primitive assumptions on f and g that implied properties of rank beliefs (in Lemma

1) which then had implications for rationalizable behavior. In this section, we want to assess

the role that our assumptions play in our argument, present the empirical evidence for them,

and discuss informally what results hold under alternative assumptions and how they relate

to the literature.

The structure of rationalizable strategies is determined by the shape of rank beliefs and

does not depend on the specific assumptions one makes to derive them. As long as the

properties in Lemma 1 hold, the results in this paper are valid. More generally, in a follow-

up paper (Morris and Yildiz (2019)), we show that if a limit R∞ ≡ limz→∞R (z) exists, then

invest is uniquely rationalizable if the return is above the limit rank belief R∞ and there was

a large positive shock. Under the limit uniformity of rank beliefs, R∞ coincides with the

risk-dominance threshold 1/2, yielding our large shock result. Our large shock result does

rely on non-monotonicity of rank beliefs however. Under a monotone rank belief function,

shocks per se do not lead to equilibrium shifts: if invest is uniquely rationalizable for some

return xi and shock zi, it would have been uniquely rationalizable for return xi and a smaller

shock z′i < zi.12

It is instructive to compare our results to the case in which both common and idiosyncratic

shocks are normally distributed. This case has been studied extensively in the global games

literature but does not satisfy our fat-tail assumption. The literature focuses on the case of

12Monotonicity of beliefs play a central role in a number of economic models. For example, in observational

learning, non-monotonicity of posterior beliefs (as a function of prior beliefs) is what gives informational

cascades. In a model with two states, when the density of the log-ratio of the beliefs is log-concave, the

posterior beliefs are monotone, and informational cascades do not arise (see Smith and Sørensen (2000) and

Smith and Sørensen (2011)).
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Figure 9: Rationalizable actions when both common and idiosyncratic shocks are normally

distributed. (Both actions are rationalizable in the unshaded area.)

large shock sensitivity (σ > R′ (0)), where coordination motives are weak. In that case, the

game is dominance solvable. Here, we focus on the case of small shock sensitivity (σ < R′ (0)),

where the coordination motives are strong. For this case, we plot the rank belief function and

the rationalizable solution in Figure 9. The rank-belief function is monotone and traces the

entire undominated region (0, 1) as the shock level varies. As a result, our large-shock result

disappears, and the return levels that trigger a unique rationalizable action coincide with

the dominance triggers. Our result about the ex-ante level (Proposition 3) remains to hold,

so that invest is uniquely rationalizable when the prior mean exceeds the ex-ante investment

threshold. In this case, risk dominance does not play a role, and the rationalizable behavior

is monotone with respect to shocks. In particular, for any return level xi ∈ (0, 1), invest

is uniquely rationalizable if there was a very large negative shock; not invest is uniquely

rationalizable if there was a very large positive shock, and both actions are rationalizable

in between. As σ gets small, multiplicity becomes prevalent. In contrast, as shown in

Figure 3, when the common shock has t-distribution, risk-dominance plays a central role:

the risk dominant action is uniquely rationalizable when there is a large shock, and there is

multiplicity otherwise.

This paper illustrates a mechanism in which large shocks lead to increased uncertainty

about the relative ranking of players, leading them to play according to risk-dominance. As
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we have mentioned above, it is suffi cient that the rank beliefs are uniform at the limit z →∞.
In our model, we used fat-tailed common shocks and thinner tailed idiosyncratic shocks to

model such beliefs– and we motivate fat tails by model uncertainty. We next briefly present

empirical evidence for fat tails and other studies that address model uncertainty in related

contexts.

There is a long-standing empirical literature that establishes that changes in key economic

variables have fat tailed distributions, going back to Pareto’s (1897) observation about in-

come distribution (see surveys by Benhabib and Bisin (2018), Gabaix (2009) and Ibragimov

and Prokhorov (2017)). For example, changes in GDP, prices, asset returns and foreign ex-

change rates all have fat-tailed distributions (see pioneering works of Mandelbrot (1963) and

Fama (1963), as well as contemporary studies such as Cont (2001), Gabaix, Gopikrishnan,

Plerou, and Stanley (2006), and Acemoglu, Ozdaglar, and Tahbaz-Salehi (2017)). Moreover,

many commonly used theoretical models, such as GARCH models and models with stochas-

tic volatility, naturally lead to fat tailed changes in the fundamental, as in the example of

t-distribution above.

