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Abstract

Motivated by recent developments in cyberwarfare, we study deterrence in a world where at-

tacks cannot be perfectly attributed to attackers. In the model, each of n attackers may attack

the defender. The defender observes a noisy signal that probabilistically attributes the attack.

The defender may retaliate against one or more attackers, and wants to retaliate against the

guilty attacker only. We note an endogenous strategic complementarity among the attackers: if

one attacker becomes more aggressive, that attacker becomes more “suspect” and the other at-

tackers become less suspect, which leads the other attackers to become more aggressive as well.

Despite this complementarity, there is a unique equilibrium. We identify types of improvements

in attribution that strengthen deterrence—namely, improving attack detection independently of

any effect on the identifiability of the attacker, reducing false alarms, or replacing misidentifica-

tion with non-detection. However, we show that other improvements in attribution can backfire,

weakening deterrence—these include detecting more attacks where the attacker is difficult to

identify or pursuing too much certainty in attribution. Deterrence is improved if the defender

can commit to a retaliatory strategy in advance, but the defender should not always commit to

retaliate more after every signal.



“Whereas a missile comes with a return address, a computer virus generally does not.”

–William Lynn, U.S. Deputy Secretary of Defense, 2010

The ability to maintain peace through deterrence rests on a simple principle: the credible

threat of sufficiently strong retaliation in response to an attack prevents forward-looking adversaries

from initiating hostilities in the first place (Schelling 1960; Snyder 1961; Myerson 2009). The

traditional concern about the effectiveness of deterrence is that retaliation might not be credible.

But technological changes, especially the rise of cyberwarfare, have brought new considerations to

the fore. Central among these is the attribution problem: the potential difficulty in determining

who is responsible for an attack, or even if an attack occurred at all.1

Attribution problems weaken deterrence: multiplying a penalty by the probability of correct

attribution reduces the expected penalty (Clark and Landau 2010; Nye 2011; Goldsmith 2013;

Lindsay 2015; Edwards et al. 2017; Kello 2017). But the implications of imperfect attribution for

deterrence are much richer than this, and the precise effects—as well as how a state can optimally

deter attacks under imperfect attribution—have yet to be studied. As General Michael Hayden

(2011), former director of the National Security Agency, put it in testimony before Congress,

“[c]asually applying well-known concepts from physical space like deterrence, where attribution is

assumed, to cyberspace, where attribution is frequently the problem, is a recipe for failure.”

The current paper takes up Hayden’s challenge by offering a new model of deterrence that lets

us think rigorously about some key issues that arise when attribution is imperfect. In our model,

there are multiple potential attackers and one defender. An attacker gets an opportunity to strike

the defender. The defender observes a noisy signal, which probabilistically indicates whether an

attack occurred and who attacked. Attribution problems entail three kinds of potential mistakes.

There is a false alarm if the defender perceives an attack when none occurred. There is detection

failure if the defender fails to detect an attack that did occur. And there is misidentification if

the defender assigns responsibility for an attack to the wrong attacker. We assume the defender

suffers a cost if she is attacked. She receives a private benefit that defrays some of this cost if she

retaliates against the right attacker, but she suffers an additional cost if she retaliates against the

wrong one. Each attacker gets a private benefit from attacking but suffers a cost if the defender

retaliates against him. There are no direct externalities among attackers—one attacker’s payoff

does not depend on whether another attacker attacks or faces retaliation.

1Attribution problems also arise in settings other than cyber conflict, including conventional conflict, law and
economics, moral hazard in teams, and inspection games. We discuss these alternative applications in Section 1.2.
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Our model highlights a key strategic force that has not previously been appreciated in the

theoretical or policy literatures: attribution problems generate an endogenous strategic comple-

mentarity among potential attackers. This effect makes deterrence under imperfect attribution

inherently global and interconnected, rather than bilateral. To see the idea, suppose attacker i

becomes more aggressive. Then, whenever the defender detects an attack, her belief that attacker i

was responsible increases, and her belief that any other potential attacker was responsible decreases.

This makes the defender more likely to retaliate against attacker i and less likely to retaliate against

all other attackers. But this in turn leads the other attackers to become more aggressive. Thus, a

rise in the aggressiveness of a single attacker increases the probability with which every attacker at-

tacks in equilibrium—in effect, all other attackers can “hide behind” the aggressiveness of attacker

i. However, despite this complementarity, our model has a unique equilibrium, which substantially

simplifies the analysis.

In addition to classifying the three different types of attribution errors and highlighting this

endogenous complementarity, we use the model to explore a host of issues relevant for discussions of

cyberdeterrence. First, we ask whether improving attribution always improves deterrence, showing

that it need not. Second, we ask whether security is enhanced or harmed by a policy allowing

increased retaliatory flexibility—for instance, by allowing non-cyber responses to cyberattacks.

Third, we explore the strategy of “false flag” operations, asking which actors are likely to be

targeted for mimicry in cyberspace. Finally, we characterize the optimal deterrence policy when the

defender can commit to a retaliatory strategy in advance, showing how it diverges from both optimal

deterrence in conventional conflict and from suggestions in the contemporary policy discussion.

Motivating Examples

Two key features of our model are the endogenous strategic complementarity among attackers and

the decomposition of attribution problems into false alarms, detection failures, and misidentifica-

tion. Each of these features of the model is reflected in real-world cyberincidents.

The strategic complementarity mechanism—“less suspect” attackers’ desire to hide their attacks

behind “more suspect” attackers—is reflected in many incidents. It is perhaps most clearly evident

in false-flag operations. According to American authorities, the Russian military agency GRU

executed a cyberattack during the opening ceremony of the 2018 Pyeongchang Winter Olympics.

The GRU used North Korean IP addresses to deflect suspicion onto North Korea (Nakashima 2018),

which was already highly suspect because of its hack of Sony Pictures and a variety of other cyber
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operations. Similarly, the National Security Agency reports that Russian hackers used Iranian

tools to infiltrate organizations in the Middle East in an effort to hide their origin, exploiting Iran’s

reputation as a significant cyber aggressor (National Cyber Security Center 2019). These examples

illustrate our mechanism: the high level of cyber activity of North Korea and Iran reduced Russia’s

costs from cyberattacks, which contributed to making Russia more aggressive.

The Stuxnet worm was used to disrupt the Iranian nuclear facility at Natanz by causing cen-

trifuges to malfunction over the course of more than a year. During the attack, the Iranians believed

the problems with their centrifuges were the result of faulty parts, engineering incompetence, or

domestic sabotage (Singer and Friedman 2014). Stuxnet was eventually uncovered not by the Ira-

nians, but by European cybersecurity researchers who found a worm that was infecting computers

all over the world but was configured to do damage only in very specific circumstances tailored to

the facility at Natanz. This was a startling case of detection failure.

In 1998, the United States Department of Defense discovered attacks exploiting operating system

vulnerabilities to retrieve sensitive data from military computer networks. The US was preparing

for possible military action in support of UN weapons inspections in Iraq, and the cyberattacks

emanated from Abu Dhabi. A Department of Defense investigation, called Solar Sunrise, initially

attributed the attacks to Iraq, and the US went so far as to send a strike team to Abu Dhabi.

Ultimately, the attacks turned out to be the work of three teenagers in San Francisco and Israel

(Adams 2001; Kaplan 2016). Conversely, the hacking of the Democratic National Committee servers

during the 2016 presidential election was initially attributed to a lone Romanian hacker who went by

the moniker Guccifer 2.0. Later, US authorities determined the hack was perpetrated by Russian

security agencies trying to cover their tracks by pretending to be Guccifer 2.0 (ThreatConnect

2016). These are cases of misidentification.

Finally, the Democratic National Committee notified the FBI that it had detected what ap-

peared to be an attempt by Russian hackers to infiltrate its voter database in the run-up to the

2018 US midterm elections, but the “attack” turned out to be the work of hackers hired by the

Michigan Democratic Party to simulate a Russian incursion (Sullivan, Weiland and Conger 2018).

This perceived attack was thus a false alarm.
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1 Relationship to the Policy and Theoretical Literatures

Our model offers new insights that are relevant to ongoing policy debates surrounding cyberdeter-

rence as well as to several strands of theoretical research.

1.1 Cyberwarfare Policy Debates

Two advances relative to current policy debates relate directly to strategic complementarity.

First, the policy debate has tended to proceed in bilateral terms. In his “mosaic model” of cy-

berdeterrence, Buchanan (2014) breaks from traditional deterrence theory by providing a typology

of cyberattacks and appropriate responses. But he nonetheless analyzes deterrence adversary-by-

adversary: “what deters the Chinese might not deter the Russians, and vice versa,” (p. 133).

Likewise, while the 2018 U.S. National Defense Strategy notes the emergence of threats from rogue

states and nonstate actors, it nonetheless proposes a “focus. . . on the States that can pose strategic

threats to U.S. prosperity and security, particularly China and Russia,” (Department of Defense

2018). By contrast, our analysis suggests bilateral cyberdeterrence is ineffective: if the US focuses

only on China and Russia, this encourages belligerence by other actors, which in turn makes the

Chinese and Russians less suspect and hence creates new opportunities for them as well.

Second, the literature has typically conceptualized attribution as an almost exclusively techni-

cal problem. Rid and Buchanan (2015) call for a more nuanced approach in which attribution is

understood to be both probabilistic and strategic—“attribution is what states make of it,” (p. 7).

But even they focus on the technological inputs to the attribution process, leaving strategy aside.

By contrast, our model highlights how attribution is fundamentally both technical and strategic:

the probability that the (Bayesian) defender attributes an attack to a particular adversary depends

on both technological inputs (modeled as the defender’s signals) and the underlying strategic envi-

ronment (equilibrium conjectures about different adversaries’ behavior). The latter input is what

drives strategic complementarity, and it is absent from existing discussions.

Our results also speak to a range of policy questions. If cyberattacks could be perfectly detected,

then deterrence in cyberspace would be no more difficult than in other domains. As such, a

natural intuition is that improving attribution improves deterrence. According to the Department

of Defense’s 2015 official Cyber Strategy,

Attribution is a fundamental part of an effective cyber deterrence strategy. . . DoD and

the intelligence community have invested significantly in all source collection, analysis,
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and dissemination capabilities, all of which reduce the anonymity of state and non-state

actor activity in cyberspace. (Department of Defense 2015)

And commenting on U.S. investments in improved attribution, then Secretary of Defence Leon

Panetta warned, “Potential aggressors should be aware that the United States has the capacity

to locate them and to hold them accountable for their actions that may try to harm America.”

(Panetta 2012)

These proclamations do not distinguish between different types of attribution errors. In Section

5, we show that whether improvements in attribution unambiguously improve deterrence or can

instead backfire depends crucially on our classification of attribution problems.

In Section 6.1, we discuss when and whether non-cyber weapons should be used to respond

to a cyberattack (Libicki 2009; Hathaway et al. 2012; Lin 2012). As early as 2011, the Obama

administration declared, “the United States will respond to hostile acts in cyberspace as we would

to any other threat to our country. . . We reserve the right to use all necessary means—diplomatic,

informational, military, and economic,” (United States 2011). In 2018, the Trump administration

extended this logic and declared that the United States might respond to a cyberattack with nuclear

weapons (United States 2018). In 2019, Israel became (apparently) the first state to respond to a

cyber threat with direct military force, bombing a facility that allegedly housed Hamas hackers.2

We show that the defender always benefits from gaining access to a new retaliatory weapon that

is more destructive than all previously feasible means of retaliation; in contrast, gaining access to

a less destructive weapon can sometimes undermine deterrence.

