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Abstract

There are relatively few systematic comparisons of the ex ante counterfactual pre-
dictions from structural models to what occurs ex post. This paper uses a large-scale
policy change in Boston in 2014 to investigate the performance of discrete choice mod-
els of demand compared to simpler alternatives. In 2013, Boston Public Schools (BPS)
proposed alternative zone configurations in their school choice plan, each of which alters
the set of schools participants are allowed to rank. Pathak and Shi (2013) estimated
discrete choice models of demand using families’ historical choices and these demand
models were used to forecast the outcomes under alternative plans. BPS, the school
committee, and the public used these forecasts to compare alternatives and eventually
adopt a new plan for Spring 2014. This paper updates the forecasts using the most
recently available historical data on participants’ submitted preferences and also makes
forecasts based on an alternative statistical model not based a random utility founda-
tion. We describe our analysis plan, the methodology, and the target forecast outcomes.
Our ex ante forecasts eliminate any scope for post-analysis bias because they are made
before new preferences are submitted. Part II will use newly submitted preference data
to evaluate these forecasts and assess the strengths and limitations of discrete choice
models of demand in our context.
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1 Introduction

The aim of developing models capable of quantitatively forecasting the effects of policy
changes has been an objective of economic science since at least Hurwicz (1950) and Marschak
(1953). Recent years, in contrast, have seen the popularity of design-based research strategies
that focus on estimating particular parameters or causal effects. The design-based approach
does not typically lend itself to ex ante policy evaluations involving changes outside of histor-
ical experience. Both Angrist and Pischke (2010) and Heckman (2010) attribute the growth
of the design-based research program to skepticism on the value of structural modeling for
counterfactual analysis given its reliance on parametric and/or behavioral assumptions.

Though opinions vary greatly on the credibility of structural models, there is one area
of consensus: there are relatively few systematic comparisons of the ex ante counterfactual
predictions of structural models after policy changes have occurred to predictions made from
simpler methods. For instance, Angrist and Pischke (2010) lament:

“Many new empirical industrial organization studies forecast counterfactual outcomes
based on models and simulations, without a clear foundation in experience. [...]
At minimum, we’d expect such a judgment to be based on evidence showing that
the simulation-based approach delivers reasonably accurate predictions. As it stands,
proponents of this work seem to favor it as a matter of principle.”1

The goal of this paper is to fill this void by evaluating the performance of predictions from
discrete-choice models of demand, which underlie much of the work in the new empirical
industrial organization, using a large-scale policy change taking place in Boston in 2014.

Each year, thousands of Boston’s families submit rank order lists of public schools in the
city’s school choice plan. In 2013, Boston Public Schools (BPS), the Mayor, and members
of the school committee wanted to change this plan to encourage students to attend schools
closer to home. BPS put forth a number of plans that redraw the boundaries of the city
and modify the set of schools applicants are allowed to rank by eliminating some choices and
adding other choices. After these plans were described to the public, there was widespread
interest in forecasting the choices families would make and in comparing the final assignments
under these alternative proposals.2 Pathak and Shi (2013) used historical choices to predict

1There is a small literature in the context of merger analysis. Peters (2006) examines the predictive value of
airline mergers and find that structural simulation methods yield poor predictions of post-merger ticket prices.
Ashenfelter and Hosken (2008) argue that “transparently” identified design-based estimates of the mergers
differ markedly from those produced by the structural approach. Einav and Levin (2010) acknowledge that
there should be more retrospective analysis of past mergers, but question whether information from particular
mergers can be extrapolated for other ones.

2For more details, see the materials available at http://bostonschoolchoice.org and press accounts by Gold-
stein (2012) and Handy (2012).
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the choices that participants would express under these alternative plans. They reported
estimates of models of school demand based on historical choices and used those estimates
as a basis for extrapolating how schools would be ranked under different choice menus. The
analysis played a significant role in evaluating trade-offs among the proposals and ultimately
led to the selection of a new plan. In 2014, families throughout Boston will rank schools
under new choice menus, with the first deadline to submit preferences on January 31.

The methods employed to make counterfactual forecasts in Boston are based on discrete
choice models of demand. These methods are commonly used to forecast from structural
models and were initially designed with this aim in mind (McFadden 2001). McFadden and
co-authors studied the impact of BART, a new fixed-rail rapid transit system in San Francisco
Area. They collected data on the travel behavior of a sample of individuals in 1972, prior to
the introduction of BART, and estimated models that were used to predict the behavior of
the same individuals in 1975 after BART began. Multinomial logit models were estimated
using pre-BART commuter data at the realized attributes of the alternatives (auto alone,
carpool, bus). McFadden (2001) reports that

“our overall forecasts for BART were quite accurate, particularly in comparison to the
official 1973 forecast, obtained from aggregate gravity models, that BART would carry
15 percent of commute trips. We were lucky to be so accurate, given the standard
errors of our forecasts, but even discounting luck, our study provided strong evidence
that disaggregate RUM-based models could outperform conventional methods.”

Based on the BART experience, random utility models became widely adopted in travel
analysis and many other areas of economics involving consumer choice (McFadden 2001).

More than three decades have progressed since the BART analysis and there has been
considerable progress in demand modeling during this time. For instance, McFadden (2001)
states that the methods used to account for substitution between modes of transportation
were inferior to the modeling methods used today. The aim of this paper is to compare
discrete-choice based forecasts of changes in school demand in Boston’s school choice plan to
alternative forecasts that come from a statistical model not founded on utility maximization.
We will study how well ex ante counterfactual predictions match actual submitted choices of
participants in the first year of the new system, and also examine other outcomes related to
the assignments students obtain. This paper lays out our methodology and forecasts before
new choices are submitted. A companion follow-up paper will compare these forecasts to
newly reported choices when they become available.

There are many reasons our exercise has the potential to provide unusually compelling
evidence on the forecasting performance of structural demand models. First, the forecasts
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are based on flexible models of demand exploiting the revealed preferences that families
expressed historically. The data not only includes student’s top choices, but their entire
submitted rank order list of schools. Rank order list data can potentially reveal richer infor-
mation about substitution patterns between choices (see, e.g., Berry, Levinsohn, and Pakes
(2004)). Moreover, our dataset includes a large number of observables, including information
on student characteristics and exact geographic location. Furthermore, Boston’s choice plan
has been in existence for more than two decades, meaning that there is a wealth of knowledge
and shared experience about the system. The current strategy-proof system, in place since
2005, eliminates the need for participants to be strategic about their choices and the advice
BPS provides participants in their school guide reflects this feature.3 Our exercise should be
particularly informative on substitution patterns since the policy change predominantly in-
volves a change in choice menus and relatively small changes in the characteristics of choices.
As preference data become more widely available, there are also a growing number of papers
that estimate models of school demand, and our results will speak to their reliability as a pol-
icy planning tool for school districts (see, e.g., Abdulkadiroglu, Agarwal, and Pathak (2013),
Hastings, Kane, and Staiger (2009), Walters (2013)). Finally, since discrete choice models
of demand are a building-block for many structural models that examine more complicated
situations involving dynamics and strategic interactions, the relatively simple counterfactual
environment should allow us to easily compare our predictions and understand reasons for
their performance abstracting away from these additional complications.

On the other hand, the premise of our exercise, and other forecasts based on discrete
choice models of demand is that preferences are stable, can be estimated adequately, and
can be used to make predictions in different environments. In a field experiment, Hastings
and Weinstein (2008) provide evidence that choice behavior in Charlotte’s school choice plan
can easily be swayed by informational cues. In other contexts, there is similar evidence that
information interventions that give people the same information that is already available in
a simpler format change choice behavior, and are evidence of “comparison frictions” (Kling,
Mullainathan, Shafir, Vermuelen, and Wrobel 2012). If these features of choice dominate
decision-making, then they may interfere with the reliability of any forecasts based on histor-
ical revealed preferences. Indeed, if the details of how counterfactuals are presented matter
more than what we can learn from past data using demand models, it may motivate a reeval-
uation of the use of demand models for analyzing counterfactuals in our context. Our work
also has the potential to provide evidence on how particular post-BART developments in
discrete choice modeling are important for accurate counterfactual prediction.

3For instance, the 2012 School Guide states: “List your school choices in your true order of preference. If
you list a popular school first, you won’t hurt your chances of getting your second choice school if you don’t
get your first choice.
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There are only a small number of papers that make ex ante forecasts and compare them
ex post to what actually occurs. The closest project is the study of BART and its ex post
validation described above (McFadden, Talvitie, and Associates 1977). Carrell, Sacerdote,
and West (2014) take reduced form estimates of peer effects and use these estimates to design
an experiment grouping peers together to increase student achievement. Their results show
that the reduced form estimates do not provide an adequate guide to predict the effects of
their peer grouping experiment. Other work uses social experiments as a validation tool for
structural modeling. Wise (1985) estimates a model of housing demand and compares the
predicted impacts of a subsidy program to those from a randomized experiment. Todd and
Wolpin (2006) estimate a model on control households from a randomized social experiment
without using post-program data and compare the model predictions about program impacts
to the experimental impact estimates. They report that their model’s predicted program
impacts track the experimental results.

This project proceeds in two steps. First, we report on demand models used to guide
the policy change in Boston in 2013 in the redesign of their school choice plan, updating
the estimates in Pathak and Shi (2013). We build on those methods and report on ex-ante
forecasts on the performance of demand models. This report and our analysis plan is being
reported in January 2014, before the completion of preference submission in Boston. Part II
of this project will use data submitted on schools to evaluate the forecasts and measure the
strengths and limitations of discrete choice analysis in our context.

2 School Choice in Boston

Boston Public Schools is home to one of the nation’s most iconic school choice plans, which
initially evolved out of a court-ordered busing plan in the 1970s. Until 2014, the city was
divided into the North, West, and East Zone for elementary school admissions. There are
about 25 elementary schools in each zone. Students residing in a zone are allowed to rank
any school choice in the zone as well as any school within a 1 mile walk zone and a handful
of city-wide schools on their application form. At each school, students are prioritized as
follows: continuing students have the highest priority, followed by students who had a sibling
at the school, followed by other students. Within each group, for half of the program seats,
students residing in the walk-zone obtain priority (but this priority does not apply to the
other half of the school seats). A single lottery number draw serves as a tie-breaker.4

Since 2005, after students submit their choices, they are processed through the student-
4Dur, Kominers, Pathak, and Sönmez (2013) present additional details on Boston’s implementation of

this algorithm.
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proposing deferred acceptance algorithm, which works as follows:

• Round 1: Each student applies to his first choice school. School s ranks applicants by
their priority, rejecting the lowest-ranking students in excess of its capacity, with the
rest provisionally admitted (students not rejected at this step may be rejected in later
steps).

• Round ` > 1: Students rejected in Round `-1 apply to their next most preferred school
(if any). School s considers these students and provisionally admitted students from the
previous round, ranks them by their priority, rejecting the lowest-ranking students in
excess of capacity, producing a new provisional admit list (again, students not rejected
at this step may be rejected in later steps).

The algorithm terminates when either every student is matched to a school or every un-
matched student has been rejected by every school he has ranked.

There have been many attempts to reform Boston’s school choice plan including community-
wide task forces in 2003 and 2009. Aside from changing the assignment algorithm in 2005,
however, there have been no significant changes to the three zone plan since 1999 (see Ab-
dulkadiroğlu, Pathak, Roth, and Sönmez (2005) for more details). In 2012, due to concerns
about transportation costs and the overall merits of busing children far from home, outgoing
Mayor Menino spent the last year of his administration advocating for a “radically different
school assignment process—one that puts priority on children attending schools closer to
their homes” (Menino 2012).

In Fall 2012, BPS proposed five different plans that all restricted participant choice by
reducing the number of schools students could rank.5 The idea behind each of these plans
was to reduce competition from non-neighborhood applicants at each school. When these
plans were publicly unveiled in September 2012, they were met with widespread criticism
(see, e.g., Seelye (2012)). These plans and other proposals from the community became the
center of a year-long, city-wide discussion on school choice.

The plan that was eventually chosen was devised by Shi (2013) and became known as
the Home Based plan. Initially, BPS categorizes each school into Tiers, which are computed
using a combination of standardized test score growth and levels on the Massachusetts Com-
prehensive Assessment System (MCAS) tests for the past two years. For the 2014 admissions
cycle, Tiers were finalized as of January 2013. Under the new plan, every family is allowed
to choose from any school within a mile (as the crow flies), along with the two closest Tier 1,
the four closest Tier 1 or 2, the six closest Tier 1, 2 or 3 schools, and the three closest “option

5The initial plans suggested dividing the city into 6, 9, 11, or 23 zones, or assignment based purely on
neighborhood.
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schools” chosen by BPS using internal simulations. The menu of choices also includes the
closest early learning center (ELC) and closest school with an advanced work class (AWC)
program.6 Families can easily access their choice menu via an online portal, which shows a
map of all schools in the choice menu and a summary of their attributes. As before, choices
are processed through the student-proposing deferred acceptance algorithm, though the new
plan also eliminates walk zone priority.

