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Abstract

Consumer choices are constrained in many markets due to either supply-side ra-
tioning or information frictions. Examples include matching markets for schools and
colleges; entry-level labor markets; limited brand awareness and inattention in con-
sumer markets; and selective admissions to healthcare services. Accounting for these
choice constraints is essential for estimating consumer demand. We use a general ran-
dom utility model for consumer preferences that allows for endogenous characteristics
and a reduced-form choice-set formation rule that can be derived from models of the
examples described above. The choice-sets can be arbitrarily correlated with prefer-
ences. We study non-parametric identification of this model, propose an estimator, and
apply these methods to study admissions in the market for kidney dialysis in California.
Our results establish identification of the model using two sets of instruments, one that
only affects consumer preferences and the other that only affects choice sets. More-
over, these instruments are necessary for identification – our model is not identified
without further restrictions if either set of instruments does not vary. These results
also suggest tests of choice-set constraints, which we apply to the dialysis market. We
find that dialysis facilities are less likely to admit new patients when they have higher
than normal caseload and that patients are more likely to travel further when nearby
facilities have high caseloads. Finally, we estimate consumers’ preferences and facilities’
rationing rules using a Gibbs sampler.
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1 Introduction

Textbook discrete choice models assume that consumers pick their most preferred option
from a known choice set at posted prices. Further, the models assume that there is no excess
demand or supply at these prices, which makes prices the sole instrument that clears the
market.1 In many instances, demand is rationed by information frictions or by supply-side
policies other than prices: students must be admitted by a school or a college, healthcare
providers may be selective about their patients or be fully booked, and information frictions
may result in consumers being unaware of certain products. The final allocation, in these
cases, depends on the constraints on the choice sets in addition to preferences and prices.

With the few exceptions that are discussed below, existing approaches for estimating prefer-
ences with latent choice constraints are based on assuming specific models of latent choice set
formation. In two-sided matching models – school or college admissions (e.g. Agarwal and
Somaini, 2018; Fack et al., 2019), and certain labor markets (e.g. Boyd et al., 2013; Agar-
wal, 2015) – choice sets are determined by supply-side preferences and screening (Roth and
Sotomayor, 1990), whereas search costs and incomplete information are the source of limited
choice sets in models of consumer search (Hortaçsu et al., 2017; Heiss et al., 2021) or consid-
eration sets (e.g. Manski, 1977; Swait and Ben-Akiva, 1987; Alba et al., 1991; Roberts and
Lattin, 1991; Goeree, 2008; Abaluck and Adams-Prassl, 2021; Barseghyan et al., 2021a,b).
Perhaps the only apparent similarity between these models is that consumers are not uncon-
strained to choose from the full set of options in the market.

This paper presents a unified analysis of a large class of empirical models of consumer choice
in the presence of latent choice-set constraints. Our model combines a general random utility
model for consumer preferences (Block and Marshak, 1960; Matzkin, 1993) with a reduced-
form model for choice set formation. We show, by way of examples, that many commonly
used models of latent choice sets discussed above are consistent with this general reduced-
form. Our primary contribution is to show conditions under which this general model is
non-parametrically identified using data on final allocations in the presence of preference and
choice set shifters. We also propose a tractable estimation procedure. Finally, we apply our
methods to data from the market for kidney dialysis to test for supply-side rationing and to
describe the potential biases from ignoring constraints in choice sets.

Our model has two components. The first is a random utility model for consumer prefer-
ences, which allows for rich observed and unobserved heterogeneity in consumer preferences.

1These prices may either be set to maximize profits or set competitively. In both cases, firms produce
exactly enough quantity to satisfy the demand at these prices.
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We allow for product unobserved attributes that may be correlated with observed product
characteristics as in Berry (1994) and Berry et al. (1995). The model accommodates most
random utility models with single-unit demand, including product space and characteristic
space models. The second component is a reduced-form which can capture various mod-
els that yield latent constraints on choice sets. We show that our reduced form is consistent
with models of two-sided matching (e.g. matching of students to schools or colleges); dynamic
models in which profit motives induce firms to be selective in their admission policies; as well
as certain models of consideration sets, consumer search and informational advertising.

The empirical challenge is that the observed allocations depend both on the preferences of
agents and the choice set formation process, making it hard to disentangle the two. In particu-
lar, standard methods for estimating the distribution of preferences based on inverting market
shares to estimate key demand parameters (e.g. Berry, 1994; Berry et al., 2013) are inappli-
cable in the presence of product-specific unobservables that influence choice sets. Intuitively,
the product chosen most often need not be the one most preferred by the largest proportion
of customers.2 We show that our model is non-parametrically identified in the presence of
two sources of variation. The first is an observable that affects choice-set constraints, but is
excluded from consumer preferences. The second is an observable that influences consumer
choices but is excluded from the choice-set constraints. We show how to combine these two
observables to trace-out the joint distribution of consumer preferences and latent choice sets.
Moreover, we formally show that our model is not identified if either set of shifters is not
available.

At the cost of requiring shifters on both sides, our results place minimal functional form and
statistical restrictions on preferences and latent choice sets. We allow for the preference shifter
to enter non-linearly in our utility specification; functional form restrictions on the choice-set
shifters are similarly weak. Moreover, we allow unobservables that affect the choice set to
be arbitrarily correlated with unobservable determinants of preferences. Specific models of
choice set formation and other approaches typically require stronger restrictions, either on
functional forms and/or the joint distribution of unobservables. The non-identification result
in the absence of the shifters indicates that these restrictions are necessary, and substitute
for exogeneous variation in the data.

2A salient example is colleges – the largest colleges need not be the most desirable. Consider that Stanford
University has an undergraduate enrollment higher than that of MIT. Tuition at Stanford is also higher. One
of the authors of this study claims that MIT has a lower enrollment only because it has a lower capacity and
is therefore more selective. Even when confronted with Stanford’s lower overall acceptance rates, the author
rebuts by suggesting that acceptance rates are a biased measure of selectivity because the applicant pools
are endogenous and different.
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We also incorporate unobserved product characteristics that influence preferences or choice
sets into our identification analysis. These unobservables may be correlated with observable
characteristics, creating an endogeneity concern akin to those in the analysis of demand (see
Berry et al., 1995, for example). We show that across-market variation in instruments can be
used to solve this endogeneity concern, by adapting index and invertibility restrictions from
Berry and Haile (2014) to the case with constrained choice sets.
As an illustrative application, we apply our methods to the kidney dialysis market in Cali-
fornia. Patients with low enough kidney function need to undergo regular dialysis, typically
thrice weekly for several hours at a time. The procedure requires the use of expensive ma-
chines, nursing care and physical space to accommodate a patient. These resource constraints
can limit the number of patients a facility can serve. Most of the costs of dialysis are borne
by the taxpayer since Medicare provides near universal coverage for costs related to kidney
failure, irrespective of age. With approximately 750,000 patients on dialysis currently in the
US, these costs approach 1% of the national healthcare expenditure (Chapter 10, U. S. Renal
Data System, 2020).
The choice-set shifter in this application is a measure of the facility’s capacity constraints
when patient i begins dialysis. This measure is constructed as the difference between the
number of patients being treated at the facility when patient i begins dialysis and an es-
timated target. We exclude this short-term variation in facility utilization from patient
preferences while we allow for long-term facility fixed effects. Thus, the argument is that pa-
tient preferences do not depend on short-term variation in a facility’s caseload, but that this
variation can result in supply-side rationing. A similar instrument is used in Gandhi (2021)
to estimate preferences in nursing homes. As a test of the model, we show that this variable
predicts whether or not a new patient is admitted into a facility even after controlling for
facility-quarter fixed effects. This is the first piece of evidence that suggests that supply-side
rationing due to capacity constraints can constrain a consumer’s choice set.
The shifter of consumer preferences is the distance between the facility and the patient’s
residence. This variable is excluded from the choice set formation process but included in
consumer preferences because dialysis involves several weekly visits and long post-dialysis
trips can be particularly demanding on patients.
Consistent with the hypothesized effects of these shifters, we document that distance to the
facility chosen by a patient is higher if nearby facilities have higher than usual caseloads.
These results provide evidence that supply-side rationing affects allocations substantially.
The main challenge in estimating our model is that the number of potential choice sets is
large, even if a patient has relatively few facilities to consider. This curse of dimensionality
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creates a computational burden for approaches that integrate over all possible choice sets
when computing the likelihood. Indeed, applications based on these cases have sometimes
been limited to a small number of choices (e.g. Abaluck and Compiani, 2020). We solve
this problem by estimating a parametric version of our model using a Gibbs sampler (see
also Logan et al., 2008; Menzel and Salz, 2013; He et al., 2024). This procedure uses data
augmentation in order to condition either on choice sets or utilities when drawing the pa-
rameters governing the other component. Doing so avoids the curse of dimensionality and
reduces each component to a standard problem. The Bernstein-von Mises Theorem implies
that the posterior mean of the sampling chain we generate is asymptotically equivalent to a
maximum likelihood estimator (van der Vaart, 2000, Theorem 10.1).

The empirical model we take to the data allows for preferences to be correlated with choice
sets due to unobserved factors. Our estimates indicate that selective admissions practices are
common in the dialysis market. The probability that a patient is accepted at her first choice
facility is only 59.1%, and this probability varies by facility. Because selective admissions push
patients to less desirable facilities, models that do not account for choice set constraints yield
biased estimates. These models misestimate the desirability of various facilities as abstracting
away from selective admissions would yield estimates in which the largest facilities are also
the most desirable.

We compare our approach to alternatives that naively correct for capacity constraints by
including our measure of occupancy in the utility function. A stark prediction of these
models is that a patient lost by a facility because of variation in this variable is diverted
to the same set of facilities as a patient lost by a facility due to reductions in quality. In
both cases, the facility loses a patient who is close to indifferent between two facilities. In
contrast, in models with selective admissions, the patients that a facility loses is marginal for
the facility, but the patient strictly prefers this facility to others. The facilities that a patient
is diverted to are different, depending on which margin a patient is pulled from. We show
that not capturing this difference yields quantitatively different estimates of diversion ratios.

Related Literature

A large literature – dating back to Block and Marshak (1960) and Manski (1977) – presents
several specific models with latent constraints on choice sets. A much more recent literature
has attempted to understand the identification of these models. This body of work has
studied models of consideration sets (Abaluck and Adams-Prassl, 2021; Barseghyan et al.,
2021b,a); two-sided matching models (Menzel, 2015; Diamond and Agarwal, 2017; He et al.,
2024); and models of consumer search (Abaluck and Compiani, 2020). Our approach covers
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models in each of these three groups.3 And, at the cost of requiring both shifters of choice
sets and shifters of preferences, our results are able to achieve point identification using fewer
functional-form restrictions on preferences (c.f. Diamond and Agarwal, 2017; Abaluck and
Adams-Prassl, 2021; Barseghyan et al., 2021b,a; Abaluck and Compiani, 2020; He et al., 2024;
Barseghyan, 2022) or on the dependence between preferences and choice-sets (c.f. Menzel,
2015; Abaluck and Compiani, 2020; Abaluck and Adams-Prassl, 2021). It is worth reiterating
in the context of this discussion that our non-identification results show that either two sets
of shifters or these additional restrictions are necessary to achieve identification. In requiring
two sets of shifters, our results hold under more general conditions than those in He et al.
(2024), which requires additional shifters and non-primitive rank restrictions. We compare
and contrast these papers with ours in greater detail as we develop our results.

In addition to these differences, we also address common endogeneity concerns when estimat-
ing demand models, extending results in Berry and Haile (2014) by allowing for constrained
choice sets. This solution can be useful for a number of applications. For example, existing
work on estimating school demand to study equilibrium effects (Neilson, 2020; Dinerstein
and Smith, 2021; Allende, 2019) typically abstracts away from selective admission due to
capacity constraints. Similar issues are likely important in other settings where prices are
not the sole market clearing mechanism.

A small recent literature studies the industrial organization of the dialysis industry. Many
of these studies are based on quasi-experimental research designs (e.g. Dafny et al., 2018;
Wollmann, 2022), or focus on longer-run supply side issues such as the quality/quantity
trade-off or investment/entry decisions (Grieco and McDevitt, 2017; Eliason, 2019; Eliason
et al., 2020; Kepler et al., 2021). In contrast, our focus is on estimating demand and the
supply-side rationing policies in response to shorter-term capacity constraints while keeping
investment and quality decisions fixed. Previous approaches to estimating demand in this
setting have abstracted away from supply-side rationing.

Our empirical model is closest to those of selective admission practices in nursing homes
(Ching et al., 2015; Gandhi, 2021), although these papers do not formally consider the iden-
tification. Our identification results also cover models of two-sided matching in education or
entry-level labor markets with fixed prices (e.g. Dagsvik, 2000; Agarwal, 2015; Azevedo and
Leshno, 2016); models of consumer choice with incomplete consideration sets (e.g. Manski,
1977; Swait and Ben-Akiva, 1987; Alba et al., 1991; Roberts and Lattin, 1991; Goeree, 2008);

3The set of models covered by any one of these papers may not be nested with the models that we consider.
For example, Abaluck and Compiani (2020) consider consumer search with hidden attributes. While it is
possible to cast fixed-sample search in either our framework or the one in Abaluck and Compiani (2020), their
paper allows for other models of consumer search (e.g. sequential search) that does not fit our framework.
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models with strict capacity constraints (de Palma et al., 2007); and models of consumer
stock-outs (Conlon and Mortimer, 2013; Hickman and Mortimer, 2016). Our reduced-form
approach to supply-side rationing accommodates several of the reasons for incomplete choice
sets discussed above. Estimating a more primitive model of the supply side requires ad-
ditional assumptions on the structural model that we avoid because they are, by nature,
application specific. We discuss the interpretation of our model in these specific applications
in further detail in Section 2.2.

Overview

The paper proceeds as follows. Section 2 presents our model. It includes a discussion of the
models of supply-side rationing that yield the reduced-form of interest in our paper. Section 3
presents the identification results and the estimator. Section 4 describes the dialysis industry
and presents descriptive evidence on supply-side rationing. Section 5 presents results from
our estimates. Section 6 concludes. All proofs not included in the main text are in the
appendix.

2 Model

We will consider markets, indexed by t, in which agents can be divided into two sets, It and
Jt. We will refer to the set It as consumers and the set Jt as products. Consumers, indexed
by i ∈ It, have unit demand. We will say that consumer i is matched with product j if it is
in the consumer’s choice set and the consumer chooses it. A product can match with many
consumers. The outside option, denoted with 0, is always in the consumer’s choice set.4 Each
consumer i participates in only one market, thus the index i implies the associated market
index t. Section 2.2 describes several models that fit this formulation.

2.1 Preferences and Choices

We adopt a random utility model for consumer preferences. The indirect utility of consumer
i for matching with product j is given by

vij = ujt (di, ωi) − gjt (di, yij) , (1)
4That the consumer can always choose the outside option avoids empty choice sets. There is limited loss

of generality in this assumption because the outside option can be defined as a composite of alternatives
outside the market considered.
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where di is a vector of observed consumer attributes; yij is a scalar observed attribute that
varies at the consumer-product level; and ωi is a random vector of arbitrary dimension that
introduces unobserved consumer-specific preference heterogeneity. We impose the following
normalizations, which are without loss of generality (Matzkin, 2007): we normalize the utility
of the outside option vi0 to zero for each i; for some known value y0 and a fixed j in each t, we
set

∣∣∣∂gjt

∂y
(di, y0)

∣∣∣ = 1 for all di; and we set gjt (di, y0) = 0 for every j, t and di. The restrictions
on vi0t and the partial derivative of gjt (·) are familiar location and scale normalizations.
The restriction that gjt (di, y0) = 0 is without loss because a constant shift in gjt (·) can be
subsumed in ujt (·).

This model places minimal restrictions on the representation of preferences. The term ωi al-
lows for multi-dimensional unobserved heterogeneity, including idiosyncratic product-specific
preference shocks. The functions ujt (·) and gjt (·) are indexed by product and market, indi-
cating that they can vary arbitrarily along these dimensions. Thus, these functions can vary
due to both observed and unobserved market-product specific attributes. The term di may
include attributes that vary at the consumer-product level in addition to those that only vary
at the consumer level. The main distinction between yij and other consumer-product observ-
ables included in di is that yij only affects the indirect utility of product j and is separable
from ωi.

Unlike standard consumer choice models, consumers cannot simply choose their most pre-
ferred product. In education markets, students must be accepted by the school; in healthcare
markets, patients need appointments; in labor markets, applicants need job offers; in models
of consumer search or consideration sets, choice sets are incomplete. Although our model is
intended for any of these settings, for the sake of uniformity of nomenclature, we personify
products and say that they must accept the consumer. Let

σijt = σjt (di, ωi, zij) ∈ {0, 1} (2)

denote this latent acceptance decision, where σjt (di, ωi, zij) = 1 denotes that consumer i was
accepted by product j in market t. We refer to the function σjt (·) as the acceptance policy
function. It is indexed by product and market, allowing it to depend on market-product spe-
cific observables and unobservables. The product’s decision to accept the consumer depends
arbitrarily on ωi as well. Therefore, utilities and acceptance decisions may be correlated due
to unobservables.5

5This formulation and the results below do not impose restrictions on the dependence between indirect
utilities and choice sets. To see this, one can write ωi = (ωu

i , ωσ
i ) each of arbitrary dimension, and ujt (·) and

σjt (·) only depend on ωu
i and ωσ

i . At one end, ωu
i and ωσ

i can be independent, whereas at the other end, the
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The term zij is a consumer-product specific observable scalar characteristic that affects the
decision of the product to accept the consumer that is excluded from the consumer’s utility.
As opposed to di, the scalar characteristic zij can only affect acceptances by product j, not
product k. This rules out strategic interactions between products on this dimension, but it
does allow for strategic interactions on the basis of aggregate conditions of the market and
on consumer i’s characteristics via the dependence of σjt(·) on t and on di.
We assume that each consumer is matched with one of her most preferred products that
accepts her. Formally, each consumer i’s (latent) choice set in their market t is given by the
set of products that accept the consumer:

Oi = {j ∈ Jt : σij = 1} ∪ {0} .

She picks a product with the highest indirect utility within this set. Let cij ∈ {0, 1} be
an indicator for consumer i matching with j ∈ Oi. We assume that ∑j∈Oi

cij = 1 and
cij = 1 only if j ∈ arg maxk∈Oi

vik. Moreover, if arg maxk∈Oi
vik is not a singleton, then

the tie between the products with the highest indirect utilities is broken independently of
yi = (yij)j∈Jt

where t is the market to which i belongs.6 Thus, we assume that the only
source of friction in the economy is through the choice set formation process. We will see
that this formulation accommodates many forms of consumer search frictions.
We will make the following assumption throughout the paper:

Assumption 1. In each market t, the unobserved term ωi is conditionally independent of
the vector (yi, zi) given di.

This assumption places two substantive restrictions. First, the conditional independence of
ωi from yi implies that each component yij is shifts preferences without interacting with
consumer-specific unobservables that affect either preferences or choice sets. The effect of a
marginal change in yij can depend on di as well as on product-market specific characteristics
through the function gjt (·). Second, it implies that unobserved determinants of preferences
and choice sets are independent of zi given di. Thus, zi is an instrument that shifts choice
sets without affecting the distribution of preferences. The assumption does not rule out
correlation between yi and zi conditional on di. The plausibility of these restrictions is
specific to the empirical application and the available data. For now, we defer the discussion
of these issues in the context of our specific empirical application.

two are perfectly correlated.
6Formally, for all t and (Oi, di, zi, j) , P (cij = 1| Oi, t, di, yi = y, zi) = P (cij = 1| Oi, t, di, yi = y′, zi) if

g (y) = g (y′).
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We assume that the data are generated by sampling the random vector ωi independent and
identically across consumers. Therefore, for each market t, the choice set and preferences of
consumer i are independent from those of other consumers in market t conditional on the
observables (di, yi, zi), where yi = (yij)j∈Jt

and zi = (zij)j∈Jt
. However, consumer preferences

and choice sets may be correlated within a market via the functions ujt (·), gjt (·) and σjt (·).
As we discuss in the examples below, this assumption is satisfied in standard consumer choice
and consumer search models; and also in two-sided matching markets in which there are many
consumers relative to the number of products.