In Section 6.2, we consider the possibility of “false-flag” operations. These let states dodge

accountability for cyberattacks either by mimicking another state or by pretending to be the victim

of mimicry, exacerbating the attribution problem (Singer and Friedman 2014; Bartholomew and

Guerrero-Saade 2016). We extend our model to allow one attacker to attempt to mimic another.

We find that more aggressive attackers are more likely to be mimicked, as are attackers whose

attacks are easier to detect and attribute.

Finally, policy discussion increasingly calls for states to clearly articulate their cyberdeterrence

policies (Glaser 2011) because it is believed that “[t]he lack of decisive and clearly articulated conse-

quences to cyberattacks against our country has served as an open invitation to foreign adversaries

and malicious cyber actors to continue attacking the United States.”3 Building on intuitions from

2The Israel Defense Forces acknowledged this move in the following tweet: https://twitter.com/IDF/status/

1125066395010699264
3This is taken from a letter sent to the President by a bipartisan group of senators: https://thehill.com/
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traditional deterrence theory, recent arguments call for a cyberretaliation doctrine that is more

aggressive across the board (e.g., Clarke and Knake 2010; Hennessy 2017). In Section 7, we char-

acterize the optimal deterrence policy when the defender can commit to a retaliatory strategy, and

show that the optimal doctrine is more nuanced: while the defender should retaliate more aggres-

sively after some types of attacks, retaliation should not necessarily increase after every attack.

In particular, it may be optimal to retaliate less aggressively following attacks whose attribution

is particularly ambiguous. In addition, notwithstanding the Department of Defense’s call to focus

on Russia and China, the optimal cyber doctrine does not call for increased aggressiveness against

a defender’s most aggressive adversaries—rather, it calls for increased aggressiveness against the

most deterrable adversaries, where an adversary is deterrable if its attacks are particularly easy to

attribute (e.g., it is technologically limited, or other countries are not trying to mimic it) or it is

particularly responsive to a marginal increase in retaliation (e.g., due to its own cyber vulnerability

or domestic political considerations).

1.2 Alternative Applications and Theoretical Literature

While attribution problems are endemic to cyberwarfare, they also arise in many other environ-

ments where deterrence matters. Even in conventional warfare, it is sometimes difficult to determine

who initiated a given attack.4 The problem is amplified in counterinsurgency, where often multi-

ple competing factions could be responsible for an attack (Trager and Zagorcheva 2006; Berman,

Shapiro and Felter 2011; Shaver and Shapiro Forthcoming). Turning to non-conflict environments,

it is possible to measure pollution, but it may be difficult to assign responsibility to one potential

polluter over another (Segerson 1988; Weissing and Ostrom 1991). Similar issues arise in other

areas of law and economics (Shavell 1985; Png 1986; Lando 2006; Silva 2016).

A large literature explores aspects of deterrence other than the attribution problem. Schelling

(1960) explained the logic of deterrence and the importance of commitment. Jervis (1978) elu-

cidated the “security dilemma”, which applies to cyberwarfare as much as conventional warfare

(Buchanan 2017). The security dilemma has been formalized using the idea that arms might be

strategic complements (Kydd 1997; Baliga and Sjöström 2004; Chassang and Padró i Miquel 2010).

For example, Chassang and Padró i Miquel (2010) show that, in a coordination game, arms ac-

quisition can increase preemptive incentives to go to war faster than it strengthens deterrence.

policy/cybersecurity/377410-lawmakers-demand-cyber-deterrence-strategy-from-trump
4For example, the soldiers who entered Ukraine in March 2014 wore no insignia, and Russia initially denied

involvement (Shevchenko 2014).
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Acemoglu and Wolitzky (2014) incorporate an attribution problem into a dynamic coordination

game with overlapping generations. A player does not know whether an ongoing conflict was started

by the other “side” or by a past member of his own side. This leads to cycles of conflict as players

occasionally experiment with peaceful actions to see if the other side plays along. Another liter-

ature explores the search for credibility, including the role played by both domestic politics and

reputation (see, for example, Powell 1990; Fearon 1997; Smith 1998; Gurantz and Hirsch 2017; Di

Lonardo and Tyson 2018). We abstract from these themes in order to focus on the implications of

attribution problems for deterrence with multiple attackers.

Our model also relates to the literature on inspection games. In such a game, an inspectee may

or may not act legally, and an inspector decides whether to call an alarm as a function of a signal

of the inspectee’s action (see Avenhaus, von Stengel and Zamir 2002, for a survey). This literature

usually allows only one inspectee, though some of our comparative statics results also apply to that

case. In particular, we show that a Blackwell-improvement in information can make the defender

worse off (without commitment)—this appears to be a novel result for inspection games. Some

inspection game models do allow multiple inspectees, but these models study issues other than

attribution, such as the allocation of scarce detection resources across sites (Avenhaus, von Stengel

and Zamir 2002; Hohzaki 2007).

Inspection games appear in economics in the guise of “auditing games,” where a principal

tries to catch agents who “cheat.” These games have many interesting features. For example, the

principal might commit to random audits to save on auditing costs (Mookherjee and Png 1989).

The principal also faces a commitment problem, as she may not have an incentive to monitor the

agent ex post (Graetz, Reinganum and Wilde 1986; Khalil 1997). However, the attribution problem

we study does not arise in these models.

Interpreting the attackers in our model as criminal suspects and the principal as a judge who

seeks to punish the guilty but not the innocent, our model relates to law and economics. The

traditional approach to deterrence in this area assumes full commitment and ex post indifference

between convicting innocent suspects and guilty ones (Polinsky and Shavell 2000). Moreover, it

does not fully model the strategic interaction among multiple possible offenders, taking into account

that the equilibrium behavior of one offender affects how likely the judge is to assign guilt to other

attackers.5

5The one-inspectee inspection game also arises in law and economics. Tsebelis (1989) studies costly monitoring
by the police. The police cannot commit to monitoring effort, so in equilibrium the police mix between working and
shirking and criminals mix between criminality and law-abidingness.
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There is also a literature on “crime waves” that models crime as a game of strategic comple-

ments among criminals: the more crimes are committed, the more law enforcement resources are

strained, and the greater the incentive to commit additional crimes (Sah 1991; Glaeser, Sacerdote

and Scheinkman 1996; Schrag and Scotchmer 1997; Bar-Gill and Harel 2001; Freeman, Grogger and

Sonstelie 1996; Bassetto and Phelan 2008; Ferrer 2010; Bond and Hagerty 2010). This complemen-

tarity is related to the one in our model, if we interpret the defender’s supply of “suspicion” as a

fixed resource: the more one attacker attacks, the more suspect he becomes, and the less suspicion

is left for other attackers. However, the crime waves literature emphasizes the possibility of multiple

equilibria with different levels of crime, while our model has a unique equilibrium. This is because

suspicion is a special kind of resource, which responds to the relative attack probabilities of different

attackers rather than the absolute attack probabilities: if all attackers double their attack prob-

abilities, they remain equally suspicious (in fact more suspicious, because the relative probability

of a false alarm has decreased), and thus face just as much retaliation. Our analysis is thus quite

different from this literature, despite sharing the common theme of strategic complementarity.

Finally, repeated games with imperfect monitoring model multilateral moral hazard without

commitment (Radner 1986; Green and Porter 1984; Abreu, Pearce and Stacchetti 1990). Our

model collapses the infinite horizon into a principal who plays a best response. This approach

might also be a useful shortcut in other contexts.6

2 A Model of Deterrence with Imperfect Attribution

There are n+ 1 players: n attackers and one defender. They play a two-stage game:

1. With probability γ ∈ (0, 1], one of the n attackers is randomly selected. That attacker chooses

whether to attack or not. With probability 1− γ, no one has an opportunity to attack.

2. The defender observes a signal s drawn from a finite set S. If attacker i attacked in stage

1, the probability of signal s is πsi . If no one attacked in stage 1 (i.e., if some attacker had

an opportunity to attack but chose not to, or if no one had an opportunity to attack), the

probability of signal s is πs0. The defender then chooses whether to retaliate against one or

more of the attackers.

6Chassang and Zehnder (2016) study a principal with social preferences who cannot commit to a contract and
instead makes an ex post transfer from an active agent to a passive agent towards whom the active agent may
have taken a pro-social action. Their approach is an alternative to relational contracting models of inter-temporal
incentives (Baker, Gibbons and Murphy 1994).
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The attackers differ in their aggressiveness. An attacker with aggressiveness xi ∈ R receives a

payoff of xi if he attacks. Each attacker also receives a payoff of −1 if he is retaliated against. Each

attacker i’s aggressiveness xi is his private information and is drawn from a continuous distribution

Fi with positive density fi on support [xi, x̄i].

The defender receives a payoff of −K if she is attacked. In addition, for each attacker i, if

she retaliates against i she receives an additional payoff of yi ∈ R+ if i attacked and receives an

additional payoff of yi − 1 if i did not attack. The vector y = (yi)
n
i=1 is the defender’s private

information and is drawn from a continuous distribution G whose marginals (Gi)
n
i=1 have positive

densities gi on support
[
y
i
, ȳi

]
. We assume that Gi (K) = 1 for all i. This implies that the defender

would rather not be attacked than be attacked and successfully retaliate.

In general, a strategy for attacker i ∈ I := {1, .., n} is a mapping from his aggressiveness xi

to his probability of attacking when given the opportunity, pi (xi) ∈ [0, 1]. A strategy for the

defender is a mapping from y = (yi)i∈I and the signal s to the probability with which she retaliates

against each attacker, rs (y) = (rsi (y))i∈I ∈ [0, 1]n.7 However, it is obvious that every best response

for both the attackers and the defender takes a cutoff form, where attacker i attacks if and only

if xi exceeds a cutoff x∗i ∈ [0, 1], and the defender retaliates against attacker i after signal s if

and only if yi exceeds a cutoff ys∗i ∈ [0, 1].8 We can therefore summarize a strategy profile as a

vector of cutoffs (x∗, y∗) ∈ [0, 1]n × [0, 1]n|S|. Equivalently, we can summarize a strategy profile as

a vector of attack probabilities p = (pi)i∈I ∈ [0, 1]n for the attackers and a vector of retaliation

probabilities r = (rsi )i∈I,s∈S ∈ [0, 1]n|S| for the defender, as for attacker i choosing attack probability

pi is equivalent to choosing cutoff x∗i = F−1
i (1− pi), and for the defender choosing retaliation

probability rsi is equivalent to choosing cutoff ys∗i = G−1
i (1− rsi ).

The solution concept is sequential equilibrium (equilibrium henceforth).

We assume that S contains a “null signal,” s = 0, which probabilistically indicates that no

attack has occurred. The interpretation is that s = 0 corresponds to the defender perceiving

“business as usual.” We make the following two assumptions.

1. For each attacker i, the probability of each non-null signal s 6= 0 is greater when i attacks

than when no one attacks: for all i ∈ I and all s 6= 0, πsi ≥ πs0. Note that this implies π0
i ≤ π0

0

7We implicitly assume that the defender’s −K payoff from being attacked is either measurable with respect to
her signals or arrives after she decides whether to retaliate, so that any actionable information the defender receives
from her payoff is captured by the signals.

8Behavior at the cutoff is irrelevant as Fi and Gi are assumed continuous. Our mains results go through when Fi
and Gi admit atoms, but the exposition is slightly more complicated.
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for all i ∈ I, as the components of (πsi )s∈S and (πs0)s∈S must sum to 1.