Our analysis focuses on Round 1, where the vast majority of students obtain their initial
placement. Students who do not obtain an assignment after the algorithm is run are allowed
to participate in an administrative assignment round where BPS places these students to
remaining schools based on proximity. For the purposes of our study, we do not model the
placement of administratively assigned students and only consider the assignments produced
by the assignment mechanism.

3 Data

The main data sources for this project are BPS Round 1 choice data and enrollment data for
2010-2013. For each year, the Round 1 choice data was collected in January or February of
that calendar year, for application to the school year that began in September of the same
calendar year. The enrollment data is a snapshot taken in December of the same year, 11
months after the choice data and three months after the school year began.

The choice data contains for each student who participated in round 1 his/her student
identification number; grade; English proficiency status and first language; special educa-
tion or disability status; geocode (a geographic partitioning of the city used by BPS); school
program to which the student has guaranteed priority (designation for continuing students);
student identification numbers of the student’s siblings currently enrolled in BPS; lottery
number; first 10 choices and priorities to each; school program to which the student was
assigned and the priority under which he/she was assigned. Using the assigned school and
program codes, we infer the capacity available for Round 1 assignment for each school pro-
gram. We assume that this reflects true Round 1 capacities.

6There are two idiosyncratic exceptions to the choice menu composition due to Boston’s unique geography.
First, students residing in parts of Roxbury, Mission Hill and Dorchester are allowed to rank the Jackson
Mann school. Second, students in East Boston are eligible to apply to any school in East Boston. East Boston
students have priority over non-East Boston students at East Boston schools. Non-East Boston students have
priority over East Boston students for Non-East Boston Schools. Finally, there are certain provisions in the
plan for students who are limited English proficient or special needs. Limited English proficiency students
of ELD level 1, 2, 3 are allowed to apply to any compatible ELL program within their ELL zone, which is a
specially constructed six-zone overlay of Boston. Substantially separated special education students do not
apply in Round 1, the focus of our investigation.
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The enrollment data, which covers the vast majority of the students in the Round 1
choice data contains student identification numbers; enrolled school and program; grade;
geocode; address; gender; race; languages spoken at home; dates of entrance and, if applicable,
withdrawal from BPS; food service code (whether the student’s socio-economic situation
qualifies for free or reduced lunch). (Since BPS began offering free lunch to all students after
September 2013, the food service code will not be available in the future.)

In addition, we have access to a data set of school characteristics for each of the four
years. The school dataset includes for each year and each school the school code, address,
school type, % of students of each race, % of students who are English Language Learners
(ELL), % of students who have Special Education (SPED) requirements, and % of students
who scored Advanced or Proficient in grades 3, 4 and 5 for MCAS math and English in the
previous year.

Since the assignment reform is mainly for elementary school assignment, we focus on the
entry grades kindergarten 0 to 2 (K0, K1, K2). K2 is the main entry grade to elementary
schools in Boston. Table 1 shows the total number of Round 1 applicants in each of the
kindergarten grades, as well as the total Round 1 capacity. As can be seen, only a small
fraction of seats are available in grade K0, while more than half the seats are available in K1.

Table 1: Aggregate supply and demand in grades K0-2, in years 2010-2013.

Applicants Inferred Capacity
Year K0 K1 K2 K0 K1 K2
2010 803 2134 3473 148 1676 3139
2011 704 2202 3556 170 1689 3328
2012 1001 2660 3985 181 1921 3689
2013 913 2599 4038 155 1890 3979

Students who are assigned to K0 or K1 in the previous grade enter the assignment system
the next year as continuing students. These have priority to their current seat over new
students. We define every non-continuing student as “new.” Figure 1 plots the total number
of new and continuing applicants to BPS for four years.

To make use of geocode data, we take the latitude and longitude centroids of each geocode
(provided by BPS) and compute a mapping from geocodes to “neighborhoods,” which gives a
geographic partition of Boston into 14 regions.7 Table 2 shows the neighborhood breakdown

7Originally BPS has 16 neighborhoods, but we combined three small contiguous neighborhoods Central
Boston, Back Bay, and Fenway/Kenmore into one neighborhood that we call “Downtown.” This is because
these neighborhoods approximately make up the Boston downtown, and they each have very few number of
applicants. Combining them still yields one of the smallest neighborhoods by number of applicants.
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Figure 1: Number of new and continuing applicants to BPS (K0-2)

of the Round 1 applicants and demographic profiles for each neighborhood, including an
estimate of household income using the median household income from the 2010 Census of
the census block group where the centroid of the student’s geocode lies8, the percentage
of applicants who are English Language Learners (ELL), and the racial composition of the
applicant pool from this neighborhood. This table aggregates all four years of Round 1 choice
data for all 3 kindergarten grades.

Table 2: Applicants’ demographics across neighborhoods.

Neighborhood % Total Income Est. (K) ELL Black Hispanic White Asian Other
Allston-Brighton 5% 53.9 51% 8% 36% 28% 22% 5%
Charlestown 2% 60.7 24% 12% 27% 49% 10% 2%
Downtown 3% 58.6 41% 10% 18% 36% 30% 5%
East Boston 14% 33.8 76% 2% 77% 16% 3% 2%
Hyde Park 6% 53.4 28% 40% 42% 13% 2% 3%
Jamaica Plain 6% 47.6 31% 13% 44% 30% 5% 8%
Mattapan 7% 36.0 30% 56% 40% 1% 1% 2%
North Dorchester 6% 40.5 49% 28% 40% 11% 17% 4%
Roslindale 8% 54.9 28% 17% 42% 34% 3% 5%
Roxbury 14% 29.6 36% 45% 49% 2% 1% 2%
South Boston 3% 37.8 36% 16% 38% 36% 6% 3%
South Dorchester 14% 44.2 35% 33% 35% 13% 16% 3%
South End 4% 47.0 38% 29% 40% 15% 11% 4%
West Roxbury 7% 65.6 21% 16% 27% 47% 6% 4%
All Neighborhoods 100% 44.3 40% 26% 44% 19% 8% 3%

Our analysis also uses distance estimates between each student’s home and each school.
To account for geographic barriers and road availabilities, we use walking distances provided

8We used the 2012 ESRI demographics data set, which is available at http://www.esri.com/data/esri_
data/demographic-overview/demographic.
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by Google Maps API. For students for whom we cannot find a valid address by matching
to the enrollment data9, we used the centroid of the student’s geocode as a proxy for home
location.

4 Methodology

The aim of our analysis is to explore alternative approaches of forecasting outcomes and to
evaluate the accuracy of each approach. We target outcomes that are important to BPS
operations and decision-making. We make these predictions for 2014 Round 1, where the
deadline to submit preferences is January 31, 2014. We hoped to commit to numerical
forecasts before the outcome data is collected, but because of computational challenges, we
were only able to calibrate two out of three of our demand models by January 2014. At
that time, we published the partial forecasts in an earlier version of this report, in which we
also committed to the specification for the third model, which we were not able to calibrate
yet(Pathak and Shi 2014). In this current version, we include estimates and forecasts from
all three models, and we do not depart from the specification for the third model previously
committed to. All these efforts were to make sure that we are free from multiple-hypothesis
testing or post-analysis bias.

We forecast three assignment outcomes. The first is the number of unassigned students per
neighborhood. This outcome is important for BPS because they have publicly committed
to assign each K2 student to a set within his/her Home Based choice menu. Two other
assignment outcomes are average access to quality, as defined by students’ chances of getting
into a Tier 1 or 2 school, and average distance to assigned school for each neighborhood.
These were the two most important metrics by which the city committee during the 2012-
2013 school assignment reform made their decisions, and the numbers they examined were
based on forecasts arising from demand modeling. This analysis examines the accuracy of
such an approach.

We also forecast market shares, as more direct measures of the choice patterns themselves,
apart from interactions with the assignment system. We examine school market shares for
each neighborhood, for top 1, top 2, and top 3 choices. This represents the demand and
substitution patterns of families’ choices across different neighborhoods. Because most of
the available data is for K1 and K2, and because these grades are more important for BPS
strategic and operational policies, we focus on these two grades in the analysis.

9This occurs when the student is either not found in the enrollment data or the spelling of the address
does not yield a valid result on Google maps, or the result ended up being more than 0.5 mile from the
centroid of the applicant’s geocode, indicating a data error.
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Given the actual choice data and lottery numbers, and given a table of school program
capacities, the above moments can be computed deterministically. Program capacities are
control variables that BPS often varies over the assignment cycle. Our simulation engine,
which can be seen as a function mapping program capacities to outcome forecasts. To
commit to specific forecasts, it is necessary to specify program capacities. For simplicity, we
use Round 1 inferred capacities from the previous year.

Forecasting the above moments involves forecasting the application pool in 2014, how ap-
plicants choose schools, and simulating the BPS assignment algorithm to yield final outcomes.
We describe these steps in detail in the following subsections.

4.1 Demand Models

The focus of our study is alternative approaches to predict families’ demand. While a full
demand model should include families’ decisions to apply to BPS, we do not have sufficient
data about each family’s outside options to precisely estimate such a model, so in this project
we choose to focus on choices among BPS alternatives, and forecast the application pool using
an ad-hoc approach described in section 4.2.

We consider three types of demand models, which are ordered in increasing complexity.

• Naive Model: Assume that all families choose based on a simple rule that agrees with
intuition and naturally arises from how the new assignment system has been presented.

• Multinomial Logit Model: This model is one of the simplest and most widely used
approaches in demand modeling, especially for industrial organization applications.
The 2012-2013 Boston school assignment reform heavily leaned on an analysis based
on such a model, described in Pathak and Shi (2013).

• Mixed-Logit Model: This model is a popular alternative to the multinomial logit model
due to its greater flexibility in capturing complex substitution patterns that violate
the Independence of Irrelevant Alternatives (IIA) property of pure logit models. One
theoretical justification of such a model is that any Random Utility Maximization
(RUM) consistent demand model can be approximated to arbitrary accuracy by a
mixed-logit model (McFadden and Train 2000).

We now describe the details and specifications of each model.

4.1.1 Naive Model

There are many possibilities for specifying statistical models of demand, which are not based
on the random utility framework. We chose one particular model so that our investigation
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of more sophisticated models can be compared to an alternative. For instance, Nevo and
Whinston (2010) point out that when evaluating the performance of simulation based merger
analysis, it is important to compare these methods to other possibilities. Even though it
necessarily requires some ad hoc choices, our naive benchmark represents such an alternative.

From interactions with parents and BPS staff, we learned that many people expect families
to simply choose schools with the best Tier schools first, breaking ties with distance. For ELL
students, BPS staff stated that if given sufficient information, families would place a premium
on ELL programs since they offer targeted programming, especially language-specific ELL
programs in their home language. Other patterns are suggested by the choice data. For
example, the vast majority of continuing students (91%) select the next grade level of their
current program first, an expected pattern since families may not like having to move schools.
Furthermore, for students who have a sibling currently attending BPS, 66% of them rank a
school first that a sibling goes to, an expected pattern if families value having siblings attend
the same school for transportation or other reasons.

If families’ choices are not based on coherent and stable preferences, but are strongly
influenced by BPS’ publicity or framing efforts, the following simple model may adequately
approximate families’ choices. Each family ranks the school programs in their personalized
menu based on the following hierarchy:

Hierarchy Criteria
1 (most important) present school program

2 another program in current school
3 school where sibling attends
4 (for ELL students) ELL program
5 (for ELL students) ELL program in home language
6 better Tier school
7 closer walking distance

Students only consider the hierarchy that pertain to them. For example, new applicants do
not consider hierarchies 1 or 2, and non-ELL students do not consider hierarchies 4 and 5.

Outside of a random utility framework, a model of this type is a natural choice: for
example, such a hierarchical model was used by the independent consulting group WXY,
when commissioned by the BPS to analyze various counterfactuals.

4.1.2 Multinomial Logit

This model assumes that rankings of each student i are induced by underlying utilities for
each school program j, and that the utilities can be approximated by the following model:
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uij = β · Fij + εij,

where Fij is a vector of observable characteristics pertaining to student i and choice option
j, εij’s are iid random variables following a standard Gumbel distribution, and β is a vector
of parameters to be fitted. As usual, we standardize the error term without loss of generality
since the model is invariant under multiplication or addition by constants. By the same
reason we normalize one of the components of β to zero.

A key implication of this model is that choices follow the Independence of Irrelevant
Alternatives (IIA) property: the relative market shares of two programs does not depend
on whether a third option is available. This means that substitution between programs
follows the same proportional pattern across all choices. Although this property may be
unrealistic for school choice, as two choices made by the same family may be correlated due
to common, unobservable characteristics, it is plausible that the model may nevertheless
provide a reasonable forecast of the moments that matter for decision making.

We fit this model by Maximum Likelihood Estimation (MLE) and obtain the covariance
matrix of estimated coefficients by taking the inverse of the Hessian of the log likelihood
function at the maximum. Table 3 shows the estimated coefficients for various specifications,
using each of the 2012 and 2013 Round 1 choice data for grades K1 and K2. There are
three specifications Simple (which does not use students’ demographics), Full (which fully
interacts students’ race and income estimates with several key school characteristics), and
Reduced (which removes the insignificant terms in Full and combines terms for efficiency).
The features used are the following:

• distance: walk distance from home to school.