The assumptions on the data generating process imply that the share of consumers with
observables (di, yi, zi) that are matched with product j in market t is given by

sjt (di, yi, zi) =
∑

O∈O
P (Oi = O, cij = 1| t, di, yi, zi) ,

where Ois the set of all possible choice sets. The information in the data consists only of
these market shares for each value of (di, yi, zi) in its support. Assumption 1 implies that the
shares sjt (·) can be re-written as

sjt (di, yi, zi) =
∑

O∈O
P (cij = 1|Oi = O, t, di, yi, zi)P (Oi = O| t, di, zi) . (3)

The first term in the summand is the probability that a consumer with attributes (di, yi, zi)
is matched with product j when faced with the choice set O, whereas the second term is the
probability of choice set O given (di, zi). Assumption 1 allows us to omit the conditioning
on yi when writing the second term. However, we cannot omit zi from the first term because
we allow for dependence between preferences and choice sets conditional on observed charac-
teristics through ωi, which is often not allowed in the prior literature. Since the distribution
of ωi conditional on Oi = O depends on zi, the distribution of cij conditional on Oi = O also
depends on zi.

We assume that the shifter zij has a monotonic effect on choice sets:

Assumption 2. The function σjt (di, ωi, zij) is non-increasing in zij.

Monotonicity requires that product j is more likely to be in consumer i’s choice set if the
value of zij is lower. This assumption is natural in the examples discussed in section 2.2.

Define the cut-off quantity, πjt (di, ωi) = sup {z : σjt (di, ωi, z) = 1} where we adopt the
convention that πjt (di, ωi) = ∞ if σjt (di, ωi, z) = 0 for all z and πjt (di, ωi) = −∞ if
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σjt (di, ωi, z) = 1 for all z.7 Under assumption 2, the function πjt (·) determines product
j’s acceptance policy for almost every z since z < πjt (di, ωi) implies σjt (di, ωi, z) = 1, and
z > πjt (di, ωi) implies σjt (di, ωi, z) = 0. However, the acceptance policy function can take
any value when z = πjt (di, ωi).
Under this assumption, a key primitive for each market t is the joint distribution of the ran-
dom vector (uit, πit) = (u1t (di, ωi) , . . . , uJtt (di, ωi) , π1t (di, ωi) , . . . , πJt,t (di, ωi)) conditional
on di and t, and the function gjt (·). To see this, although we do not impose this restriction,
consider the case when (uit, πit) admits a density, which implies that ties in utility and ac-
ceptance cutoffs are zero-probability events. In this case, the terms in summand in equation
(3) can be re-written to yield

sjt (di, yi, zi) =
∑

O∈{O∈O:j∈O}

∫ ∫
1 {uijt − gjt (di, yij) ≥ uikt − gkt (di, yik) ∀k ∈ O}

×
[∏

k /∈O
1 {πikt < zik}

∏
k∈O

1{πikt > zik}
]
fU,Π|di,t (uit, πit) duitdπit. (4)

Hence, the vector of market shares in t is determined by FU,Π|di,t (uit, πit) and the functions
gjt (·). These features of the model also determine the effects of changes in yij and zij on
consumer and producer surplus.
This equation also shows that the share of consumers that are matched with product j in
market t depends both on the preferences of the consumers and the acceptance policies of
all the products in the market. Unlike in standard models of consumer demand, the market
share of product j does not directly reveal the fraction of consumers who prefer j to all other
products. Therefore, commonly used demand-inversion methods would yield invalid mean
utility measures whenever relevant latent choice set constraints are ignored (c.f. Berry, 1994;
Berry et al., 1995, 2013).

2.2 Examples

We start by showing that our preference model is general enough to accommodate commonly
used random utility models in the analysis of discrete choice demand functions. Then, we
work out several different examples that yield constrained consumer choice sets that are
compatible with the acceptance policy function described above.

Example 1. (Preference Model) Our formulation encompasses the widely used discrete
choice models with random coefficients and a linearly separable index for product-specific

7If σjt (di, ωi, z) = 0 for all z or σjt (di, ωi, z) = 1 for all z, the vector πit = (π1t (di, ωi) , . . . , πJt,t (di, ωi))
is an extended random variable with components that take on values in R ∪ {−∞, ∞}.
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unobservables ξjt (e.g. Berry et al., 1995; Petrin, 2002):

vij = diΓxjt + xjtβi + yij + ξjt + εij,

where each individual i belongs to only one market t. We can nest this specification by
setting ujt (di, ωi) = diΓxjt + xjtβi + ξjt + εij, ωi = (βi, εi1, . . . , εiJ) and gjt (di, yij) = −yij.
Thus, the unobserved term ξjt together with the observed characteristics xjt is subsumed
into the function ujt (·). The price of good j in market t can be included as an observed
characteristic in xjt. The random coefficients βi induce preference heterogeneity that results
in rich substitution patterns between the different goods j. The matrix Γ captures interac-
tions between consumer characteristics di and observable product characteristics xjt. Our
identification results will accommodate most commonly used distributional assumptions on
εij, including those that yield the familiar logit or nested-logit models (Train, 2009). We can
also accommodate other random utility models of preferences such as the pure characteristics
model of Berry and Pakes (2007).

Example 2. (Selective Acceptance in Healthcare) Our acceptance policy function accommo-
date the model of supply-side rationing in skilled nursing facilities in Gandhi (2021). Facility
j accepts a new patient if the patient’s profitability exceeds a threshold which is a function
of the facility’s current caseload. In our notation:

σijt (di, ωi, zij) = 1 {NPVjt (ωi, di) + Vj (zij + 1) − Vj (zij) > 0} ,

where NPVjt (ωi, di) denotes the present value of variable profits from patient i at facility j,
and V (zij + 1)−V (zij) is the change in the continuation value given an caseload of zij at the
time of arrival of patient i. The terms di and ωi denote observable and unobservable charac-
teristics of patient i. The term Vj (zij) − Vj (zij + 1) is a threshold equal to the opportunity
cost of accepting a new patient. Gandhi (2021) shows that this threshold is increasing in zij.
In principle, di can include aggregate market conditions at the time of i’s arrival which could
also enter in the continuation value Vj(·).

Example 3. (Two-Sided Matching) Our framework encompasses models used in the em-
pirical analysis of two-sided matching markets with non-transferable utility under pairwise
stability. Examples include the matching of students to schools or colleges, and entry-level
labor markets with fixed pay scales (e.g. Dagsvik, 2000; Agarwal, 2015). Let ejt(di, ωi, zij) be
an unknown rule that school or college j employs in market t to evaluate candidates. This
rule depends on observable and unobservable characteristics. For example, in the case of
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college acceptances, di may contain demographic information and observable exam scores,
ωi includes unobservable essay quality or other hard to codify aspects of an application,
and zij is an observed characteristic that varies at the student-school level. Azevedo and
Leshno (2016) showed that a pairwise stable allocation in a many-to-one two-sided match-
ing models can be described by a set of cutoffs pjt for each school j ∈ Jt and market t.
These cutoffs are such that each agent i is assigned to her most preferred facility in the set
Oi = {j ∈ Jt : ejt(di, ωi, zij) ≥ pjt} ∪ {0}. Thus, in our notation:

σijt = 1 {ejt(di, ωi, zij) − pjt > 0} .

The identification of a similar model of two-sided matching was recently studied in He et
al. (2024). Our results will require fewer exogenous shifters and place fewer restrictions on
primitives, a comparison that we further flesh out when discussing our theoretical results in
section 3.

Example 4. (Consideration Sets) Several models in marketing and economics assume that
consumers choose among the subset of products in the market (see Manski, 1977; Swait
and Ben-Akiva, 1987; Alba et al., 1991; Roberts and Lattin, 1991; Goeree, 2008). In our
framework, product j belongs to the latent consideration set Oi if σjt (di, ωi, zij) = 1. Since
di and ωi are arguments in ujt (·), consideration sets can be correlated with utilities. The
main requirement of our model is that there are consumer-product specific characteristics zij

that affect the probability that product j belongs to i’s consideration set. This requirement
is satisfied by a number of microfoundations. We discuss a few below:

Brand Awareness: Butters (1977) and Eliaz and Spiegler (2011) model advertising as affecting
the probability with which a consumer is informed about a product. Goeree (2008) estimates
an empirical model that uses the interaction between a product’s advertising expenditure
and a consumer’s exposure to advertising to construct a variable analogous to zij. Another
example is Gaynor et al. (2016), which models a physician who decides whether a patient
should have hospital j in their consideration set. It is natural to expect the consideration
sets to be correlated with preferences in this setting, as is allowed in our framework.

Inattention and Defaults: Consumers in some models are inattentive and choose a default
unless sprung into action (e.g. Heiss et al., 2021; Ho et al., 2017; Hortaçsu et al., 2017).
These models often feature strong defaults where only the characteristics or utility of the
default option influences attention.8 In some of these models, attention is binary where a
consumer either pays attention to all products or none. Our framework allows for a version

8See the default specific consideration and hybrid cases in Abaluck and Adams-Prassl (2021).
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with certain products being much more likely a part of the consideration set than others, but
it will require that characteristics of any of the products that are excluded from preferences,
zij, influence product-specific consideration.

Fixed Sample Search: A number of papers model fixed sample search by modeling choice
over a latent subset of heterogeneous products (see Honka, 2014; Honka et al., 2017, for
example). Assume that consumers know their preferences for the products except that they
do not know the price that they will be quoted for a product. The consumer decides the
portfolio of products for which to obtain a the price quote based on its ex-ante distribution
(Chade and Smith, 2006). The consumer incurs a search cost for each quote. Thus, the
decision to search for a product is given by the search policy function σjt (·).

In our framework, let yij be the price that is unobserved by the consumer prior to search. The
realized values of σijt can depend on the ex-ante price distribution, the other components of
indirect utility, and search costs. Thus, σijt can be correlated with vijt, but it is not a deter-
ministic function of vijt.9 We also require an observable zij that is excluded from preferences,
but shifts the probability that consumer i searches for product j. For example, informative
advertising or distance to the product may affect search probabilities – the former through
awareness and the latter through search costs – while being independent of preferences.

Stock-outs: Consider a case in which a product may not be available on the shelves when
a consumer arrives. Hickman and Mortimer (2016) distinguish two data environments de-
pending on whether stock-out events are observed and recorded in the data. When stock-out
events are observed, they provide an opportunity to estimate demand cross-elasticities as in
Conlon and Mortimer (2013). Alternatively, a product may or may not be available for all
consumers within a market in which case, the aggregate market share of the product will
be zero in that market (see Dubé et al. (2021)). In this case, choice sets are effectively ob-
served.10 However, when the dataset does not record or allow the researcher to infer specific
stock-out events, consumer choice sets are latent and cross-elasticities are generally not iden-
tified. We model latent choice sets by letting σijt denote whether product j was available at
the time agent i arrived at store t. The choice set shifter zij may be the time-lag between
when product j was last restocked and when consumer i checked out. We show that variation
in zij can restore identification of demand.

9Models of sequential search do not naturally fit our framework because the decision to continue searching
depends on the highest utility amongst the goods already searched (Weitzman, 1979). In this case, yij cannot
be excluded from σjt (·) .

10Dubé et al. (2021) also require an observable that shifts choice sets that is excluded from demand, but are
able to make progress with a shifter that is product-specific because choice sets are both observed/inferred
and common to all consumers within a market.
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3 Identification

The first goal we pursue (in subsection 3.1) is to identify the joint distribution FU,Π|di,t and the
function gjt (·). We will show that choice-set shifters are necessary for this goal (subsection
3.2). For example, identifying the distribution of uit in a neighborhood and the derivative of
the function gjt (·) are sufficient for identifying changes in demand in response to changes in
yi and to perform welfare analysis if gj (di, yi) is an appropriate numeriare. Identifying πit

allows us to obtain σjt (·), which are product-specific acceptance policy functions.11

This analysis will condition on di and t, focusing on within market variation in (yi, zi). The
conditioning on t fixes product-level observables and unobservables for all products in a
market. In subsection 3.3, we will micro-found the dependence of ujt (·), πjt (·) and gjt (·) on
observed product attributes xjt and a vector of unobservables ξjt, allowing for the case when
observed product attributes are endogeneous. We will then show how instruments can be
used to identify the joint distribution of (uit, πit) and gjt (·) as a function of (xjt, ξjt). Solving
this endogeneity problem allows us to identify the effects of changing xjt while holding ξjt

fixed on market shares, as well as consumer surplus.

3.1 Identification within a market

We will build the main result of this subsection (theorem 1) in two steps. First, lemma 1
shows identification given that the functions gj (·) are known (section 3.1.1). Second, lemma
2 shows that the functions gj (·) are identified under slightly stronger assumptions (section
3.1.2). These two results together will imply our main theorem (section 3.1.3). Throughout
this subsection, we omit the market subscript t because we condition on it.

3.1.1 Identification with known g (·)

Let ui = (uj (di, ωi))j∈J , πi = (πj (di, ωi))j∈J and σi = (σj (di, ωi, z))j∈J . In the case when
g (·) = (gj (·))j∈J is known, identification of the joint distribution of (ui, πi) given di, which
implies identification of the joint distribution of (vi, σi) given (di, yi, zi), can be achieved
without any further assumptions.

Lemma 1. Fix di. Suppose that assumptions 1 – 2 are satisfied, and g (·) is known. Let χ
be the interior of the support of (g, z) given di. The joint distribution of (ui, πi) conditional

11The random variable πit directly yields preferences in the case of static two-sided matching models. In
the case of a dynamic acceptance policy σjt (·), we may use Hotz and Miller (1993) inversion to recover
payoffs.
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on (ui, πi) ∈ χ and di is identified.

Proof. See appendix A.1

The idea of the proof is best described with the aid of two figures. Assume for this illustration
that (u, π) admits a density, a requirement that our formal results dispense with but is
useful for exposition to avoid carefully tracking zero-measure sets with mass points in the
distribution of (u, π). Consider the probability that a consumer is not matched to any of the
products in the market. This probability, which is observed, is equal to the probability that
for every product j either uj < gj or πj < zj, where ties are zero probability events. The
cross-hashed region in figure 1 shows this set projected on the u1 − π1−hyperplane. That is,
the random variables u2, . . . , uJ and π2, . . . , πJ are marginalized conditional on uj < gj or
πj < zj for j > 1. The point (ḡ1, z̄1) collects the first components of any vector (ḡ, z̄) ∈ χ

that we fix in the remainder of the argument. Now, consider a small ∆ > 0 such that all
points that are at most ∆ away from each component of (ḡ, z̄) belong to the interior of the
support of g (·) and z. Perturb z̄1 by ∆ to obtain the region between z̄1 and z̄1 + ∆ that lies
above ḡ1. The probability that (u1, π1) falls within this region is equal to the increase in the
probability from a consumer remaining unmatched at (ḡ, z̄) to remaining unmatched when z̄1

is increased by ∆. This is because the change from z̄1 to z̄1 + ∆ only affects consumers who
would like to match with product 1 but the product drops out of the choice set due to this
change. Since this increase in probability is observed, we can determine the probability that
(u1, π1) belongs to the set [ḡ1,∞) × [z̄1, z̄1 + ∆]. Using a similar argument and subtracting
observed probabilities, we can determine the probability that (u1, π1) belongs to the yellow
square, with u2, . . . , uJ and π2, . . . , πJ marginalized as before. We can determine the density
at the point (ḡ1, z̄1), marginalized over the other components, by considering an arbitrary
small ∆.

In the special case when J = 1 so that there is only one inside option, the perturbations
above have intuitive interpretations. Specifically, variation in ḡ1 only affects the match of
consumers on the margin between choosing the sole inside option and the outside option, and
variation in z̄1 affects the match of consumers that are on the margin of being acceptable for
product 1. Thus, the two perturbations together yield the density at the point (ḡ1, z̄1).

The argument outlined above only provides us with only the marginal density of (u1, π1). This
is because the shaded yellow box from figure 1 is the projection on the u1 − π1−hyperplane.
When projected on the u2 − π2 hyperplane, the set has still the L-shape implied by the
conditions u2 < ḡ2 or π2 < z̄2. The yellow region in figure 2 illustrates this set projected on
the u1−u2−π2 hyperplane for a particular value of (ḡ, z̄). Observe that this region conditions
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Figure 1: Two Dimensions

on the event that u2 < ḡ2 or π2 < z̄2 in order to focus on the set of consumers that would
not be matched with product 2 if ḡ1 or z̄1 were perturbed.

Our approach uses mathematical induction to extend this argument to higher dimensions,
ultimately recovering the joint distribution of (u, π). The inductive step is also illustrated
in figure 2. We can perturb z̄2 to z̄2 + ∆ and repeat the steps of perturbing z̄1 and ḡ1 at
the value z̄2 + ∆ to obtain the probability that u2 < ḡ2 or π2 < z̄2 + ∆, while focusing on
consumers such that (u1, π1) ∈ [ḡ1, ḡ1 + ∆] × [z̄1, z̄1 + ∆]. Similarly, we can perturb ḡ2 to
ḡ2 + ∆ to obtain the analogous quantity at ḡ2 + ∆. Subtracting these two quantities yields
the probability that (u2, π2) ∈ [ḡ2, ḡ2 + ∆] × [z̄2, z̄2 + ∆], (u1, π1) ∈ [ḡ1, ḡ1 + ∆] × [z̄1, z̄1 + ∆]
and for j > 3, uj < ḡj or πj < z̄j. This set is the cross-hashed cube in Figure 2.

Although an illustration in higher dimensions is challenging, this process can be used to
determine the probability that (u, π) belongs to the set ∏J

j=1 [ḡj, ḡj + ∆] × [z̄j, z̄j + ∆]. This
probability, for arbitrarily small ∆, yields the density of (u, π) if it exists. The proof for-
malizes this intuition without requiring that (u, π) admits a density by identifying the mass
accumulated in sets that generate the Borel sigma algebra.

The message of the result is intuitive. When two sets of instruments are present, one that
shifts choice sets and one that shifts preferences, they can be used together to identify the
distribution of utilities and acceptance decisions. The argument uses the variation in match
probabilities with respect to the shifters g and z for preferences and acceptance decisions
respectively. Assumption 1 implies that each shift leaves the joint distribution of (u, π)
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unchanged. And, since π implies the vector of acceptance decisions σ for a given z, the result
implies the identification of acceptance decisions jointly with the distribution of indirect
utilities, u.

This part of our argument is closely related to prior work in He et al. (2024), which shows
identification in models of two-sided matching markets while relaxing previous restrictions on
preference heterogeneity (e.g. Diamond and Agarwal, 2017) or on tail behavior on unobserv-
ables (e.g. Menzel, 2015). Although He et al. (2024) (henceforth HSS) show a result similar
to lemma 1, there are three ways in which the results in HSS require stronger assumptions.

First, HSS requires exogenous continuous variation in di, yi and zi (see Condition 3.3 and
Proposition 3.4 in HSS), while we dispense away with any requirement of variation (con-
tinuous or not) in di. Second, HSS identifies the functions uj (di), gj (yij) and πj (di) in a
first-step using a non-primitive rank condition.12,13 While we take g (·) to be given for now,

12In our notation HSS assume vijt = ujt (di) − gjt (yij) + ωijt, σijt = 1 {πjt (di) − hjt (zij) + ηijt > 0} .
Their results assume a rank condition on the matrix of derivatives of market shares with respect to each
of the observable characteristics (Condition 3.3, HSS). One interpretation of lemma 1 is that it provides a
primitive condition for their results in a more general model. In appendix B, HSS also show identification of
certain derivatives of indirect utility functions with non-separable unobserved heterogeneity. However, these
results are not sufficient for identification of the distribution of preferences.