2. It is not optimal for the defender to retaliate after receiving the null signal: for all i ∈ I,

Gi

(
(1− γ)nπ0

0 + γ
∑

j 6=i π
0
j

(1− γ)nπ0
0 + γ

∑
j π

0
j

)
= 1. (1)

Note that this implies yi < 1 with probability 1, so the defender never benefits from retaliating

against an innocent attacker.

Finally, we assume that either (i) γ < 1 and πs0 > 0 for all s ∈ S, or (ii) Fi (1) < 1 for all i ∈ I

and S =
⋃
i∈I,s∈S suppπsi ⊇ suppπs0. Either assumption guarantees that every signal s ∈ S arises

with positive probability in equilibrium (and hence the defender’s beliefs are determined by Bayes’

rule), which is the only role of this assumption.

2.1 Comments on Interpretation of the Model

We offer a few comments on interpretation.

First, the presence of the null signal let us define three types of attribution failures. A false

alarm occurs if a non-null signal s 6= 0 arises when no one attacked. A detection failure occurs if

the null signal s = 0 arises when an attack took place. And there is scope for misidentification if a

non-null signal s 6= 0 where πsi > 0 arises when some attacker j 6= i attacked. Note that “no attack”

can occur either because no attacker had an opportunity to attack or because some attacker did

have an opportunity to attack but chose not to. We allow the former possibility (i.e., γ < 1) both

for realism and to accommodate the case where there is only a single attacker (n = 1).9

The presence of the null signal is also important for the strategic complementarity at the heart

of our model. By Assumption 1, when attacker i becomes more aggressive, he becomes more

“suspect” after every non-null signal and all other attackers become less suspect. By Assumption

2, this increases retaliation against attacker i and decreases retaliation against all other attackers,

as retaliation occurs only following non-null signals.

Second, yi ≥ 0 implies that retaliation would be credible for the defender if she knew who

attacked. We thus abstract from the “search for credibility” in the traditional deterrence literature

(Schelling 1960; Snyder 1961; Powell 1990) to isolate new issues associated with imperfect attribu-

tion. In reality, there are several possible benefits of successful retaliation. Retaliation can disrupt

9Note that if γ = n = 1 then (1) allows only the trivial case where yi = 0 with probability 1.
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an ongoing attack. It can provide reputational benefits and thus prevent future attacks. And it can

satisfy a “taste for vengeance,” which could result from psychological or political concerns (Jervis

1979; McDermott, Lopez and Hatemi 2017).

Relatedly, it may seem unlikely that a victim would ever retaliate against two different countries

for the same cyberattack, as our model allows. This possibility can be ruled out by assuming that

yi <
1
2 for all i ∈ I with probability 1, which (as we will see) implies that the defender retaliates

against a given attacker only if she believes that he is guilty with probability at least 1− yi > 1
2—a

condition that cannot be satisfied for two attackers simultaneously.

Third, the special case of perfect attribution arises when π0
0 = 1 and, for each attacker i, there

exists a signal si 6= 0 such that πsii = 1. In this case, since yi ∈ [0, 1), attacker i faces retaliation

if and only if he himself attacks. In contrast, with imperfect attribution, attacker i might not

face retaliation when he attacks, and he might face retaliation when no one attacks (as the result

of a false alarm) or when a different attacker attacks (as the result of misidentification). Thus,

deterrence with perfect attribution reduces to bilateral interactions between the defender and each

attacker, while imperfect attribution introduces multilateral strategic considerations.

Fourth, while we have presented the choices of whether to attack and retaliate as binary decisions

made by agents with private information (xi for attacker i; y for the defender), an equivalent, equally

realistic, interpretation is that these are continuous choices made under complete information.

Here, rather than interpreting rsi ∈ [0, 1] as the probability of retaliation (against attacker i, after

signal s), interpret it as the intensity of retaliation, where retaliating with intensity rsi against a

guilty attacker yields a concave benefit bi (rsi ) (and retaliating against an innocent attacker yields

bi (rsi ) − 1). This is equivalent to the binary-retaliation model, with bi (rsi ) equal to the expected

retaliation benefit yi for the defender when she retaliates with ex ante probability rsi .
10 A similar

comment applies for the attackers, where now pi is interpreted as the intensity of attack.11

Fifth, we consider a static model where at most one potential attacker has an opportunity to

attack. This approach is equivalent to considering the Markov perfect equilibrium in a continuous-

time dynamic model where, for each attacker, an independent and identically distributed Poisson

clock determines when that attacker has an attack opportunity. As the probability that independent

Poisson clocks tick simultaneously is zero, in such a model it is without loss of generality to assume

10Here b (rsi ) is concave because increasing the retaliation probability entails reducing the cutoff retaliation benefit
yi, so the expected retaliation benefit increases sub-linearily in the retaliation probability.

11This interpretation would require the signal distribution to be linear in the attack intensity, so that the probability
of signal s given attack intensity pi equals piπ

s
i + (1− pi)πs0.
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that two attackers can never attack at exactly the same time. If multiple attackers can attack

simultaneously, our model continues to apply if the payoff consequences of each attack (and any

subsequent retaliation) are additively separable and signals are independent across attacks.

Sixth, the payoff functions admit several different interpretations. We have normalized both

the cost to an attacker of facing retaliation and the cost to the defender of retaliating in error

to 1. This means that xi and y measure the benefit of a successful attack/retaliation relative to

the cost of facing retaliation/retaliating in error. There are many possible benefits from successful

cyberattacks. The Chinese used cyber espionage to acquire plans for the F-35 from a US military

contractor, allowing them to build a copy-cat stealth fighter at accelerated speed and low cost. The

United States and Israel used cyberattacks to disrupt the Iranian nuclear program. Cyberattacks

have also been used to incapacitate an adversary’s military capabilities—for instance by disrupting

communications, banking, or intelligence—by the United States (against Iraqi insurgents), Russia

(in Ukraine, Georgia, and Estonia), Israel (in Syria), and others. Variation in the costs of retaliation

could derive from the vulnerability of a country’s civil or economic infrastructure to cyberattack.

Thus, for example, North Korea may be more aggressive in the cyber domain than the United

States because it does not have a vulnerable tech sector that could be disrupted by cyber retaliation.

Finally, as technologies for hardening targets, denying access, and improving security improve, the

distribution of benefits may worsen (Libicki, Ablon and Webb 2015).

Finally, a signal s should be interpreted as containing all information available to the defender

concerning the origin of a potential attack. This may include, for example, the systems targeted

by the attack, the location of the servers where the attack originated, and the language and style

of any malicious code.

3 Equilibrium Characterization

In this section, we characterize equilibrium and show that the attackers’ strategies are endogenous

strategic complements: if one attacker attacks with higher probability, they all attack with higher

probability. This simple complementarity is a key factor in many of our results.

Our results focus on equilibrium attack probabilities because this speaks directly to the success

of deterrence. But changes to attack probabilities also correspond to changes in defender welfare: for

most of our comparative statics, the defender’s payoff always moves in the opposite direction from

the attack probabilities, including for the results described in Propositions 2, 3, and 5; Theorems

12



3 and 4; and Corollaries 1, 2, 3, and 4.

We first characterize the attackers’ cutoffs x∗ as a function of the defender’s retaliation prob-

abilities r. The following formula results because an attack by i provides a benefit of xi, while

raising the probability of facing retaliation from
∑

s π
s
0r
s
i to

∑
s π

s
i r
s
i (omitted proofs are in the

Appendix).

Lemma 1 In every equilibrium, for every i ∈ I, attacker i’s cutoff is given by

x∗i =
∑
s

(πsi − πs0) rsi . (2)

Next, we characterize the defender’s cutoffs y∗ as a function of the attackers’ attack probabilities

p. Note that, if i attacks with probability pi when given the opportunity, his unconditional proba-

bility of attacking is γ
npi. Therefore, given a vector of (conditional) attack probabilities p ∈ [0, 1]n,

the probability that i attacked conditional on signal s equals

βsi (p) =
γpiπ

s
i

nπs0 + γ
∑

j pj

(
πsj − πs0

) . (3)

At the optimum, the defender retaliates against i after signal s if and only if her benefit of retaliating

against him (yi) exceeds her cost of doing so, which equals 1 − βsi (p), the probability that he is

“innocent.”

Lemma 2 In every equilibrium, for every i ∈ I and s ∈ S, the defender’s cutoff is given by

ys∗i = 1− βsi (p) . (4)

We also note that the defender never retaliates after the null signal, by Assumptions 1 and 2.

Lemma 3 In every equilibrium, r0
i = 0 for all i ∈ I.

Our first result combines Lemmas 1, 2, and 3 to give a necessary and sufficient condition for a

vector of attack and retaliation probabilities (p, r) ∈ [0, 1]n × [0, 1]n|S| to be an equilibrium.

Proposition 1 A vector of attack and retaliation probabilities (p, r) is an equilibrium if and only

13



if

F−1
i (1− pi) =

∑
s 6=0

(πsi − πs0) (1−Gi (1− βsi (p))) (5)

=
∑
s 6=0

(πsi − πs0)

1−Gi

 nπs0 + γ
∑

j 6=i pj

(
πsj − πs0

)
− γpiπs0

nπs0 + γ
∑

j 6=i pj

(
πsj − πs0

)
+ γpi (πsi − πs0)

 (6)

and

rsi = 1−Gi (1− βsi (p))

for all i ∈ I and s ∈ S.

Equation (5) is key for understanding our model. The left-hand side is attacker i’s cutoff (recall,

x∗i = F−1
i (1 − pi)). The right-hand side is the increase in the probability that i faces retaliation

when he attacks, noting that the probability that an attacker faces retaliation after any signal

equals the probability that the defender’s propensity to retaliate (yi) exceeds the probability that

the attacker did not attack conditional on the signal (ys∗i = 1− βsi (p)). Equilibrium equates these

two quantities.

The strategic complementarity in our model can now be seen from the fact that βsi (p) is in-

creasing in pi and decreasing in pj for all j 6= i. To see the idea, suppose i attacks with higher

probability: pi increases. This makes attacker i more “suspect” after every non-null signal and

makes every attacker j 6= i less suspect: for every s 6= 0, βsi increases and βsj decreases. In turn,

this makes the defender retaliate more against i and less against j: for every s 6= 0, rsi increases

and rsj decreases. Finally, this makes j attack with higher probability: x∗j decreases. Intuitively,

when one attacker becomes more likely to attack, this makes the other attackers attack with higher

probability, as they know their attacks are more likely to be attributed to the first attacker, which

makes it less likely that they will face retaliation following an attack. This complementarity is the

key multilateral aspect of deterrence with imperfect attribution.

Let us clarify a potential point of confusion. If attacker i attacks with higher probability (pi

increases) while all other attack probabilities are held fixed and the defender is allowed to respond

optimally, the effect on the total probability that another attacker j faces retaliation, evaluated ex

ante at the beginning of the game, is ambiguous: attacker j is less suspect (and therefore faces

less retaliation) after any given attack, but the total probability that an attack occurs increases.

However, only the former effect—the probability of facing retaliation after a given attack—matters
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for j’s incentives, because j cannot affect the probability that he is retaliated against in error

after one of i’s attacks. In other words, strategic complementarity operates entirely through the

“intensive” margin of the retaliation probability following a given attack, not the “extensive” margin

of the total number of attacks.

To formalize this endogenous strategic complementarity, it is useful to introduce a new function.

Definition 1 The endogenous best response function h : [0, 1]n → [0, 1]n is defined by letting hi (p)

be the unique solution p′i ∈ [0, 1] to the equation

p′i = 1− Fi

∑
s6=0

(πsi − πs0)

1−Gi

 nπs0 + γ
∑

j 6=i pj

(
πsj − πs0

)
− γp′iπs0

nπs0 + γ
∑

j 6=i pj

(
πsj − πs0

)
+ γp′i (πsi − πs0)

 (7)

for all i ∈ I, and letting h (p) =
∏
i∈I hi (p).