We also assume that the idiosyncratic components of the shocks have thinner tails than

the common component, so that the tails of the changes in returns are as thick as the tails

of common shocks. This is similar to the fact that the empirical tail indices of stock and

market returns are both approximately 3 (Gabaix (2009)). This assumption is plausible

especially when the players learn the distribution of the shocks from the past realizations;

the individual shocks generate a rich cross-sectional data while there is only a single time

series about the common shocks. However, one must be cautious about mapping our highly

stylized model to macroeconomic data. Macroeconomic aggregate productivity shocks tend

to be much smaller than idiosyncratic shocks.13 If one were to take our model literally

(by identifying aggregate and idiosyncratic shocks with common and idiosyncratic shocks

in our model, respectively), then our mechanism would be relevant only for extremely large

aggregate shocks. But idiosyncratic variation can arise from many sources. It is enough

for players to observe noisy signals of the fundamental; under this interpretation, thinner

idiosyncratic tails correspond to a well understood (if noisy) observation technology.

Our focus on fat tails is motivated by model uncertainty. Model uncertainty also plays

13For example, the standard deviation of the changes in GDP is only about 0.02 while the standard

deviation of firm-level productivity shocks is estimated to be 0.45 (Cooper and Haltiwanger (2006); see also

Pischke (1995) and Bloom, Sadun, and Van Reenen (2017)).
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an important role in some other models. Chen and Suen (2016) study a coordinated attack

problem in which players are uncertain about how easy it is to change a regime. An unex-

pectedly successful attack by the previous cohort dramatically increases the probability that

changing the regime is easy, enticing players to attack. Hence, successful attacks lead to

further attacks by other players. Acemoglu, Chernozhukov, and Yildiz (2016) study learning

and asymptotic agreement when players do not know the conditional distribution of signals.

Such model uncertainty leads to asymptotic belief disagreement and possibly non-monotone

beliefs (as in our paper). Such model uncertainty is also central to Liang (2016), who studies

robustness of solution concepts to uncertainty about the statistical rules players use to learn

the fundamentals. Kozlowski, Veldkamp, and Venkateswaran (2017) study a macroeconomic

model in which the players do not know the distribution of shocks and update their beliefs

by using a normal kernel estimation method. When they observe large unexpected shocks,

they update their beliefs about tail probability drastically. Large shocks have large and

long-lasting impact on the economy as a result.

7 Discussion

In an economic environment with multiple equilibria, what explains which equilibrium is

played? There are two versions of this question. In a static setting, how can we explain

which equilibrium is played? In a dynamic setting, how can we explain switches among

equilibria?

One response to the static question is to observe that the multiplicity may be an artifact

of the assumption of complete information, or common certainty of the game’s payoffs. A

first generation of global game models (Carlsson and Van Damme (1993), Morris and Shin

(1998) and Morris and Shin (2003)) argued that if the common certainty assumption is

relaxed in a natural way, there is a unique equilibrium selection– the risk dominant one in

two player two action games. The natural relaxation is to allow players to observe very

accurate noisy signals of the state of the world.14 Morris, Shin, and Yildiz (2016) formalize

the idea that this information structure gives rise to (common certainty of) uniform rank

14Weinstein and Yildiz (2007) pointed out that it mattered exactly how common certainty assumptions

were relaxed: any rationalizable action in the underlying complete information game is a uniquely rational-

izable action for a type of a player that is "close" to the complete information type, where closeness is in the

product topology in the universal belief space of Mertens and Zamir (1985).
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beliefs, and this is what drives the results. Note that in this literature, the focus is on global

uniqueness: there is a unique prediction of play for any signal that a player might observe.

Two basic criticisms of this first generation of global models are the following. First,

with respect to assumptions, common knowledge of uniform rank beliefs will not hold even

approximately in many environments (for example, when there are very accurate public

signals).15 Second, with respect to predictions, as long as rank beliefs are approximately

uniform throughout a model, outcomes will be largely determined by fundamentals. Thus in

a dynamic model, the prediction would be that equilibrium play would always be switching

when fundamentals crossed a threshold (which we call the risk-dominance threshold). Both

predictions seem counter-factual.

In this paper, we made an intermediate set of assumptions, relative to complete informa-

tion and first generation global games. Like the first generation global games literature, we

relax complete information and use the vital insight that properties of rank beliefs sometimes

lead to unique predictions.16 Like the complete information literature, we allowed for the

possibility that information alone does not determine behavior and that some other factor

or factors determine equilibrium choice– our focus was on hysteresis as that factor.

This approach generated three novel and intuitive predictions. First, if we look at the

relationship between fundamentals and outcomes, play must shift once fundamentals cross a

fundamental threshold that arises before an action becomes dominant. Second, large shocks

can trigger a shift before that threshold is reached. And third, those shifts can only occur

once an action is risk-dominant– i.e., the best response to uniform rank beliefs and thus the

first generation global game prediction.