13We also require knowledge of gj (·) in Lemma 1, but will provide weak sufficient conditions for identifi-
cation in the next subsection.
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our assumptions in section 3.1.2 for identifying this function can be verified from model prim-
itives. Third, HSS require that the unobservable ωi is separable from both di and yij so that
vij = uj (di) + ωu

ij − gj (yij) and πij = πj (di) + ωπ
ij. This restriction rules out models with

non-separable unobserved heterogeneity, which include important cases such as random util-
ity models in characteristic space (e.g. Berry and Pakes, 2007) and certain random coefficient
models.14 Our approach allows di and ωi to be non-separable. Finally, section 3.3 considers
a model with endogenous product characteristics.

3.1.2 Identification of g (·)

The results above assume that the functions gjt (·) are known. A commonly-studied special
case is that of a special regressor, gj (di, yij) = yij (Lewbel, 2007). This functional form
restriction does not always yield from desirable primitive economic assumptions. Thus, we
will now show that gj (·) is also non-parametrically identified under weak assumptions. In
order to develop this result, we need to introduce further notation and assumptions.

Definition 1. Goods j and k are strict substitutes in y at (di, yi, zi) if ∂
∂yik

sj (di, yi, zi) and
∂

∂yij
sk (di, yi, zi) exist and are non-zero.

This notion is a mild strengthening of requirements imposed in equation (1) and assumption
1, which together imply that the market share of each good k is weakly increasing (decreasing)
in yij if gj (di, yij) is weakly increasing (decreasing) in yij. It further requires the existence of
cross-partials and assumes that they are non-zero.15

Define Σj,k (di, yij, yik) = 1 if there is ȳi and zi in their respective supports such that goods
j and k are strict substitutes in y at (di, ȳi, zi), ȳij = yij, and ȳik = yik. For two goods j
and k, we say that there is a path connecting two values yj and yk, respectively, if there is
a sequence of goods ml and values of yl, (j, yj) = (m1, y1) , (m2, y2) , ...., (mn, yn) = (k, yk),
such that such that for all l = 2, ..., n, Σml−1,ml

(di, yl−1, yl) = 1.

Assumption 3. For every di, every good k, and almost all values of yik in its support, there
exists a path connecting good k and value yik, (k, yik), to the reference good j and the reference
value y0, (j, y0), for which we have normalized

∣∣∣∂gj(di,y0)
∂y

∣∣∣ = 1 .

14In appendix A, He et al. (2024) also show identification of certain derivatives of indirect utility functions
with a particular form of non-separable unobserved heterogeneity that is not nested in our model. The results
in that appendix are not sufficient for identification of the distribution of preferences.

15Berry et al. (2013) show that invertibility of demand does not require smoothness. The purpose of the
assumption in our exercise is different from invertibility.
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This assumption requires some degree of substitution between the goods considered but is
weaker than requiring strict substitution between every pair of goods at all values of yi and
zi. Moreover, the condition is testable. In models of unit demand with latent choice sets,
there are at least two important reasons why a given pair of goods j and k may not be substi-
tutes. First, preferences for goods may restrict substitution patterns between goods that are
considered. Salient examples include models with vertical preferences where consumers only
substitute to goods that are adjacent in quality ranking or the pure characteristics model
of Berry and Pakes (2007). Nonetheless, these models often admit a path connecting any
pair of goods, thereby satisfying assumption 3 (see Berry et al., 2013, for related ideas).
Second, choice sets may restrict substitution in demand. For example, if latent choice sets
are of the form that goods j and k never appear in the choice set together then the relevant
cross-partials the shares of these goods would be zero. However, there will still be a path
connecting two values of their shifters yj and yk, if there is a third good, l and a shifter value
yl, such that the pairs {j, l} and {l, k} are strict substitutes. Furthermore, the shifters yi and
zi at which {j, l} are strict substitutes can be different than those at which {l, k} are strict
substitutes. However, the assumptions rules out particular cases where the share of a good
k is constant with respect to yk for an interval range of values at every value of z or cases in
which good k only substitutes with the outside good.
Although assumption 3 is non-primitive, proposition 2 in the appendix shows weak primitive
conditions under which goods j and k are strict substitutes. It shows that goods j and k

are strict substitutes in yi at (di, yi, zi) if the pair of goods {j, k} belong to the choice set
Oi with non-zero probability, the derivatives of gj (di, ·) and gk (di, ·) are non-zero, and the
joint distribution of indirect utilities implies substitution between the goods in demand. This
requirement is satisfied for well-behaved pure characteristics models, including versions with
vertical preferences. Hence, a researcher may justify assumption 3 either by evaluating the
assumption directly in the data or by arguing for the sufficient conditions based on either
proposition 2 or corollary 3.
While assumptions 1 and 2 have allowed for atoms in the joint distribution of (ui, πi), as-
sumption 3 requires that some regions admit a density between pairs of components of ui. If
the distribution of ui (conditional on di) has an atom at g (di, yi), then s (di, yi, zi) may not
be differentiable with respect to yi at that value even if the function g (di, yi) is differentiable.
In this case, goods j and k may not be strict substitutes in yi at (di, yi, zi). We view this
restriction as mild.
Finally, we require the following weak support and regularity conditions to identify g (·):

Assumption 4. (i) The support of the random vector yi, denoted Y , is rectangular with
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non-empty interior.

(ii) For each di and j, the function gj (di, yj) is continuously differentiable in yj

Part (i) places a weak requirement on the support of Y that is used mostly for tractability
and allow us to write Y = ∏

j Yj where Yj is a non-empty closed interval. Part (ii) implies that
the functions gj (di, yj) are smooth with respect to the second argument. These assumptions
together imply that gj (·) is identified on its support:

Lemma 2. Suppose that assumptions 1, 3 and 4 hold and |J | > 1. Then, for every j ∈ J ,
the function gj (di, ·) is identified for all yj ∈ Yj.

Proof. See appendix A.3.

The argument first identifies the ratio of g′
k (di, yik) and g′

j (di, yij) for goods j and k that are
strict substitutes in y at (di, yi, zi). Consider the inclusive value of a consumer conditional
on (di, zi, yi). Dropping the conditioning on di and zi, this inclusive value is given by

V ∗ (g (yi)) =
∑

O∈O
E
(

max
j∈O

uj (ωi) − gj (yij)
∣∣∣∣O, g (yi)

)
P (O) ,

where g (yi) =
(
g1 (yi1) , . . . , gJ

(
yi|J |

))
and assumption 1 implies that the probability that

P (O) does not depend on yi. The envelope theorem implies that

∂V ∗ (g (yi))
∂gj

= −sj (yi) .

This result is a version of Roy’s identity for stochastic choice models (see McFadden, 1981),
but for models with latent choice set constraints.16 Assume that V ∗ (g) is twice-continuously
differentiable, a requirement that our proof dispenses with but is useful to understand the
core of the argment. Then, the partial derivative of this equation with respect to yik yields
that

∂sj (yi)
∂yik

= −∂2V ∗ (g (yi))
∂gj∂gk

g′
k (yik) .

16This proof technique is also related to methods used in Allen and Rehbeck (2019) to consider latent
utility models with additive heterogeneity. There are three differences worth noting. First, we avoid the
representative agent’s problem that is central to the arguments in Allen and Rehbeck (2019), resulting in a
more direct approach to results on identification. Second, our model involves a two-sided problem with latent
consumer-specific choice sets whereas choice sets are observed in Allen and Rehbeck (2019) and McFadden
(1981). Third, we provide testable or primitive conditions – assumption 3 and proposition 2 – that imply
the required sufficient conditions on the cross-partials of V ∗ (g (yi)).
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Taking the ratio of the partial derivatives of sj (·) with respect to yik and of sk (·) with respect
to yij, and applying Young’s theorem, we get that the ratio

g′
k (yik)
g′

j (yij)
= ∂sj (yi)

∂yik

/
∂sk (yi)
∂yij

(5)

is identified. Our model has not imposed enough smoothness assumptions to ensure conti-
nuity of second partial derivatives of V ∗, a key requirement for Young’s Theorem. Instead,
our model and assumptions 1 and 3 are sufficient to show symmetry of the cross partial
derivatives.

If all pairs of goods are strict substitutes at all values of (yi, zi) (for each di), we could
directly use the normalizations that gj (y0) = 0,

∣∣∣∂gj(y0)
∂y

∣∣∣ = 1 and assumption 4 to solve for
gk (·) and gj (·). While not all pairs of good are strict substitutes, assumption 3 guarantees
that there is a path connecting good k for almost all values of yik to the reference good j at
the reference value y0. Thus, the ratio of derivatives g′

k(yik)
g′

j(yij) = ∏n
l=1

g′
jl
(yijl)

g′
jl−1(yijl−1) is identified.

The normalizations that gj (y0) = 0,
∣∣∣g′

j (y)
∣∣∣ = 1 and assumption 4 can again be used to solve

for gk (·) and gj (·).

As argued above, each function gjt (di, ·) can be identified when J > 1 under the assumptions
outlined earlier. In the case when |J | = 1, we can assume without loss that gj (di, ·) is known
as long as it is monotonic since the outside option is normalized to zero.17

This result, which shows the identification of g (·), allows us to achieve identification wihout
relying on quasi-linear special regressors. It differentiates our approach from that of Abaluck
and Adams-Prassl (2021), which uses the assumption that true choice probabilities exhibit
Slutsky symmetry (e.g. in y) to identify three specific models of consideration set formation.18

Instead, we use a reduced-form model of latent choice sets and allow for asymmetries to arise
from non-linearity of indirect utilities in yij. As before, the cost of this greater generality is
the need for choice-set shifters.

17To prove this claim, assume that g1 (·) is increasing and note that the market share of good 1 conditional
on (y, z) is s (y, z) =

∫
1 {u1 (ω) > g1 (y1) , π (ω) > z1} dFω =

∫
1
{

g−1
1 (u1 (ω)) > y1, π (ω) > z1

}
dFω where

the equality follows because g1 (·) is monotonically increasing. Thus, the model is observationally equivalent
to one in which u1 (·) is replaced with g−1

1 (u1 (·)) and y1 enters linearly. If g1 (·) is decreasing, then the
market share will increase in y1 and the argument follows by inverting −g1 (y1) instead.

18Slutsky symmetry requires that if all options are in the choice set, then ∂sj (yi) /∂yik = ∂sk (yi) /∂yij .
A necessary and sufficient condition for the above in our model is that gjt (·) is linear in yij (see equation 5).
Abaluck and Adams-Prassl (2021) uses departures from Slutsky symmetry combined with specific models of
consideration to identify incomplete consideration sets.
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3.1.3 Main Result

Lemmas 1 and 2 above yield the main identification result of the paper:

Theorem 1. If assumptions 1 – 4 hold and |J | > 1, then for every w, (i) the function
gj (d, ·) is identified for every j ∈ J and yj ∈ Yj, and (ii) the joint distribution of ui and πi

is identified for every value (u, π) in the interior of g (d, Y ) ×Z = ∏J
j=1 gj (d, Yj) ×Z, where

gj (d, Yj) is the image of the set Yj under gj (d, ·) and Z is the support of the random vector
zi.

Proof. Condition on di and drop it from the notation. Lemma 2 directly implies part (i).
For part (ii), take any ḡ ∈ int g (di, Y ) and z̄ ∈ int Z. By lemma 1, the distribution of (u, π)
conditional on d and (u, π) in the interior of g (d, Y ) × Z is identified.

The techniques used in this section rely only on local variation in the shifters yi and zi. The
benefit of this approach is that it does not lean on “identification at infinity” arguments (see
He et al., 2024, for example). For example, an alternative method for identifying the distri-
bution of indirect utilities would be to focus on extreme values of zi under which consumers
can choose any product in the market and then rely on previous results. Such an argument
would extrapolate the preferences of all consumers from a subset. The identification results
do not rely on such extreme values belonging to the support of the shifters yi and zi.
Of course, we can learn about the distributions of ui and πi in only the regions that correspond
to the support of the observables. When the observables have full support, we can identify
the joint distribution of (πi, ui) everywhere. We formalize this point in following corollary to
theorem 1:

Corollary 1. Suppose the hypotheses of theorem 1 hold. If the support of (ui, πi) is a subset
of int (g (di, Y ) × Z), the joint distribution of ui and πi conditional on di is identified.

This joint distribution of ui and πi contains information about a host of economic phenomena
based on unobservable factors. For example, correlation between uij and uij′ implies that
products j and j′ are close substitutes., i.e. consumers who like one tend to also like the
other one. Correlation between πji and πj′i suggests that products j and j′ tend to prefer the
same set of consumers. Moreover, correlation between uij and πji suggests that consumers
tend to prefer products that are likely to admit them.
The results above also imply that local variation in (yi, zi) can be used to identify the distri-
bution of (ui, πi). However, the effects of marginal changes in the shifters on the probability
that j is chosen from the set O ⊇ {j} or on the probability that O is the choice set for a fixed
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value of y and z requires full or large support assumptions on (g (d, Y ) , Z). An alternative
approach to requiring large support on the choice-set and preference shifters is to further re-
strict the model (see Barseghyan, 2022, for example). The trade-off between these strategies
depends on the empirical setting, available data, and the questions of interest.

3.2 Necessity of Choice Set Shifters for Identification

An advantage of the results above is that they do not need to rely on strong assumptions
on the latent choice set formation, but they come at the cost of greater demands on the
data in terms of the choice set shifters. Thus, a natural question is whether we can achieve
identification without these shifters.
One might conjecture that choice set shifters may not be necessary because a model with
full choice sets is testable as long as an additively separable shifter of preferences is available.
To see this, suppose that assumption 1 is satisfied, the joint distribution of (πi, ui) admits a
continuous density function, and that P (O = J) = 1. The density of indirect utilities at a
point g ∈ RJ can be recovered either by using only local variation in g in the market share
of the outside good or the market share in any good j.19 Since the densities recovered in
these two alternative ways must be equal to each other, the model is over-identified. This
observation suggests that it may be possible for the restrictions implicit in the model to help
discriminating between preferences and latent choice sets.
Our next result shows that this conjecture is false. That is, without further restrictions, it is
not possible to identify both the distribution of latent choice sets and indirect utilities unless
both sets of shifters are available.

Proposition 1. Suppose assumption 1 is satisfied, and the joint distribution of ui admits
a density function. Further assume that the support of zi is a singleton {z̄} and g (di, yi) is
observed and has full support on R|J |. If there exists an open set B ⊂ R|J | and a choice set
O ⊊ J such that for all u ∈ B, fU (u) > 0 and P (O|u) > κ > 0, then fU (u) is not identified.

Proof. See appendix A.4.

The result shows that if variation from a shifter of choice sets is not available, then we cannot
recover the distribution of utilities if we allow for incomplete latent choice sets. Therefore,

19Observe that s0 (g) =
∫

1 {u ≤ g} fU (u) du and sj (g) =
∫

1 {uj − gj > 0}
∏

k ̸=j 1 {uk ≤ uj + g̃k} fU (u) du
where g̃k = gk − gj . Using these expressions, it is easy to see that

∂|J|s0

∂g1 . . . ∂g|J|
(g) = ∂|J|s0

∂g̃1 . . . ∂g̃j−1∂gj∂g̃k . . . ∂g̃|J|
(g) = fU (g) .
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the conclusions of lemma 1 and theorem 1 do not hold. Our proof explicitly constructs an
alternative distribution of indirect utilities and latent choice set probabilities that result in
an identical market share function. Intuitively, we can explain the probability that a product
is chosen either using preferences conditional on a choice set or using the probability that a
product is in the choice set.
The distribution of preferences is not identified even though we allow for the shifter of pref-
erences to have full support on its domain. Of course, the under-identification issue would
be more severe if the support of g (di, yi) is more limited or if g (·) were unknown. The main
requirement is that choice sets cannot be complete for all u. As discussed above, if latent
choice sets are complete, the distribution of preferences is over-identified under the remaining
assumptions. We demonstrate that preferences are not identified once incomplete choice sets
have non-zero probability because multiple preference distributions can rationalize observed
market shares by altering the probabilities of various choice sets.
This result implies that, without variation in the choice-set shifter, the special case of
our model with complete choice sets is essentially the only one when identification can be
achieved. Since simply allowing for incomplete latent choice sets results in under-identification,
the results indicate that the conditions in theorem 1 are sharp. Any alternative to using
shifters of choice sets would therefore require further restrictions on the model. There are
two existing approaches that we are aware of. The first, proposed in Abaluck and Adams-
Prassl (2021) uses specific models of choice set formation and assumes that the functions
gj (·) are known. The models of choice set formation include those in which the probability
that an alternative is in the choice set is independent across alternatives and independent of
preferences, or models in which the consumer is either inattentive or picks from the full set
of available alternatives. The second approach, proposed in Barseghyan et al. (2021a) and
Barseghyan (2022), uses a characteristic space model for the distribution of preferences. In
this approach the distribution of indirect utilities lies in a lower-dimensional manifold of R|J |.

An example is the pure characteristic model of Berry and Pakes (2007), which cannot allow
for idiosyncratic product-specific preferences. Our approach does not require these a priori
restriction.

3.3 Introducing Endogeneity

A challenge in estimating discrete choice demand systems is that certain characteristics may
be unobserved to the econometrician. Correlation between these observables and observed
characteristics may bias estimates of demand (Berry, 1994; Berry et al., 1995). For example,
product prices may be set strategically in oligopolistic markets. This type of endogeneity
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is usually analyzed using models in which indirect utilities depend on both observable and
unobservable product characteristics (see Berry and Haile, 2014, for example).

We now assume that indirect utilities and profits can be written, with a slight abuse of
notation, as follows:

uijt = ũ
(
xjt, ξ

u
jt, ωi

)
πijt = π̃

(
xjt, ξ

π
jt, ωi

)
,

where ξu
jt and ξπ

jt are scalar unobservables, xjt denotes a vector of observable product charac-
teristics that are potentially correlated with the unobservables ξjt =

(
ξu

jt, ξ
π
jt

)
, and u (·) and

π (·) are unknown functions. We have dropped di from the notation because our arguments
will condition on it. Thus, the unobservable ξjt is implicitly di−specific. The combination
of the assumptions that (i) the unobservables are scalars and (ii) the unknown functions are
not indexed by j and t, makes this specification more restrictive than the ones analyzed in
the prior subsections.20

We assume that the data generating process starts by sampling markets with characteristics of
all the products in market t, namely (xt, ξt) = {xjt, ξjt}j, drawn i.i.d. from a joint distribution
that is common across markets. Then, ωi and (yi, zi) are drawn i.i.d. across consumers, with
ωi ⊥ (yi, zi) as before. Each consumer belongs to only one market. Whereas the results in the
prior subsections did not require across-market variation, the results in this subsection will
exploit both cross-product and cross-market variation. We will therefore include the market
index t on certain random variables for clarity.