Intuitively, if the attack probabilities of all attackers other than i are fixed at p−i ∈ [0, 1]n−1,

then hi (p) is the unique equilibrium attack probability for attacker i in the induced two-player

game between attacker i and the defender. Note that hi (p) is well-defined, as the right-hand side

of (7) is always between 0 and 1 and is continuous and non-increasing in p′i, and thus equals p′i at

a unique point in the unit interval. Note also that p ∈ [0, 1]n is an equilibrium vector of attack

probabilities if and only if it is a fixed point of h.

The following lemma formalizes the strategic complementarity described above: if attacker j

attacks more often, this makes attacker i less suspect, so attacker i also attacks more often.

Lemma 4 For all distinct i, j ∈ I and all p−j ∈ [0, 1]n−1, hi (pj , p−j) is non-decreasing in pj.

4 Equilibrium Properties and Comparative Statics

This section establishes equilibrium uniqueness and presents comparative statics with respect to Fi

and Gi, the distributions of the attackers’ and defender’s aggressiveness.

4.1 Unique Equilibrium

Notwithstanding the strategic complementarity in the model, there is always a unique equilibrium.

As discussed in the Introduction, this is in stark contrast to standard models of crime waves,

which emphasize multiple equilibria. To see the intuition, suppose there are two equilibria and
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attacker i’s attack probability increases by the greatest proportion (among all attackers) in the

second equilibrium relative to the first. Then, because the defender’s beliefs are determined by

the attackers’ relative attack probabilities, attacker i is more suspect after every signal in the

second equilibrium. The defender therefore retaliates against attacker i more often in the second

equilibrium. But then attacker i should attack less in the second equilibrium, not more.

Theorem 1 There is a unique equilibrium.

4.2 Complementary Aggressiveness

Lemma 4 shows that, if one attacker attacks with higher probability, this induces all attackers to

attack with higher probability. Of course, attack probabilities are endogenous equilibrium objects.

To understand how such a change in behavior might result from changes in model primitives, we

turn to comparative statics with respect to the distributions Fi and G.

As we have already discussed, the parameter xi represents attacker i’s benefit from a successful

attack relative to the cost of facing retaliation. Similarly, the parameter yi represents the benefit

of successful retaliation relative to the cost of retaliating against the wrong target. Thus, a change

in the distributions Fi or Gi might result from an change in the distribution of benefits or the

distribution of costs. In what follows, we say that attacker i (resp., the defender) becomes more

aggressive if Fi (resp., Gi for all i ∈ I) increases in the first-order stochastic dominance sense.

4.2.1 Attackers’ Aggressiveness

If any attacker becomes more aggressive, then in equilibrium all attackers attack with higher

probability, and as a consequence the total probability of an attack increases. The intuition is as

above: if one attacker attacks more often, the other attackers become less suspect and therefore

face retaliation less often, which leads them to attack more often as well.

Proposition 2 Suppose attacker i becomes more aggressive, in that his type distribution changes

from Fi to F̃i, where F̃i (xi) ≤ Fi (xi) for all xi. Let (p, r) (resp., (p̃, r̃)) denote the equilibrium

attack and retaliation probabilities under Fi (resp., F̃i). Then,

1. pi ≤ p̃i and pj ≤ p̃j for every j 6= i.

2. For every j 6= i, there exists s ∈ S such that rsj ≥ r̃sj .
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The logic of endogenous strategic complementarity plays a role throughout the paper, including

in our analysis of false-flag operations (Section 6.2) and the commitment solution (Section 7). In

those sections, we discuss how this mechanism appears consistent with a variety of accounts in the

qualitative literature.

4.2.2 Defender’s Aggressiveness

As compared to an increase in an attacker’s aggressiveness, an increase in the defender’s aggres-

siveness has the opposite effect on deterrence: all attackers attack with lower probability (because

retaliation is more likely), and consequently the total probability of an attack goes down. Thus,

greater aggressiveness on the part of the defender strengthens deterrence.

Proposition 3 Suppose the defender becomes more aggressive, in that her type distribution changes

from G to G̃, where G̃i (yi) ≤ Gi (yi) for all i ∈ I and all yi. Let (p, r) (resp., (p̃, r̃)) denote the

equilibrium attack and retaliation probabilities under G (resp., G̃). Then

1. pi ≥ p̃i for every i ∈ I.

2. For every i ∈ I, there exists s ∈ S such that rsi ≤ r̃si .

The effects of defender aggressiveness are especially important for our subsequent discussion of

changes in the defender’s retaliation technology (Section 6.1) and the commitment solution (Section

7). There we link these effects to descriptions in the qualitative literature.

4.3 Equilibrium Mutes Attacker Heterogeneity

If we put a little more structure on the model, we can make two further observations about attacker

aggressiveness. First, not surprisingly, inherently more aggressive attackers attack with higher prob-

ability in equilibrium. Second, notwithstanding this fact, equilibrium mutes attacker heterogeneity:

that is, inherently more aggressive attackers use a more demanding cutoff (i.e., a higher x∗i ), and

hence the difference in equilibrium attack probabilities between differentially aggressive attackers

is less than it would be if such attackers used the same cutoff. The intuition is that inherently

more aggressive attackers are more suspect and therefore face more retaliation, which leads them

to attack only for higher realized attack benefits.

This result implies another sense in which settings with imperfect attribution are fundamentally

multilateral. Suppose attacker 1 is inherently much more aggressive than attacker 2. A näıve
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analysis would suggest that attacker 2 can be safely ignored. But this neglects attacker 2’s great

advantage of being able to hide behind attacker 1: if all attacks were assumed to come from

attacker 1, attacker 2 could attack with impunity. Hence, equilibrium requires some parity of

attack probabilities, even between attackers who are highly asymmetric ex ante.

To isolate the effect of heterogeneous aggressiveness, in this subsection we restrict attention

to symmetric information structures—without such a restriction, an inherently more aggressive

attacker might nonetheless use a less demanding cutoff, if his attacks are more difficult for the

defender to detect or attribute. The information structure is symmetric if, for every permutation

ρ on I, there exists a permutation ρ′ on S\ {0} such that πsi = π
ρ′(s)
ρ(i) for all i ∈ I and s ∈

S\ {0}. Intuitively, this says that any two attacks have a symmetric impact on the defender’s signal

distribution: for any possible relabeling of the attackers, there exists a corresponding relabeling of

the signals that leaves the signal distribution unchanged.12

Proposition 4 Suppose the information structure is symmetric. Then, for every equilibrium and

every i, j ∈ I, the following are equivalent:

1. i attacks with higher probability than j: pi > pj .

2. i has a higher threshold than j: x∗i > x∗j .

3. i is “inherently more aggressive” than j: Fi (x∗i ) < Fj

(
x∗j

)
, and hence Fi (x) < Fj (x) for all

x ∈
[
x∗j , x

∗
i

]
.

4. i is “more suspect” than j: for every permutation ρ on I mapping i to j and every corre-

sponding permutation ρ′ on S\ {0}, βsi > β
ρ′(s)
j for all s ∈ S\ {0}.

Proposition 4’s message that equilibrium attack probabilities must be moderated relative to

attackers’ underlying preferences is relevant for assessing the US shift to a focus on China and

Russia, discussed in Section 1.1. We provide a more detailed discussion of this aspect of the 2018

Cyber Strategy in the context of the commitment model in Section 7.

12For example, if there are two attackers, S = {0, 1, 2}, π0
1 = π0

2 = 1
3
, and π1

1 = π2
2 = 2

3
, then the information

structure is symmetric, because for the permutation ρ that switches the attackers’ names, the permutation ρ′ that

switches the names of signals 1 and 2 satisfies πsi = π
ρ′(s)
ρ(i) for all i ∈ I and s ∈ S\ {0}. In contrast, if π0

1 = 1
3

and

π1
1 = 2

3
but π0

2 = π1
2 = 1

2
, then for the same permutation ρ, π1

1 cannot equal πsρ(1) for any signal s, so the information
structure is not symmetric.
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5 When Does Improving Attribution Improve Deterrence?

Attribution problems significantly complicate deterrence. As such, a natural intuition is that im-

proving the defender’s information—and thus the ability to attribute attacks—will improve deter-

rence (recall our discussion in Section 1.1). In this section, we probe this intuition by studying how

changes in the defender’s information structure—the matrix π = (πsi )i∈I∪{0},s∈S—affect deterrence.

We will see that the conventional wisdom that better information improves deterrence is not always

correct, but we also provide formal support for some more nuanced versions of this claim.

Our results build directly on our decomposition of attribution problems into false alarms, de-

tection failure, and misidentification. Roughly speaking, we show that the following types of im-

provements in information always improve deterrence:

1. Improving detection if the perpetrators of the newly detected attacks are always identified

correctly.

2. Replacing misidentification with non-detection.

3. Reducing false alarms.

4. Improving detection independently of identification.

However, two types of improvements can backfire and increase equilibrium attack probabilities:

1. Refining signals that are already strong enough to cause retaliation.

2. Improving detection if the perpetrators of the newly detected attacks are especially hard to

identify.

Thus, from a policy perspective, some care must be taken in investing in improved detection

and attribution technologies. In particular, a defender need not benefit from further refining a

signal that is already strong enough to spark retaliation, and improvements in detection technology

are only valuable if the newly detected signals can also be attributed with some degree of success.

These results rely on the assumption that the attackers know the defender’s information struc-

ture: of course, if the defender can improve her information without the attackers’ knowledge, this

can only make her better off. However, it is clear that the same effects would arise in a more

realistic model where attackers observe the defender’s information structure imperfectly. The case
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where attackers are completely unaware of improvements in the defender’s information strikes us

as less realistic.

We organize our results as follows. First, we present two main results—Theorems 2 and 3—

that provide sufficient conditions for a change in the information structure to improve deterrence.

We then show how these results imply the four “positive” claims above as corollaries. Finally, we

provide examples showing that the conditions for Theorems 2 and 3 cannot be relaxed, which yield

the two “negative” claims above.

Throughout this section, we consider changes in the defender’s information structure from π

to π̃, and let variables without (resp., with) tildes denote equilibrium values under information

structure π (resp., π̃).

5.1 Sufficient Conditions for a Change in the Information Structure to Improve

Deterrence

This subsection presents general sufficient conditions for a change in the information structure to

improve deterrence.

Let rsi (p;π) be the probability that attacker i faces retaliation given signal s, prior attack

probabilities p, and information structure π:

rsi (p;π) = 1−Gi (1− βsi (p;π)) ,

where βsi (p;π) is given by equation (3), and we have made the dependence of β on π explicit. Let

xi (p;π) be the increase in the probability that attacker i faces retaliation when he attacks given

prior attack probabilities p and information structure π:

xi (p;π) =
∑
s 6=0

(πsi − πs0) rsi (p;π) .

Recall that, in equilibrium, x∗i = xi (p;π).

Our first main result is that, if the information structure changes such that the defender becomes

“more retaliatory,” in that all cutoffs xi (p;π) increase holding the attack probabilities fixed, then

in equilibrium all attack probabilities must decrease. Intuitively, this is a consequence of strategic

complementarity: if π changes so that each xi (p;π) increases for fixed p, strategic complementarity

then pushes all the cutoffs even further up.
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Theorem 2 Fix two information structures π and π̃, and let p (resp. p̃) be the vector of equilibrium

attack probabilities under π (resp. π̃). If xi (p; π̃) ≥ xi (p;π) for all i ∈ I, then p̃i ≤ pi for all i ∈ I.