We conclude by contrasting our explanation and modelling with the conventional account

that equilibrium shifts are triggered by the arrival of public signals: even though the financial

system has been coming under continuing pressure, a public event (such as the collapse of

15Angeletos and Werning (2006) give a price revelation foundation for the assumption that idiosyncratic

shocks should have no less variation than common shocks.
16We allow for a qualitatively richer class of rank beliefs than the first generation literature. The existing

literature exclusively focusses on two cases (see Morris and Shin (2003) for a discussion of both cases). First,

the case where we fix the distribution of common shocks / public signals and let the noise in idiosyncratic

shocks / private signals go to zero; in this case there is common certainty of uniform rank beliefs in the limit.

Second, the case where both common shocks / public signals and idiosyncratic shocks / private signals are

normally distributed. As we noted in Section 6, rank beliefs are monotonic in this case and our large shock

results cannot arise.
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Lehman) triggers the shift to a bad equilibrium (a financial crisis); even though European

fiscal and sovereign debt positions had been improving for some years, it was a public event

(Draghi’s speech) that triggered the shift to the good equilibrium. Such explanations are

common in a wide variety of settings– see Chwe (2013) for many examples across the so-

cial sciences. Such explanations are based on the idea that public signals restore suffi cient

approximate common knowledge in the sense of high common p-belief, leading to multiple

equilibria.17 But is it really the case that there is more common knowledge after such large

shocks? Surely people are more uncertain what other people are thinking after a large shock.

We offer the alternative explanation that a large shock gives rise to less common knowledge

in the sense of uncertainty about others’relative optimism, i.e., more uniform rank beliefs,

and it is this that triggers a shift to a new equilibrium. While both explanations appeal to

large shocks, the mechanisms are opposite in terms of the properties of rank beliefs gener-

ating the results. Moreover, while the conventional account shows public signals may lead

to an equilibrium shift as one of many equilibrium outcomes, we show that the large shocks

will lead to equilibrium shift as the only rationalizable outcome.

A Omitted Proofs

A.1 Properties of Beliefs and Equilibria

In this section, we present a couple of basic properties of beliefs and prove Lemma 2, showing that

the extremal equilibria s∗ and s∗∗ bound all rationalizable strategies. We write F (η, z−i|zi) for the
cumulative distribution function of (η, z−i) conditional on zi, which represents the interim beliefs

of type zi about the common shock and the other players’types.

Lemma 3 The interim beliefs are increasing in types in the sense of first-order stochastic domi-

nance. Moreover, f has thinner tails than g:

lim
λ→∞

f (λz)

g (λz′)
= 0

(
∀z, z′ ∈ R\ {0}

)
. (10)

17There can be a unique equilibrium when public signals are suffi ciently accurate to break uniform rank

beliefs– and thus global selection of the risk dominant equilibrium– but not suffi ciently accurate to break

globally unique equilibrium. In such models, large shocks / public signals will play a disproportionate role

in selecting the unique equilibrium (see Morris and Shin (2003), Morris and Shin (2004)). Such existing

models have monotone rank beliefs, under which large shocks do not lead to equilibrium shifts per se (see

Section 6).
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Proof. (Part 1) Since zj = η + σεj where εj is independent of εi and η for each j 6= i, it

suffi ces to show that F (η|zi) is decreasing in zi, where F (η|zi) is the conditional distribution of
the common shock. To do this, it suffi ces to show that η and zi are affi liated, i.e., the joint density

h of (η, zi) is log-supermodular. But since h (η, zi) = g (η) f (zi − η), log h is supermodular:

log h (η, zi) = log g (η) + log f (zi − η) .

Here, log g (η) is trivially supermodular, and log f (zi − η) is supermodular because log f is concave.

(Part 2) Since f is log-concave, it is well known that f has light tails, i.e.,

lim
z→∞

f (z)

exp (−cz) = 0

for some c > 0. Thus, for any non-zero z and z′,

lim
λ→∞

f (λz)

g (λz′)
= lim

λ→∞

f (λz)

exp (−cλz)
exp (−cλz)
g (λz)

g (λz)

g (λz′)
= 0.

(Since g has regularly varying tails, limλ→∞ exp (−cz) /g (λz) = 0 and limλ→∞ g (λz) /g (λz′) ∈ R.)

The first part of the lemma is the main step in the proof of Lemma 2.