Our goal is to identify the joint distribution

uit, πit|xt, ξt

on the relevant support. The joint distribution that we previously identified conditioned on
the market’s identity t and implicitly on all the products in the market as well, but could not
separate the effects of observables and unobservables. Now we want to condition on specific
values of xjt and ξjt for each of the products in the market. Knowledge of these distributions
is sufficient for identification of several quantities of interest. These include identification of

20We can also allow for observables in gjt (·) that may be correlated with unobservables ξg
jt. Theorem 1

and corollary 1 imply that gjt (yij) is identified on the support of yij in each market t. When gjt (yij) takes
the form g

(
xjt, ξg

jt, yij

)
and xjt is potentially correlated with ξg

jt, then identification of the function g (·, ·, ȳ)
for a fixed value of ȳ follows from existent results for non-linear IV models. Chernozhukov and Hansen (2005)
show identification of this model assuming the availability of instruments rjt ⊥ ξg

jt, and additional regularity
and support conditions.
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choice probabilities under any choice set as well as identification of counterfactual choices
with exogenous changes in xt. The argument will solve the endogeneity problem and recover
ξjt. Once we recover these unobservables, we will obtain the joint distribution of (uit, πit)
conditional on the full vector of observed and unobserved characteristics.

We made the following restriction on u (·) and π (·) :

Assumption 5. Index restrictions. xjt can be partitioned into
(
x∗

jt,
(
xδ

jt, x
γ
jt

))
such that

indirect utility and profits take the form uijt = u
(
x∗

jt, δjt, ωi

)
and πijt = π

(
x∗

jt, γjt, ωi

)
, where

δjt = xδ
jt + ξu

jt and γjt = xγ
jt + ξπ

jt.

The index restrictions above are similar to those imposed in Berry and Haile (2014) to
identify demand without choice set constraints. Although the observable components xδ

jt

and xδ
jt are one-dimensional, this restriction is inessential in a linear model as long as one of

the components is known to have a non-zero coefficient as the model can be re-normalized.
In other words, the observables xδ

jt and xγ
jt set the units for ξjt. Linearity can also be relaxed,

but we do not develop this extension for simplicity of notation and exposition. 21 Finally,
the observable component of the indices, namely xδ

jt and xγ
jt, may be the same although this

is not required as long as x∗
jt does not contain

(
xδ

jt, x
γ
jt

)
.

We now turn to the key assumption that forms the basis of our solution:

Assumption 6. Invertibility. There exists a function ψ (·, ·;x∗) such that for any two mar-
kets t and t′ with x∗

t = x∗
t′ = x∗ , ψ (δt, γt;x∗

t ) = ψ (δt′ , γt′ ;x∗
t′) implies (δt, γt) = (δt′ , γt′).

Moreover, for each market t, ϕt = ψ (δt, γt;x∗
t ) is known.

This invertibility restriction requires that the model places sufficient restrictions such that
(δt, γt) is invertible in the observable quantity ϕt. It is worth emphasizing that the ana-
lyst need not know the function ψ (·), only the realized value of ϕt for any market. This
assumption parallels the literature on the identification of demand. Specifically, Berry and
Haile (2014) assume that the index of demand – δt in our case – is invertible in the vector
of market shares – ϕt in our notation – and the unknown function maps δt to market shares
– ψ (·) in our notation. Primitive conditions for invertibility in the case of demand (without
constraints) are studied in Berry et al. (2013).

21The case when δjt = δ̃ (xjt)+ξu
jt and likewise for γjt follows from an extension based on results in Matzkin

(2007). This case requires additional normalizations on the function δ̃ (·). The non-separable case follows
from Chernozhukov and Hansen (2005), which requires strengthening the mean-independence restriction in
assumption 1(i) below. Berry and Haile (2014) provide additional details regarding these extensions in an
appendix, but focus their analysis on a base case that is similar to ours.
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Our approach is similar. Recall that theorem 1 and corollary 1 show that the joint distribution
of (uit, πit) is identified on the support of (g (Y ) , Z). To solve the endogeneity problem, we
will require the analyst to place sufficient primitive restrictions on the model to guarantee
that these features are sufficient to identify ϕt.

We present two examples that satisfy assumption 6 below:

Example 5. Suppose that (δjt, γjt) and x∗
jt are additively separable in both utility and

profitability,

u
(
x∗

jt, δjt, ωi

)
= u0 (δjt, ωi) + u1

(
x2

jt, ωi

)
π
(
x∗

jt, γjt, ωi

)
= π0 (γjt, ωi) + π1

(
x2

jt, ωi

)
,

and that E [u0 (δjt, ωi)| δjt] and and E [π0 (γjt, ωi)| γjt] are strictly monotonic in δjt and γjt,
respectively. The linear random coefficients preference model (example 2.2) satisfies these
assumptions. Taking expectations conditional on market observed characteristics and indices,
we get that

E [uijt| δt, x
∗
t ] = E [u0 (δjt, ωi)| δjt] + E

[
u1
(
x∗

jt, ωi

)∣∣∣x∗
jt

]
E [πijt| γt, x

∗
t ] = E [π0 (γjt, ωi)| γjt] + E

[
π1
(
x∗

jt, ωi

)∣∣∣x∗
jt

]
,

where the equality follows because ωi is independent of (δ, γ, x∗). This model satisfies assump-
tion 6 with ψ (δt, γt;x∗

t ) = {E [uijt| δt, x
∗
t ] , E [πijt| γt, x

∗
t ]}. With a sufficiently large support

of (Y, Z) is sufficient to identify these expectations (see corollary 1).22

Example 6. Assumption 6 also holds under weaker requirements on support but stronger
functional form assumptions. Consider the following vertical model:

u
(
x∗

jt, δjt, ωi

)
= αiu0

(
δjt, x

∗
jt

)
π
(
x∗

jt, γjt, ωi

)
= βiπ0

(
γjt, x

∗
jt

)
,

for positive valued functions u0 and π0 that are strictly monotone if their first argument.
Assume that ωi = (αi, βi) has support on R2

+. In our empirical context δjt in this model can
be interpreted as the unobserved determinant of quality of facility j in market t and αi can be
interpreted as the preference for quality by patient i. Analogously, βi may represent patient

22The large support assumption on (Y, Z) can be relaxed if ωi is excluded from u0 (δjt, ωi) and π0 (γjt, ωi)
and u1

(
x2

jt, ωi

)
and π1

(
x2

jt, ωi

)
are unimodal. In this case, ϕt is the 2J−dimensional vector with the mode

of the joint distribution of uijt and πijt in the j and j + J positions.
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i’s profitability and γjt denotes an unobserved determinant of preference for profitability by
facility j.

If the joint distribution of (αi, βi) is unimodal and the support of (Y, Z) in market each t

identifies the mode of
(
u
(
x∗

jt, δjt, ωi

)
, π
(
x∗

jt, γjt, ωi

))
(via corollary 1), then assumption 6

follows with ψ (δt, γt;x∗
t ) equal to the 2J vector with the mode of the joint distribution of uijt

and πijt in the j and j + J positions.23 Note that the support condition on (Y, Z) is weaker
than those needed to identify expectations and that the assumption that ωi is unimodal is
testable.

Finally, we require the availability of instruments for xt, which may be endogenous. Specifi-
cally, we impose:

Assumption 7. (i) Availability of instruments. E [ξt| rt] = 0 for all rt.24

(ii) Completeness. For any function B (ϕt, xt) with finite expectation, E [B (ϕt, xt)| rt] = 0
a.e. in rt implies that B (ϕt, xt) = 0 a.e. in (ϕt, xt).

This assumption is standard in the analysis of non-parametric instrumental variable models
(see Newey and Powell, 2003) and is also required by Berry and Haile (2014). The com-
pleteness condition in part (ii) is the non-parametric analog to a rank condition in linear
instrumental variable models.

We are now ready to prove our main result for the section:

Theorem 2. If assumptions 5-6 are satisfied, then δ (·), γ (·) and (ξt, γt) are identified. In
particular, the conditional distribution of uit, πit|xt, ξt is identified on the interior of the
support of (g (Yt) , Zt).

Proof. Assumptions 5 and 6 imply that there exists a function ψ−1 (·;x∗) such that (δt, γt) =
ψ−1 (ϕt;x∗

t ) . Assumption 7(i) implies that E
[
ψ−1 (ϕt;x∗

t ) −
(
xδ

t , x
γ
t

)∣∣∣ rt

]
= E [ξt| rt] = 0. Let

ψ̃−1 (·;x∗) be an alternative function such thatE
[
ψ−1 (ϕt;x∗

t ) − ψ̃−1 (ϕt;x∗)
∣∣∣ rt

]
= 0 almost

everywhere. Assumption 7(ii) implies that ψ−1 (ϕt;x∗) = ψ̃−1 (ϕt;x∗) almost everywhere.
Therefore, ψ−1 (·;x∗) is identified. Since ϕt is known, we know that (δt, γt) = ψ−1 (ϕt;x∗

t ) is
identified and so is ξt = (δt, γt) −

(
xδ

t , x
γ
t

)
.

The key hypothesis of Theorem 2 is Assumption 6. This invertibility assumption represents
the main difference relative to those used for identifying and estimating models of demand

23A similar result holds under the assumption that the joint distribution of (log αi, log βi) is unimodal.
24We sample rt jointly with (xt, ξt).
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without choice set constraints (e.g. Berry and Haile, 2014; Berry et al., 1995). In these
analyses, identification arguments are based on a J−dimensional vector of indices containing
product-level unobservables to be invertible in the J−dimensional vector of market shares.
However, the existence of such an inverse – proved in Berry et al. (2013) for the case of
demand – is not available in our case because we need to invert a 2J−dimensional vector,
(δt, γt), whereas market shares only have dimension J .25 This creates the new challenge we
solve in our analysis.

Our solution exploits the features of the model that are identified using the within-market
variation in preference and choice-set shifters, Y and Z. Corollary 1 shows that this variation
allows us to identify the distribution of the 2J-dimensional random variable (uit, πit) on the
relevant support (corollary 1 ). We therefore base our inversion on a 2J-dimensional vector
ϕt. To justify this approach, the researcher needs to place sufficient restrictions on the model
so that ϕt is a known function of this joint distribution and is identified for each market.26

Our results therefore allow for endogenous characteristics in the presence of constrained
choices, can be relevant for a number of applications. For example, a growing literature
uses estimates of school demand to study the effects of school investment (Dinerstein and
Smith, 2021) or the effects of competition between schools in prices and quality (Neilson,
2020; Allende, 2019). An important goal is to estimate the elasticity of school demand with
respect to these observables in order to predict equilibrium effects of various policy reforms.
While this work incorporates unobserved factors that affect school demand, it abstracts away
from the possibility that schools select students by assuming that each student is matched
with their most preferred school in equilibrium, an assumption that may not be reasonable
in markets with selective school admissions. Our framework, to our knowledge, is the first to
accommodate both these features.

25Of course, one possibility would be to omit product-level unobserved characteristics in the model of
choice sets. This approach may allow us to obtain an inversion from the vector of market shares to δt. While
this approach will allow for counterfactuals varying xt while fixing ξu

t , the within-market variation utilized
in section 3.1 will still be necessary to disentangle preferences from choice-set constraints.

26The use of within-market variation in the shifters Y and Z to identify demand resembles the work of
Berry and Haile (2020). However, we require cross-market or cross-product variation in an instrument rjt to
identify the model instead of relying solely on within-market “micro data.”
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4 Data and Descriptive Analysis

4.1 Background

Dialysis is the predominant form of treatment for patients with End Stage Renal Disease
(ESRD). It is a procedure that removes toxins that are otherwise filtered by a functioning
kidney. Even with dialysis, median survival for ESRD patients is about five years (Figure
5.7, U. S. Renal Data System, 2020). Although kidney transplantation has much better
outcomes, organs for transplantation are scarce, making dialysis the only feasible option for
the majority of patients.

There are two ways in which dialysis can be performed. The first and most commonly used
method in the US is hemodialysis, accounting for about 90% of dialysis patients (Figure 1.2,
U. S. Renal Data System, 2020). This method circulates the patient’s blood through an
extracorporeal artificial kidney. Hemodialysis is usually performed in an outpatient facility
that focuses exclusively on dialysis treatments. It lasts between three to four hours and must
be performed two to three times a week depending on the patient’s residual kidney function.
The second method, peritoneal dialysis, requires a catheter to be surgically inserted into the
patient’s body which is then used to administer a cleansing fluid and to collect waste. A
patient’s choice between the two dialysis modalities depends on numerous factors, including
medical conditions, lifestyle and preferences (Lee et al., 2008). Our study focuses on facility-
based hemodialysis patients, considering the choice of alternative treatment modalities as
part of the outside option.

Facilities performing hemodialysis are regulated – they are required to employ skilled staff,
use highly specific capital and adhere to health and safety requirements (Department of
Health and Human Services, 2008). The most binding constraint in the medium-term is the
number of kidney dialysis stations in the facility. Dialysis machines are large, dedicated to
a single patient at a time, and must be placed adjacent to a chair or a bed where a patient
can be stationed for several hours. Short-term inputs influencing capacity include nursing
staff and technicians that can operate the machines. The staff monitors patients, provides
medications, administers injections, and cleans and services the machines prior to use by
every patient. These staffing, capital and space requirements make capacity adjustments to
demand fluctuations a slow response (Eliason, 2019; Grieco and McDevitt, 2017).

Medicare provides insurance for costs related to ESRD for all US patients, irrespective of
age. This coverage is secondary for patients with a private or employer health insurance plan
during first 30 months after diagnosis of ESRD, called the coordination period. Each patient-
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year on hemodialysis costs approximately $90,000 at Medicare rates, and higher at private
rates (Chapter 10, U. S. Renal Data System, 2020). With approximately 750,000 patients
suffering from ESRD in the US, Medicare costs of patients with kidney failure totaled to
$49.2 billion in 2018 (Chapter 1 and 10, U. S. Renal Data System, 2020). This figure is more
than 7% of all Medicare claims and more than 1% of national health care spending (Chapter
10, U. S. Renal Data System, 2020).

4.2 Data

The data for this study are taken from the US Renal Data System (U. S. Renal Data System,
2020). These data are assembled from various sources, including Medicare claims, facility
reports and data on patient outcomes collected as part of the regulatory process. There are
two important pieces of information that we will use for our study. First, we observe the
residential zip-code, demographics, employment status and co-morbidities of each patient, as
well as the facility where each patient is being treated. These data include patients who are
initially covered by a private or employer health insurance plan because the start of dialysis
determines the date at which a patient becomes eligible for full coverage by Medicare.

Second, the role of Medicare as the near-universal insurer in this market allows us to track
the number of patients that are being treated in each facility on any given day. Further,
we can determine whether an ESRD patient was cared for using hemodialysis or peritoneal
dialysis.

Our analysis sample focuses on patients whose first treatment commenced at a facility in
California between 2015 and 2018. There are two main restrictions imposed by this choice.
First, the restriction to a single state is for tractability. Although we chose California since it
is the largest state in terms of population, it also happens to be the case that the vast majority
of its population does not live close to a neighboring state. Given the role of Medicare in this
part of the healthcare sector, idiosyncrasies regarding California’s healthcare sector are less
relevant for our study. Our sample selection procedure is further described in appendix B.

Second, we focus on the first facility where a patient begins dialysis to abstract away from
considerations that are unique to switching facilities, which include interference with conti-
nuity of care and administrative or financial barriers.27 In our sample, 74.2% of patients are
treated at only one facility and the average patient only visits 1.30 facilities. Our approach

27We drop the certain quarters in which a facility enters, exits, moves or rapidly expands or contracts.
See appendix B for further details. Patients matched to one of these facilities during this time-period are
considered to be matched to the outside option. Thus, the value of the outside option is the inclusive value
of going to one of these facilities or of choosing peritoneal or home dialysis.
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Table 1: Facility Sample

paper

1

1

1

Facility 1

N 553 377 114 78 1

Facility-year 2093 1418 385 290 1

Number of patients 1

Mean 108.6 113.0 100.2 98.2 1

Std. dev 46.8 46.3 38.9 54.9 1

Number of stations 1

Mean 22.3 22.3 22.0 22.5 1

Std. dev 7.6 7.2 7.2 9.6 1

16

12

All facilities

Ownership

Fresenius and 

Davita
Other chains Independent

Notes: Sample of all facility-year observations, as described in table B.1. The number of patients for a facility
is the daily average of enrolled patients undergoing hemodialysis.

is consistent with facility moves being unexpected, say due to residential moves or other
changes that are unexpected at the time when the patient begins dialysis.

4.3 Description of Sample and Choices

Table 1 describes the hemodialysis facilities in our sample. There are 552 facilities, most
of them owned by one of the two large chains, Fresenius and DaVita. These and the vast
majority of other facilities are for-profit and freestanding in that they are not associated
with a hospital. In fact, these establishments usually focus exclusively on dialysis care and
are not directly associated with another hospital or healthcare system. The average facility
cares for just under 100 patients at a time, with chains and freestanding facilities caring for
more patients per facility. The ratio of the number of stations to the number of patients is
approximately five. This ratio is consistent with an average of two four-hour treatments per
station per day since most patients require three treatments per week. Indeed, figure 3 shows
that the number of patients per station is almost constant at five patients per station over
the size distribution of facilities.
Table 2 describes the patient sample, which contains 41,913 new patients in our sample. Most
of these patients choose hemodialysis at a facility in our facility sample. The patients are
predominantly white, and the incidence of hypertension and diabetes is high. The majority
of patients are on Medicare, an HMO or in the waiting period. The HMO group primarily
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Figure 3: Patients per Dialysis Station
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consists of patients over the age of 65 that are covered by a Medicare Advantage plan. The
high share already on a Medicare plan at the start of dialysis is a consequence of the fact
that age is a strong correlate of kidney disease. Going forward, we pool all patients who
are Medicare eligible. The table also shows that the majority of patients begin dialysis in a
freestanding facility. These facilities are not associated with a hospital and most of them are
owned by chains. The largest chains are owned by either Fresenius or DaVita.

Table 3 describes the facilities near the patients in our sample and the chosen facility. The
average patient has 6.5 facilities within 5 miles of their home zip-code and 17 facilities within
10 miles.28 The typical patient receives dialysis at a facility with an average distance of 6.8
miles, but the median is lower, at 4.4 miles.

4.4 Evidence on Supply-Side Rationing

We now argue that capacity constraints affect the choice sets of patients. Our argument
proceeds in two steps. We start by showing that facilities that have an unusually high
caseload at a given point in time relative to their baseline are less likely to accept a new
patients for a while. After demonstrating this pattern, we turn to analyzing how the facility
where a patient starts treatment is affected by these constraints. To do this, we show that the

28Distances are measured between the patient’s zip-code centroid and the facility’s address.
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Table 2: Patient Sample

Paper

Patient count

N 50002 43423 28647 7853 6923 1

Age

Mean 63.1 63.7 63.6 64.9 63.1 1

Std. dev 15.0 14.8 14.8 14.9 15.1 1

Employed (%) 1

Mean 0.1 0.1 0.1 0.1 0.1 1

White (%)

Mean 71.3 72.1 73.0 67.4 73.4 1

Black (%)

Mean 10.7 10.8 11.1 11.2 9.2 1

BMI

Mean 28.4 28.4 28.4 28.4 28.4 1

 Std. dev 7.3 7.4 7.4 7.6 7.5 1

Diabetes (%)

Mean 39.6 40.4 40.4 40.0 40.8 1

Hypertension (%)

Mean 86.5 86.4 85.8 86.9 88.2 1

Medicare (%)

Mean 32.9 32.8 32.4 37.0 29.6 1

Medicare Advantage (%) 

Mean 24.5 24.6 24.7 24.0 24.5 1

Medicare waiting period (%)

Mean 12.5 13.1 12.7 12.8 15.2 1

Other (%)

Mean 30.1 29.6 30.2 26.3 30.8 1

1

Fresenius and 

Davita
Other chains Independent

Panel B: Insurance type at admission

Panel A: Patient characteristics

All patients

Treated at an 

in-sample 

facility

Ownership

Notes: Sample of patients, as described in patient Table B.2. BMI is Body Mass Index (kg/m2). Medicare
Waiting Period is the 90-day period before Medicare covers hemodialysis. Other represents patients not
covered by Medicare. These patients are typically covered by employer group health plans, the Department
of Veteran Affairs, and private insurers. Most of them will become eligible for Medicare as a primary payer
after 30-33 months.
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Table 3: Patient Choices

Payer

1

1

1

Number of facilities 1

Mean --- 6.6 18.0 59.4 1

 Std. dev --- 5.2 17.5 55.2 1

 Median --- 5.0 11.0 32.0 1

Distance to facility 1

Mean 6.7 3.2 6.0 14.1 1

Std. dev 7.3 0.7 1.3 3.1 1

 Median 4.3 3.2 6.1 14.3 1

95th percentile 21.5 4.4 8.3 18.7 1

Number of patients at facility 1

Mean 124.1 120.9 118.0 114.9 1

 Std. dev 47.9 27.4 24.5 18.5 1

 Median 120.0 121.7 120.1 120.9 1

Total stations 1

Mean 24.1 23.4 23.1 22.8 1

 Std. dev 7.8 4.2 3.3 2.3 1

 Median 24.0 23.2 23.3 23.4 1

Chain (%) 1

Overall mean 87.1 89.7 89.2 88.2 1

Fresenius 20.4 23.3 22.7 22.2

Davita 48.3 48.6 48.1 48.7

1
1

1

1

1

1

1

1

1

1

1

1

Notes: Sample of Patient-Facility pairs where the patient is in our patient sample and the facility is in our facility 

sample. Distance is measured in miles from the facility to the centroid of a patient's reported zipcode. The number of 

patients is the sum of all patients enrolled at a facility that are undergoing hemodialysis. Survival Better means 

facility is categorized as "survival better than expected" by dialysis_facility_compare. Survival not worse means 

facility is categorized as "survival not worse than expected" by dialysis_facility_compare. URR is the  Urea Reduction 

Ratio. X year survival is the yearly average number of patients that survive X years. 