If in addition xi (p; π̃) > xi (p;π) for some i ∈ I, then p̃i < pi.

An important consequence of this result is the following: Suppose, conditional on an attack

by i, probability weight is shifted from a signal s where i did not face retaliation to a signal s′

where no one else faced retaliation. This always improves deterrence. The logic is that, holding

the attack probabilities fixed, such a change in the information structure induces weakly more

retaliation against i (at signal s′, since i has become more suspect at s′) and also induces weakly

more retaliation against everyone else (at signal s, since everyone else has become more suspect at

s). Theorem 2 then implies that all equilibrium attack probabilities must decrease.

Theorem 3 Suppose that, with information structure π, there is a signal s where attacker i faces

no retaliation (i.e. rsi = 0) and a signal s′ where no other attacker j faces retaliation (i.e. rs
′
j = 0

for all j 6= i). Suppose also that, conditional on an attack by i, information structure π̃ shifts weight

from signal s to signal s′: that is, πsi > π̃si , π
s′
i < π̃s

′
i , and πŝj = π̃ŝj for all (j, ŝ) 6= (i, s) , (i, s′).

Then p̃j ≤ pj for all j ∈ I. Moreover, if 0 < rs
′
i < 1 and 0 < pi < 1 then p̃i < pi; and if 0 < rsj < 1

and 0 < pj < 1 for some j 6= i then p̃j < pj.

5.2 Types of Changes that Always Improve Deterrence

We can now derive the “positive” results previewed above.

5.2.1 Improving Detection without Increasing Misidentification

First, shifting mass from the null signal to a signal that never sparks mistaken retaliation always

improves deterrence. For example, suppose Stuxnet had revealed some technical feature that was

unique to American cyberattacks. For Iran, investing in better detection of such incursions would

unambiguously improve deterrence. By detecting identifiable attacks by the US that it had pre-

viously missed, such an investment would increase the likelihood that Iran retaliates against US

cyberattacks, without increasing the risk of mistakenly retaliating against the wrong adversary.

Such an improvement would thus directly decrease US aggressiveness towards Iran, and through

strategic complementarity would also reduce the aggressiveness of Iran’s other adversaries.
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Corollary 1 Suppose that, with information structure π, there is a non-null signal s where all

attackers j 6= i face no retaliation (i.e. rsj = 0 for all j 6= i).13 If, conditional on an attack by i, π̃

shifts weight from the null signal to signal s, then p̃j ≤ pj for all j ∈ I. Moreover, if 0 < rsi < 1

and 0 < pi < 1 then p̃i < pi.

Proof. Since r0
i = 0 and rsj = 0 for all j 6= i, this follows from Theorem 3.

5.2.2 Replacing Misidentification with Non-Detection

Second, misidentification is worse than non-detection, in the following sense: if it is possible that

an attack by i is detected but is not attributed to i with enough confidence to cause retaliation, the

defender would be better off if this attack were not detected at all. For example, the identification

error in the Solar Sunrise episode should have made the US wary of its ability to distinguish between

attacks by Iraq and independent hackers. If this makes the US unwilling to respond to genuine

attacks by Iraq, then the US would be better off being unable to detect attacks by independent

hackers like Solar Sunrise: such a change would not affect independent hackers’ incentives, while

making it easier to identify a genuine attack by Iraq.

Corollary 2 Suppose that, with information structure π, there is a non-null signal s where attacker

i faces no retaliation (i.e. rsi = 0). If, conditional on an attack by i, π̃ shifts weight from signal s

to the null signal, then p̃j ≤ pj for all j ∈ I. Moreover, if 0 < rsj < 1 and 0 < pj < 1 for some

j 6= i, then p̃j < pj.

Proof. Since r0
j = 0 for all j 6= i, this follows from Theorem 3.

5.2.3 Reducing False Alarms

Third, reducing false alarms (i.e., decreasing πs0 for s 6= 0) always improves deterrence. When false

alarms are less frequent, each non-null signal invites greater suspicion, and hence more retaliation.

Also, the marginal impact of an attack on the probability of each non-null signal increases. Both

of these effects increase the marginal impact of an attack on the probability of facing retaliation,

and hence reduce the incentive to attack.

For example, suppose the Democratic National Committee implements procedures that make

a system test less likely to be mistaken for an actual attack on their servers. This makes the

13A trivial condition on primitives that guarantees rsj = 0 for all j 6= i is πsj = 0 for all j 6= i: that is, signal s can
only arise as a result of an attack by i or a false alarm.
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United States more willing to retaliate following perceived attacks on DNC servers, which improves

deterrence of Russian incursions.

Corollary 3 Suppose false alarms decrease: π̃s0 ≤ πs0 for all s 6= 0 and π̃0
0 ≥ π0

0, while πi = π̃i for

all i ∈ I. Then p̃i ≤ pi for all i ∈ I. Also, r̃si ≥ rsi for all s 6= 0 and all i ∈ I.

Proof. By Theorem 2, it suffices to show that xi (p; π̃) ≥ xi (p;π) for all i. By the definition

of xi (p;π), since reducing false alarms increases πsi − πs0 for all s 6= 0, it suffices to show that

rsi (p; π̃) ≥ rsi (p;π) for all s 6= 0. For this, it is in turn enough to show that βsi (p; π̃) ≥ βsi (p;π) for

all s 6= 0. But this is immediate from equation (3).

5.2.4 Improving Detection Independently of Identification

Fourth, in the important special case of our model where the detection and identification processes

are independent, improving detection always improves deterrence. To formulate this case, suppose

there exists a common detection probability δ ∈ [0, 1], a false alarm probability φ ∈ [0, 1], and a

vector of identification probabilities (ρsi ) ∈ [0, 1]n|S−1| with
∑

s 6=0 ρ
s
i = 1 for each i ∈ I, such that

π0
i = 1− δ for all i 6= 0, πsi = δρsi for all i, s 6= 0,

π0
0 = 1− φ, πs0 = φρs0 for all s 6= 0.

Corollary 4 If detection is independent of identification, improving detection decreases all equi-

librium attack probabilities.

Proof. By Theorem 2, it suffices to show that βsi (p; π̃) ≥ βsi (p;π) for all i and all s 6= 0. We have

βsi (p;π) =
γδpiρ

s
i

γδ
∑

j pjρ
s
j +

(
n− γ

∑
j pj

)
φρs0

.

Clearly, βsi (p;π) is non-decreasing in δ.

Moreover, note that βsi (p;π) depends on the detection probability and the false alarm probabil-

ity only through their ratio δ/φ. Thus, when detection is independent of identification, improving

detection is strategically equivalent to reducing false alarms.

5.3 Types of Changes that Can Degrade Deterrence

We now give our “negative” results. We can organize these results by showing why the conclusion

of Theorem 3 can fail if either rsi > 0 or rs
′
j > 0 for some j 6= i.
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5.3.1 Improving Detection while Worsening Identification

We first show how deterrence can be undermined by improving detection but simultaneously wors-

ening identification. That is, shifting weight from the null signal to a signal where someone other

than the attacker faces retaliation can reduce retaliation against both attackers and increase at-

tacks. This is a partial converse to the result that replacing misidentification with non-detection

improves deterrence (Corollary 2).

Example 1 There are two attackers and three signals. To fix ideas, think of the defender as Iran,

and the two attackers as Israel (attacker 1) and Saudi Arabia (attacker 2). Let γ = 2
3 , so with

equal probability Israel can attack, Saudi Arabia can attack, or no one can attack. The information

structure π = (πsi ) is

π0
0 = 1 π1

0 = 0 π2
0 = 0

π0
1 = 1

3 π1
1 = 2

3 π2
1 = 0

π0
2 = 1

3 π1
2 = 1

3 π2
2 = 1

3

Thus, signal 1 is a good signal that Israel attacked (though it could also indicate a Saudi attack),

while signal 2 unambiguously indicates a Saudi attack. There is also a possibility of detection failure.

Let x1 ∈
{
xL1 = 1

2 , x
H
1 = 1

}
, with Pr

(
x1 = xH1

)
= 4

5 .

Let x2 ∈
{
xL2 = 1

4 , x
H
2 = 1

}
, with Pr

(
x2 = xH2

)
= 1

2 .

Let y1 = y2 = 1
4 with probability 1.14

Claim 1 In the unique equilibrium with information structure π, Israel attacks iff x1 = xH1 ; Saudi

Arabia attacks iff x2 = xH2 ; and Iran retaliates against Israel iff s = 1 and against Saudi Arabia iff

s = 2. Thus, p1 = 4
5 and p2 = 1

2 .

Proof. It suffices to check that these strategies form an equilibrium. Given the conditional attack

probabilities and the information structure, Iran’s posterior beliefs (βsi ) are given by

β0
0 = 51

64 β0
1 = 8

64 β0
2 = 5

64

β1
0 = 0 β1

1 = 16
21 β1

2 = 5
21

β2
0 = 0 β2

1 = 0 β2
2 = 1

Since y = 1
4 , Iran retaliates against attacker i after signal s iff βsi >

3
4 . Thus, Iran retaliates against

Israel iff s = 1, and against Saudi Arabia iff s = 2. Therefore, x∗1 = 2
3 and x∗2 = 1

3 . It follows that

14This type distribution is discrete. However, if we approximate with a continuous distribution, the equilibrium
attack probabilities change continuously. The same remark applies to Examples 2 and 3 below.
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Israel attacks iff x1 = xH1 and Saudi Arabia attacks iff x2 = xH2 . So this is an equilibrium.

Now suppose the Iranians improve their ability to detect Israeli attacks, such that the informa-

tion structure changes to

π̃0
0 = 1 π̃1

0 = 0 π̃2
0 = 0

π̃0
1 = 0 π̃1

1 = 2
3 π̃2

1 = 1
3

π̃0
2 = 1

3 π̃1
2 = 1

3 π̃2
2 = 1

3

Thus, when Israel attacks, the attack is always detected. But this improved detection isn’t “clean”

with regard to identification: many Israeli attacks now look to the Iranians like Saudi attacks. In

equilibrium, this causes Iran to stop retaliating after perceived Saudi attacks (signal 2), which leads

Saudi Arabia to start attacking more. But this increased aggressiveness by Saudi Arabia degrades

Iran’s confidence in its attribution of perceived Israeli attacks (signal 1), as these are now more

likely to result from an attack by a more aggressive Saudi Arabia. This in turn causes Iran to stop

retaliating after perceived Israeli attacks as well. Thus, this change in Iran’s information, whereby

it gets better at detection but worse at identification, degrades deterrence.

Claim 2 In the unique equilibrium with information structure π̃, both attackers attack whenever

they have the opportunity, and Iran never retaliates. Thus, p1 = p2 = 1.

Proof. Again, we check that these strategies form an equilibrium. Combining the conditional

attack probabilities and the information structure, Iran’s posterior beliefs are given by

β0
0 = 3

4 β0
1 = 0 β0

2 = 1
4

β1
0 = 0 β1

1 = 2
3 β1

2 = 1
3

β2
0 = 0 β2

1 = 1
2 β2

2 = 1
2

Note that βsi <
3
4 for all i ∈ {1, 2} and all s. Hence, Iran never retaliates. This implies that

x∗1 = x∗2 = 0, so both attackers always attack.