• continuing: indicator for whether the student has guaranteed status for the school
program.

• sibling: indicator for whether student has sibling at the school.

• ell match: indicator for the student being English Language Learner (ELL) and the
program being specialized for ELL.

• ell language match: indicator for the student being ELL and the program having a
language-specific ELL program in the student’s first language.

• walk zone: indicator for whether student lives in the school’s walk-zone, which is ap-
proximately a 1-mile circle around the school.10

10The one mile circle is only approximate because the walk zones in our data are defined by drawing a
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• black/hispanic: indicator for whether the student is black or hispanic.

• mcas: the proportion of students at the school who scored Advanced or Proficient in
the previous year’s MCAS standardized test for math, averaging the proportions for
grades 3, 4 and 5. (The MCAS test begins at grade 3. Grade 5 is the highest grade
in many elementary schools. We only choose math because it is highly correlated with
English.11)

• % white/asian: the proportion of students at the school who are white or asian.

In each model, we include a fixed effect for each school, which captures any common
propensities to choose a school, due to perceived school quality, facilities, and other unob-
served characteristics. In the Full specification, we interact the student’s income estimate,
along with indicators for race (black, asian, hispanic, other, or unknown), with the school’s
mcas, % white/asian and distance. (This represents 6× 3 = 18 terms).

All of the specifications in Table 3 yield a significant and negative coefficient on distance.
The magnitudes of the coefficients can be interpreted as follows: for the Simple specification
fitted using 2012 data, the distance coefficient is −0.395, which means that for two school
programs that are otherwise identical but one is one mile further from home, the student
is more likely to choose the closer one e0.395

1+e0.395
≈ 60% of times. All estimates yield highly

significant and positive coefficients for continuing, sibling, ell match, and ell language match.
To gain further intuition, one can examine the ratios of these estimates with the distance
coefficient. For example, all else being equal, students in the Simple specification in 2012 are
on average willing to travel 4.070

0.395
≈ 10.3 extra miles to go to a continuing program, 5.4 extra

miles to go to school with a sibling, 3.9 extra miles to go to an ELL program (if the student
is ELL), and 1.8 extra miles to go to an ELL program specialized to his/her home language.

Being in the walk zone is relevant because only students who live outside the walk zone
are provided busing. Moreover, it is correlated with extreme proximity. Because of these
potentially conflicting influences, the positive coefficient for walk zone is difficult to interpret.
Another complication is that before 2014, students in the walk zone get walk zone priority
to go to the school. Although this should not theoretically affect choice rankings because the
mechanism is strategyproof, families may not fully appreciate this property and rank walk-
zone schools higher because they think they have better chances to get into them. Alternative,
the significance of this variable may indicate that student’s perceive a significant fixed costs
to having to attend a school that requires a bus ride.

one-mile circle from the school and including all geocodes that intersect the circle. A family from a geocode
on the circle’s boundary may be a little further than one-mile from the school, but still in the walk zone.

11This correlation is about .84 in years 2012 and 2013.
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Table 3: Estimated coefficients for logit models. Each model is estimated using maximum
likelihood, using the choice data for grades K1 and K2. The standard errors are estimated
using the inverse of the Hessian of the log likelihood function at the maximum.

2012 Data 2013 Data

Simple Full Reduced Simple Full Reduced
(1) (2) (3) (4) (5) (6)

distance −0.395∗∗∗ −0.438∗∗∗ −0.365∗∗∗ −0.459∗∗∗ −0.499∗∗∗ −0.403∗∗∗
(0.005) (0.018) (0.014) (0.006) (0.019) (0.015)

continuing 4.070∗∗∗ 4.029∗∗∗ 4.027∗∗∗ 4.401∗∗∗ 4.347∗∗∗ 4.354∗∗∗

(0.053) (0.052) (0.052) (0.054) (0.054) (0.054)

sibling 2.143∗∗∗ 2.101∗∗∗ 2.104∗∗∗ 2.141∗∗∗ 2.107∗∗∗ 2.102∗∗∗

(0.037) (0.037) (0.037) (0.038) (0.038) (0.038)

ell match 1.548∗∗∗ 1.550∗∗∗ 1.548∗∗∗ 1.210∗∗∗ 1.202∗∗∗ 1.211∗∗∗

(0.035) (0.035) (0.035) (0.040) (0.040) (0.040)

ell language match 0.719∗∗∗ 0.610∗∗∗ 0.606∗∗∗ 0.791∗∗∗ 0.671∗∗∗ 0.672∗∗∗

(0.043) (0.044) (0.043) (0.049) (0.049) (0.049)

walk zone 0.570∗∗∗ 0.497∗∗∗ 0.500∗∗∗ 0.474∗∗∗ 0.396∗∗∗ 0.399∗∗∗

(0.019) (0.019) (0.019) (0.020) (0.020) (0.020)

distance * black/hispanic 0.115∗∗∗ 0.114∗∗∗

(0.010) (0.011)

distance * income est. −0.233∗∗∗ −0.262∗∗∗ −0.252∗∗∗ −0.296∗∗∗
(0.022) (0.021) (0.024) (0.023)

mcas * black −0.599∗∗∗ −0.874∗∗∗ −0.904∗∗∗ −1.062∗∗∗
(0.166) (0.105) (0.175) (0.111)

mcas * income est. 0.506∗∗ 0.424∗ 0.959∗∗∗ 0.906∗∗∗

(0.232) (0.221) (0.267) (0.252)

% white/asian * black/hispanic −2.581∗∗∗ −2.666∗∗∗
(0.097) (0.094)

% white/asian * income est. 1.908∗∗∗ 1.982∗∗∗ 1.447∗∗∗ 1.778∗∗∗

(0.218) (0.211) (0.228) (0.219)

school fixed effects Yes Yes Yes Yes Yes Yes

full interaction Yes Yes

Log likelihood -70,969 -70,013 -70,090 -65,944 -64,763 -64,829
# of Parameters 81 99 87 83 101 89
# Students 6,644 6,644 6,644 6,627 6,627 6,627
# Choices 27,905 27,905 27,905 26,991 26,991 26991

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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In creating the Reduced specification, we first fit the Full model. However, we found that
the estimates for black and hispanic students are statistically indistinguishable, except for
interaction with mcas, in which the coefficient for black students are significantly negative
while the coefficient for hispanic students is insignificant. Moreover, the results for the other
races are unstable between the years or insignificant, most likely due to lack of data because
as seen in Table 2 few students are asian (8%) or other (3%). Thus, in the Reduced specifi-
cation, we group black and hispanics together, except for the interaction with mcas, and we
remove the other race dummies, implicitly grouping them with whites. We included all the
terms involving income estimates since they tend to be statistically significant. The coeffi-
cients suggest that black/hispanic students are willing to travel further than other students,
and tend to choose schools that have lower % white/asian. This may be due to demographic
preferences, or preferences for unobserved characteristics that are correlated with demograph-
ics, such as school culture or environment. Black students seem to disproportionately choose
schools with lower math scores even with our controls for distance and neighborhood income.

Because the Reduced specification captures all of the significant and stable interaction
terms in the Full specification, but has more precise estimates, so we opt for this specification
and simply refer to it by “Logit” in the rest of this paper.

4.1.3 Mixed Logit (MLogit)

This model adds random coefficients to multinomial logit. Specifically, we use the following
formulation,

uij = β · Fij + γi ·Gij + εij,

where Fij, εij and β are observed features, iid taste shocks, and fixed coefficients as before.
However, we allow the addition of a subset of features Gij to interact with random coeffi-
cients γi, which we assume to be zero mean jointly Gaussian distributed random variables,
with possible covariance restrictions. The assumption of zero mean is without loss of gen-
erality since the means are captured by the fixed coefficients. The assumption of Gaussian
distribution is for convenience.

In terms of features we include, we use the fixed coefficients as in the Reduced specification
of the logit model, but add random coefficients to the following features, which we organize
into “blocks,” assuming independence across blocks, but allowing arbitrary covariance within
each block.
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Block Features
A ell match
B walk zone
C distance, mcas, % white/asian

This formulation allows students to have heterogeneous preferences of going to an ELL pro-
gram (if applicable), of choosing schools in the one-mile walk zone12, and of trading off
distance, academics, and school demographics. We also include school fixed effects in order
to capture the many unobserved school characteristics, such as safety, reputation, facilities,
environment, and teaching quality.

Because the model no longer has closed form log-likelihood functions, and the log-likelihood
functions are no longer guaranteed to be globally concave, we fit the model by Markov Chain
Monte Carlo (MCMC), which is a commonly employed method for fitting such models in
practice (Train 2003). One technical difficulty in our situation is that we have many school
fixed effects. As far as we are aware, the state of the art MCMC techniques for including
fixed effects in mixed-logit models is described in Train (2003), and it involves adding a layer
of Gibbs sampling and simulating the conditional distribution of the fixed effects using the
Random Walk Metropolis-Hasting algorithm. However, in our case, there are 75 schools, so
this step requires simulating a 75-dimensional distribution, which is prohibitively slow using
Random Walk Metropolis (RWM).13 Hence, we speed up computation by using Hamiltonian
Monte Carlo (HMC)14, which incorporates the gradient of the log likelihood function, so can
more quickly update the 75-dimensional estimate for fixed effects. We fit the above model
by using 1,000,000 iterations of MCMC sampling, throwing out the first half as burn-in. To
check for the convergence of the estimates, we repeated this 6 times with independent draws,
sometimes with random starting values, and found the results to be near identical. Details
of how we fit the mixed logit model are in Appendix C.

The estimates are in Table 4. Note that beside the fixed coefficients in the Reduced specifi-
cation of the simple logit model, we also estimate the standard deviations of the random coef-
ficients, denoted by σ(ell match), σ(walk zone), σ(distance), σ(mcas), and σ(% white/asian).
These are the square roots of the respective variances. We also estimate the correlation co-
efficients ρ(distance,mcas), ρ(distance,% white/asian), and ρ(mcas,% white/asian), which
are computed by dividing the respective covariance terms by the product of the standard
deviations. In the rest of the paper, we refer to this model as “MixedLogit” or “MLogit” for
short.

12The walk zones are only approximately one mile disc, because they were originally defined using geocodes.
13See Katafygiotis and Zuev (2008) for geometric insight to why RWM breaks down in high dimensions
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Table 4: Coefficients for Mixed Logit (MLogit) models, compared to simple Logit.

2012 Data 2013 Data

Logit MLogit Logit MLogit
(3) (7) (6) (8)

distance −0.365∗∗∗ −0.638∗∗∗ −0.403∗∗∗ −0.674∗∗∗
(0.014) (0.037) (0.015) (0.039)

continuing 4.027∗∗∗ 4.777∗∗∗ 4.354∗∗∗ 4.966∗∗∗

(0.052) (0.069) (0.054) (0.068)

sibling 2.104∗∗∗ 2.478∗∗∗ 2.102∗∗∗ 2.451∗∗∗

(0.037) (0.045) (0.038) (0.045)

ell match 1.548∗∗∗ 1.892∗∗∗ 1.211∗∗∗ 1.311∗∗∗

(0.035) (0.058) (0.040) (0.059)

ell language match 0.606∗∗∗ 0.610∗∗∗ 0.672∗∗∗ 0.967∗∗∗

(0.043) (0.052) (0.049) (0.060)

walk zone 0.500∗∗∗ 0.339∗∗∗ 0.399∗∗∗ 0.185∗∗∗

(0.019) (0.028) (0.020) (0.028)

distance * black/hispanic 0.115∗∗∗ 0.188∗∗∗ 0.114∗∗∗ 0.183∗∗∗

(0.010) (0.024) (0.011) (0.024)

distance * income est. −0.262∗∗∗ −0.295∗∗∗ −0.296∗∗∗ −0.343∗∗∗
(0.021) (0.049) (0.023) (0.052)

mcas * black −0.874∗∗∗ −1.100∗∗∗ −1.062∗∗∗ −1.371∗∗∗
(0.105) (0.153) (0.111) (0.144)

mcas * income est. 0.424∗ 1.065∗∗∗ 0.906∗∗∗ 0.925∗∗∗

(0.221) (0.299) (0.252) (0.313)

% white/asian * black/hispanic −2.581∗∗∗ −3.732∗∗∗ −2.666∗∗∗ −3.861∗∗∗
(0.097) (0.162) (0.094) (0.148)

% white/asian * income est. 1.982∗∗∗ 2.633∗∗∗ 1.778∗∗∗ 2.217∗∗∗

(0.211) (0.322) (0.219) (0.311)

σ(ell match) 1.638∗∗∗ 1.358∗∗∗

(0.058) (0.063)

σ(walk zone) 0.981∗∗∗ 0.878∗∗∗

(0.030) (0.030)

σ(distance) 0.392∗∗∗ 0.409∗∗∗

(0.011) (0.011)

σ(mcas) 2.275∗∗∗ 2.121∗∗∗

(0.086) (0.101)

σ(% white/asian) 2.672∗∗∗ 2.512∗∗∗

(0.093) (0.106)

ρ(distance,mcas) −0.232∗∗∗ −0.285∗∗∗
(0.041) (0.043)

ρ(distance,% white/asian) −0.089∗∗ −0.055
(0.039) (0.040)

ρ(mcas,% white/asian) 0.035 −0.110∗
(0.056) (0.061)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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4.2 Forecasting the Applicant Pool

An important driver of the number of unassigned students and the average access to Tier 1 or
2 schools is the number of applicants from each neighborhood. Regardless of how applicants
choose schools, a large influx of new applicants from a neighborhood would drive up the
number of unassigned from that neighborhood and drive down the average access to top Tier
schools from that neighborhood. If we had data on all potential applicants and their non-
BPS options, we might include this aspect as part of the structural model. In the absence
of such data, we still need to reflect this uncertainty and to capture any first-order trends in
the neighborhood participation patterns.