Facilities

Chosen Within 5 miles Within 10 miles Within 25 miles

Notes: Sample of patient-facility pairs. Distance is measured in miles from the facility to the centroid of a
patient’s zip code. The number of patients at a facility is the sum of all patients enrolled at a facility that
are undergoing hemodialysis.
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distance to the chosen facility is higher if nearby facilities are more constrained. Moreover,
the effects of constraints at facilities of different qualities are different. This latter finding
suggests that patients also have preferences over our measures of quality.

Effects on flow of new patients

We hypothesize that the current caseload at a facility influences the facility’s decision to
accept a new patient. Let zij be a measure of the excess occupancy (relative to a target)
in facility j when patient i enters the dialysis market. If our measure of excess occupancy
is excludable from the patients’ utility, conditional on controls that enter the utility func-
tion, then the inflow of new patients into facility j should be conditionally independent of
the facility’s caseload given these controls. To see this, consider a model without capacity
constraints in which σij = 1 for all i and j. In this model, assuming that the patient arrival
into the dialysis market is exogenous, the probability that a new patient arrives into facility
j is given by the unconditional probability that uij > uij′ for all j′, which is independent
of zij. However, if facilities are less likely to accept a patient when zij is high, then the in
flow of new patients will be negatively correlated with caseload. As discussed in Section 2,
Gandhi (2021) presents one micro-foundation for this relationship.
We will test this hypothesis using two sets of dependent variables measuring patient inflow
on occupancy and excess occupancy. In the first set, the dependent variable is whether a
facility j accepts a new patient on day t. We estimate this set using data from all days
a facility is operating during our sample period. The dependent variable in the second set
is the number of the days until the next patient begins treatment at facility j. This set is
estimated using the subset of days in which a new patient began treatment. The regressions
control for either facility-year or facility-month level fixed effects, and cluster standard errors
at the facility level. In a subset of regressions, we also control for the average occupancy in
other facilities within five miles of facility j.
Facility occupancy is measured as the number of patients being treated on date t at facility
j and the excess occupancy is the difference between occupancy and a measure of target
occupancy. The measure of excess occupancy is motivated by an examination of the time
series of the number of patients at a facility, which reveals that several facilities undergo
periods of expansion or contraction. These periods may correspond to investment in capital,
increases in staffing or restructuring of the facility’s operations and could confound the results.
To account for these changes, we need to construct a measure of target capacity given the
facility’s operational setup on a given day. One way forward would be to use high-frequency
data on facility inputs and investments in order to estimate facility capacity. Unfortunately,
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labor inputs and capital investment are recorded only annually, and their timing is unknown.
Instead, we estimate target occupancy using a regime-switching autoregressive model with
a linear trend on the occupancy time series for each facility. The model detects breaks in
each facility’s occupancy trend to identify points at which the facility’s occupancy process
changes. We construct the target occupancy on a given date as the expected value on a
given day.29 We do not detect any breaks in trends for 500 of 553 facilities. Conditional on
finding a break in the trend, the average number of breaks is 2.02. Thus, while not rare, the
breaks in trend are not relevant for the vast majority of facilities. Table B.3 in the appendix
shows that our estimate of target occupancy is positively correlated with the (low-frequency)
measures of facility inputs available in our dataset, even conditional on facility fixed effects.
The daily within-facility standard deviation of excess occupancy is 4.22.
There are three notable findings from the regressions of patient inflows on our measures of
occupancy (see table 4). First, controlling for facility-year fixed effects, higher occupancy is
negatively correlated with the probability of a new patient beginning dialysis at the facility
and positively correlated with the expected waiting time until the next patient (columns 3-6).
This relationship is robust to the inclusion of occupancy at other nearby facilities. Although
not reported, this negative relationship between occupancy and patient inflow is robust to
the inclusion of finer controls, such as facility-quarter or facility-month fixed effects.
Second, we observe that including facility-time controls appears to be important. The results
in columns (1) and (2) are analogous to those in columns (3) and (5), but use only facility-
specific fixed effects instead of facility-year fixed effects. The estimated relationship between
the probability of new patient beginning dialysis and the facility’s occupancy is now positive.
When combined with the result that facility-time controls yield a robust negative coefficient,
it suggests that fluctuations in a facility’s target occupancy may be important.
Third, our measure of excess occupancy purges some of the confounding variation in the raw
measure of occupancy that resulted in a positive coefficient in column (1). This variation was
absorbed in specifications that employed fixed effects at the facility-year or finer levels. Since
including a richer set of fixed effects will not be feasible in the non-linear model that we will

29Specifically, let njτ be the number of patients being treated at facility j on day τ . Assume that njτ

follows the following time series model with m ≥ 1 regimes njτ = αjk(τ) + βjk(τ)τ + γjk(τ)njτ−1 + ejτ ,where
k (τ) is a weakly increasing function that maps days τ = 1, ..., T to regimes k = 1, ..., m. The disturbance ejτ

has mean zero, constant variance, and follows an ergodic process. This model is consistent with a birth-death
process in which departure rates are proportional to njt and arrival rates are a function of njτ − n∗

jτ . The
target occupancy on date τ is defined as n∗

jτ = αjk(τ)+βjk(τ)τ

1−γjk(τ)
. We estimate the parameters of this model,

which include the dates on which the regimes changes. The regime changes for each facility are estimated
using a modified Schwartz criterion proposed in Liu et al. (1997) and analyzed in Bai and Perron (2003). We
winsorize njτ − n∗

jτ by censoring the top and bottom 5% for each facility j in order to limit the influence of
outliers.
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ultimately estimate, our empirical specifications will use this measure of excess occupancy in
the acceptance policy function.

Fourth, these regressions also speak to the effect of capacity constraints at other facilities
close to facility j. There are two opposing forces. Constraints at other facilities close to j can
increase the demand for facility j. But, this force can also push facility j to be more selective
and turn away less profitable patients because it expects a higher flow of patients, allowing
the facility to cream-skim the most desirable patients. Our results show that the number of
patients being treated at other facilities close to facility j increases the probability that new
patients start treatment at facility j (see columns 8 and 10 in table 4). This evidence weighs
in favor of increased demand at the facility rather than the hypothesis that constraints at
nearby facilities create a strong enough push for a facility to be more selective, although we
cannot rule out this latter possibility because of the offsetting effects. Because our results are
consistent with facility strategies that are not responsive to short-term constraints faced by
competitors, we will ignore strategic interactions of this nature in our model. This assumption
is also made in Gandhi (2021) for tractability, which studies selective patient acceptance in
nursing homes.

Effects on where patients are treated

Having shown that capacity constraints affect the inflow of patients, we now investigate
the effects of capacity constraints on where patients receive treatment. Figure 4 presents
a binscatter indicating that the distance to the chosen facility is increasing in the average
excess occupancy of facilities within five miles of the patient’s zip-code centroid. This exhibit
residualizes fixed effects at the zip-code-quarter level in order to control for confounding
trends in the facilities’ target occupancy. Again, we find that facility capacity constraints
influences outcomes in this market.

Discussion

Taken together, the qualitative results indicate that capacity constraints are important
drivers of realized matches if fluctuations in occupancy are not correlated with preferences
for the facility. The main potential threat is that crowded facilities are undesirable. However,
this concern is limited if patients primarily determine their decisions on longer-term crowd-
ing than the finer variation that we leverage in these estimates. The annual within-facility
autocorrelation in excess occupancy is 0.06, suggesting that utilization on a specific day is
not strongly correlated with the long-term occupancy.
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Figure 4: Distance to Chosen Facility
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Notes: Binscatter with twenty bins, residualized against patient zip-code and quarter-year fixed effects using
the estimator in Cattaneo et al. (2021).
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Without further institutional context, a potential alternative interpretation of our results is
that capacity constraints manifest themselves in increased waiting time rather than a binary
accept/reject decision by a facility. Dialysis, however, is a time-sensitive treatment and either
delaying or advancing treatment by more than a few days relative to an optimal start can
pose substantial health costs (Chan et al., 2014). This feature of the market favors our
interpretation over an unobserved waiting time as the instrument rationing demand.

5 Estimates

5.1 Parametric Specification and Estimation

Although the arguments showing Theorem 1 are non-parametric and constructive,30 there
are two important challenges in constructing a non-parametric estimator. In principle, the
constructive nature of our argument suggests estimating the market shares in equation (3)
and then recover g (·) and the joint distribution of (u, π) in a second step. This problem is
challenging because of dimensionality – the share equation has a J−dimensional range and
at least a 2J−dimensional domain. This approach has not been shown to work well even is
models without choice constraints if there are more than a few products in the market (see also
Compiani, 2021, for example). The typical solution to this problem is to directly estimate the
distribution of preferences and, in our case, also the distribution of choice sets. Estimating
such a model with latent choice sets non-parametrically is exceedingly difficult because the
number of potential choice sets is large even for relatively small J .31 Thus, enumerating
all possible latent choice sets in order to compute the likelihood is often computationally
infeasible.32

Instead, following much of the literature on discrete choice demand models, we parametrize
the distribution of (u, π). We chose a specification to aid computation. First, we address

30To see why our proof is constructive, note that arguments in Lemma 2 show that g (·) is the solution to
differential equation with an initial condition given by the normalizations on gj (·) and derivatives given by
the ratio of the cross partials of s (·), which are data. Lemma 1 yields the joint distribution of (ui, πi) given
g (·), where the probability mass on any Borel set in the interior of χ is constructed in the proof. In fact, if
s (w, y, z) has continuous partial derivaties with respect to y and z, and each ∂gj(·)

∂yj
̸= 0, then the density of

(ui, πi) at (g (yi) , zi) is given by ∂2J s0(w,y,z)
∂y1...∂yJ ∂z1...∂zJ

/
∏J

j=1
∂gj(y)

∂yj
.

31Recall that the likelihood of observing agent i in facility j given agent i’s observable characteristics
(wi, yi, zi) is given by equation (3). The number of terms in this sum is equal to the number choice possible
choice sets, which is equal to 2|J|. With only fourteen facilities, which is approximately the average number
of facilities within ten miles for a patient, the number of choice sets is 16,384.

32Simulation studies also often limit the number of goods to a small number for these reasons. Abaluck
and Compiani (2020), for example, conduct their monte carlo simulations with 10 goods or less.
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the curse of dimensionality due to the large number of potential choice sets using a Gibbs
sampler (see also Logan et al., 2008; Menzel and Salz, 2013; He et al., 2024). It modifies
the sampler from McCulloch and Rossi (1994) with a data augmentation step to accomodate
the case with latent choice sets. This will motivate distributional assumptions that admit
closed-form solutions of certain conditional distributions. Second, we allow for correlations
between preferences and choice sets via unobservables (ωi in our notation). As mentioned
earlier, the prior literature often assumes that choice sets are independent of preferences
in order to further simplify computation. Third, we include random coefficients on agent’s
preferences for facility characteristics, which allows for more flexible substitution patterns.

Based on these considerations, we make the following assumptions on the preferences and
acceptance functions:

vij = δj + βddi − g (di, yij) + βixj + εi0 + εij (6)

σij = 1 {γj + αdi − zij + νij > 0} , (7)

where xj are observed facility characteristics, δj and γj are facility fixed effects, and βi, εi0,
εij and νi0, νij are idiosyncratic shocks. We adopt the normalizations that g′ (di, yij) = 1 at
yij = 1 and g (di, yij) = 0 at yij = 0 for all di, and that the admission index is expressed
in units of zij. As before, di is a vector of agent i’s characteristics. We parametrize g (·)
as a quadratic function given di, with parameters βg and collect β = (βw, βg). The specific
observables d, y and z are described in section 5.2.

We allow for unobserved match-specific correlations by allowing for εij and νij to be jointly
normally distributed with mean zero and an estimated covariance matrix Σ. The term εi0

captures individual heterogeneity in preferences for the facilities in the market relative to
the outside option. A restriction in our model, relative to the non-parametric identification
result, is that we do not allow νij and νij′ to be correlated with each other nor do we allow
for random coefficients on the acceptance functions.33

We will use the measure of excess occupancy presented in section 4 as the choice-set shifter,
zij. As noted earlier, our model will be consistent with a micro-foundation of selective
admissions practices due to Gandhi (2021). However, the model can acommodate other
unspecified reasons why a facility may not be in a patient’s choice-set via error terms in the

33We found specifications that included such correlations to be difficult to estimate and unstable in our
empirical application. This problem did not exist in Monte Carlo simulations. It is possible that the issue
may be specific to our empirical setting.
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specification of πij.34 Decomposing specific reasons for a facility not belonging to patient i’s
choice set requires additional structure and is therefore beyond the scope of this paper.

The parametric assumptions on the error terms allow us to use a Gibbs sampler for esti-
mation because, under conjugate prior distributions, the conditional distributions of any of
the latent error terms and random coefficients given the others can be obtained in closed
form. Moreover, the conditional distributions of each of the parameters (α, β,Σ, δ, γ) given
the errors, random coefficients, and the other parameters can be obtained in closed form.
The procedure iterates through each of these parameters, obtaining draws from their condi-
tional posteriors to obtain a Markov Chain of draws of (α, β,Σ, δ, γ). The draws of the chain
converge to the posterior distribution, which is asymptotically equivalent to the maximum
likelihood estimator (see van der Vaart, 2000, Theorem 10.1 (Bernstein-von-Mises)). Thus,
the mean of the chains’ draws yields our point estimate and the covariance of the draws
consistently estimates the asymptotic covariance. We check for convergence by ensuring that
the number of effective draws is large, the potential scale reduction factor is close to 1, and
by visually inspecting the chains.

The key modification from McCulloch and Rossi (1994) involves a data augmentation step
in order to avoid calculating the likelihood of choices for each possible latent choice set.
Given our model, the likelihood of consumer (henceforth patient) i matching with product
(henceforth facility) j is equal to the probability of the event that πij ≥ zij, vij ≥ 0 and
that for all j′ ∈ Jt, either πij < zij or vij ≥ vij′ . That is, facility j admits patient i, patient
i finds facility j acceptable, and every other facility in the market satisfies at least one of
two conditions: either it does not admit i or i prefers j to it. To the best of our knowledge,
closed-form solutions for this probability are not known. However, the problem is standard
and tractable once we condition on either the vector πi = (πi1, . . . , πiJ) or ui = (ui1, . . . , uiJ).
This is because πi determines the latent choice set, making the remaining problem a standard
discrete choice problem. And, conditional on ui, i matches with j if and only if πij > 0 and
πij′ < 0 for all j′ with uij′ > uij′ . This set of πi is a standard orthant. Thus, our sampler will
iterate between data augmentation steps for πi and ui. Further details on the Gibbs sampler
are provided in appendix C.

Our approach differs from most of the literature on estimating models with latent choice sets,
which typically simulates latent choice sets and choice probabilites (Honka, 2014; Honka et
al., 2017; Gandhi, 2021; Barseghyan et al., 2021a). Even so, simulating the likelihood without

34For example, our model can accomodate patient steering by physicians through choice-set formation
because πij may include factors that physicians value but are irrelevant for patient choices. Strictly speaking,
however, this model differs from the one in Gaynor et al. (2016) because we require that capacity constraints
zij are marginal for choice-set formation.
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introducing simulation bias (Train, 2009) may be computationally demanding in markets with
many possible options. For similar reasons related to the dimensionality of the possible choice
sets, Barseghyan et al. (2021a) also utilize an estimation procedure that avoids simulating
all the latent choice sets, integrating instead over the distribution of preference parameters
and evaluating the probabilities of latent choice sets consistent with the observed data.

This estimation procedure yields estimates of the pair of product-specific fixed effects δj and
γj. The questions that we pursue in the empirical example will not require us to estimate the
effects of changes in observable product characteristics. Therefore, we do not further develop
these fixed effects in terms of product observables xj and unobservables ξj, e.g. δj = xjβX +ξj.
In such instances, a researcher may be concerned about potential endogeneity of xj. This
endogeneity does not bias the estimates of δj. In fact, it is possible to consistently estimate βX

in a second-step if instruments that are mean independent of ξj are available. This two-step
approach has been used in a number of prior papers estimating demand with micromodels
that do not incorporate choice-set constraints (see Goolsbee and Petrin, 2004; Chintagunta
and Dubé, 2005; Train and Winston, 2007, for example).

We conducted Monte Carlo exercises to assess the performance of our estimator, and also to
study the consequences of estimating a model that mis-specifies prefences or the choice-set
formation process. Specifically, we consider variations that omit random coefficients, incor-
rectly assume that choice sets are unconstrained, or includes zij in the utility function as a
naive correction for constrained choices. As expected, the resulting bias on the remaining pa-
rameter estimates is substantial. Perhaps more importantly, the mis-specifications discussed
above translate to biases in economic quantities of interest such as the diversion ratios that
we consider in further detail in Section 5.2.4 below. The results from these exercises are
discussed in Appendix D.

5.2 Estimates

We start by describing and comparing the estimates from various specifications before turning
to a discussion of potential biases in section 5.2.3 and implications on diversion ratios in
section 5.2.4.

5.2.1 Empirical Specifications

In all the specifications we consider, the unconstrained choice set for each patient is the set of
facilities within a 50 mile radius of their home zip-code centroid. The patient’s utility for the
inside versus the outside option depends on whether the patient has part-time or full-time
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employment as it may affect preferences for in-center versus home dialysis, and whether the
patient is eligible for Medicare when she begins dialysis. The variable yij is the distance
between the centroid of the patient’s zip code and the facility. We specify g (·) as a quadratic
function with the coefficient on the linear term normalized to 1. The slope is allowed to
depend on employment status and on the population density of the county where the patient
lives. The variable zij is the excess occupancy of facility j when patient i begins dialysis.
Fixed effects are included for each facility.

We compare estimates from three specifications. The first specification, which is our preferred
specification, models both preferences and acceptance policies (equations 6 and 7). Patient
characteristics that affect acceptance policies include whether or not a patient is Medicare
eligible when she begins dialysis, bins of body-mass-index, age, diabetic status and hyperten-
sion. We also include patient-specific random coefficients for chain and non-chain facilities
in the preferences equation. Facility fixed effects are included in both the preferences and
acceptance policy equations.