5.3.2 Refining Signals that Already Cause Retaliation

Deterrence can also be undermined by refining a signal that is already strong enough to cause

retaliation. This can occur even if the signal refinement corresponds to a strict improvement in the

information structure in the sense of Blackwell (1951), and even if there is only one attacker, so
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that the model is a classical inspection game (Avenhaus, von Stengel and Zamir 2002).15

To get an intuition for how this can work, suppose the US discovers some snippet of code that

only the North Koreans use. The presence of this snippet then unambiguously attributes an attack

to North Korea. So, when the US observes an attack from a North Korean server that doesn’t

have the snippet, it might reason, “if this attack were really North Korea, we’d probably see that

snippet.” This logic can make the US less willing to retaliate than it was before discovering the

snippet. Such reluctance, in turn, makes North Korea more aggressive.

To see this in the context of our model, suppose there is a single attacker and three possible

signals: null, imperfectly informative (s = 1), and perfectly informative (s = 2). Think of s = 1 as

an attack that appears to originate from North Korean servers and s = 2 as an attack containing

the snippet of code. Initially, the US doesn’t know to look for this snippet, so it never sees s = 2.

But the US is willing to retaliate when it sees attacks coming from North Korean servers, even

though they might be a false alarm.

Example 2 There is one attacker and three signals. Let γ = 1. The information structure is

π0
0 = 3

4 π1
0 = 1

4 π2
0 = 0

π0
1 = 1

4 π1
1 = 3

4 π2
1 = 0

Let x = 1
3 and y = 1

2 .

Claim 3 In the unique equilibrium with information structure π, the attacker attacks with proba-

bility 1
4 , and the defender retaliates with probability 2

3 when s = 1.

Proof. It is clear that the equilibrium must be in mixed strategies. Let p be the probability the

attacker attacks. The defender’s posterior belief when s = 1 is β1
1 = 3p

1+2p . For the defender to be

indifferent, this must equal 1
2 . This gives p = 1

4 .

For the attacker to be indifferent, the retaliation probability when s = 1 must solve
(

3
4 −

1
4

)
r1 =

1
3 , or r1 = 2

3 .

Now suppose the US gets better at attributing North Korean attacks: it becomes aware of, and

can sometimes find, the identifying snippet of code when it is present. To capture this, suppose

15As far as we know, the observation that a Blackwell-improvement in the defender’s information can reduce
her payoff in an inspection game is novel. A somewhat related result is due to Crèmer (1995), who shows that, in a
principal-agent model, the principal may benefit from having less information about the agent’s performance, because
this makes it credible to carry out certain threats, such as failing to renegotiate the contract.
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the information structure changes to

π̃0
0 = 3

4 π̃1
0 = 1

4 π̃2
0 = 0

π̃0
1 = 1

4 π̃1
1 = 1

2 π̃2
1 = 1

4

Finding the snippet is still difficult, so the perfect signal only has probability 1
4 .16 As a result,

even certain retaliation following the perfect signal is not enough to deter an attack on its own.

Moreover, the imperfect signal is now less indicative of an attack because the perfect signal is

possible—when the snippet of code is missing, the US thinks it more likely that a perceived attack

is really a false alarm. Realizing that it can now escape retaliation after an imperfect signal, North

Korea becomes more aggressive.

Claim 4 In the unique equilibrium with information structure π̃, the attacker attacks with proba-

bility 1
3 , and the defender retaliates with probability 1

3 when s = 1 and retaliates with probability 1

when s = 2.

Proof. Clearly, the defender retaliates with probability 1 when s = 2. As x > π̃2
1, this is not

enough to deter an attack, so the defender must also retaliate with positive probability when s = 1.

The defender’s posterior belief when s = 1 is now β̃1
1 = 2p

1+p . For the defender to be indifferent, this

must equal 1
2 . This gives p = 1

3 .

For the attacker to be indifferent, the retaliation probability when s = 1 must solve
(

1
2 −

1
4

)
r1 +(

1
4

)
(1) = 1

3 , or r1 = 1
3 .

Note, if the cost of being attacked (K) is sufficiently large, the defender is better off with less

information. The intuition is that, when weight shifts from π1
1 to π2

1, the attacker must attack with

higher probability to keep the defender willing to retaliate after signal 1.

This result shows that a defender can be harmed by chasing too much certainty. In general,

deterrence is undermined by extra information in regions of the defender’s belief space where the

probability of retaliating against a given attacker is concave in the defender’s posterior belief about

whether that attacker attacked. Since this is typically the case when the defender is almost certain

the attacker attacked (as then she retaliates with probability close to 1), this implies that pursuing

too much certainty in attribution is usually a mistake.

16Note that π̃ is Blackwell more informative than π: by simply conflating signals 1 and 2, the defender can recover
π from π̃.
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Of course, for any fixed attack probabilities, the defender benefits from having additional in-

formation, as this can only make retaliation more accurate. Thus, if the effect of improving the

defender’s information on deterrence is positive, the overall effect on the defender’s payoff is positive;

while if the effect on deterrence is negative, the overall effect can go either way.

6 Applications

We now explore two applications of particular relevance to contemporary discussions surrounding

cyber strategy.

Section 6.1 considers the possibility that the defender may have multiple ways to retaliate,

for example with a less destructive weapon (like a reciprocal cyberattack) or a more destructive

one (like a conventional military, or even nuclear, attack). Our main result is that adding a

more destructive weapon to the defender’s arsenal always improves deterrence, while adding a less

destructive weapon can undermine deterrence.

Section 6.2 asks what happens when one attacker can attempt to mimic another attacker via a

false-flag operation. Here we show that more aggressive attackers are more likely to be mimicked,

as are attackers who are themselves easy to detect and identify when they attack.

6.1 Different Kinds of Retaliation

A central debate in cyber strategy concerns what weapons should be available for retaliation against

a cyberattack. This question was raised with new urgency by the 2018 United States Nuclear

Posture Review, which for the first time allowed the possibility of first-use of nuclear weapons in

response to devastating but non-nuclear attacks, including cyberattacks (Sanger and Broad 2018).

Less dramatically, the 2018 National Cyber Strategy allows both cyber and kinetic retaliation as

possible responses to cyber activity (United States 2018).

Our model can capture many aspects of this debate, but not all of them. We do model the

fact that a more destructive form of retaliation is likely more costly to use in error. But we cannot

capture all possible objections to the Nuclear Posture Review, such as the potential consequences

of “normalizing” first-use of nuclear weapons. Nonetheless, in the context of our model, we provide

some support for the spirit of the Nuclear Posture Review by showing that adding a more destructive

weapon to the defender’s arsenal always improves deterrence. By contrast, adding a less destructive

weapon to the defender’s arsenal has competing effects and, as such, can either weaken or strengthen
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deterrence.

We model introducing a new retaliation weapon into the defender’s arsenal as follows: There

is the original, legacy weapon `, and a new weapon, n. Each weapon a ∈ {`, n} is characterized

by three numbers: the damage it does to an attacker, wa (previously normalized to 1), the benefit

using it provides to a type-y defender, ya, and the cost to the defender of using it on an innocent

attacker, za (previously normalized to 1). Thus, when the defender observes signal s and forms

belief βsi that attacker i is guilty, she retaliates using the weapon a ∈ {0, `, n} that maximizes

ya − (1− βsi ) za,

where a = 0 corresponds to not retaliating, with y0 = z0 = w0 = 0. We continue to assume that

K > ya for all y ∈
[
y
i
, ȳi

]
and all a, so that deterring an attack is preferred to being attacked and

retaliating.

A couple points are worth noting. All else equal, the defender prefers to retaliate with a weapon

that provides higher retaliatory benefits (higher ya) and lower costs for mistaken retaliation (lower

za). It seems reasonable to assume that these two features of a weapon may co-vary positively—

more powerful weapons provide greater retaliatory benefits but are also more costly when misused.

So the defender may face a trade-off, and she will balance this trade-off differently following different

signals: when attribution is more certain, the defender is more willing to opt for a powerful response;

while when attribution is less certain, the defender will respond in a way that limits costs in case

of a mistake.

In light of this trade-off, we ask when introducing the new weapon into the arsenal improves

the defender’s payoff.

First, it is easy to construct examples where introducing a weaker weapon (i.e., one with wn <

w`) into the defender’s arsenal makes her worse-off. For example, suppose that the new weapon

also imposes lower costs when used in error (zn < z`). Then there could be signals where the

defender would have used the legacy weapon, but now switches to the new weapon. (Indeed, if

yn > y` then the defender never uses the legacy weapon.) If w` − wn is sufficiently large this

undermines deterrence, which leaves the defender worse-off overall if the cost of being attacked

(K) is sufficiently large. The intuition is that, when a weaker weapon is available, ex post the

defender is sometimes tempted to use it rather than the stronger weapon (in particular, when she

is uncertain of the identify of the perpetrator). This is bad for ex ante deterrence. The defender
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can thus benefit from committing in advance to never retaliate with a less destructive weapon.

By contrast, introducing a new weapon that imposes greater costs on attackers (i.e., wn ≥ w`)

always benefits the defender.17 The intuition is that, holding the attack probabilities fixed, making

a new, more destructive weapon available weakly increases the expected disutility inflicted on

every attacker: this follows because, for each signal, the defender’s optimal response either remains

unchanged or switches to the new, more damaging weapon. This reduces everyone’s incentive to

attack, and strategic complementarity then reduces the equilibrium attack probabilities even more.

Proposition 5 Assume wn ≥ w`. Let p (resp. p̃) denote the equilibrium attack probabilities when

the new weapon is unavailable (resp., available). Then p ≥ p̃.

6.2 False Flags

The attribution problem creates the possibility for false-flag operations, where one attacker poses

as another to evade responsibility. False-flag operations are common in the cyber context (see

Bartholomew and Guerrero-Saade 2016). We have, for instance, already discussed Russia’s attempt

to mask various attacks by attempting to mimic North Koreans or Iranians.

A false-flag operation amounts to one attacker attempting to attack in a way that mimics, or

is likely to be attributed to, another attacker. If multiple attackers can mimic each other, there

will naturally be multiple equilibria, where different attackers are mimicked most often, due to a

coordination motive in mimicking. As our main question of interest here is who is mostly likely

to be mimicked, we rule out this effect by assuming that only attacker 1 has the ability to mimic

other attackers.

For simplicity, in this subsection we consider a version of the “independent detection and iden-

tification” model of Section 5.2.4, while allowing the detection probability to vary across attackers.

In particular, we assume the information structure is

π0
i = 1− δi for all i 6= 0, πii = δiρi for all i 6= 0, πji = δi

1−ρi
n−1 for all i 6= j 6= 0,

π0
0 = 1− φ, πs0 = φ

n for all s 6= 0.

Thus, attackers differ in how detectable they are (δi) and how identifiable they are (ρi), but the

information structure is otherwise symmetric.

17It is straightforward to generalize this result to the case where there are many legacy weapons. In this case, the
required condition is that the new weapon is more destructive than any of them.
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The “mimic” (attacker 1) chooses an attack probability p1 and, conditional on attacking, a

probability distribution over whom to mimic, α ∈ ∆ (I). Given α, if the mimic attacks, signal

s = 0 realizes with probability 1− δ1 and each signal i 6= 0 realizes with probability

πi1 (α) := δ1

αiχi +
∑
j 6=i

αj
1− χj
n− 1

 ,

where χi ∈ (0, 1) measures 1’s ability to successfully mimic attacker i. For example, an attacker

with a less sophisticated arsenal of cyber weapons may be easier to mimic.

If the mimic chooses strategy α, for i 6= 1, we have

βi1 (α) =
γp1π

i
1 (α)

γ
[
p1πi1 (α) + δipiρi +

∑
j 6=1,i δjpj

1−ρj
n−1

]
+
(

1− γ
n

∑
j pj

)
φ
n

.