Proof of Lemma 2. It suffi ces to verify that our game is monotone supermodular, as in

Van Zandt and Vives (2007). (Van Zandt and Vives (2007) also assume that the set of player is

finite but their proof also applies to our game.) It is straightforward to verify the continuity and

compactness assumptions as well as supermodularity of the payoff functions. Lemma 3 further

establishes that the beliefs are monotone, and this fact immediately implies that s∗ and s∗∗ are

Bayesian Nash equilibria. Since the game is monotone supermodular, all rationalizable strategies

are bounded by s∗i and s
∗∗
i . In particular, all rationalizable strategies coincide whenever s

∗
i (zi) =

s∗∗i (zi).

A.2 Properties of Rank Beliefs

In this section, we prove Lemma 1. We start with some useful notation. For any two functions h1

and h2 from reals to reals, we define convolution h1 ∗ h2 of h1 and h2 by

h1 ∗ h2 (z) =

∫
h1 (ε)h2 (z − ε) dε. (11)

Observe that

R (z) =
Ff ∗ g (z)

f ∗ g (z)
. (12)



33

Since F (−ε) = 1− F (ε) and f and g are even functions, we have the following useful properties:

f ∗ g (z) = f ∗ g (−z) ; (13)

R (−z) =
(1− F ) f ∗ g (z)

f ∗ g (z)
, (14)

where 1− F is the complementary cdf. The first property states that f ∗ g is even, and the second
property states that R (−z) is simply computed by using the complementary cdf. Hence,

R (z)−R (−z) =
(2F − 1) f ∗ g (z)

f ∗ g (z)
=

∫∞
−∞ (2F (ε)− 1) f (ε) g (z − ε) dε

f ∗ g (z)
(15)

=

∫∞
0 (2F (ε)− 1) f (ε) (g (z − ε)− g (z + ε)) dε

f ∗ g (z)

where the first equality is by (12), (13) and (14); the second equality is by definition of convolution,

and the last property is by the fact that 2F − 1 is an odd function while f is even.

Proof of Lemma 1. (Differentiability) By monotonicity property of g, g is differentiable

almost everywhere. In the computation of convolutions, one can exclude the zero probability event

on which g′ is not defined. With that exclusion, the function g′ is integrable:
∫
|g′ (z)| dz = 2g (0).

Thus, both Ff ∗ g and f ∗ g are differentiable, showing that R is differentiable.
(Symmetry) By (14),

R (−z) =
(1− F ) f ∗ g (z)

f ∗ g (z)
=
f ∗ g (z)− Ff ∗ g (z)

f ∗ g (z)
= 1−R (z) .

(Single Crossing) For any z > 0, observe that g (z − ε) − g (z + ε) ≥ 0 and the inequality is

strict with positive probability; equality holds only if g is constant over the relevant range. Hence,

by (15), R (z)−R (−z) > 0. Since R (−z) = 1−R (z), this also implies that R (z) > 1/2 > R (−z).
(Uniform Limit Rank Beliefs) Fix any ε ∈ (0, 1). Since g has regularly varying tails (4),

there exist β > 0 and η0 such that for all η
′ > η ≥ η0,

g (η)

g (η′)
≤ (1 + ε/2)

(
η/η′

)−β
. (16)

Fix also γ ∈ (0, 1) such that

(1 + ε/2)

(
1− γ
1 + γ

)−β
< 1 + ε. (17)

Now, by definition, for any z > 0,

R (z) ≤ (I1 + I2) /I3
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where

I1 =

∫ γz

−γz
f (ε)F (ε) g (z − ε) dε,

I2 =

∫
ε 6∈(−γz,γz)

f (ε)F (ε) g (z − ε) dε,

I3 =

∫ γz

−γz
f (ε) g (z − ε) dε.

To find an upper bound on R (z), we next find bounds for these integrals. First, observe that

g (z − γz) ≥ g (z − ε) ≥ g (z + γz) (∀ε ∈ [−γz, γz]),

as z + γz ≥ z − ε ≥ z − γz > 0 and g is decreasing on positive reals. The inequality g (z − γz) ≥
g (z − ε) yields an upper bound for I1:

I1 ≤ g (z − γz)
∫ γz

−γz
f (ε)F (ε) dε =

1

2
g (z − γz)

(
F (γz)2 − F (−γz)2

)
=

1

2
g (z − γz) (F (γz)− F (−γz)) ,

where the integral is computed by change of variable u = F (ε), and the last equality is by symmetry

of F , F (γz) + F (−γz) = 1. Likewise, the inequality g (z − ε) ≥ g (z + γz) yields a lower bound

for I3:

I3 ≥
∫ γz

−γz
f (ε) g (z + γz) dε = (F (γz)− F (−γz)) g (z + γz) .