In forecasting the applicant pool, we consider new and continuing students separately.
This is because continuing students are already in the enrollment data of the previous year,
while for new students we need to use previous year’s applicants’ demographics as proxies.
Figure 2 plots the number of new applicants to BPS in Round 1 for grades K0-2 for years
2010-2013, as well as the regression line with respect to the year. As seen, the number of
applicants is on average increasing each year, at a rate of 6% a year on average, although
it is not steady. For example, in 2012 there was an above-expected number of applicants.15

We model the next year’s total number of new applicants by a normal distributed random
variable, having mean and standard deviation being the predicted mean and standard error
of the regression line.

Figure 2: Trend in total number of applicants to BPS.

Figure 3 shows what proportion of this total is distributed into each grade and neighbor-
hood combination. Since we study two grades and there are 14 neighborhoods, there are 28

when the dimensions are correlated.
14See Neal (2011)
15The influx of applicants in 2012 Round 1 raised operational pressures for BPS, as it had to add about

10 new classrooms to accommodate.
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time series in these plots. Most of the time series do not exhibit obvious trends. We model
each of the 28 proportions next year as a normally distributed random variable. To estimate
the mean and standard deviation, we run a regression with respect to year for each of these
28 time series, and discard all regressions for which the slope has less than 95% significance
level. For the neighborhood and grade combinations in which we discard the regression, we
forecast next year’s proportion using the previous 4 years’ sample mean and sample standard
deviation. For the neighborhood and grade combinations in which the regression slope has
95% significance, we use the predicted mean and standard error of the regression.16 The
regression lines we kept are for K1 Charlestown and K2 Downtown, for which we detected a
steady upward trend in the number of applicants.

We therefore model the total number of new applicants from each neighborhood in the
next year as a product of two independent normals, one representing a BPS wide shock
and one a neighborhood shock. The common shock captures the uncertain effect that BPS
publicity or policy initiatives have on the propensity for families to apply to BPS round
1. The neighborhood shock captures local population surges or unobserved reasons that
affect participation. By using one common shock for all grades, we implicitly assume that
different grades exhibit the same reactions to BPS policies, and are trending in the same
directions.17 To check this, we plot in Figure 4 the proportion of new applicants of each
grade through the four years. As seen, the relatively horizontal lines suggest that modeling
the aggregate participation of both K1 and K2 using the same random variable may be a
reasonable approximation.

For continuing students, we define the Round 1 continuing ratio for a grade and neigh-
borhood as the proportion of relevant students from the previous year’s enrollment data who
decide to continue in this year’s Round 1. Figure 5 plots these for grades K1 and K2. As
seen, due to the lower number of continuing students in K1 (recall that comparatively few
students enroll in K0), the estimates for K1 are highly variable, while the K2 continuing
ratios are around 70% to 90%.

We use the same approach to detect linear trends. However, in this data we failed to
find any significant trends in continuing ratios, so we model them as normally distributed
random variables, with mean and standard deviation according to the sample mean and
sample standard deviation for years 2010-2013. The estimates are in Appendix A.

To simulate the pool applicant pool for next year, we independently draw the total number
16Note that the standard error has one fewer degree of freedom than the sample standard deviation.
17The means and standard deviations of these estimates are tabulated in Appendix A. After multiplying

the two normals, we truncate at zero if the product is negative and round to the nearest integer.
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Figure 3: Proportion of new applicants distributed into each grade, neighborhood combina-
tion.
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Figure 4: The proportion of new applicants of each grade.

of new applicants, the proportion of this to allocate to each grade and neighborhood18, and
the continuation ratio for each grade and neighborhood. Fixing these realizations for one
sample of choice data, we draw new applicants by sampling with replacement the previous
year’s new applicants, but treating them as if they applied in the new year, and we sample
the given number of new applicants from each neighborhood and grade. For continuing
students, we go through all potentially continuing students and decide whether to include
them independently, with probability according to the generated continuation ratio for that
grade and neighborhood. We use this method to generate the applicant pool for all our
simulations.

4.3 Simulation

We use 4 layers of random draws for our simulations.

1. Population Draw: Draw a pool of applicants according to the steps in Section 4.2. This
represents uncertainty in participation rates.

2. Coefficient Draw: For the logit and mixed-logit demand models, draw the coefficients
as jointly normal random variables, using the estimated means and covariance matrix.
This represents uncertainty in the demand model.

3. Preference Draw: Having fixed a specific demand model and parameters, simulate for
each student a complete ranking over his/her personalized menu of options, according
to the randomness inherent in the demand model. Truncate this to the first ten choices.

18Since the total includes K0 but we do not estimate proportions for K0, we do not require these draws to
add up to 1.
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Figure 5: For each grade and neighborhood, the proportion of potentially continuing students
from the previous year who apply as continuing students in the current year.
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4. Lottery Draw: Generate iid lottery numbers for each student. The lottery numbers are
distributed uniformly between zero and one, with lower lottery numbers being better.

After doing these steps once, we have one set of simulated choice data, just as what we
might have received from BPS. From this we can deterministically compute all of our outcome
metrics by imitating the BPS assignment algorithm.19

The reason we truncate to first 10 choices is as follows: currently our choice data from
BPS truncates to first 10 choices, although students can rank arbitrarily many. The previous
report, Pathak and Shi (2013), provides evidence that assuming everyone ranks 10 choices
yields reasonably accurate forecasts. Moreover, our earlier report on which the city committee
based the 2012-2013 reform assumed that families ranked 10 options, and we keep the same
assumptions to validate or invalidate the methodology of the earlier report.

An alternative approach is to model outside options and assume that unranked programs
are inferior to the outside option. However, we observe in the data that often students
end up enrolling to options they did not rank but could have ranked, suggesting that this
assumption is invalid. In our interactions with parents and BPS staff, it seems that many
families are ranking few options not because they have better outside options, but because
they feel confident they would get into the ones they picked and did not bother, or because
they do not understand that ranking more options do not harm their chances to top choices.
Future work is needed to better model this situation.

4.4 Evaluation

Having computed the assignment using the simulated choice data and lottery numbers, we
compute the outcome measures as follows. In all of the analysis, we compute measures for
grades K1 and K2 separately.

• Unassigned: Tally the number of unassigned students from each neighborhood after
each round.

• Access to Quality: For each student, define his/her access to quality as the highest
(worst) lottery number he/she can have and still be able to be assigned to a Tier 1 or
2 school. (Recall that lottery numbers are uniformly distributed between zero and one,

19For validity of this project, we do not need to replicate the BPS internal system exactly. In fact, we
purposely deviate in our back testing simulations for 2013, by ignoring the walk-zone priority. This is because
the year of interest, 2014, does not include such a priority, and our goal in back testing is to be able to quantify
how well we expect various models to do for 2014. Having the walk-zone priority would skew the access to
quality estimates for the Naive model, since under high competition for Tier 1 and 2 schools, the walk-zone
priority would give students living near such schools a huge advantage. As a result, we will not be able to
distinguish how much of the results for Naive is due to choice patterns or due to the obsolete priority rules.
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so this can be interpreted as a probability.) We estimate this by finding for each Tier 1
or 2 school program the highest (worst) lottery number he/she needs to obtain an offer.
More precisely, if the program is not filled to capacity, the student can get in even with
the worst lottery number; if it is filled to capacity, we look at the worst lottery number
the student needs to be able to displace one student to obtain an offer.20 Then we take
the maximum over all of his/her Tier 1 or 2 options and term this his/her “access to
quality.” Finally, we average the access to quality of all students of a neighborhood to
compute the neighborhood average access.

• Distance: For each neighborhood, take all the assigned students from this neighborhood
and average their walk distances to assigned school.

• Top k Market Share: Take all the top k choices of students from a neighborhood. For
each school, find the proportion of these choices that are to this school.21

We compute these metrics for each generated choice data and average across many simu-
lations to find the mean prediction. For a given choice data, we compute the above metrics
and define the prediction error for each neighborhood as follows: for unassigned, access to
quality, and distance, since we have a scalar value for each neighborhood, we simply take the
absolute value of the difference between predicted mean and actual realization. For top k

market share, since for each neighborhood we have a vector of school market shares that add
up to one, we define prediction error as the total variation distance between these probability
vectors. Given vectors of market shares p and q, define the total variation distance between
them as

total variation distance =
1

2

∑
j

|pj − qj|.

This metric is standard for probability distributions, and can be interpreted as the least total
movement needed to redistribute market shares by moving from one school to another, to
turn the predicted shares into the actual shares.

Finally we judge the overall prediction accuracy by taking the Root Mean Squared Error
(RMSE) over the neighborhoods. Specifically, for each metric, we take the prediction error
for each neighborhood, square these numbers, take the mean of the squared errors, and take
the square room of the mean. We choose this over Mean Absolute Deviation (MAD) because
we want to penalize being far off for any specific neighborhood over being slightly off for many

20For computing this metric, we ignore the possibility of that student displacing someone else at his/her
next choice and starting a chain reaction that cycles back to the first student, since this is unlikely to occur
in markets with a large number of participants (Kojima and Pathak 2009).

21If a student ranks multiple programs of the same school as part of his/her top k choice, he/she contributes
multiple “votes” for that school, since we treat each top k choice as one “vote.”
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neighborhoods. This is because for capacity planning and for policy evaluation, the penalties
are large for not foreseeing a large shortfall of seats in a neighborhood or not foreseeing vast
inequities between neighborhoods.

5 Results

5.1 Back Testing for 2013

We first test our methodology by using it to predict 2013 outcomes from 2010-2012 data,
and quantifying the prediction error since we have the actual choice data in 2013. This gives
us an idea of how well we might expect to predict future outcomes in 2014 Round 1. One
caveat to keep in mind is that while the assignment system from 2010 through 2013 are the
same, there are significant changes in 2014. Therefore, the results here may not reflect the
results for 2014.

As a uniform measure of how well the models predict each outcome, we compute the tail
distribution of Root Mean Squared Error (RMSE) for each model and each outcome. This
measure gives a sense of how much we expect to be off by on average. It’s worth noting
that even if a model is completely correct, there are multiple levels of randomness in the
simulations themselves, so there will always be some forecast error. By evaluating the tail
distribution at the actual RMSE, we estimate a p-value of the likelihood that this magnitude
of error occurs when the model is correct. We plot the p-values for the first three outcome
measures for 2013 K2 in Table 6. For brevity, we only show results for K2 in the section,
but the corresponding plots for K1 are in Appendix B. All plots in our back testing exercise
are computed using 400 independent simulations. Since we can no longer use 2013 data, we
create population forecasts following the methodology in section 4.2, but using only 3 years
of data. The estimates are in Appendix A.

Figure 6 shows that in 2013 the Naive model for unassigned has an expected RMSE of
13.3 students per neighborhood, while the actual data yields a RMSE of 25.8 students per
neighborhood. (In other words, the model is expected to be off by about 13.3 students, while
it’s actually off by 25.8) If the Naive model were correct, such a large deviation occurs with 2%
probability, which indicates that while the Naive model may not be the most satisfactory, it is
not totally implausible in terms of its predictions for number of unassigned per neighborhood.
The Logit model on the other hand produces an actual RMSE of 18.7 students, which is
much smaller than Naive. The p-value is larger at 6.2%. This implies that the Logit model’s
predictions for unassigned cannot be rejected at 95% confidence level. MixedLogit produces a
smaller actual RMSE of 18.1 students and the p-value is 7.8%. Hence, in terms of forecasting
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Figure 6: Back testing with assignment outcomes for 2013 K2. Tail distribution plots.

(a) Unassigned (Naive) (b) Unassigned (Logit) (c) Unassigned (MLogit)

(d) Access to Quality (Naive) (e) Access to Quality (Logit) (f) Access to Quality (MLogit)

(g) Distance (Naive) (h) Distance (Logit) (i) Distance (MLogit)

the numbers and locations of unassigned students, MixedLogit performs the best, followed
closely by Logit, and Naive performs the worst.

For Access to Quality, the Naive model yields almost 10 times the expected error, with
p-value of about zero, while the Logit model is reasonably on target, with p-value of 30%.
MixedLogit yields a smaller error and a larger p-value of 32.8%. However, for distance, none
of the models seem to explain the data, with all models having near zero p-values. The Naive
model is off by 0.46 miles per neighborhood, and both Logit and MixedLogit are off by 0.26
miles per neighborhood.