The second specification, which we refer to as the unconstrained demand model, modifies
the preferred specification by omitting capacity constraints and setting σij = 1 for all i and
j in equation (7). This specification serves as a comparison of the methods in this paper to
a standard approach which does not account for latent choice constraints.

Finally, the third specification, which we refer to as the naive model, modifies the second
specification by adding a term βzzij in equation (6), where βz is to be estimated. There are two
interpretations of this specification. The first is that patients do not face choice constraints,
but dislike facilities with high values of zij (if βz is negative). Since this interpretation does
away with capacity constraints, access to desirable facilities is not influenced by supply-side
rationing. This implication may not be a good description for ours and several other markets.
The second interpretation is that the specification represents a reduced-form approach that
corrects for latent choice set constraints. Section 5.2.4 discusses an undesirable feature of
this latter interpretation.

5.2.2 Parameter Estimates

Table 5 presents the estimates from the three specifications. As expected, the estimates
indicate that the marginal disutility of distance is decreasing with distance. This and several
other estimates are robust across specifications. Consistent with the descriptive evidence in
section 4.4, the coefficient on excess occupancy in the naive specification is negative.

There are some notable differences between our preferred specification and the rest. First,



47

Table 5: Parameter Estimates

Gibbs Sampler

Unconstrained Naïve Model

(2) (3)
Acceptance Utility Utility Utility

Chain 6.637 5.345 2.391 2.405
(5.054) (0.780) (0.829) (0.822)

No Chain 2.207 5.379 2.028 2.048
(6.076) (0.840) (0.879) (0.872)

Diabetes 0.570 0.724 0.809 0.821
(2.121) (0.148) (0.138) (0.141)

Hypertension -5.873 -0.244 -0.501 -0.502
(2.708) (0.201) (0.191) (0.194)

BMI<20 -4.232 -0.038 -0.232 -0.230
(1.880) (0.254) (0.265) (0.268)

25<=BMI<30 1.038 -0.367 -0.360 -0.357
(1.239) (0.161) (0.170) (0.173)

30<=BMI 5.996 0.024 0.266 0.268
(1.398) (0.161) (0.169) (0.172)

Age 0.470 0.001 0.001 0.001
(0.198) (0.000) (0.000) (0.000)

Age squared -0.001 -1.275 -1.399 -1.409
(0.002) (0.188) (0.192) (0.198)

Medicare -2.411 0.008 0.034 0.035
(1.656) (0.026) (0.027) (0.027)

Medicare Advantage 26.929 -2.652 -1.923 -1.937
(3.169) (0.213) (0.218) (0.226)

Medicare waiting period 8.618 2.183 2.772 2.797
(1.690) (0.225) (0.242) (0.244)

Employed -5.304 -5.764 -5.802
(0.230) (0.262) (0.269)

Employed x distance 0.004 0.006 0.006
(0.007) (0.006) (0.006)

Population density x distance 0.000 0.001 0.001
(0.000) (0.001) (0.001)

Distance squared 0.013 0.013 0.013
(0.000) (0.000) (0.000)

Excess Occupancy -0.042
(0.003)

Standard deviation of δj 2.574 2.414 2.402
(0.100) (0.094) (0.095)

Standard deviation of εi0 8.715 9.550 9.663
(0.264) (0.327) (0.360)

Standard deviation of εij 4.274 4.799 4.796
(0.042) (0.028) (0.028)

Standard deviation of 𝛾j 38.799
(3.950)

Standard deviation of random coef on Chain 1.827 2.350 2.358
(0.264) (0.219) (0.217)

Standard deviation of random coef on No Chain 0.688 0.704 0.697
(0.223) (0.247) (0.240)

Standard deviation of νij 37.398
(3.314)

Correlation between  εij and νij -0.118
(0.036)

Preferred Specification

(1)

Notes: All specifications include distance with a coefficient normalized to -1 in the utility equation. Spec-
ification (1) includes “excess occupancy" in the acceptance equation. Specific intercepts for Chain and No
Chain facilities obviate the need of a constant term. Standard errors in parentheses.
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the mean utility of chain and non-chain facilities (at a distance of zero) is higher in our
preferred specification than the other specifications. This reflects the idea that some patients
in our specification prefer one of the inside option facilities but are forced to an outside option
because of capacity constraints at the inside options. Second, the standard deviations of the
facility mean utilities, the outside option utility εi0, and preference shocks εij are lower in our
preferred specification than the others. This is expected because a model with unconstrained
demand would attribute latent choice constraints to unobserved preference heterogeneity,
requiring larger shocks in order to rationalize the observed data.

Turning to the acceptance policy function, we find that measures of patient health conditions
and insurance status are correlated with acceptance. The propensity of facilities to accept
patients increases with the patient’s BMI and whether the patient is insured by Medicare
Advantage or a private insurer, and therefore, is in the waiting period. Figure 5 shows the
estimated distribution of acceptance probabilities for each facility, averaged over all patients
for whom the facility is in the patient’s choice set. The probability of acceptance is calculated
based on the excess occupancy at the facility on the date when the patient begins dialysis.
That is, the probability that σijt = 1 is calculated using time-varying characteristics zij as
relevant for patient i. Our results indicate that while the acceptance probabilities are close to
1 for a significant portion of facilities, there are a large number of facilities where the average
acceptance probability is much lower than 1. Thus, constraints on choices due to supply-side
rationing are non-trivial.

5.2.3 Biases in demand estimates

The capacity constraints estimated above imply a bias in estimated demand using standard
approaches. In particular, estimates of demand based on observed market share have the
property that, within a market, the product with the highest market share provides the
highest indirect utility to the average consumer. Figure 6 shows the estimated relationship
between (the log of) market shares and the estimated mean utility (in miles) for our preferred
and unconstrained specficiations. The relationship between these two quantities is positive in
both specifications, but steeper in the unconstrained specification.35 This difference occurs
both because constraints at desirable facilities can force patients to choose less desirable ones
and because the inflow of patients at more desirable facilities can be limited. Therefore, an

35Even in the unconstrained specification, we observe dispersion around the central relationship between
market shares and mean utility because patient heterogeneity, both in choice sets and in characteristics. For
example, not all patients have the same distance to each facility. A strictly monotonic relationship holds in
the unconstrained model only conditional on consumer observable characteristics and choice sets (see Berry
et al., 2013).
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Figure 5: Acceptance Probabilities
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analyst who ignores latent choice set constraints may incorrectly deduce a higher desirability
for facilities with greater inflows of patients.

The biased relationship between market shares and utility reflects into a bias in the estimated
demand for a facility. One way in which demand estimates are biased is that the number of
patients for which the facility is the patients’ first choice is misestimated. The unconstrained
specification equates demand – at fixed values of y and z – to the observed market shares.
Figure 7(a) compares the latent demand estimated using the preferred and the unconstrained
specifications. It shows that the latent demand for some facilities is higher for some and lower
for others. The former bias is clear, as a desirable facility may have to turn away some patients
for whom the facility is their first choice. The latter bias occurs because these patients then
start treatment at a different facility, increasing the numbers of patients that start treatment
there. The results from the naive correction are similar, suggesting that the correction does
little to reduce this bias.

Another way to illustrate this bias in demand is to evaluate the estimated willingness to
travel for various dialysis facilities. Figure 7(b) compares the average estimated willingness
to travel – as compared to taking the outside option – from specifications 1 and 2. Since
the proportion of patients for whom a facility is their first choice is a monotonic function of
the mean utility (Berry et al., 2013), this figure reflects the same biases as in Figure 7(a).
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Figure 6: Willingness to Travel and Market Shares
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As before, latent choice constraints feed into biased estimates of demand.36 Thus, similar
sources of bias affect estimates of patient welfare or the desirability of various facilities.

Our model and analysis suggest that the relationship between shares and desirability that is
commonly used to estimate demand is suspect in the presence of supply-side rationing, not
only in the dialysis industry but also in other settings where market shares may be driven by
capacity instead of quality. Because demand often plays a central role in empirical studies,
potential biases in demand estimates can propagate into final conclusions.

5.2.4 Implications of choice constraints on diversion ratios

We close this section by noting that there can also be economic grounds on which naive
corrections for latent choice constraints are unappealing. We illustrate this point by showing
that the naive specification (of the form in specification 3) restricts the comparison between
diversion ratios arising from demand-side factors and acceptance decisions.

Specifically, let sj (zi, yi) be the market share of product j, where di and t have been dropped
from the notation for simplicity, and zi = (zi1, . . . , ziJ) and yi = (yi1, . . . , yiJ). The diversion
ratio of j with respect to k, in principle depends on whether j loses a customer because of
changes in choice constraints, equivalently z, or changes in preferences, equivalently y. The
two diversion ratios are

∂sk

∂zij

/
∂sj

∂zij

and ∂sk

∂yij

/
∂sj

∂yij

.

In our empirical specification, the latter diversion ratio is equivalent to the diversion ratio
obtained based on changes in mean utility δj.

Notice that there are no a priori reasons why these two diversion ratios need to be the same.
To see this, observe that following a marginal change in yij, product j loses customers that
are indifferent between j and another good. The consumers that switch between k and j

following a change in yij are consumers that (i) are indifferent between j and k, (ii) have
both j and k in their choice sets, and (iii) do not have any other more preferable options
in their choice set. Contrast this with consumers that switch between these two products
following a change in zij. These consumers (i) strictly prefer j to k, (ii) are on the margin of
being accepted by j, and (iii) do not have any other more preferable options in their choice
set. Notice that the first two requirements select consumers on different dimensions – on the
preference margin following changes in yij and on the acceptance margin following changes
in zij. Thus, the diversion ratios on these two margins may be different.

36Figure E.2 in the Appendix homes in on this point by showing the difference in estimated mean utility
for facility j and the probability that σijt = 1 for facility j.
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Figure 8: Diversion Ratios
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Figure 8 compares these two types of diversion ratios using our preferred specification. Each
point in the figure represents an independent facility j in California, where we sum the
diversion ratios over all facilities k that are either run by DaVita or Fresenius, the two
largest dialysis chains in the US. As can be seen, these two diversion ratios are substantially
different across the two margins. The diversion with respect to demand factors is usually
higher than diversion with respect to factors affecting supply constraints, with larger diversion
with respect to demand for DaVita than for Fresenius. These differences speak to whether
competitive incentives to strategically choose capacity or quality are more predominant in
the market.

In contrast to the differences measured here, naive corrections can directly restrict these two
diversion ratios to be identical, even under flexible functional forms. Consider the generalized
version of specification 3 in which we assume that σij = 1 for all i and j, and we set

vij = uj (ωi) − g (zij, yij) .

Assume that ωi ⊥ zij, u (ωi) = (u1 (ωi) , . . . , uJ (ωi)) admits a density, and gj (·) is differen-
tiable with respect to the first two arguments. Thus, the observed market share for product
j is sj (zij, yij) = P (vij > vij′ | zij, yij) . And, notice that ∂sl

∂zij
/gz (zij, yij) = ∂sl

∂yij
/gy (zij, yij) for

l ∈ {j, k}. Therefore, ∂sk

∂zij
/ ∂sj

∂zij
= ∂sk

∂yij
/ ∂sj

∂yij
and all the points on figure 8 would be restricted

to lie on the 45-degree line.37 Restrictions, such as this one, can have important implications
37An alternative approach for obtaining differences in diversion ratios between factors affecting supply
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and go beyond the biases in estimated quantities described above.38

6 Conclusion

Consumers often face restricted choice sets for reasons other than monetary budget con-
straints. Examples include information or search frictions, preferences of the other side in
two-sided matching markets, and selective admission practices. These constraints are usu-
ally unobserved to the analyst. We developed a unified model for analyzing discrete choice
demand in the presence of latent constraints on choice sets that encompasses many of the
models discussed earlier.

We show how to point identify the joint distribution of preferences and latent choice con-
straints in the presence of two sets of observable shifters, one that influences preferences and
the other that influences choice sets. Each set of shifters must be excluded from the other
side of the model. Relative to the prior literature, our approach achieves point identification
while placing minimal restrictions on functional forms, on the statistical dependence between
choice sets and preferences, and allows for the endogeneity of product characteristics. The
cost is that our results require access to the shifters mentioned above. However, we show
that our results are sharp in the sense that additional restrictions on the model are necessary
for identification if either set of shifters are not available.

As an illustrative example, we estimate the demand for hemodialysis facilities. The data
shows clear evidence of supply-side rationing – facilities with a higher than usual occupancy
are less likely to admit new patients, and patients that begin dialysis when nearby centers are
constraints are observed to travel further away. Next, we use patient enrollment outcomes to
estimate a joint model of preferences and supply-side rationing using a Gibbs sampler. Our
results show that ignoring supply-side constraints when present can lead to significant bias
in estimates and yield misleading answers to important economic quantities.

Our approach stops at specifying a reduced-form for the supply-side acceptance decision. This
reduced form immediately yields a structural object in certain models, such as in empirical
models of two-sided matching (Agarwal, 2015; He et al., 2024). The reduced-form yields a
first-stage estimate in models with more complex supply-side behavior. For example, Gandhi

constraints and demand constraints would be to introduce random coefficients that interact with some of
these factors, but not others. While it is plausible that such preference heterogeneity is present, it is less clear
whether differing competitive incentives for choosing capacity and quality are solely intermediated through
demand instead of also through capacity constraints.

38The Monte Carlo exercises discussed in Appendix D also show the bias arising from this functional form
on diversion ratios.
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(2021) interprets acceptance probabilities as conditional choice probabilities (Hotz and Miller,
1993) when estimating a dynamic model of selective admission practices. Fleshing out this
link between the reduced-form model that we identify and a structural model of acceptance
policies is left for future research, but it is important for evaluating some counterfactuals
that involve changes in equilibrium supply-side behavior.
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Appendix

A Proofs

A.1 Proof of Lemma 1

Because ties are allowed, it must be that

sjt (di, yi, zi) ≤
∑

O∈O
P
(
Oi = O, j ∈ arg max

k∈O
vikt

∣∣∣∣ t, di, yi, zi

)

The inequality follows because cij = 1 only if j ∈ arg maxk∈Oi
vikt. Conditioning on di and

dropping it from the notation, we rewrite preferences as

vij = uj (ωi) − gij

and we treat gij as observable. Consumer i remains unmatched if for every facility j ∈ Oi

uj (ωi) < gij and only if for every facility j ∈ Oi uj (ωi) ≤ gij. Similarly, facility j ∈ Oi

if πj (ωi) < zj and only if πj (ωi) ≤ zj. Let s0 (g, z) be the share of consumers that are
unmatched conditional on g and z, define s̄0 (ḡ, z̄) as lim(g,z)↓(ḡ,z̄)s0 (g, z), where (g, z) ↓ (ḡ, z̄)
if there exists a sequence gn > ḡ and zn > z̄ with gn → ḡ and zn → z̄. If s0 (g, z) is continuous
at (ḡ, z̄), s̄0 (g, z) = s0 (g, z); otherwise, s̄0 (g, z) > s0 (g, z). By assumption (1) and by set
inclusion,

lim
(g,z)↓(ḡ,z̄)

s0 (g, z) ≥ lim
(g,z)↓(ḡ,z̄)

P (∩j {uj (ωi) < gj ∨ πj (ωi) < zj})

≥ P (∩j {uj (ωi) ≤ ḡj ∨ πj (ωi) ≤ z̄j}) .

Moreover,

lim
(g,z)↓(ḡ,z̄)

s0 (g, z) ≤ lim
(g,z)↓(ḡ,z̄)

P (∩j {uj (ωi) ≤ gj ∨ πj (ωi) ≤ zj})

= P (∩j {uj (ωi) ≤ ḡj ∨ πj (ωi) ≤ z̄j}) ,

where the inequality follows from set inclusion and the equality follows because the probability
of a sequence of nested events converges to the probability of the limiting event (Billingsley,
1995, Theorem 2.1). Thus,

s̄0 (ḡ, z̄) = lim
(g,z)↓(ḡ,z̄)

s0 (g, z) = P (∩j {uj (ωi) ≤ ḡj ∨ πj (ωi) ≤ z̄j}) .
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Let Bχ be the collection of sets that are a Cartesian product of half-open intervals of the
form B = {(u, π) : u < u ≤ ū, π < π ≤ π̄} with B ⊆ χ. Consider some B ∈ Bχ and let g = u,
g = u,z = π and z = π. Define gj such that gj

k = ḡk for j = k and gj
k = g

k
for j ̸= k.

Likewise, define z̄j such that zj
k = 1 {j = k} z̄k + 1 {j ̸= k} zk. Define:

Λ1 (g, z) ≡
[
s̄0
(
g1, z

)
− s̄0 (g, z)

]
−
[
s̄0
(
g1, z1

)
− s̄0

(
g, z1

)]
,

and for j > 1,

Λj (g, z) ≡
[
Λj−1

(
gj, z

)
− Λj−1 (g, z)

]
−
[
Λj−1

(
gj, zj

)
− Λj−1

(
g, zj

)]
.

Observe that each Λj

(
g, z

)
is identified. We will now calculate ΛJ(g, z). To do this, observe

that s̄0 (g1, z) − s̄0
(
g, z

)
is equal to

P
({
g1 < u1 (ωi) ≤ ḡ1 ∧ π1 (ωi) > z1

}
∩k>1

{
uk (ωi) ≤ g

k
∨ πk (ωi) ≤ zk

})
.

Similarly, s̄0 (g1, z1) − s̄0
(
g, z1

)
equals

P
({
g1 < u1 (ωi) ≤ ḡ1 ∧ π1 (ωi) > z1

}
∩k>1

{
uk (ωi) ≤ g

k
∨ πk (ωi) ≤ zk

})
.

By set inclusion, the probability

P
({
g1 < uj (ωi) ≤ ḡ1 ∧ z1 < π (ωi) ≤ z̄1

}
∩k>1

{
uk (ωi) ≤ g

k
∨ πk (ωi) ≤ zk

})
is equal to Λ1

(
g, z

)
. By an identical argument and induction, for any j > 1, we have that

Λj

(
g, z

)
equals

P
(
∩k≤j

{
g

j
< uj (ωi) ≤ ḡj ∧ z̄j < π (ωi) ≤ z̄j

}
∩k>j

{
uj (ωi) ≤ g

k
∨ π (ωi) ≤ zk

})
.

In particular,

ΛJ

(
g, z

)
= P

(
∩j

{
g

j
< uj (ωi) ≤ ḡj ∧ z̄j < π (ωi) ≤ z̄j

})
= P ((u (ωi) , π (ωi)) ∈ B) .

Thus, we can identify the probability that (u (ωi) , π (ωi)) belongs to any set B ∈ Bχ, i.e.,
sets that are a Cartesian product of half-open intervals and are subsets of the interior of the
support of (g, z).
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We will show that conditional cumulative distribution function of (ui, πi) given (ui, πi) ∈ χ,
P (ui ≤ ū, πi ≤ π̄| (ui, πi) ∈ χ), is identified. There are two cases. The first case is when
P ((ui, πi)∈ χ) > 0. Then, we have that

P (ui ≤ ū, πi ≤ π̄| (ui, πi) ∈ χ) = P
(
(ui, πi) ∈ B̄ ∩ χ

)
/P ((ui, πi)∈ χ)

where B̄ = {(u, π) : u ≤ ū, π ≤ π̄}. It would suffice to show that we can identify P
(
(ui, πi) ∈ B̄ ∩ χ

)
and P ((ui, πi)∈ χ). In the second case, P ((ui, πi)∈ χ) = 0. In this case, we will still be able
to identify P ((ui, πi)∈ χ), but notice that the statement is vacuous and thus completes the
proof.