Denote the probability with which the mimic faces retaliation at signal s by

rs1 (α) = 1−G1 (1− βs1 (α))

Given the vector of attack probabilities p (including p1), the mimic chooses α to solve

min
α′∈∆(I)

∑
s∈I

πs1
(
α′
)
rs1 (α) .

(Note that α is fixed here by equilibrium expectations.) The derivative with respect to α′i is

δ1

χiri1 (α) +
∑
j 6=i

1− χi
n− 1

rj1 (α)

 .

Thus, at the optimum, this derivative must be equal for all i ∈ suppα, and must be weakly greater

for all i /∈ suppα. In particular, if i, i′ ∈ suppα, we have

χi

 1

n

∑
j∈I

rj1 (α)− ri1 (α)

 = χi′

 1

n

∑
j∈I

rj1 (α)− ri′1 (α)

 ,

where both terms in parentheses are non-negative. Note that ri1 (α) is increasing in βi1 (α), which

in turn is increasing in πi1 (α) and decreasing in δi, pi, and ρi. We obtain the following result:

Proposition 6 Ceteris paribus, an attacker is mimicked more in equilibrium if he is more ag-
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gressive, easier to identify, easier to detect, or easier to mimic: for any two attackers i, j 6= 1, if

pi ≥ pj, ρi ≥ ρj, δi ≥ δj, and χi ≥ χj, then αi ≥ αj.

More aggressive attackers are more like to be the victim of false-flag operations because they

are more suspect when the signal points to them, which makes the mimic less suspect. The same

intuition underlies the more subtle result that attackers that are easier to identify or detect are

mimicked more: When such an attacker attacks, the signal is especially likely to point to him,

rather than to a different attacker. This makes this attacker especially suspect when the signal

points to him, which makes him an attractive target for false-flag operations.

We have already discussed recent operations where Russia chose to mimic Iran and North Korea,

who had pre-existing reputations for aggressiveness in cyber space. Another example involves

China. In 2009, the Information Warfare Monitor uncovered the GhostNet plot, an infiltration

of government and commercial computer networks the world over, originating in China. There

were “several possibilities for attribution.” One was that the Chinese government and military were

responsible. But the report also raises alternative explanations, including that the attack could have

been the work of “a state other than China, but operated physically within China. . . for strategic

purposes. . . perhaps in an effort to deliberately mislead observers as to the true operator(s).” (See

Information Warfare Monitor 2009, pp. 48-49.) Similar conclusions were reached half a decade

earlier regarding the difficulty in attributing the Titan Rain attacks on American computer systems,

which were again traced to internet addresses in China (Rogin 2010). In both cases, the United

States government appears to have been highly reluctant to retaliate.

Given China’s reputation for aggressiveness in cyberspace, why is the United States so reluctant

to retaliate for cyberattacks attributed to China? It seems a key factor is precisely the attribution

problem and especially concerns about false-flags. In plain language, China’s reputation makes it

particularly tempting for other actors to hide behind America’s suspicion of the Chinese. Singer

and Friedman (2014) describe exactly such a problem:

It is easy to assume that the [Chinese] government is behind most insidious activities

launched by computers located within China. But, of course, this also means that bad

actors elsewhere may be incentivized to target Chinese computers for capture and use

in their activities, to misdirect suspicions. This very same logic, though, also enables

Chinese actors to deny responsibility. (p. 74)
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7 Optimal Deterrence with Commitment

Our last set of results concerns the role of commitment on the part of the defender: how does the

defender optimally use her information to deter attacks when she can commit to ex-post suboptimal

retaliation after some signals?

This question matters because in reality the defender is likely to have some commitment power.

For example, a branch of the military can announce a “strategic doctrine,” with the understanding

that commanders who violate the doctrine are penalized.18 Indeed, there is serious discussion in the

cyber domain (as there was in the nuclear domain) of pre-delegation, whereby military commanders

are granted authority to engage in various types of defensive or retaliatory actions without seeking

approval from civilian authorities (Feaver and Geers 2017). For instance, recent changes to US

policy delegate many decisions over cyber retaliation to the commander of US Cyber Command,

requiring only minimal consultation with other government agencies (Sanger 2018).

We show that, as one might expect, with commitment the defender retaliates more often after

some signals. Interestingly, this always leads all attackers to attack less often. Thus, generally

speaking, the defender should try to commit herself to retaliate aggressively relative to her ex post

inclination. But there are some subtleties: as we will see, there may also be some signals after

which the defender retaliates less often with commitment than without. The intuition is that,

since the attackers are less aggressive under commitment, some signals are now more likely to be

false alarms, so retaliating after these signals becomes less efficient. We also characterize which

attackers should be the focus of increased retaliation under commitment. After establishing each

result, we discuss its implications for contemporary policy debates.

7.1 The Commitment Model

To analyze the commitment model, recall that the attackers’ strategies depend only on the de-

fender’s retaliation probabilities (rsi )i∈I,s∈S . Given a vector of retaliation probabilities, the op-

timal way for the defender to implement this vector is to retaliate against i after s if and only

if y > G−1 (1− rsi ). Hence, a commitment strategy can be summarized by a vector of cutoffs

(ys∗i )i∈I,s∈S such that the defender retaliates against i after signal s if and only if yi > ys∗i .

What is the optimal vector of cutoffs, and how does it differ from the no-commitment equilib-

18For this reason, commitment by the defender is frequently studied as an alternative to no-commitment in the
inspection game and related models. The commitment model is sometimes referred to as “inspector leadership”
(Avenhaus, von Stengel and Zamir 2002).
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rium? The defender’s problem is

max
(ysi )i∈I,s∈S

γ

n

∑
i

(
1− Fi

(∑
s

(πsi − πs0) (1−Gi (ysi ))

))


−K

+
∑

s π
s
i

 ∫∞
ysi
ydGi (y)

+
∑

j 6=i
∫∞
ysj

(y − 1) dGj (y)


−
∑

s π
s
0

∑
j

∫∞
ysj

(y − 1) dGj (y)


+
∑
s

πs0
∑
j

∫ ∞
ysj

(y − 1) dGj (y)

This uses the fact that x∗i =
∑

s (πsi − πs0) (1−Gi (ysi )), so attacker i attacks with probability

1 − Fi (
∑

s (πsi − πs0) (1−Gi (ysi ))). In the event attacker i attacks, the defender suffers a loss

consisting of the sum of several terms (the terms in brackets above). First, she suffers a direct loss

of K. In addition, after signal s, she receives yi if she retaliates against attacker i (i.e., if yi > ysi )

and receives yj − 1 if she erroneously retaliates against attacker j (i.e., if yj > ysj ). If instead no

one attacks, then the defender receives yj − 1 if she erroneously retaliates against attacker j.

The first-order condition with respect to ysi is

fi (x∗i ) (πsi − πs0)


−K

+
∑

s π
s
i

[∫∞
ysi
ydG (y) +

∑
j 6=i
∫∞
ysj

(y − 1) dG (y)
]

−
∑

s π
s
0

∑n
j=1

∫∞
ysj

(y − 1) dG (y)


− (1− Fi (x∗i ))π

s
i y
s
i

+
∑
j 6=i

(
1− Fj

(
x∗j
))
πsj (1− ysi )

+

n
γ
−

n∑
j=1

(
1− Fj

(
x∗j
))πs0 (1− ysi ) = 0.

The first term is the (bad) effect that increasing ysi makes attacker i attack more. The second term

is the (also bad) effect that increasing ysi makes attacks by i more costly, because the defender

successfully retaliates less often. The third term is the (good) effect that increasing ysi makes

attacks by each j 6= i less costly, because the defender erroneously retaliates less often. The fourth

term is the (good) effect that increasing ysi increases the defender’s payoff when no one attacks,
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again because the defender erroneously retaliates less often.

Denote the negative of the term in brackets (the cost of an attack by i) by li (y∗). Then we can

rearrange the first-order condition to

ys∗i =
nπs0 + γ

∑
j 6=i

(
1− Fj

(
x∗j

))(
πsj − πs0

)
− γ (1− Fi (x∗i ))π

s
0 − γfi (x∗i ) (πsi − πs0) li (y∗)

nπs0 + γ
∑

j

(
1− Fj

(
x∗j

))(
πsj − πs0

) .

In contrast, in the no-commitment model, ys∗i is given by the equation

ys∗i =
nπs0 + γ

∑
j 6=i

(
1− Fj

(
x∗j

))(
πsj − πs0

)
− γ (1− Fi (x∗i ))π

s
0

nπs0 + γ
∑

j

(
1− Fj

(
x∗j

))(
πsj − πs0

) .

Thus, the only difference in the equations for y∗ as a function of x∗ is that the commitment case has

the additional term −fi (x∗i ) (πsi − πs0) li (y∗), reflecting the fact that increasing ys∗i has the new cost

of making attacks by i more likely. (In contrast, in the no-commitment case the attack decision has

already been made at the time the defender chooses her retaliation strategy, so the defender trades

off only the other three terms in the commitment first-order condition.) This difference reflects the

additional deterrence benefit of committing to retaliate, and suggests that ys∗i is always lower with

commitment—that is, that commitment makes the defender more aggressive.

However, this intuition resulting from comparing the first-order conditions under commitment

and no-commitment is incomplete: the x∗’s in the two equations are different, and we will see that

it is possible for ys∗i to be higher with commitment for some signals. Nonetheless, we can show

that with commitment all attackers attack with lower probability and the defender retaliates with

higher probability after at least some signals.

Theorem 4 Let (p, r) be the no-commitment equilibrium and let (p̃, r̃) be the commitment equilib-

rium. Then pi ≥ p̃i for all i ∈ I, and for every i ∈ I there exists s ∈ S such that rsi ≤ r̃si .

The second part of the proposition is immediate from the first: if every attacker is less aggressive

under commitment, every attacker must face retaliation with a higher probability after at least one

signal. The first part of the proposition follows from noting that the endogenous best response

function (c.f. Definition 1) is shifted up under commitment, due to the defender’s additional

deterrence benefit from committing to retaliate aggressively.

Theorem 4 shows that the defender benefits from committing to retaliate more aggressively after

some signals. This is distinct from the search for credibility discussed in the nuclear deterrence
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literature (Schelling 1960; Snyder 1961; Powell 1990). There, one assumes perfect attribution, and

the key issue is how to make retaliation credible (i.e., make yi positive). Here, we take yi positive

for granted, and show that the defender still has a problem of not being aggressive enough in

equilibrium.

The US Department of Defense 2018 Cyber Strategy (Department of Defense 2018) differs from

the Obama-era approach articulated in the 2015 Cyber Strategy (Department of Defense 2015) by

focusing fairly narrowly on threats from Russia and China, rather than from a broad range of major

and minor powers and even non-state actors (see Kollars and Schenieder 2018, for a comparison).

One interpretation of the new strategy is that it ranks attackers in terms of ex ante aggressiveness

(i.e. the distributions Fi of the benefits of attack) and mainly threatens retaliation against the

most aggressiveness attackers. But this misses the key role of deterrence in influencing marginal

decisions. The marginal deterrence benefit to the defender from becoming more aggressive against

attacker i after signal s is given by the fi (x∗i ) (πsi − πs0) li (y∗) term in the equation for ys∗i . This

benefit is larger if signal s is more informative that i attacked or if i’s aggressiveness is likely to be

close to the threshold. It has little to do with i’s overall aggressiveness.