Next we examine the neighborhood by neighborhood predictions themselves. These are
shown in Tables 5, 6, and 7. For each model, we show the 95% confidence interval as
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estimated in the 400 simulations. The Naive model over-predicts the number of unassigned
everywhere, possibly due to some schools that should have been chosen much not being chosen
often enough by the Naive rule. (Recall that we assume students rank at most 10 options, so
low Tier schools far away would not be ranked at all under the Naive rule.) Logit performs
better since school popularity levels are captured in the fixed effects. For the majority
of neighborhoods, the actual realization is within 95% confidence interval, suggesting that
Logit could have been a reasonable model for capacity planning purposes, at least in 2013.
MixedLogit yields very similar results to simple Logit, and the confidence intervals for all
neighborhoods overlap significantly with Logit.

Table 5: Back testing unassigned predictions for 2013 K2.

Neighborhood Naive (95 % C.I.) Logit (95 % C.I.) MLogit (95 % C.I.) Actual
Allston-Brighton 32.80 (17.00,51.02) 8.83 (0.00,24.00) 7.66 (0.00,23.02) 11
Charlestown 49.49 (33.00,66.00) 25.58 (11.00,44.00) 28.25 (12.00,45.00) 18
Downtown 28.58 (16.00,43.00) 13.12 (3.00,25.00) 14.04 (4.00,27.00) 23
East Boston 118.22 (67.00,183.03) 88.76 (36.95,152.03) 91.56 (36.00,150.05) 81
Hyde Park 41.57 (24.00,62.00) 5.88 (0.00,19.00) 5.68 (0.00,18.02) 13
Jamaica Plain 42.52 (25.00,61.00) 12.55 (2.00,29.00) 12.50 (2.00,27.00) 32
Mattapan 33.88 (14.00,58.00) 5.46 (0.00,20.02) 5.86 (0.00,23.00) 21
North Dorchester 36.54 (18.00,60.05) 6.41 (0.00,24.02) 7.48 (0.00,23.02) 16
Roslindale 45.98 (21.98,73.05) 18.21 (2.00,42.02) 19.93 (4.00,44.00) 51
Roxbury 109.14 (73.97,154.03) 18.78 (2.00,54.08) 20.56 (3.00,56.02) 47
South Boston 20.35 (6.00,39.00) 3.90 (0.00,16.00) 4.12 (0.00,17.00) 7
South Dorchester 72.47 (37.00,113.03) 12.98 (0.00,43.00) 14.65 (0.00,49.02) 52
South End 45.78 (32.00,62.00) 18.82 (5.00,35.00) 19.75 (6.97,36.02) 26
West Roxbury 53.11 (27.98,84.03) 26.14 (7.00,51.00) 27.28 (8.00,54.00) 48

Table 6: Back testing access to quality predictions for 2013 K2.

Neighborhood Naive (95 % C.I.) Logit (95 % C.I.) MLogit (95 % C.I.) Actual
Allston-Brighton 1 (1.00,1.00) 0.94 (0.82,1.00) 0.95 (0.85,1.00) 1
Charlestown 1 (1.00,1.00) 0.92 (0.79,1.00) 0.94 (0.83,1.00) 1
Downtown 1 (1.00,1.00) 0.94 (0.85,1.00) 0.96 (0.88,1.00) 1
East Boston 1 (1.00,1.00) 0.97 (0.89,1.00) 0.98 (0.90,1.00) 1
Hyde Park 0.56 (0.49,0.64) 0.97 (0.88,1.00) 0.97 (0.86,1.00) 0.99
Jamaica Plain 0.79 (0.72,0.87) 0.91 (0.81,1.00) 0.91 (0.81,1.00) 0.96
Mattapan 0.52 (0.44,0.60) 0.97 (0.88,1.00) 0.97 (0.86,1.00) 1.00
North Dorchester 0.58 (0.50,0.66) 0.97 (0.87,1.00) 0.97 (0.86,1.00) 1
Roslindale 0.73 (0.64,0.83) 0.91 (0.80,1.00) 0.90 (0.79,1.00) 0.96
Roxbury 0.74 (0.66,0.81) 0.91 (0.82,1.00) 0.91 (0.81,1.00) 0.96
South Boston 0.44 (0.36,0.53) 0.98 (0.87,1.00) 0.97 (0.85,1.00) 1
South Dorchester 0.53 (0.46,0.61) 0.98 (0.89,1.00) 0.98 (0.87,1.00) 1
South End 1 (1.00,1.00) 0.93 (0.82,1.00) 0.95 (0.85,1.00) 1
West Roxbury 0.73 (0.63,0.83) 0.90 (0.78,1.00) 0.89 (0.77,1.00) 0.96

For access to quality, since the assignment system in 2013 gave each family at least about
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25 choices in each zone, there were likely some Tier 1 or 2 school with some left over capacity,
so the marginal student could have changed choices to selecting all Tier 1 or 2 schools and
selecting them first, and gotten in a Tier 1 or 2 school with near certain probability. This
results in the very high actual access to quality measures shown in Table 6. However, Naive
forecasts a much tougher level of competition for Tier 1 or 2 schools, because it assumes
every non-continuing students without siblings or ELL considerations go for such schools
first. Although the MCAS data on which the Tiers were based were released months before,
the Tiers themselves were finalized only around the time of the 2013 Round 1 choice. Hence,
they were not salient at the time the choices were made. Again, Logit would have been a
reasonable model for access to quality, with MixedLogit producing almost identical results.

Table 7: Back testing distance predictions for 2013 K2.

Neighborhood Naive (95 % C.I.) Logit (95 % C.I.) MLogit (95 % C.I.) Actual
Allston-Brighton 2.09 (1.75,2.45) 1.47 (1.26,1.68) 1.52 (1.31,1.74) 1.45
Charlestown 1.52 (1.18,1.84) 1.77 (1.43,2.07) 1.71 (1.43,2.00) 0.98
Downtown 1.59 (1.30,1.91) 1.51 (1.30,1.77) 1.52 (1.27,1.78) 1.57
East Boston 2.88 (2.63,3.12) 2.30 (2.00,2.61) 2.37 (2.03,2.70) 1.82
Hyde Park 2.93 (2.67,3.23) 2.22 (2.01,2.48) 2.22 (2.02,2.43) 2.19
Jamaica Plain 1.66 (1.53,1.80) 1.57 (1.45,1.71) 1.57 (1.43,1.72) 1.43
Mattapan 2.28 (2.16,2.42) 2.22 (2.08,2.35) 2.16 (2.03,2.30) 2.23
North Dorchester 1.68 (1.44,1.93) 1.48 (1.32,1.67) 1.51 (1.30,1.72) 1.39
Roslindale 1.84 (1.73,1.96) 1.80 (1.68,1.91) 1.77 (1.66,1.90) 1.65
Roxbury 1.89 (1.78,2.00) 1.58 (1.49,1.69) 1.58 (1.49,1.69) 1.50
South Boston 1.59 (1.35,1.83) 1.33 (1.15,1.52) 1.36 (1.14,1.56) 1.26
South Dorchester 1.75 (1.65,1.83) 1.78 (1.69,1.88) 1.74 (1.64,1.84) 1.76
South End 1.79 (1.56,2.00) 1.62 (1.42,1.83) 1.61 (1.37,1.84) 1.39
West Roxbury 2.12 (1.95,2.28) 2.12 (1.93,2.33) 2.08 (1.91,2.26) 2.18

For distance, Naive again over-predicts because of its preference on going for better Tier
schools despite possibly further distances, which does not reflect the trade-off implicitly shown
by most families in 2013. Logit produced more reasonable results, with the actual realization
being within the 95% confidence interval in the majority of neighborhoods. However, for
the neighborhoods at the peripheries of the city, Charlestown and East Boston, which are
separated by bridges from the rest of the city, Logit over-estimates distances, suggesting
that it predicts families are more willing to cross the bridges than they actually are. Again,
MixedLogit yields very similar results as Logit.

We repeat the same exercise using market shares, for top 1, 2 and 3 choices. The tail
distribution plots are in Figure 7. However, for this metric neither models seem to explain
the data, with p-values being near zero for all cases. Nevertheless, the error in terms of total
variation distance is about half as large with Logit compared to with Naive, suggesting that
it is a much better model for market shares in 2013. MixedLogit improves over Logit in
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the actual error in all cases, but the improvements are small. The tables showing market
share details from each neighborhood to each school are in Appendix D. Since these tables
are much longer, we put them in a separate document titled “Supplementary Data” to this
report, available as an ancillary file.

Figure 7: Back testing market share predictions for 2013 K2. Tail distribution plots.

(a) Top 1 (Naive) (b) Top 1 (Logit) (c) Top 1 (MLogit)

(d) Top 2 (Naive) (e) Top 2 (Logit) (f) Top 2 (MLogit)

(g) Top 3 (Naive) (h) Top 3 (Logit) (i) Top 3 (MLogit)

5.2 Forecasts for 2014

We show the predicted outcomes for 2014 K2 and the associated expected error distributions.
The tail distributions of aggregate errors are in figures 8 and 9. The neighborhood by
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neighborhood estimates are in tables 8, 9, and 10. The K1 estimates are in the appendix.
All estimates for 2014 are done using 1,000 simulations.

Suppose that families choices are driven by framing instead of underlying preferences,
then Naive would do better than in 2013, and might even perform the best out of the three
models. If this were the case, then it would suggest that we should re-think using demand
modeling for analyzing counterfactuals, because details of how counterfactuals are presented
may matter more than what we can learn from past data using demand models. On the other
hand, if framing, although possibly significant, is not crucial to the outcome, then we expect
the Logit model to do equally well in 2014, reasonably accurately predicting the outcome
measures of unassigned, access to quality, and distance for most neighborhoods. We would
also expect MixedLogit to perform better, since it is more flexible in capturing substitution
patterns. However, judging by the small differences in the back testing results for 2013, we
expect the improvements to be small.

Table 8: Unassigned predictions for 2014 K2.

Neighborhood Naive (95 % C.I.) Logit (95 % C.I.) MLogit (95 % C.I.)
Allston-Brighton 4.07 (0.00,14.00) 1.28 (0.00,9.00) 1.18 (0.00,10.00)
Charlestown 0.68 (0.00,8.00) 1.25 (0.00,10.00) 1.38 (0.00,11.00)
Downtown 1.24 (0.00,5.00) 1.09 (0.00,7.00) 1.36 (0.00,9.00)
East Boston 47.22 (2.00,96.00) 49.22 (5.00,107.00) 49.00 (6.00,111.03)
Hyde Park 2.90 (0.00,16.00) 5.09 (0.00,18.00) 5.12 (0.00,18.00)
Jamaica Plain 18.15 (6.00,34.00) 1.68 (0.00,7.00) 2.07 (0.00,8.00)
Mattapan 17.73 (3.00,37.02) 3.86 (0.00,18.00) 5.17 (0.00,20.00)
North Dorchester 18.79 (7.00,34.00) 2.07 (0.00,8.00) 3.02 (0.00,11.00)
Roslindale 4.66 (0.00,22.00) 3.69 (0.00,20.00) 4.27 (0.00,22.00)
Roxbury 42.07 (20.98,67.03) 4.24 (0.00,15.00) 5.97 (0.00,18.00)
South Boston 8.93 (1.00,20.00) 0.35 (0.00,4.00) 0.63 (0.00,5.00)
South Dorchester 19.80 (3.00,49.00) 10.52 (0.00,36.00) 11.18 (0.00,39.00)
South End 9.30 (0.00,22.00) 4.03 (0.00,14.00) 4.70 (0.00,15.00)
West Roxbury 5.43 (0.00,25.00) 8.78 (0.00,30.00) 8.42 (0.00,28.02)
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Table 9: Access to quality predictions for 2014 K2.

Neighborhood Naive (95 % C.I.) Logit (95 % C.I.) MLogit (95 % C.I.)
Allston-Brighton 0.80 (0.70,0.94) 0.98 (0.87,1.00) 0.98 (0.88,1.00)
Charlestown 0.94 (0.83,1.00) 0.98 (0.91,1.00) 0.99 (0.90,1.00)
Downtown 0.85 (0.76,0.93) 0.92 (0.85,0.97) 0.91 (0.84,0.96)
East Boston 0.80 (0.72,0.90) 0.87 (0.77,0.98) 0.88 (0.77,0.98)
Hyde Park 0.69 (0.59,0.81) 0.86 (0.76,0.94) 0.86 (0.76,0.94)
Jamaica Plain 0.68 (0.60,0.78) 0.89 (0.78,1.00) 0.90 (0.77,1.00)
Mattapan 0.59 (0.50,0.69) 0.97 (0.85,1.00) 0.96 (0.83,1.00)
North Dorchester 0.50 (0.42,0.58) 0.77 (0.63,0.94) 0.77 (0.63,0.93)
Roslindale 0.74 (0.66,0.84) 0.98 (0.89,1.00) 0.98 (0.88,1.00)
Roxbury 0.56 (0.50,0.63) 0.83 (0.72,0.93) 0.83 (0.72,0.92)
South Boston 0.48 (0.40,0.57) 0.72 (0.61,0.86) 0.70 (0.58,0.82)
South Dorchester 0.60 (0.52,0.68) 0.87 (0.76,0.97) 0.86 (0.75,0.96)
South End 0.67 (0.59,0.74) 0.82 (0.73,0.92) 0.80 (0.72,0.89)
West Roxbury 0.78 (0.70,0.88) 0.89 (0.81,0.95) 0.89 (0.81,0.95)

Table 10: Distance predictions for 2014 K2.