To identify P ((ui, πi)∈ χ), we will show that χ = ⋃∞
k=1 B

′
k for a countable collection of

B′
k ∈ Bχ and B′

k ∩ B′
k′ = ∅. This would imply that P ((ui, πi)∈ χ) = ∑∞

k=1 P ((ui, πi) ∈ B′
k)

is identified since each term in the summand is identified. Towards this, we first show
that there exists a countable collection of half-open cartesian products of intervals Bk =
{(u, π) : uk < u ≤ ūk, πk < π ≤ π̄k} ∈ Bχ such that χ = ⋃∞

k=1 Bk. To do this, let x ∈ χ and
note that there exist vectors of rational numbers uk, ūk, πk and π̄k such that

x ∈ Bk = {(u, π) : uk < u ≤ ūk, πk < π ≤ π̄k}

and Bk ⊆ χ. Since the set of rational numbers is countable, we have that there exists a
countable collection of Bk with χ = ⋃∞

k=1 Bk and Bk ⊆ χ. Now, notice that for any two
elements of this collection Bk and Bk′ , Bk ∩ Bk′ ∈ Bχ. And, Bk\Bk′ is a union of at most
22J − 1 sets in Bχ. Therefore, there exists an at most a countable number of disjoint sets
B′

k ∈ Bχ such that ⋃k B
′
k = ⋃

k Bk = χ. Hence, P ((ui, πi) ∈ χ) is identified.

Next, we show that P
(
(ui, πi) ∈ B̄ ∩ χ

)
is identified. Notice that B̄∩χ = ⋃

k

(
B̄ ∩B′

k

)
. Since

B̄ ∩ B′
k ∈ Bχ, the quantity P

(
(ui, πi) ∈ B̄ ∩B′

k

)
is identified. Since B′

k ∩ B′
k′ = ∅, we have

that P
(
(ui, πi) ∈ B̄ ∩ χ

)
= ∑

k P
(
(ui, πi) ∈ B̄ ∩B′

k

)
is identified. Hence, the conditional

cumulative distribution function of (ui, πi) conditional on (ui, πi) ∈ χ is identified.

A.2 Primitive Conditions for Assumption 3

Condition on di and drop it from the notation for simplicity. Fix {j, k}. For each yi, define
the set

Ujk (yi, Oi) =
{
u (ωi) : min

l∈{j,k}
{ul (ω) − gl (yil)} ≥ max

l∈Oi\{j,k}
{ul (ω) − gl (yil)}

}
.
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Definition 2. The pair of goods {j, k} is relevant at characteristics (yi, zi) and choice set O
if

P (O, u (ωi) ∈ Ujk (yi, O)| zi) > 0.

Proposition 2. Suppose assumption 1 is satisfied. If (i) the pair of goods {j, k} is relevant
at characteristics (yi, zi) and choice set Oi for some Oi ∈ O, (ii) the distribution of

uj (ω) − uk (ω)

conditional on u (ω) ∈ Ujk (yi, Oi) and Oi admits a density fjk, (iii) fjk (gj (yij) − gk (yik)) >
0, and (iv) for each O and all y in a neighborhood of yi, P ( |arg maxj∈O {uj (ω) − gj (yij)}| > 1|O, y) =
0 then (i) gj (yij) is differentiable if and only if sk (yi, zi) is differentiable with respect to yij,
(ii) the sign of ∂sk (yi, zi)

∂yij
coincides with the sign of ∂gj(yij)

∂yij
provided that these derivatives exist,

and (iii) a symmetric relation exists between gk (yik) and sj (yi, zi). Consequently, j and k are
strict substitutes if and only if gj (yij) and gk (yik) are differentiable with non-zero derivatives.

Proof. Fix specific values of yi and zi. Observe that

sj (yi, zi) =
∑

O∈O
P (cij = 1|O, yi, zi)P (O| yi, zi)

=
∑

O∈O
P
(
j ∈ arg max

l∈O
ul (ω) − gl (yil)

∣∣∣∣O, zi

)
P (O| zi)

since requirement (iv) implies that arg maxl∈O {ul (ω) − gl (yil)} has at most one element with
probability 1 and assumption 1 allow us to drop the conditioning on yi. Equation 3 implies
that

∂sj (yi, zi)
∂yik

=
∑

O∈O

∂P (j ∈ arg maxl∈O ul (ω) − gl (yil)|O, zi)
∂yik

P (O| zi)

=
∑

O∈O

∂P (uj (ωi) − ḡij ≥ uk (ωi) − ḡik|O, u (ωi) ∈ Ujk (yi, O) , zi)
∂gik

∣∣∣∣∣
ḡik=gk(yik)

∂gk (yik)
∂yik

P (O, u (ωi) ∈ Ujk (yi, O)| zi)

=∂gk (yik)
∂yik

∑
O∈O

∂
∫∞

gij−gik
fjk (v) dv

∂gik

P (O, u (ωi) ∈ Ujk (yi, O)| zi)

=∂gk (yik)
∂yik

∑
O∈O

fjk (gij − gik)P (O, u (ωi) ∈ Ujk (yi, O)| zi)
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where the derivatives in the summands exist since fjk is a density. The hypotheses ensure
the existence of Oi ∈ O such that its corresponding summand is strictly positive. Thus, if
gk (yik) is differentiable,∂sj (yi, zi)

∂yik
exists and it has the same sign as ∂gk(yik)

∂yik
. Conversely, if

gk (yik) is not differentiable, the limit gk(yik)−gk(yik+∆)
∆ as ∆ → 0 does not exist; thus, ∂sj (yi, zi)

∂yik

does not exist. This completes the proof of parts (i) and (ii). Part (iii) follow immediately
from a symmetric argument.

Corollary 2. Suppose assumption 1 is satisfied. If there exists z∗
i ∈ Z such that (i)

∪O:{j,k}⊆OP (O| z∗
i ) > 0, and (ii) for each each O with {j, k} ⊆ O and P (O|z∗

i ) > 0, the
joint distribution of (uij)j∈O conditional O on has full support on an open neighborhood
B ⊆ R|O| of (gj (yij))j∈O and is absolutely continuous with respect to Lebesgue measure on B,
then the functions sj (yi, z

∗
i ) and sk (yi, z

∗
i ) are differentiable at yik and yij respectively with

non-zero derivatives if and only if gj (yij) and gk (yik) are differentiable at yij and yik with
non-zero derivatives.

As another corollary, we state stronger but simpler to interpret conditions.

Corollary 3. Suppose assumption 1 is satisfied. If the joint distribution of ui conditional
on each O admits a density conditional on each O and there exists O with {j, k} ⊆ O and
P (O|z∗

i ) > 0 for some z∗
i , then the functions sj (yi, z

∗
i ) and sk (yi, z

∗
i ) are strictly increasing

and differentiable at yik and yij respectively if and only if gj (yij) and gk (yik) are strictly
increasing and differentiable at yij and yik.

A.3 Proof of Lemma 2

The proof of lemma 2 requires the following intermediate result.

Lemma 3. Suppose that assumption 1 holds and |J | > 1. If j and k are strict substitutes
in y at some (di, yi, z

∗
i ) in the support of the data and g′

j (di, yi) ̸= 0, then (i) g′
k (di, yi) ̸= 0,

(ii) the sign of g′
k (di, yi) coincides with the sign of ∂sk(di,yi,z

∗
i )

∂yij
, and (iii)

g′
k (di, yi)
g′

j (di, yi)
= ∂sj (di, yi, z

∗
i )

∂yik

/
∂sk (di, yi, z

∗
i )

∂yij

,

which implies that g′
k(di,yi)

g′
j(di,yi) is identified and bounded.

Proof. Because j and k are strict substitutes in y at (di, yi, z
∗
i ) ∂sj

(
yi, di, z∗

i

)
∂yik

and ∂sk

(
yi, di, z∗

i

)
∂yij

exist and are non-zero. For notational simplicity, we omit z∗
i , di, yl and gl for l /∈ {j, k} from

the notation as they are fixed throughout the proof.
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Since P (cij = 1|Oi, t, di, yi = y, zi) = P (cij = 1|Oi, t, di, yi = y′, zi) if g (y) = g (y′), equation
(3) and Assumption 1 implies that there exists a function ŝ (·) : R2 → R2 such that

sk (yik, yij) = ŝk (gk (yik) , gj (yij)) .

Moreover, the function ŝk (gk, gj) is weakly increasing in gj and weakly decreasing in gk.

The proof consists of four steps. The first step shows that the function ŝk (gk, gj) is differen-
tiable with respect to gj at gk = gk (yik) and gj = gj (yij). Therefore, we can use the chain
rule to calculate the cross partials of sk (yik, yij) and sj (yik, yij). The second step proves
part (i): the derivative of gk (·) at yik is not zero. The third step shows symmetry of the
cross-partial derivatives ∂ŝj (gk, gj)

∂gk
= ∂ŝk (gk, gj)

∂gj
without requiring continuity of ∂ŝj (gk, gj)

∂gj
and

∂ŝk (gk, gj)
∂gk

, a key requirement for Young’s Theorem. The fourth and final step applies the
chain rule and employs the symmetry of cross-partial derivatives to derive parts (ii) and (iii).

First step: For any ∆ ̸= 0,

ŝk (gk, gj (yij + ∆)) − ŝk (gk, gj (yij))
gj (yij + ∆) − gj (yij)

= sk (yik, yij + ∆) − sk (yik, yij)
∆ /

gj (yij + ∆) − gj (yij)
∆ .

The limit of the right-hand side as ∆ → 0 exists because ∂sk (yik, yij)
∂yij

and ∂gj(yij)
∂yij

exist, and the
latter is non-zero. Thus, the limit on the left hand side as ∆ → 0 also exists and it is finite.
Moreover, ∂sk (yik, yij)

∂yij
̸= 0, and weak monotonicity of ŝk (gk, gj) with respect to gj implies that

∂ŝk (gk, gj (yij))
∂gj

= ∂sk (yik, yij)
∂yij

/
∂gj (yij)
∂yij

> 0, (8)

where the strict inequality follows because each term in the RHS is non-zero. By a symmetric
argument, ∂gk(yik)

∂yik
̸= 0 implies that ∂ŝj (gk, gj)

∂gk
exists at gk = gk (yik) and gj = gj (yij). We will

show in the second step below that ∂gk(yik)
∂yik

̸= 0 without assuming that ∂ŝj (gk, gj)
∂gk

exists.

Second step: Consider ∆ > 0. The difference ŝj (gk + ∆, gj) − ŝj (gk, gj) is equal to the mass
of consumers whose match switches from k to j due to an increase in gk. Since the distribution
of choice sets O is independent of y, and therefore g (y), the switchers have both k and j

in their choice sets at both (gk + ∆, gj) and (gk, gj). These consumers would switch to j if,
instead of gk increasing by ∆, gj decreased by the same amount. Thus, by set inclusion,

0 ≤ ŝj (gk + ∆, gj) − ŝj (gk, gj) ≤ ŝk (gk, gj) − ŝk (gk, gj − ∆) . (9)
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By definition of ∂sj (yij , yik)
∂yik

,

∂sj (yij, yik)
∂yik

= lim
∆↓0

(
ŝj (gk (yik + ∆) , gj) − ŝj (gk (yik) , gj)

gk (yik + ∆) − gk (yik) × gk (yik + ∆) − gk (yik)
∆

)
̸= 0.

(10)

The limit on the right-hand side exists because ∂sj (yij , yik)
∂yik

is well-defined. Taking the absolute
value of the terms in parenthesis and using the inequalities in (9) yields

lim
∆↓0

∣∣∣∣∣ ŝj (gk (yik + ∆) , gj) − ŝj (gk (yik) , gj)
gk (yik + ∆) − gk (yik) × gk (yik + ∆) − gk (yik)

∆

∣∣∣∣∣
≤ lim

∆↓0

ŝk (gk (yik) , gj) − ŝk

(
gk (yik) , gj − ∆̃

)
∆̃

×
∣∣∣∣∣gk (yik + ∆) − gk (yik)

∆

∣∣∣∣∣
where ∆̃ = gk (yik + ∆) − gk (yik). Both terms converge as ∆ ↓ 0: the first one converges to
∂ŝk (gk, gj)

∂gj
and the second one to the absolute value of ∂gk(yik)

∂yik
. Therefore, ∂gk(yik)

∂yik
̸= 0 because

otherwise, ∂sj (yij , yik)
∂yik

= 0 contradicting equation (10). This proves part (i).
Third step: The arguments above imply that ∂ŝj (gk, gj)

∂gk
exists at gk = gk (yik) and gj = gj (yij).

By a symmetric argument to the one that yields equation (9), for any ∆ > 0

0 ≤ ŝk (gk, gj + ∆) − ŝk (gk, gj) ≤ ŝj (gk, gj) − ŝj (gk − ∆, gj) . (11)

Dividing (9) and (11) by ∆ and taking the limit ∆ ↓ 0, yields:

0 < ∂ŝj (gk, gj)
∂gk

= ∂ŝk (gk, gj)
∂gj

. (12)

Fourth step: We have shown that ŝk (gk, gj) is differentiable with respect to gj and that
ŝj (gk, gj) is differentiable with respect to gk. Applying the chain rule yields:

∂sj (yij, yik)
∂yik

= ∂ŝj (gk (yik) , gj)
∂gk

× ∂gk (yik)
∂yik

(13)

and
∂sk (yij, yik)

∂yij

= ∂ŝk (gk, gj (yij))
∂gj

× ∂gj (yij)
∂yij

. (14)

Parts (ii) and (iii) follow immediately from equations (12), (13), and (14).

We are now ready to prove lemma 2. Fix di and omit it from notation. Let j be the reference
good and recall the normalization that

∣∣∣g′
j (y0)

∣∣∣ = 1 and gj (y0) = 0 for some y0. Take
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any pair (k, yk) such that there is a path connecting it with (j, y0) where j is the reference
good and y0 is the value for which we have normalized

∣∣∣∂gj(di,y0)
∂y

∣∣∣ = 1. Let this path be
(j, y0) = (m0, y1) , (m2, y2) , ...., (mn, yn) = (k, yk) where for all l = 2, ..., n, ml and ml−1

are strict substitutes in y at some (di, yi, z
∗
i ) in the support of the data with yiml

= yl and
yiml−1 = yl−1. Lemma 3 implies that g′

ml
(yl)

g′
ml−1 (yl−1) is identified for each l ∈ {2, ...n} . Moreover,

g′
ml

(yl) and g′
ml−1

(yl−1) are bounded and non-zero. Thus, g′
k (yk) = g′

k(yk)
g′

j(y0) = ∏n
l=2

g′
ml

(yl)
g′

ml−1 (yl−1) is
identified. Since gk (y0) = 0 and gk (·) is continuously differentiable, gk (yk) =

∫ yk
y0
g′

k (τ) dτ is
identified as the argument above and assumption 3 imply that g′

k (τ) is identified for almost
all τ in the support of yik. 39

A.4 Proof of Proposition 1

To simplify notation, we drop the conditioning on di. Since the function g (·) is known, in a
minor abuse of notation we write g = g (y) and s (g) = {sj (g)}j∈J . We also drop zi from the
notation because its support is a singleton. With this simplification, the function sj (g) can
be re-written as follows:

sj (g) =
∑

O∈O
P
(
O, j ∈ arg max

k∈O
uk − gk

∣∣∣∣ g)

=
∑

O∈O

∫
1
{
j ∈ arg max

k∈O
uk − gk

}
P (O|u, g) fU (u) du

=
∑

O∈O

∫
1
{
j ∈ arg max

k∈O
uk − gk

}
P (O|u) fU (u) du

=
∑

O∈O

∫
1
{
j ∈ arg max

k∈O
uk − gk

}(∫
Oc
P (O|u) fU (u) duOc

)
duO

=
∑

O∈O

∫ ∞

gj

(∫ uj−gj+gk

−∞
...
∫ uj−gj+gk′

−∞
hO (uO) duO−{j}

)
duj,

where Oc = J\O, uO = (uj)j∈O, uOc = (uj)j∈J\O and hO (uO) =
∫
P (O|u) fU (u) duOc . The

third equality follows from assumption 1 whereas the others simply re-write the problem.
Since s (g) is the only observable when the support of z is a singleton, under assumption 1,
identification of the model is equivalent to identification of P (O|u) and fU (u).

We use a standard definition of identification (Matzkin, 2007). Define a model as a collection
of admissible structures {P ( ·| ·) , fU (·)}. A pair of structures is observationally equivalent
if they yield the same observable market share functions s (·). In particular, since the func-

39Footnote 15 of HSS refers to a previous version of our paper that employed a more restrictive version of
assumption 3.
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tions {hO (·)}O∈O determine the functions sj (g) , two structures that yield the same func-
tions hO (·) are also observationally equivalent. Thus, the function fU (·) is identified if and
only if for any pair of observationally equivalent admissible structures {P ( ·| ·) , fU (·)} and{
P̃ (O| ·) , f̃U (·)

}
, fU (·) = f̃U (·).

To complete the proof of the proposition, define admissible structures as pairs {P ( ·| ·) , fU (·)}
such that (i) fU (u) is a density, (ii) 0 < P̃ (O|u) < 1 for all O ∈ O and all u ∈ R|J |, and (iii)
the choice set probabilities add to one for each u: ∑O∈O P̃ (O|u) = 1. The first conditions
follow from the assumptions in the proposition. The second and third conditions ensure that
P (O|u) is a proper probability for any pair (O, u). The distribution of indirect utilities is
not identified if there are two observationally equivalent admissible structures {P ( ·| ·) , fU (·)}
and

{
P̃ (O| ·) , f̃U (·)

}
with fU (·) ̸= f̃U (·). The following lemma shows that this is the case

under the hypothesis of the proposition.

Lemma 4. If for the admissible structure {P ( ·| ·) , fU (·)} there exists an open set B ⊂ R|J |

and a choice set O ⊊ J such that for all u ∈ B, fU (u) > 0 and P (O|u) > κ > 0, then there
exist an alternative admissible structure

{
P̃ ( ·| ·) , f̃U (·)

}
with fU (·) ̸= f̃U (·) and for all uO,

hO (uO) =
∫
P (O|u) fU (u) duOc =

∫
P̃ (O|u) f̃U (u) duOc .

Proof. Fix an open set U ⊂ R|J |, a choice set O ⊊ J such that for all u ∈ U , fU (u) > 0
and P (O| u) > κ > 0. These quantities exist by assumption. Let R = ∏

j∈J

[
uj, ūj

]
⊂

U be a closed cartesian product of |J | intervals, one for each good. Define an arbitrary
absolutely continuous function c (uOc) such that (i) c (uOc) ̸= 0, (ii) ∥c (uOc)∥∞ < κ

2 , (iii)
c (uOc) = 0 for uOc /∈ ROc , where ROc = ∏

j∈Oc

[
uj, ūj

]
denotes the product of the intervals

in R corresponding to the products in Oc.

Define a family of functions {aO′ (u)}O′∈O as follows. Let aO′ (u) = 0 for O′ ̸= O and

aO (u) = 1 {u ∈ R}
[
c (uOc) −

∫
ROc c (uOc) fU (u) duOc∫

ROc fU (u) duOc

]
.

Note that each ∥aO (u)∥ < κ, and that

∫
aO (u) f (u) duOc =

∫
ROc

[
c (uOc) −

∫
ROc c (uOc) fU (u) duOc∫

ROc fU (u) duOc

]
f (u) duOc = 0.
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Moreover, for every O′ ⊂ O

∫
aO (u) f (u) duO′c =

∫ ∫
aO (u) f (u) duOcduO\O′ = 0.