Finally, since f is decreasing in the absolute value of ε, for all ε 6∈ (−γz, γz), we have f (ε) ≤ f (γz),

yielding f (ε)F (ε) g (z − ε) ≤ f (γz) g (z − ε). Hence,

I2 ≤ f (γz)

∫
ε 6∈(−γz,γz)

g (z − ε) dε ≤ f (γz)

∫ ∞
−∞

g (z − ε) dε = f (γz) .

Combining the bounds for the integrals, we conclude that

R (z) ≤ 1

2

g (z − γz)
g (z + γz)

+
f (γz)

(F (γz)− F (−γz)) g (z + γz)
. (18)

Now, by (16) and (17),

1

2

g (z − γz)
g (z + γz)

≤ 1

2
(1 + ε/2)

(
1− γ
1 + γ

)−β
< 1/2 + ε/2

for any z > η0/ (1− γ). Moreover, by (10), there exists ẑ > η0/ (1− γ) such that for all z > ẑ,

f (γz)

(F (γz)− F (−γz)) g (z + γz)
< ε/2.

Substituting the two displayed inequalities in (18), we obtain R (z) < 1/2 + ε for all z > ẑ, as

desired.
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A.3 Omitted Proofs of Main Results

We next prove Propositions 4 and 5.

Proof of Proposition 4. By Proposition 2, it suffi ces to prove the necessity. Take any

y ≤ R̄− σz̄
(
R̄
)
. Since y ≤ R̄− σz̄

(
R̄
)
,

R
(
z̄
(
R̄
))

= R̄ ≥ y + σz̄
(
R̄
)
.

Since R (z) < y + σz for large values of z, by the intermediate-value theorem, this implies that

z∗∗ ≥ z̄
(
R̄
)
> 0. Thus,

x∗∗ > max {y, 1/2} .

(Clearly, x∗∗ = y + σz∗∗ > y and x∗∗ = R (z∗∗) > 1/2.) Hence, if invest is not risk-dominant (i.e.

xi ≤ 1/2), then x∗∗ > xi, and therefore invest is not uniquely rationalizable. Now, assume that

invest is risk-dominant (i.e. xi > 1/2) but inequality (8) does not hold– as in the right panel of

Figure 4:

zi ≤ z̄ (xi) . (19)

We claim that, if in addition R is single peaked, then (19) implies that x∗∗ ≥ xi, and therefore

invest is not uniquely rationalizable. To prove the claim that x∗∗ ≥ xi, suppose x∗∗ < xi and

equivalently

z∗∗ < zi. (20)

Now, since z∗∗ ≥ z̄
(
R̄
)
, by (19) and (20), we have

z̄
(
R̄
)
≤ z∗∗ < zi ≤ z̄ (xi) .

However, since R is single-peaked with a peak at z̄
(
R̄
)
, this implies that

x∗∗ = R (z∗∗) ≥ R (z̄ (xi)) = xi,

contradicting that x∗∗ < xi.

We will below vary y and write the cutoffs x∗ and x∗∗ as functions of y.

Proof of Proposition 5. Set

∆ = min {x∗∗ (ȳ)− ȳ, ȳ − 1/2} . (21)

Observe that

min
y≥y

(y − x∗ (y)) = y − x∗
(
y
)

= x∗∗ (ȳ)− ȳ = min
y≤ȳ

(x∗∗ (y)− y) > 0, (22)
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where the first and the last equalities are by the fact that y − x∗ (y) = −σz∗ (y) is increasing

while x∗∗ (y)− y = σz∗∗ (y) is decreasing, and the middle equality is by symmetry. To see the last

inequality, observe that, since σ < supz (R (z)− 1/2) /z, we have ȳ > 0, and by definition of ȳ, there

exists z > 0 such that R (z) ≥ ȳ+σz, showing that z∗∗ (ȳ) > 0. Therefore, x∗∗ (ȳ)−ȳ = σz∗∗ (ȳ) > 0.

Consider any y > ȳ. Since ∆ ≤ ȳ − 1/2, for any xi with |xi − y| ≤ ∆, we have

xi ≥ y −∆ > 1/2.

Then, by Proposition 3, invest is uniquely rationalizable at xi under y.

Now consider any y ≤ ȳ. By (21) and (22),

x∗∗ (y)− y ≥ x∗∗ (ȳ)− ȳ ≥ ∆.

Hence, for any xi with |xi − y| ≤ ∆, we have

xi ≤ y + ∆ ≤ x∗∗ (y) ,

showing that invest is not uniquely rationalizable at xi under y.

The second statement in the proposition follows from the first one by symmetry.
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