Neighborhood Naive (95 % C.I.) Logit (95 % C.I.) MLogit (95 % C.I.)
Allston-Brighton 1.44 (1.23,1.66) 1.27 (1.10,1.47) 1.28 (1.09,1.50)
Charlestown 0.97 (0.70,1.26) 0.94 (0.76,1.12) 0.95 (0.78,1.14)
Downtown 1.30 (1.06,1.64) 1.23 (1.08,1.40) 1.23 (1.08,1.39)
East Boston 1.75 (1.60,1.93) 1.24 (1.05,1.44) 1.27 (1.06,1.51)
Hyde Park 2.04 (1.89,2.20) 1.80 (1.67,1.94) 1.78 (1.64,1.92)
Jamaica Plain 1.29 (1.19,1.39) 1.17 (1.07,1.26) 1.16 (1.07,1.26)
Mattapan 1.80 (1.69,1.93) 1.71 (1.61,1.83) 1.71 (1.60,1.84)
North Dorchester 1.29 (1.17,1.42) 1.17 (1.08,1.27) 1.17 (1.07,1.27)
Roslindale 1.73 (1.62,1.82) 1.53 (1.44,1.63) 1.52 (1.43,1.62)
Roxbury 1.37 (1.28,1.46) 1.21 (1.15,1.28) 1.21 (1.15,1.28)
South Boston 1.46 (1.26,1.69) 1.21 (1.06,1.37) 1.20 (1.04,1.35)
South Dorchester 1.52 (1.43,1.61) 1.43 (1.35,1.51) 1.43 (1.35,1.51)
South End 1.41 (1.25,1.58) 1.30 (1.15,1.44) 1.28 (1.14,1.43)
West Roxbury 1.89 (1.76,2.02) 1.70 (1.57,1.83) 1.69 (1.56,1.82)
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Figure 8: Forecasts for assignment outcomes in 2014 K2. Tail distribution plots.

(a) Unassigned (Naive) (b) Unassigned (Logit) (c) Unassigned (MLogit)

(d) Access to Quality (Naive) (e) Access to Quality (Logit) (f) Access to Quality (MLogit)

(g) Distance (Naive) (h) Distance (Logit) (i) Distance (MLogit)
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Figure 9: Forecasts for market shares for 2014 K2. Tail distribution plots.

(a) Top 1 (Naive) (b) Top 1 (Logit) (c) Top 1 (MLogit)

(d) Top 2 (Naive) (e) Top 2 (Logit) (f) Top 2 (MLogit)

(g) Top 3 (Naive) (h) Top 3 (Logit) (i) Top 3 (MLogit)
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6 Conclusion

This paper reports on ex ante forecasts using a discrete choice model of demand of a large-
scale change to choice menus occurring in Boston’s school choice plan in 2014. It also reports
on a simpler statistical forecast that is not based on an underlying random utility model.
The methodology and target outcomes are described before information on new preferences
is available to avoid any scope for post-analysis bias. Part II of this report will revisit these
forecasts using data from the new system to assess the strengths and limitations of discrete
choice models of demand in our context.
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A Detailed Participation Forecasts

Table 11: Forecast for total number of new applicants in 2013.

Year Predicted Mean Standard Deviation Actual
2013 5893.30 382.50 5255

Table 12: Forecast for proportion of the new applicants distributed to each grade and neigh-
borhood in 2013.

Predicted Mean Standard Dev. Actual Predicted Mean Standard Dev. Actual
Neighborhood K1 K2
Allston-Brighton 0.0184 0.0010 0.0156 0.0148 0.0027 0.0156
Charlestown 0.0078 0.0019 0.0118 0.0196 0.0002 0.0171
Downtown 0.0219 0.0001 0.0156 0.0135 0.0020 0.0179
East Boston 0.0543 0.0053 0.0504 0.0603 0.0053 0.0500
Hyde Park 0.0313 0.0025 0.0322 0.0205 0.0010 0.0207
Jamaica Plain 0.0310 0.0020 0.0379 0.0207 0.0002 0.0221
Mattapan 0.0311 0.0028 0.0297 0.0258 0.0024 0.0272
North Dorchester 0.0244 0.0038 0.0245 0.0187 0.0038 0.0154
Roslindale 0.0452 0.0032 0.0447 0.0260 0.0033 0.0287
Roxbury 0.0569 0.0048 0.0556 0.0521 0.0033 0.0525
South Boston 0.0137 0.0012 0.0131 0.0139 0.0015 0.0135
South Dorchester 0.0617 0.0040 0.0668 0.0453 0.0040 0.0481
South End 0.0187 0.0023 0.0198 0.0207 0.0001 0.0206
West Roxbury 0.0420 0.0033 0.0373 0.0226 0.0028 0.0217

Table 13: Forecast for continuing ratios for each grade and neighborhood in 2013.

Predicted Mean Standard Dev. Actual Predicted Mean Standard Dev. Actual
Neighborhood K1 K2
Allston-Brighton 0.83 0.02 0.76 0.78 0.08 0.76
Charlestown 0.88 0.18 0.40 0.76 0.12 0.77
Downtown 0.63 0.32 0.17 0.71 0.02 0.74
East Boston 0.87 0.09 0.78 0.85 0.04 0.86
Hyde Park 0.77 0.18 0.55 0.80 0.05 0.77
Jamaica Plain 1 0 0.31 0.91 0.00 0.73
Mattapan 0.92 0.02 0.58 0.79 0.02 0.81
North Dorchester 0.76 0.23 0.59 0.77 0.14 0.79
Roslindale 0.70 0.34 0.40 0.80 0.04 0.83
Roxbury 1 0 0.38 0.78 0.03 0.81
South Boston 0.75 0.35 0.08 0.78 0.09 0.79
South Dorchester 0.70 0.05 0.61 0.79 0.04 0.81
South End 0.65 0.32 0.80 0.83 0.02 0.71
West Roxbury 1 0 0.22 0.79 0.05 0.84
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Table 14: Forecast for total number of new applicants in 2014.

Predicted Mean Standard Deviation
Total New Applicants 5798.5 366.4

Table 15: Forecast for proportion of the new applicants distributed to each grade and neigh-
borhood in 2014.

Predicted Mean Standard Deviation Predicted Mean Standard Deviation
Neighborhood K1 K2
Allston-Brighton 0.0177 0.0016 0.0150 0.0022
Charlestown 0.0136 0.0006 0.0190 0.0013
Downtown 0.0155 0.0027 0.0198 0.0006
East Boston 0.0533 0.0047 0.0577 0.0067
Hyde Park 0.0315 0.0021 0.0206 0.0008
Jamaica Plain 0.0327 0.0038 0.0210 0.0007
Mattapan 0.0308 0.0024 0.0262 0.0021
North Dorchester 0.0245 0.0031 0.0179 0.0035
Roslindale 0.0451 0.0027 0.0267 0.0030
Roxbury 0.0566 0.0040 0.0522 0.0027
South Boston 0.0136 0.0010 0.0138 0.0013
South Dorchester 0.0630 0.0041 0.0460 0.0036
South End 0.0190 0.0020 0.0207 0.0001
West Roxbury 0.0408 0.0036 0.0223 0.0023

Table 16: Forecast for continuing ratios for each grade and neighborhood in 2014.

Predicted Mean Standard Deviation Predicted Mean Standard Deviation
Neighborhood K1 K2
Allston-Brighton 0.81 0.04 0.78 0.07
Charlestown 0.72 0.30 0.76 0.10
Downtown 0.52 0.35 0.72 0.02
East Boston 0.85 0.09 0.85 0.03
Hyde Park 0.72 0.19 0.79 0.04
Jamaica Plain 0.77 0.40 0.78 0.06
Mattapan 0.83 0.17 0.80 0.02
North Dorchester 0.71 0.20 0.77 0.11
Roslindale 0.63 0.32 0.81 0.04
Roxbury 0.84 0.31 0.79 0.03
South Boston 0.53 0.46 0.78 0.08
South Dorchester 0.68 0.06 0.79 0.03
South End 0.69 0.27 0.80 0.06
West Roxbury 0.81 0.39 0.80 0.05
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B Estimates for K1.

B.1 Back Testing Forecasts for 2013 K1.

As with K2, Table 17 shows that the Logit model predicts unassigned for most neighborhoods
better than the Naive model. MixedLogit predicts similarly as Logit but judging by the Root
Mean Square Error (RMSE) in Figure 10, MixedLogit performs slightly better.

For access to quality, shown in Table 18, Logit and MixedLogit do worse relative to how
they did for grade K2. It turns out that in the actual data, one of the zones, the North zone,
had left-over seats in a Tier 1 or 2 school, which makes access to quality equal to one for all
neighborhoods in that zone. This is not predicted by Logit or MixedLogit, which fill every
Tier 1 or 2 seat. However, the naive model predicts this correctly, while it under-predicts the
access in all the other neighborhoods. For distance, shown in Table 19, the predictions for
Naive are uniformly too high, while the predictions for Logit and MixedLogit are reasonably
close, except that they over-predict distance for Allston-Brighton, Charlestown, Jamaica
Plain, Roxbury, and West Roxbury.

For market shares, all models again fail to explain the data, although the error is 2-3
times smaller in Logit and MixedLogit compared to Naive. MixedLogit slightly decreases the
actual RMSE error over Logit in all cases.

Table 17: Back testing unassigned predictions for 2013 K1.

Neighborhood Naive (95 % C.I.) Logit (95 % C.I.) MLogit (95 % C.I.) Actual
Allston-Brighton 62.74 (46.00,81.03) 34.59 (16.98,54.00) 31.83 (16.00,50.00) 7
Charlestown 29.34 (13.97,50.00) 20.06 (7.00,40.00) 19.42 (6.00,36.00) 24
Downtown 75.83 (59.00,95.03) 47.12 (26.00,69.00) 45.13 (25.98,69.03) 36
East Boston 173.83 (118.00,242.03) 129.75 (71.97,202.03) 126.91 (65.00,188.12) 83
Hyde Park 99.48 (71.97,130.00) 69.54 (40.00,102.00) 71.66 (43.98,105.00) 62
Jamaica Plain 109.90 (78.00,141.00) 72.85 (41.98,101.03) 71.31 (41.98,104.03) 63
Mattapan 92.30 (62.00,125.00) 63.19 (34.00,94.00) 63.76 (36.00,94.00) 56
North Dorchester 78.19 (47.98,113.00) 47.66 (22.00,80.03) 47.94 (23.00,78.00) 31
Roslindale 130.11 (92.00,174.03) 101.83 (64.97,146.03) 104.45 (66.00,151.03) 95
Roxbury 136.74 (93.97,187.03) 90.94 (43.95,145.05) 88.58 (42.00,143.05) 67
South Boston 41.67 (27.95,59.00) 24.58 (11.00,40.00) 23.52 (10.00,38.00) 18
South Dorchester 197.29 (146.00,260.05) 129.50 (74.00,196.03) 129.65 (74.00,192.03) 122
South End 57.55 (36.00,82.03) 33.85 (12.00,57.02) 31.79 (14.97,51.10) 31
West Roxbury 135.33 (92.85,185.03) 112.99 (73.97,156.03) 113.97 (75.00,155.05) 84
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Table 18: Back testing access to quality predictions for 2013 K1.

Neighborhood Naive (95 % C.I.) Logit (95 % C.I.) MLogit (95 % C.I.) Actual
Allston-Brighton 1 (1.00,1.00) 0.66 (0.52,0.81) 0.69 (0.56,0.83) 1
Charlestown 1 (1.00,1.00) 0.65 (0.50,0.80) 0.69 (0.55,0.83) 1
Downtown 1 (1.00,1.00) 0.68 (0.54,0.83) 0.71 (0.58,0.85) 1
East Boston 1 (1.00,1.00) 0.66 (0.54,0.80) 0.70 (0.58,0.83) 1
Hyde Park 0.36 (0.30,0.43) 0.56 (0.45,0.69) 0.55 (0.45,0.68) 0.60
Jamaica Plain 0.53 (0.45,0.62) 0.59 (0.47,0.74) 0.61 (0.50,0.75) 0.80
Mattapan 0.33 (0.26,0.41) 0.56 (0.44,0.69) 0.54 (0.44,0.67) 0.57
North Dorchester 0.45 (0.38,0.52) 0.57 (0.46,0.70) 0.56 (0.46,0.69) 0.67
Roslindale 0.46 (0.37,0.55) 0.61 (0.50,0.74) 0.63 (0.51,0.77) 0.79
Roxbury 0.60 (0.52,0.69) 0.61 (0.51,0.73) 0.63 (0.52,0.74) 0.81
South Boston 0.30 (0.23,0.39) 0.53 (0.41,0.67) 0.52 (0.40,0.68) 0.57
South Dorchester 0.35 (0.29,0.42) 0.56 (0.44,0.68) 0.54 (0.43,0.67) 0.60
South End 1 (1.00,1.00) 0.70 (0.57,0.83) 0.73 (0.61,0.86) 1
West Roxbury 0.46 (0.38,0.55) 0.61 (0.51,0.74) 0.63 (0.52,0.76) 0.80

Table 19: Back testing distance predictions for 2013 K1.