Define the alternative structure as

f̃ (u) = (1 − aO (u)) f (u)

P̃ (O′|u) = P (O′|u) − aO′ (u)
1 − aO (u)

for every O′ ∈ O. Now we verify that
{
P̃ ( ·| ·) , f̃ (·)

}
is an admissible structure. First, f̃ (u)

is a density because (1 − aO (u)) f (u) ≥ 0 and
∫

(1 − aO (u)) f (u) du = 1 −
∫

O

∫
Oc
aO (u) f (u) duOcduO = 1.

Second, the choice set probabilities satisfy 0 < P̃ (O′|u) < 1 for all O′ ∈ O.Third, the choice
set probabilities add to one for each u:

∑
O′∈O

P̃ (O′|u) =
∑

O′∈O P (O′|u) − aO (u)
1 − aO (u) = 1.

Now we verify that the alternative structure is observationally equivalent to the original one.
Note that

∫
O′c P̃ (O′|u) f̃ (u) duO′c =

∫
O′c P (O′|u) f (u) duO′c = hO′ (uO′) for all O′ ̸= O.

And, finally
∫

Oc
P̃ (O|u) f̃ (u) duOc =

∫
Oc

(P (O|u) − aO (u)) f (u) duOc

=
∫

Oc
P (O|u) f (u) duOc −

∫
Oc
aO (u) f (u) duOc

= hO (uO) .

A.5 Identification across Markets

We show results analogous to those in Proposition 2 for non-separable models. These results
follow Theorem 2 in Berry and Haile (2010). Let

δjt = ũj (xjt, ξjt) ≡ med (uijt|xjt, ξjt) ,
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and let fδj
( ·|xjt, rjt) be the conditional density of δj, where rjt are a set of instruments.

Fix ετ > 0 and εf > 0, small. For τ ∈ (0, 1), let Lj (τ) be the convex hull of functions mj (·, τ)
such that for all rjt, P (δjt ≤ mj (xjt, τ)| rjt) ∈ [τ − ετ , τ + ετ ], and for all xjt, mj (xjt, τ) ∈
sj (xjt) ≡

{
δ : fδj

(δ|xjt, r) ≥ εf , ∀r with fX (xjt| r) > 0
}
.

Assumption 8. ξjt ⊥ rjt

Assumption 9. For all j and τ ∈ (0, 1), (i) for any bounded function Bj (x, τ) = mj (x, τ)−
ũj (x, τ) with mj (·, τ) ∈ Lj (τ) and εjt ≡ δjt − ũj (xjt, τ), E [Bj (xjt, τ)ψj (xjt, rjt, τ)| rjt] = 0
a.s. only if Bj (xjt, τ) = 0 a.s. for ψj (x, r, τ) =

∫ 1
0 fεj

(σBj (x, τ)|x, r) dσ > 0. (ii) the
density fεj

(e|x,w) of εjt is continuous and bounded for all e ∈ R, and (iii) ũj(xjt, τ) ⊂
sj(xjt) for all xjt.

Proposition 3. (Berry and Haile, 2014; Chernozhukov and Hansen, 2005). If δjt is identified
and assumptions 8 and 9 are satisfied, then the functions ũ(·) and ξjt are identified for each
j and t.

Proof. Follows from theorem 4 in Chernozhukov and Hansen (2005) since δjt is identified.

An analogous results holds for identification of g̃j since

gjt = g̃j (xjt, ζjt)

is known. Here, we switch gjt for δjt and g̃j (·) for ũj (·).

B Data Appendix

The data reported here have been supplied by the United States Renal Data System (USRDS)
and the Centers for Medicare & Medicaid Services (CMS). These sources provide us with
data on all dialysis facilities and the near universe of kidney patients in the US. Patient
characteristics include the residence zip-code, co-morbidities and the facility that they attend.
For each facility, we observe their address, ownership status and the number of stations.
Patients and facilities are uniquely identified by a USRDS generated identifier that can be
used to link records across separate datasets. We geocode patient zip-codes and facility
addresses to calculate the straight line distance between a given facility and a patient’s zip-
code centroid.
We will retain copies of the data until permitted by our Data Use Agreement with the
United States Renal Data System (USRDS). Researchers interested in using our dataset
should directly contact USRDS to obtain permission.
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B.1 Data Description

Our data on patient profiles and treatment history come from the USRDS Researcher Stan-
dard Analysis File (SAF) which combines information from ESRD claims filed to CMS and
data from the Consolidated Renal Operations in a Web-Enabled Network System (CROWN),
a mandatory data system used by dialysis facilities to collect information on all patients, re-
gardless of payer type. The main SAF datasets used in this analysis are Medical Evidence
(medevid), which includes patient health information like co-morbidities and the whether a
nephrologist was already caring for a patient when dialysis commenced, Treatment History
(rxhist), where we obtain the sequence of facilities in which a patient was treated, Payer
History (payhist) for insurance information, Residence History for the residence zip code and
the Facility dataset from the USRDS.

Though the patient information is sourced from claims, facility data come from the CMS
Annual Facility Survey and the CMS Facility Compare dataset maintained separately by
CMS. These includes identifiers for the facility, years of operation, profit status, chain status,
and setting status. The facility and patient identifiers allow us to link the patient informa-
tion from claims and the facility information from Facility Compare, providing a complete
overview of the patient-facility interaction.

We also geocoded facility addresses and obtained the geocodes for the centroid of each pa-
tient’s zip code. These coordinates are used to estimate the distance from the facility to
the patient, calculated as the distance from the patients’ reported zip code centriod to the
facility. Geo-coordinates are obtained via queries sent to the Google Maps API; these queries
have as an input the facility addresses included in the Facility Compare dataset provided by
CMS and return as an output the associated longitude and latitude for each facility. Zip-code
centroids are also obtained using Google Maps.

We use the Treatment History files to construct the number of patients receiving care at
each facility at a given point in time. This file contains the start date and the end date of
each patient’s treatment at each facility where they receive care. We use this information to
compute the number of patients undergoing in-patient hemodialysis at each facility on each
day during our sample period. These calculations will include all patients, irrespective of
whether they are in the sample of patients that we use to estimate our model (see section
B.2.2 below).
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B.2 Sample Selection

We consider first-time admissions in California facilities between Jan 1, 2015 and December
31, 2018. As mentioned in the main text, moving costs and other considerations can be
important in subsequent stays, which complicates the analysis. Nonetheless, the first facility
a patient chooses is consequential as the median and average patient is treated at 1 and 1.30
facilities respectively.

California is essentially an isolated market, with few outgoing or incoming patient-facility
connections across its state borders. Figure B.1 shows the linkages between all facilities in
the US and zip-code centroids in California. The thickness of each edge connecting a facility
with a zip-code centroid indicates the number of patients residing in a zip-code that started
dialysis at a given facility. We omit edges with fewer than three patients. Only in rare
instances does a patient living in California attend a facility outside the state. When they
do, our approach will treat the patient as choosing the outside option.

Figure B.1: California Connections

B.2.1 Facility Sample Selection

Table B.1 describes the facility sample. All facilities in California during our sample period
were successfully geocoded. From this universe of facilities, we restrict attention to facilities
that focus on in-center care and are non-pediatrics. Both variables are calculated using the
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admissions data for facilities during our sample period; a facility is said to focus on in-facility
care if more than 50% of its admitted patients enroll in facility-based hemodialysis. We
classify a facility as pediatrics if the average age of the patients they admit is less than or
equal to 18. Patients living in California who receive dialysis but do not attend one of these
facilities are considered as being treated at a composite outside option.
We restricted to facilities that focus on non-pediatric and in-center care for two reasons.
First, we want to focus on the interactions for individuals that are going to facilities to receive
treatment, as opposed to receiving home dialysis in which case the distance to the facility is
not as salient in the patient’s choice of facility. Only a small minority of patients receive home
dialysis and are likely selected on health condition and income. Second, we restrict to non-
pediatric facilities because the baseline differences in co-morbidities and clinical indications
for pediatric and adult dialysis can be substantial, creating significantly different needs and
operational setups for pediatric facilities.
We only include the quarters for which the facility operation was relatively stable, excluding
periods around entry, exit, capacity changes, or moves as these events could substantially
affect a facility’s demand and acceptance policies. In particular, we include in the inside
option facility-quarters in years with no changes in the number of stations or address. We
remove the quarter of and the quarter after a facility entered. Similarly, we remove the
quarter before and the quarter of a facility exit.

Table B.1: Facility Sample

Restrictions Facilities filter

Restricted to 2015 - 2018 and California 721 1

Restricted to facilities with geocoordinates 721 1

Restricted to facilities specializing in facility-based hemodialysis and are non-pediatric 640 1

Facilities with at least one stable quarter 553 1

Sample Selection: Facilities

B.2.2 Patient Sample Selection

Table B.2 describes the patient sample. We make three major restrictions on the patient
sample, starting from the universe of patients with a residential zip-code in California that
started dialysis in the years 2015 - 2018. First, and analogously to the focus on non-pediatric
facilities, we keep only adults in our sample, defined as at least 18 years of age when they first
started dialysis. Second, we drop patients for whom we weren’t able to compute a distance to
the facility attended; practically, this means that we drop a handful of patients for whom we
did not observe a valid zip-code. These two restrictions together result in a couple hundred
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patients being dropped from our sample. The biggest cut in the sample comes from dropping
patients that chose facilities greater than 50 miles from their reported zip-code centroid.
Based on an inspection of these observations, we suspect that the residential zip-code is
incorrectly recorded for these patients. One indication is that the 95th percentile of distance,
conditional on the chosen facility being is less than 50 miles away, is less than 20 miles.

Table B.2: Patient Sample

Restriction Patients

Restricted to 2015 - 2018 and California 53,074

Restricted to adults (>=18 years old) 52,768

Restricted to admissions with distance between patient and facility 52,751

Restricted to those that chose a facility within 50 miles 50,002

Sample Selection: Patients

B.2.3 Target Capacity

Table B.3 presents estimates of a regression of the estimated target capacity on facility inputs
measured annually, controlling for facility fixed effects. The result shows that univariate
regressions of facility inputs are positively correlated with target capacity. This includes
both capital and labor inputs. The relationship holds even though (i) target capacity varies
at a higher frequency level than the recorded inputs and (ii) the inputs are measured only
annually.
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Table B.3: Correlation Between Target Capacity and Facility Inputs

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Total Number of Dialysis Stations -0.006*** -0.019***

(0.002) (0.004)

Late Shift -0.016 -0.063

(0.029) (0.044)

Registered Nurses on staff full-time 0.014 0.001

(0.009) (0.021)

Licensed Practical/Visiting Nurses FTime 0.060 0.058

(0.048) (0.051)

Patient Care Technicians on staff FTime 0.006 0.005

(0.006) (0.017)

Advanced Practice Nurses on staff FTme 0.107 0.096

(0.131) (0.135)

Dieticians on staff full-time 0.087 -0.144

(0.074) (0.158)

Social Workers on staff full-time 0.215*** 0.381***

(0.062) (0.140)

Constant 0.093*** -0.049*** -0.135** -0.081*** -0.110 -0.056*** -0.136* -0.265*** 0.043

(0.030) (0.013) (0.056) (0.029) (0.070) (0.014) (0.075) (0.066) (0.042)

Observations 2,061 2,038 2,061 2,061 2,061 2,061 2,061 2,061 2,038

R-squared 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.002 0.005

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

C Estimation Appendix: Gibbs Sampler

Our sampler starts with an initial guess for the parameters (α, β,Σ, δ, γ) and for the latent
variables (βi, εi0, vi, πi) for every i. We denote this guess by θ(0). For each draw k, we perform
the following steps:

1. Data augmentation:

(a) Draw the latent acceptance index πij|θ(k−1) for every i and j in the sample. The
posterior distribution of πij conditional on all the parameters θ(k−1) is normal.
If i was allocated to facility j, then we draw πij from the conditional posterior
truncated by πij ≥ zij. If i was allocated to facility j∗ ̸= j and v

(k−1)
ij > v

(k−1)
ij∗ ,

then we draw πij from the conditional posterior truncated by πij < zij. Otherwise,
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we draw it from the conditional posterior without any truncation. Let π(k) denote
the vector of draws and let O(k)

i be {j ∈ J : πij ≥ zij}.

(b) Draw the latent utility vij| θ(k−1), π(k) for every i and j. The posterior distribution
of vij conditional on all the parameters θ(k−1) and on π(k) is normal. Let j∗ be
the facility chosen by i. Draw vij∗ from the conditional posterior truncated at
vij∗ ≥ max

j∈O
(k)
i /{j∗} vij. Denote it by v(k)

ij∗ . Then, draw vijt for j ∈ O
(k)
i \ {j∗} from

the conditional posterior truncated at vij ≤ v
(k)
ij∗ . Lastly, draw vij for j /∈ O

(k)
i from

its unconditional posterior without any truncation. Let v(k) denote the vector of
draws.

2. Seemingly unrelated Bayesian regression: with the draws of v(k)and π(k) and for fixed
value of δ(k−1)

j , γ
(k−1)
j , β

(k−1)
i and ε(k−1)

i0 ; the equations above form a system of seemingly
unrelated regressions. The posterior distributions of the parameters α, β are normal
and the posterior distribution of Σ is inverse Wishart. We draw these parameters and
obtain the resulting residuals ε̂(k)

ij and ν̂
(k)
ij .

3. Update random effects:

(a) Draw βi|ε̂(k)
ij , ν̂

(k)
ij ,Σ(k). The posterior distribution of γi conditional on the residuals

ε̂
(k)
ij and ν̂

(k)
ij and the previous variance draw Σ(k) is normal. We draw βi from

this conditional posterior. Let β(k)
i denote these draws and obtain the updated

residualsε̄(k)
ij = ε̂

(k)
ij + β

(k)
i xj − β

(k−1)
i qj.

(b) Draw εi0|ε̂(k)
ij , ν̂

(k)
ij ,Σ(k). The posterior distribution of εi0 conditional on the residu-

als ε̄(k)
ij and ν̂(k)

ij and the previous variance draw Σ(k) is normal. We draw εi0 from
this conditional posterior. Let ε(k)

i0 denote these draws and obtain the updated
residualsε̃(k)

ij = ε̄
(k)
ij + ε̂

(k−1)
i0 − ε̂

(k)
i0 .

(c) Draw γj|ε̃(k)
ij , ν̂

(k)
ij ,Σ(k). The posterior distribution of γj conditional on the residuals

ε̃
(k)
ij and ν̂

(k)
ij and the previous variance draw Σ(k) is normal. We draw γj from

this conditional posterior. Let γ(k)
j denote these draws and obtain the updated

residualsν̃(k)
ij = ν̂

(k)
ij + γ

(k−1)
j − γ

(k)
j .

(d) Draw δj|ε̃(k)
ij , ν̃

(k)
ij ,Σ(k). The posterior distribution of δj conditional on the residuals

ε̃
(k)
ij and ν̃(k)

ij and the previous variance draw Σ(k) is normal. We draw δj from this
conditional posterior. Let δ(k)

j denote these draws.

4. Update the variance of the random effects:



77

(a) Draw σ2
ε0|ε

(k)
i0 . The posterior distribution of σ2

ε0 conditional on σ2
ε0 is inverse-

gamma. Similarly, draw σ2
β|β(k)

i , σ2
γ|γ(k)

i and σ2
δ |δ(k)

i .

5. Finally, collect all parameter draws in step k and denote them by θ(k).

We specify a set of diffuse conjugate priors to each set of parameters, following recommen-
dations in McCulloch and Rossi (1994). The priors for α, β, δ, γ are normal with zero mean
and covariance equal to the identity matrix times a large constant: 1000. The prior of Σ is
an inverse Wishart with a 2 × 2 identity matrix as its scale matrix and 3 degrees of freedom.
Similarly, the priors of σ2

ε0, σ2
β, σ2

γ and σ2
δ are three independent inverse-gamma distributions

with scale and shape parameters equal to 1/2. These priors are uninformative relative to
the size of our dataset and thus, the estimation results are unlikely to change substantially
should we make them even less precise.
We start a chain from a random starting points and run the Gibbs sampler for 4 million
draws, discarding the first million draws. We summarize the draws for each parameter and
verify that the Potential Scale Reduction Factor for each parameters is close to one, which
indicates that letting the chain run for longer is not likely to change the results (Gelman et
al., 2014).

D Monte Carlo Exercises

This section presents Monte Carlo evidence to assess the properties of the Gibbs sampler
described in the main text, and to assess bias arising from model mis-specification. Our
experiments focus on a single market with J = 5 products and vary the number of consumers
in the market, N ∈ {5000, 20000}.
To simulate a dataset, we begin by simulating observed characteristics. Consumer and prod-
uct locations are drawn uniformly at random from a unit square to generate distances xij;
an observable preference shifter yij is drawn from a standard normal; a choice-set shifter
zij is drawn from the Poisson distribution with parameter 10; a consumer-specific binary
observable di is drawn from the Bernoulli distribution with parameter 0.5.
Next, we then simulate indirect utilities and choice sets by drawing

vij = δj + βixij − yij + εi0 + εij,

σij = 1 {γj + αiwi + νi0 + νij > zij}

where εi0, νi0 and (ϵij, νij) are mutually independent (multivariate) normal distributions with
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mean zero and variance σ2
ε0, σ2

ν0, and Σ respectively; the random coefficients βi and αi are
normally distributed, mutually independent of each other and other random variables in the
model with means and variances

(
β̄, σ2

β

)
and (ᾱ, σ2

α) respectively; and the facility fixed-effects
γj and δj are generated from independent mean-zero normal distributions with variances σ2

γ

and σ2
δ respectively. These latent variables provides an a product that each consumer is

matched with.

We repeat this simulation procedure to produce 100 datasets that are then used to estimate
the model using a Gibbs’ sampler. Our sampler uses 1 million iterations, a burn-in of 25%
of the chain, and one-in-ten thinning. For each dataset, we estimate four different models:

1. The correct specification

2. The “No Random Coefficients” model, which sets βi = β̄ and αi = ᾱ for all i

3. The model with “Choice Set Shifter in Utility,” which sets σij = 1 and vij = δj +βixij +
βzzij − yij + εi0 + εij,

4. The “Unconstrained Demand” model, which sets σij = 1.

The second model assess the importance of random coefficients whereas the third and fourth
assess whether mis-specification by omitting choice-set constraints are important, whether
with or without the “naive” correction in the third model.

The estimated parameters and the coverage of the 95% confidence sets are presented in Tables
D.4 and D.5 respectively for the case with 5000 and 20000 patients. As expected, the correct
specification exhibits appropriate coverage of the true parameters. The omission of random
coefficients not only creates a substantial bias in the coverage of β̄ and ᾱ, but also in other
parameters such as σν0. Models that omit choice-set constraints are particularly problematic
with extremely low coverage ratios.
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Table D.6: Monte Carlo Diversion Ratio

Average True 

Value

Correct 

Specification

(1)

No Random 

Coefficient

(2)

Choice Set Shifter 

in Utility

(3)

Unconstrained 

Demand

(4)

0.221

Mean Bias 0.000 0.027 0.016 0.011

RMSE 0.003 0.035 0.095 0.093

0.625

Mean Bias 0.024 -0.001 -0.388 ---

RMSE 0.473 0.551 1.480 ---

  Demand Side

  Supply Side

Notes: Demand side diversion ratio is defined as ∂sk

∂yij
/

∂sj

∂yij
. Supply side diversion ratio is defined as ∂sk

∂zij
/

∂sj

∂zij
.

Perhaps an economically more important estimand on which to compare the specifications
are the estimated diversion ratios. The “demand-side” diversion ratios are computed using
marginal changes in yij and the “supply-side” diversion ratios are computed using marginal
changes in zij. The mean bias and the root mean squared errors are reported in Table D.6.
As expected, the mean bias and the RMSE are the lowest for the correct specification. The
omission of random coefficients does increase the size of the biases and the RMSE, but less
so than misspecified models that omit choice-set constraints altogether.
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