Neighborhood Naive (95 % C.I.) Logit (95 % C.I.) MLogit (95 % C.I.) Actual
Allston-Brighton 2.69 (2.17,3.25) 1.73 (1.41,2.06) 1.76 (1.45,2.10) 1.17
Charlestown 2.65 (1.75,3.78) 2.88 (2.04,3.71) 2.72 (1.86,3.43) 1.69
Downtown 2.03 (1.41,2.70) 2.00 (1.64,2.38) 1.97 (1.63,2.35) 1.95
East Boston 3.20 (2.73,3.71) 2.12 (1.69,2.52) 2.28 (1.90,2.66) 2.44
Hyde Park 3.15 (2.80,3.50) 2.68 (2.40,3.04) 2.69 (2.35,3.03) 2.43
Jamaica Plain 2.09 (1.72,2.48) 1.81 (1.58,2.06) 1.80 (1.57,2.04) 1.26
Mattapan 2.37 (2.08,2.66) 2.21 (1.97,2.44) 2.17 (1.94,2.44) 2.08
North Dorchester 1.84 (1.37,2.34) 1.58 (1.30,1.87) 1.62 (1.31,1.95) 1.41
Roslindale 1.87 (1.63,2.18) 2.10 (1.84,2.39) 2.07 (1.83,2.35) 1.95
Roxbury 2.15 (1.89,2.39) 1.76 (1.56,1.97) 1.74 (1.55,1.96) 1.47
South Boston 2.31 (1.74,2.95) 1.71 (1.31,2.14) 1.74 (1.31,2.20) 1.76
South Dorchester 1.68 (1.47,1.88) 1.72 (1.57,1.86) 1.69 (1.56,1.83) 1.72
South End 2.57 (1.94,3.21) 1.81 (1.50,2.19) 1.81 (1.49,2.19) 1.53
West Roxbury 2.08 (1.78,2.40) 2.33 (2.03,2.62) 2.27 (1.99,2.56) 1.76
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Figure 10: Back testing predictions for assignment outcomes for 2013 K1. Tail distribution
plots.

(a) Unassigned (Naive) (b) Unassigned (Logit) (c) Unassigned (MLogit)

(d) Access to Quality (Naive) (e) Access to Quality (Logit) (f) Access to Quality (MLogit)

(g) Distance (Naive) (h) Distance (Logit) (i) Distance (MLogit)

B.2 Forecasts for 2014 K1

As in section 5.2, we compute forecasts after simulating 1000 times. The tail distribution plots
are in Figures 12 and 13. The neighborhood by neighborhood predictions are in Tables 20,
21, and 22. Again, Logit and MixedLogit make very similar predictions in all cases.
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Table 20: Unassigned predictions for 2014 K1.

Neighborhood Naive (95 % C.I.) Logit (95 % C.I.) MLogit (95 % C.I.)
Allston-Brighton 21.36 (3.00,41.02) 14.75 (0.00,35.02) 11.96 (0.00,33.00)
Charlestown 36.05 (21.00,50.00) 40.67 (27.00,55.00) 40.18 (27.00,54.00)
Downtown 30.25 (12.00,54.00) 31.91 (15.00,55.00) 31.91 (14.00,54.00)
East Boston 123.49 (69.97,186.00) 132.59 (71.00,195.03) 132.58 (72.00,198.00)
Hyde Park 80.39 (51.00,111.00) 82.77 (54.00,114.03) 81.96 (54.00,114.03)
Jamaica Plain 81.56 (46.00,122.03) 60.26 (27.00,101.00) 56.88 (25.00,94.00)
Mattapan 84.71 (58.00,115.00) 70.77 (45.00,100.00) 69.33 (43.00,98.00)
North Dorchester 55.55 (30.00,84.03) 28.06 (8.00,52.00) 27.34 (8.00,51.00)
Roslindale 108.77 (71.00,151.03) 114.96 (79.00,156.00) 114.25 (78.00,153.00)
Roxbury 81.77 (50.98,118.00) 55.48 (15.00,102.03) 54.89 (15.00,103.03)
South Boston 17.26 (6.00,31.00) 15.72 (3.00,31.00) 15.85 (4.00,31.00)
South Dorchester 142.72 (98.00,194.03) 109.65 (62.00,160.00) 109.08 (60.00,163.03)
South End 34.00 (16.98,54.02) 23.71 (8.00,43.00) 23.00 (8.00,43.00)
West Roxbury 81.46 (47.98,121.00) 93.77 (59.00,134.03) 92.67 (54.00,134.00)

Table 21: Access to quality predictions for 2014 K1.

Neighborhood Naive (95 % C.I.) Logit (95 % C.I.) MLogit (95 % C.I.)
Allston-Brighton 0.49 (0.35,0.64) 0.82 (0.62,1.00) 0.86 (0.65,1.00)
Charlestown 0.37 (0.25,0.52) 0.41 (0.29,0.55) 0.41 (0.29,0.55)
Downtown 0.43 (0.34,0.53) 0.58 (0.46,0.71) 0.59 (0.47,0.72)
East Boston 0.53 (0.39,0.70) 0.50 (0.37,0.65) 0.50 (0.37,0.65)
Hyde Park 0.36 (0.27,0.45) 0.39 (0.30,0.50) 0.40 (0.30,0.51)
Jamaica Plain 0.41 (0.32,0.50) 0.62 (0.49,0.76) 0.63 (0.49,0.76)
Mattapan 0.27 (0.20,0.34) 0.46 (0.35,0.59) 0.46 (0.35,0.58)
North Dorchester 0.39 (0.31,0.47) 0.58 (0.45,0.72) 0.57 (0.45,0.70)
Roslindale 0.38 (0.32,0.45) 0.44 (0.36,0.53) 0.44 (0.35,0.53)
Roxbury 0.43 (0.35,0.51) 0.64 (0.52,0.77) 0.64 (0.53,0.78)
South Boston 0.34 (0.25,0.44) 0.51 (0.38,0.67) 0.50 (0.38,0.64)
South Dorchester 0.39 (0.33,0.47) 0.58 (0.47,0.72) 0.58 (0.46,0.70)
South End 0.50 (0.41,0.60) 0.67 (0.56,0.80) 0.68 (0.56,0.79)
West Roxbury 0.53 (0.44,0.63) 0.55 (0.46,0.65) 0.56 (0.46,0.66)

Table 22: Distance predictions for 2014 K1.

Neighborhood Naive (95 % C.I.) Logit (95 % C.I.) MLogit (95 % C.I.)
Allston-Brighton 1.23 (1.02,1.45) 1.22 (1.02,1.43) 1.23 (1.05,1.45)
Charlestown 1.82 (1.40,2.29) 1.41 (0.97,1.89) 1.38 (0.94,1.89)
Downtown 1.57 (1.28,1.93) 1.43 (1.17,1.69) 1.42 (1.19,1.69)
East Boston 1.97 (1.66,2.29) 1.44 (1.21,1.72) 1.38 (1.13,1.65)
Hyde Park 2.05 (1.79,2.34) 1.90 (1.68,2.13) 1.87 (1.63,2.12)
Jamaica Plain 1.31 (1.14,1.50) 1.27 (1.15,1.41) 1.27 (1.15,1.40)
Mattapan 2.10 (1.77,2.47) 1.77 (1.54,2.00) 1.76 (1.53,2.01)
North Dorchester 1.47 (1.21,1.75) 1.28 (1.13,1.44) 1.29 (1.11,1.48)
Roslindale 1.81 (1.60,2.06) 1.62 (1.45,1.79) 1.60 (1.43,1.79)
Roxbury 1.43 (1.28,1.61) 1.29 (1.15,1.43) 1.26 (1.14,1.40)
South Boston 1.24 (0.98,1.55) 1.12 (0.92,1.33) 1.12 (0.92,1.34)
South Dorchester 1.58 (1.42,1.72) 1.48 (1.36,1.60) 1.49 (1.36,1.62)
South End 1.50 (1.21,1.83) 1.35 (1.08,1.63) 1.33 (1.09,1.61)
West Roxbury 2.08 (1.85,2.31) 1.76 (1.54,2.00) 1.76 (1.52,1.96)
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Figure 11: Back testing predictions for market shares for 2013 K1. Tail distribution plots.

(a) Top 1 (Naive) (b) Top 1 (Logit) (c) Top 1 (MLogit)

(d) Top 2 (Naive) (e) Top 2 (Logit) (f) Top 2 (MLogit)

(g) Top 3 (Naive) (h) Top 3 (Logit) (i) Top 3 (MLogit)
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Figure 12: Forecasts for assignment outcomes for 2014 K1. Tail distribution plots.

(a) Unassigned (Naive) (b) Unassigned (Logit) (c) Unassigned (MLogit)

(d) Access to Quality (Naive) (e) Access to Quality (Logit) (f) Access to Quality (MLogit)

(g) Distance (Naive) (h) Distance (Logit) (i) Distance (MLogit)
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Figure 13: Forecasts for market shares for 2014 K1. Tail distribution plots.

(a) Top 1 (Naive) (b) Top 1 (Logit) (c) Top 1 (MLogit)

(d) Top 2 (Naive) (e) Top 2 (Logit) (f) Top 2 (MLogit)

(g) Top 3 (Naive) (h) Top 3 (Logit) (i) Top 3 (MLogit)
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C Calibrating the Mixed Logit Model using MCMC

Unlike in the simple Logit model, the log likelihood function associated with the mixed logit
model is difficult to evaluate directly, involving many multi-dimensional integrals. Hence, we
calibrate it using Markov Chain Monte Carlo (MCMC) instead of maximum likelihood.

The basic framework to calibrate mixed logit models using MCMC have been established
in previous works such as Train (2003), and is based on Gibbs sampling and the Metropolis-
Hasting algorithm. However, the examples there do not have so many fixed coefficients as we
have. (We have a fixed effect for every school and over 80 schools, and since only the relative
difference between fixed effects matter for preferences, but not their absolute values, these
fixed effects are likely to be highly correlated.) It is known that the simple Metropolis Hast-
ing with random walk proposals does not perform well when estimating many dimensions
(see Katafygiotis and Zuev (2008)), especially if the dimensions are correlated. So we modify
the framework to use Metropolis-Within-Gibbs (MWG), which samples blocks of coordinates
iteratively and not everything at once, and Hamiltonian Monte Carlo (HMC), which incor-
porates gradient information to suggest good directions to sample. We will describe these
methods in Section C.2.

C.1 Specifying the Likelihood Function

The first step of applying MCMC techniques is specifying the full likelihood function of
observing the data given the model parameters. To do this, we will restate the mixed logit
model in a more precise way and clearly define the parameters.

The model of interest is as follows. For student i and program j, let Fij be a vector in
which the corresponding components correspond to the following features for this student-
program pair: “continuing,” “sibling,” “ell language match,” “distance*black/hispanic,” “dis-
tance*income est.,” “mcas*black,” “mcas*income est.,” “% white/asian*black/hispanic,” and
“% white/asian*income est.” Let Gij be a vector with components corresponding to the
following features: “ell match,” “walk zone,” “distance,” “mcas” and “% white/asian.” The ex-
planations for these features are in Section 4.1.2. The features in Fij are assumed to have the
same coefficients for all students, while the features in Gij correspond to features that have
random coefficients. These random coefficients are in turn partitioned into 3 blocks, with the
first block being “ell match,” the second “walk zone,” and the third “distance,” “mcas,” and
“% white/asian.” The coefficients within each block are arbitrarily correlated, while the coef-
ficients across blocks are independent. There is also a fixed effect for every school, capturing
its general, common attractiveness. (Note that this departs from the notation in Section 4.1.3
as Fij there corresponds to not only the above but also all of the features in Gij and also the
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school-specific fixed-effects. This current notation makes the following exposition easier.)
More precisely speaking, the utility of student i for program j in school s(j) is

uij = α̃s(j) + β · Fij + γi ·Gij + εij,

where vector α̃ =
(α

0

)
corresponds to the school fixed-effects. (The last component is

normalized to zero because only relative differences between fixed effects drive utilities.) β

corresponds to the other fixed coefficients. γi is the instantiation of the random coefficients
for student i, and εij is an unobservable idiosyncratic taste shock. The terms γi are i.i.d. and
distributed Normal(b,W), where b is the mean vector and W is the covariance matrix. The
idiosyncratic shocks εij are i.i.d. standard Gumbel distributed. Because of our partition of
the random coefficients into 3 blocks, with the blocks having 1, 1 and 3 variables respectively,
the covariance matrix can be written in the block diagonal form

W =

W1

W2

W3

 ,

where W1, W2 and W3 are 1× 1, 1× 1 and 3× 3 symmetric positive definite matrices. In
summary, the parameters to estimate are α, β, b, W1, W2 and W3.

The data to fit these parameters are the observed choices of every students along with
the observed characteristics Fij and Gij. Suppose that student i makes mi choices, and let
the chosen programs from best to worst be yi1, yi2, · · · , yimi

. Given the instantiation of γi,
the likelihood function on α and β is

φi(α,β|γi) =

mi∏
c=1

exp(α̃s(yic) + β · Fiyic + γi ·Giyic)∑mi

d=c exp(α̃s(yid) + β · Fiyid + γi ·Giyid)
. (1)

This is the logit likelihood function. (Recall that α̃ =
(α

0

)
is the fixed effects including

the last school that is normalized to zero, and s(j) denotes the school where program j is
in.)

The full likelihood function incorporating all the data is

Φ(α,β,b,W) =
n∏
i=1

∫
R5

φi(α,β|γi) exp(−1

2
W−1‖γi − b‖2)dγi. (2)

Here, n is the number of students; recall that the random coefficients γi each has five dimen-
sions.)

Our estimates will be based on sampling the parameters based on this likelihood function
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Φ. Because Φ is complex, we do this by MCMC. As a detour, we will give an overview of
MCMC and the specific techniques we use. Readers who are familiar with these techniques
can jump to Section C.3.

C.2 Overview of the MCMC

The idea behind Markov Chain Monte Carlo (MCMC) is to samples from a distribution by
constructing a Markov chain whose unique stationary distribution is the desired distribution
of interest. So if the chain is easy to simulate and if it is fast-mixing, meaning that it
converges quickly to the stationary distribution, then we can sample by simply simulating
the chain. After throwing out a so-called “burn-in” period at the beginning, we would have
arrived at samples from the desired distribution.

The work horse of MCMC are Gibbs sampling and Metropolis-Hasting. Gibbs sampling
is used when the desired distribution can be factored into several marginal distributions that
are easier to sample. For example, to sample from a joint distribution on x, y and z, one
might iteratively sample one variable at a time conditional on the other ones. Precisely
speaking, we initialize x0, y0 and z0 arbitrarily. For each t ≥ 1, sample iteratively from the
following conditional distributions:

xt | yt−1, zt−1

yt | xt, zt−1

zt | xt, yt

After a sufficient number S of samples, and after throwing out the initial burn-in of B
samples, {(xt, yt, zt) : B < t ≤ S} would approximate samples from the original distribution,
although successive samples are not independent. One can remove the serial correlation
by either sampling independently from this set, or by keeping only samples in which t is a
multiple of ∆, where ∆ is a chosen positive integer.

Metropolis-Hasting is a technique to sample from an arbitrary distribution with given
likelihood function L(x). There are many variants, but the common idea is to use a proposal
distribution that is easy to sample from and reject certain samples to get the likelihood ratios
to be correct. The proposal distribution may depend on the current iterate x. Let transition
probability density be T (y|x); this is the probability density of proposing y given that the
current sample is x. In order to obtain the correct likelihoods, we can only accept a fraction
of the samples proposed, and reject the others. The probability that we accept proposal y
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given the previous iterate being x is

A(y|x) = min(1,
L(y)T (x|y)

L(x)T (y|x)
).

Note that if T (y|x) is proportional to L(y), then the acceptance probability is always 1 as
the proposal distribution already matches the target. Otherwise, the above formula is tuned
so that the following identity, called “detailed balance” in the literature, holds:

L(x)T (y|x)A(y|x) = L(y)T (x|y)A(x|y).

This equation guarantees that the desired density p(x) is a stationary distribution of the
Markov chain induced by the proposal and acceptance process. Furthermore, if the chain is
ergodic, which is true for example if the proposal distribution has full support, then p(x) is
the only stationary distribution.

The sampling procedure is then to initialize x0 arbitrarily, and for each t ≥ 1

1. Draw y according to T (y|xt−1).

2. Set xt =

y with prob. A(y|xt−1),

xt−1 otherwise.

By iterating this many times and discarding sufficiently many burn-in samples, we would
have arrived at the desired distribution.

Because of the flexibility in the proposal distributions, there are many variants of the
above techniques. The goal is to find a proposal distribution that strikes a good balance
of being easy to sample from and approximating the target distribution locally. If it is not
easy to sample from, then each step would take too long; if it is too far from the target
distribution, then the acceptance probabilities would be very low and the chain may get
stuck at a certain iterate for a very long time. In the following sections we present the three
variants we use: Random Walk Metropolis (RWM), Metropolis-Within-Gibbs (MWG), and
Hamiltonian Monte Carlo (HMC).

C.2.1 Random Walk Metropolis (RWM)

This method is the easiest to sample from, as it uses a simple random walk to propose the
next value: if the current iterate is x, it proposes y = x + ε, where ε is multivariate normal
distributed, ε ∼ Normal(0, ρI), where I is the identity matrix and ρ is a scale parameter.
Other covariance matrices can also be used instead of the identity but it must be the same for
every x. The scale parameter is tuned to match the overall variance of the desired distribution.
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Too small a ρ and successive samples and there will be too much serial correlation; too large
a ρ and acceptance probability might be near zero so the chain may get stuck. We tune ρ by
multiplying it up or down so that the average acceptance ratio since last tuning is between
0.4 and 0.6, which is the ball park value suggested by the literature.22 The number of steps
we wait before tuning increases exponentially, so that after our burn- in sample until our last
iteration there is no tuning.

This method performs well when the target distribution has not too many dimensions,
and has approximately the same scale in each dimension. However, when there are many
dimensions, it becomes exponentially harder to guess the right direction, and the method
may take very long to converge; when there are dimensions that are at very different scales,
then there may exist no ρ that is good for all dimensions.

C.2.2 Metropolis Within Gibbs (MWG)

This is a simple extension of RWM that allows various sub-blocks of coordinates to have
different scales. It is simply to sample each sub-block iteratively, conditional on the others,
much like running several RWM within a Gibbs sampling framework. This also reduces the
number of dimensions sampled at each step. The draw back is that more samples are needed.

Precisely speaking, instead of sampling all dimensions of vector x simultaneously, write

it in terms of sub-vectors x =


x1

x2
...
xk

. Each sub-vector may represent several coordinates.

Initialize x0 arbitrarily and for t ≥ 1, sample

xt1 | xt−12 , · · ·xt−1k

xt2 | xt1, x
t−1
3 , · · ·xt−1k

· · ·
xtk | xt1, · · · xtk−1

Each of the above is sampled using RWM, perhaps with different scale parameters for
different sub-vectors. In each Gibbs iteration, for each of the variables, we only take one
step of Metropolis-Hasting, which involves one proposal and possible acceptance. Because of
detailed balance, embedding Metropolis-Hasting into Gibbs sampling in this way also works.

22See Roberts, Gelman, and Gilks (1997).
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C.2.3 Hamiltonian Monte Carlo (HMC)

This method uses the gradient of the log likelihood function to inform the proposals, which
can significantly improve the acceptance probabilities in high dimensions. The drawback is
that each iteration is slower as several gradient calls is needed. The method is motivated by
Hamiltonian dynamics in physics. It models the current iterate x as a location vector, and
treats the negative log likelihood function as an energy potential. In each step, it samples
a random momentum vector and simulates the trajectory of the object by discretizing time
and alternatively updating the momentum using the potential function and updating the
position using the momentum. To make detailed balance work out, the first and last steps of
simulation are half-steps. Precisely speaking, let the gradient of the log likelihood function
be G(x) = ∇(log(L(x))). Let ε and ∆ be tuning parameters, representing the discretization
in time and the number of steps to simulate respectively. The proposal is based on the
pseudocode in this algorithm (this is taken from Neal (2011)):

Algorithm 1 Pseudocode for one step of HMC
Function HMC_STEP(x):
Draw momentum p0 ∼ Normal(0, I).
Initialize y = x, p = p0.
Update p = p− εG(y)/2.
for ∆− 1 iterations do
Update y = y + εp
Update p = p− εG(y).

end for
Update y = y + εp.
Update p = p− εG(y)/2.

return

{
y with prob. A(y|x) = min(1, L(y)

L(x)
exp(‖p0‖

2−‖p‖2
2

)

x otherwise

Note that the chance of proposing y given x is simply the chance of drawing momentum p0.
Moreover, by the reversibility of the intermediate steps of discrete simulation, if we started
at y and drew a momentum of −p (where p is the final momentum vector in HMC_STEP),
then the proposal would be x. This implies that

T (y|x)

T (x|y)
=

exp(−1
2
‖p0‖2)

exp(−1
2
‖ − p‖2)

,
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which implies that

T (y|x)A(y|x)

T (x|y)A(x|y)
=

exp(−1
2
‖p0‖2)

exp(−1
2
‖ − p‖2)

L(y)

L(x)
exp(
‖p0‖2 − ‖p‖2

2
) =

L(y)

L(x)
.

So detailed balance holds and the following is a valid Metropolis-Hasting sampler: Ini-
tialize x0 arbitrarily. For t ≥ 1, set xt = HMC_STEP(xt−1).

One can show that as the time discretization ε → 0, for any fixed total simulation time
ε∆, the acceptance probability goes to 1. Hence, we would like ε to be small enough so
the chain does not get stuck and ε∆ large enough so that successive samples are not too
serially correlated. In practice, we fix ∆ = 20 and tune ρ so that the empirical acceptance
rate since last tuning is between 0.5 and 0.8. As before, we increase the interval between
tuning times exponentially so that no tuning happens in the sample we keep (after burn-
in and before the last iteration). Another detail is that to prevent cases in which ε∆ is
exactly what makes the proposal y go back to original point x, instead of using the same ε,
we draw ε̃ ∼ Uniform(0.85ε, 1.15ε) before each call to HMC_STEP, and use ε̃ as the step
size throughout that call. Because this distribution is a-priori fixed, detailed balance is also
preserved. All these are according to the best practices for applying HMC as outlined in Neal
(2011).

C.3 Our MCMC Sampler

Our MCMC procedure is based on the one in Train (2003) but breaking up the estimation of
the fixed coefficients into two steps, one step using Hamiltonian Monte Carlo (HMC) and the
other Metropolis Within Gibbs (MWG). We use HMC to estimate the school fixed effects and
MWG to estimate the other fixed coefficients. These techniques allow us to accommodate the
large number of school fixed effects and the unequal scales across the other fixed coefficients.

To sample from the full likelihood function Φ(α,β,b,W) (Equation 2), we initialize
α0,β0,b0,W1

0,W2
0,W3

0 arbitrarily. For each t ≥ 1, we do a few layers of Gibbs sampling.
In some of the layers we embed a form of Metropolis-Hasting; but in each Gibbs iteration
we only take one step of Metropolis-Hasting, much as it is in MWG. Furthermore, let T be
a parameter indicating how long we wait before tuning. We initialize T to be 1 and increase
this parameter steadily, so that tuning becomes exponentially less frequent. For t ≥ 1, each
MCMC step is as follows:

1. Draw γi
t|αt−1,βt−1,bt−1,Wt−1. This is done using one iteration of RWM with likeli-
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hood function

L(x) = φi(α
t−1,βt−1,x) exp(−1

2
(Wt−1)−1‖x− bt−1‖2)

and starting value γi
t−1. (See Equation 1 for definition of φi.) We initialize ρ = 0.05

and initially to tune for each i every Uniform(1000T, 1500T ) steps.

2. Draw bt|γi
t,Wt−1. This is sampling from Normal( 1

n

∑n
i=1 γi

t, 1
m

Wt−1).

3. Draw Wt|γi
t,bt. This can be done as follows: For l ∈ {1, 2, 3}, let Ct

l be the covariance
matrix of the lth block of γti assuming mean as in the lth block of bt. (Recall that the
random coefficients are organized into 3 blocks, with ell match being the first block, walk
zone being the second, and distance, mcas, and % white/asian being the third.) Let kl
be the number of variables in the lth block. Draw Wt

l according to the Inverse Wishart
Distribution with degree of freedom ν = kl + n and scale matrix Ψ = klIl×l + nCt

l .

4. Draw αt|γi
t,βt−1. This is done using one step of HMC with likelihood function

L(x) =
n∏
i=1

φi(x,β
t−1|γi

t).

We initialize ε = 0.015, and ∆ = 20. We tune every 1000T steps.

5. Draw βt|γi
t,αt. This is done using one iteration of MWG with likelihood function

L(x) =
n∏
i=1

φi(α
t,x|γi

t).

We break the fixed coefficients β into 6 subvectors: 1) “continuing;” 2) “sibling;”
3) “ell language match;” 4) “distance*black/hispanic” and “distance*income est.”; 5)
“mcas*black” and “mcas*income est.”; 6) “% white/asian*black/hispanic” and “% white/asian*income
est.” We initialize the scales ρ for each subvector to be .5, .5, .1, .1, .5, and .5 respec-
tively. We tune every Uniform(100T, 150T ) steps.

We run these steps 1,000,000 times, increasing the tuning interval parameter T by a factor
of 1.2 every 5000 iterations. We throw out the first 500,000 iterations as burn-in. Note that
in the interval we keep, no tuning happens. This ensures the correctness of the Markov chain
in this period.

For robustness check, we re-ran this procedure 6 times, sometimes with different initial
values, and we found near identical results each time.
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