Finally, we remark that the strategic complementarity among attackers that drove our results in

the no-commitment model partially breaks down under commitment. In particular, it is no longer

true that an exogenous increase in attacker i’s aggressiveness always makes all attackers more

aggressive in equilibrium. The reason is that the complementarity effect from the no-commitment

model may be offset by a new effect coming from the deterrence term fi (x∗i ) (πsi − πs0) li (y∗) in

the defender’s FOC. Intuitively, if attacker i starts attacking more often, this typically leads the

defender to start retaliating more against attacker i (y∗i decreases) and less against other defenders

(y∗j increases for j 6= i). This strategic response by the defender has the effect of increasing lj (y∗)

for all j 6= i: since the defender retaliates more against i and less against j, an attack by j becomes

more costly for the defender, as it is more likely to be followed by erroneous retaliation against i

and less likely to be followed by correct retaliation against j. This increase in lj (y∗) then makes

it more valuable for the defender to deter attacks by j (as reflected in the fj

(
x∗j

)(
πsj − πs0

)
lj (y∗)

term), which leads to an offsetting decrease in y∗j .

7.2 Signal Informativeness and Retaliation

Finally, we analyze which signals the defender is likely to respond to more aggressively under

commitment, relative to the no-commitment equilibrium.
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We start with an example showing that the optimal commitment strategy does not necessarily

involve retaliating more aggressively after all signals. Suppose there are three signals: the null

signal, an intermediate signal, and a highly informative signal. With commitment, the defender

retaliates with very high probability after the highly informative signal. This deters attacks so

successfully that the intermediate signal becomes very likely to be a false alarm. In contrast,

without commitment, the equilibrium attack probability is higher, and the intermediate signal is

more indicative of an attack. The defender therefore retaliates with higher probability following

the intermediate signal without commitment.

Example 3 There is one attacker and three signals. Let γ = 1
2 . The information structure is

π0
0 = 1

2 π1
0 = 1

3 π2
0 = 1

6

π0
1 = 1

6 π1
1 = 1

3 π2
1 = 1

2

Let x ∈
{
xL = 1

4 , x
H = 1

}
, with Pr

(
x = xH

)
= 1

2 .

Let y ∈
{
yL = 1

5 , y
H = 3

5

}
, with Pr

(
y = yH

)
= 1

2 . Let K = 1.

Claim 5 In the unique equilibrium without commitment, p1 = 1, and the equilibrium retaliation

probabilities (rs)s∈S are given by

r0 = 0, r1 =
1

2
, r2 =

1

2
.

Claim 6 In the unique equilibrium with commitment, p1 = 1
4 , and the equilibrium retaliation

probabilities (rs)s∈S are given by

r0 = 0, r1 = 0, r2 =
3

4
.

Under some circumstances, we can say more about how equilibrium retaliation differs with and

without commitment. Say that signals s and s′ are comparable if there exists i∗ ∈ I such that

πsi = πs0 and πs
′
i = πs

′
0 for all i 6= i∗. If s and s′ are comparable, say that s is more informative

than s′ if
πsi∗

πs0
≥ πs

′
i∗

πs
′

0

.

That is, s is more informative than s′ if, compared to s′, s is relatively more likely to result from

an attack by i∗ than from no attack (or from an attack by any i 6= i∗).

The next Proposition shows that, if s is more informative than s′ and the defender is more

aggressive after s′ with commitment than without, then the defender is also more aggressive after
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s with commitment than without. (Conversely, if the defender is less aggressive after s with com-

mitment, then the defender is also less aggressive after s′ with commitment.) That is, commitment

favors more aggressive retaliation following more informative signals. The intuition is that the abil-

ity to commit tilts the defender towards relying on the most informative signals to deter attacks,

and any offsetting effects resulting from the increased probability of false alarms are confined to

less informative signals.

Note that the following result concerns the defender’s aggressiveness toward any attacker, not

only the attacker i∗ used to compare s and s′.

Proposition 7 Let (x, y) be the no-commitment equilibrium and let (x̃, ỹ) be the commitment equi-

librium. Fix an attacker i ∈ I and signals s, s′ ∈ S such that s and s′ are comparable, s is more

informative than s′, and min
{
ysi , y

s′
i , ỹ

s
i , ỹ

s′
i

}
> 0. If ỹs

′
i ≤ ys

′
i , then ỹsi ≤ ysi ; and if ỹsi ≥ ysi , then

ỹs
′
i ≥ ys

′
i .

Theorem 4 is in broad agreement with recent arguments calling for more aggressive cyberdeter-

rence (e.g., Hennessy 2017). One such proposal, due to Clarke and Knake (2010), calls for holding

governments responsible for any cyberattack originating from their territory, whether state sanc-

tioned or otherwise. However, Example 3 shows that improving cyberdeterrence is more subtle

than simply increasing aggressiveness across the board. While the optimal policy has the defender

retaliate more aggressively after some signals, it does not necessarily involve increased retaliation

after every signal. The problem with increased aggressiveness across the board is that it will lead to

increased retaliation following relatively uninformative signals (e.g., the simple fact that an attack

emanates from servers in Abu Dhabi or China). Increased aggressiveness following such uninfor-

mative signals heightens the risk of retaliation against an innocent actor. Moreover, as retaliatory

aggressiveness ramps up and deters ever more attacks, this risk becomes greater, as a larger share

of perceived attacks will turn out to be false alarms.

8 Conclusion

Motivated by recent developments in cyberwarfare, we developed a new model of deterrence with

imperfect attribution. There are many possible extensions and elaborations. For example, in our

model the roles of attacker and defender are distinct. More realistically, players might both attack

others and face attacks themselves. In such a model, player A might be attacked by player B
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but attribute the attack to player C, and hence retaliate against player C. If player C correctly

attributes this attack to player A, he might retaliate against player A, and attacks and retaliation

may spread through the system. But if player C cannot identify who attacked him, he might not

retaliate at all. Thus, misattribution might act as a firewall against global escalation. This suggests

that a more symmetric version of our basic model might yield subtle insights about the impact of

attribution errors on the global escalation of conflict.

Another extension would allow communication between the attackers and the defender prior to

retaliation. Here each attacker will only send messages that minimize his own probability of facing

retaliation. However, the defender can sometimes benefit by asking an attacker to send messages

that affect that probability that other attackers face retaliation.

It would also be interesting to introduce different types of attacks, perhaps along with uncer-

tainty about actors’ capabilities. In such a model, would deterrence be reserved for the largest

attacks, even at the cost of allowing constant low-level intrusions? Would the ability to signal

cyber capability lead to coordination on a peaceful equilibrium, or to perverse incentives leading to

conflict? We hope the current paper helps inspire further research on these important and timely

questions posed by the rise of cyberconflict.

Appendix: Omitted Proofs

Proof of Lemma 1. When attacker i’s type is xi, his expected payoff when he attacks is xi −∑
s π

s
i r
s
i , and his expected payoff when he has the opportunity to attack but does not attack is

−
∑

s π
s
0r
s
i . Therefore, i attacks when he has the opportunity if xi >

∑
s (πsi − πs0) rsi , and he does

not attack if xi <
∑

s (πsi − πs0) rsi .

Proof of Lemma 2. When the defender’s type is y, her (additional) payoff from retaliating against

attacker i after signal s is yi − 1 + βsi (p). Therefore, she retaliates if yi > 1− βsi (p), and does not

retaliate if yi < 1− βsi (p).

Proof of Lemma 3. Note that

y0∗
i = 1− β0

i (p)

= 1− γpiπ
0
i

nπ0
0 − γ

∑
j pj

(
π0

0 − π0
j

) ≥ 1− γπ0
i

nπ0
0 − γ

∑
j

(
π0

0 − π0
j

) =
(1− γ)nπ0

0 + γ
∑

j 6=i π
0
j

(1− γ)nπ0
0 + γ

∑
j π

0
j

,

where the inequality follows because π0
0 ≥ π0

j for all j. The lemma now follows by (1).
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Proof of Lemma 4. The right-hand side of (7) is non-decreasing in pj for all j 6= i. Hence,

an increase in pj shifts upward the right-hand side of (7) as a function p′i and thus increases the

intersection with p′i. Formally, the result follows from, for example, Theorem 1 of Milgrom and

Roberts (1994).

Proof of Theorem 1. We show that h has a unique fixed point.

By Lemma 4 (and the fact that hi (p) does not depend on pi), h is a monotone function on

[0, 1]n. Hence, by Tarski’s fixed point theorem, h has a greatest fixed point: that is, there is a fixed

point p∗ such that, for every fixed point p∗∗, p∗i ≥ p∗∗i for all i ∈ I.

Now let p∗ be the greatest equilibrium, and let p∗∗ be an arbitrary equilibrium. We show that

p∗ = p∗∗.

Fix i ∈ argmaxj∈I
p∗j
p∗∗j

. As p∗ is the greatest equilibrium, we have
p∗i
p∗∗i
≥ 1. Therefore, for every

s 6= 0,

βsi (p∗) =
γp∗iπ

s
i

nπs0 + γ
∑

j p
∗
j

(
πsj − πs0

) =

p∗∗i
p∗i
γp∗iπ

s
i

p∗∗i
p∗i
nπs0 +

p∗∗i
p∗i
γ
∑

j p
∗
j

(
πsj − πs0

)
≥ γp∗∗i π

s
i

p∗∗i
p∗i
nπs0 + γ

∑
j p
∗∗
j

(
πsj − πs0

) ≥ γp∗∗i π
s
i

nπs0 + γ
∑

j p
∗∗
j

(
πsj − πs0

) = βsi (p∗∗) ,

where the first inequality holds because
p∗∗i
p∗i
≤ p∗∗j

p∗j
for all j ∈ I and πsj − πs0 ≥ 0 for all j ∈ I and

s 6= 0, and the second inequality holds because
p∗∗i
p∗i
≤ 1. Notice this implies

p∗i = 1− Fi

∑
s 6=0

(πsi − πs0) (1−Gi (1− βsi (p∗)))


≤ 1− Fi

∑
s 6=0

(πsi − πs0) (1−Gi (1− βsi (p∗∗)))

 = p∗∗i .

As p∗ is the greatest equilibrium, this implies p∗i = p∗∗i . Since i ∈ argmaxj∈I
p∗j
p∗∗j

, this implies

p∗j ≤ p∗∗j for all j ∈ I. Hence, as p∗ is the greatest equilibrium, p∗ = p∗∗.

Proof of Proposition 1. Equation (5) follows from combining (2), (4), x∗i = F−1
i (1− pi), and

ys∗i = G−1
i (1− rsi ), and recalling that r0

i = 0. Equation (6) then follows from (3). The equation

for rsi follows from combining (4) and ys∗i = G−1
i (1− rsi ).

Proof of Proposition 2.

1. Let h (resp., h̃) denote the endogenous best response function under Fi (resp., F̃i). Note
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that hj (p′) ≤ h̃j (p′) for all j ∈ I and p′ ∈ [0, 1]n. As h and h̃ are monotone, it follows that

hm ((1, . . . , 1)) ≤ h̃m ((1, . . . , 1)) for all m, where hm (resp., h̃m) denotes the mth iterate of

the function h (resp., h̃). As h and h̃ are also continuous, and p and p̃ are the greatest fixed

points of h and h̃, respectively, limm→∞ h
m ((1, . . . , 1)) = p and limm→∞ h̃

m ((1, . . . , 1)) = p̃.

Hence, p ≤ p̃.

2. Immediate from part 1 of the proposition and (5).

Proof of Proposition 3. Analogous to Proposition 2, noting that increasing G in the FOSD

order shifts h down.

Proof of Proposition 4. Fix a permutation ρ on I mapping i to j and a corresponding permu-

tation ρ′ on S\ {0}. Then

x∗i =
∑
s 6=0

(πsi − πs0) (1−G(1− βsi )) =
∑
s 6=0

(πsi − πs0)

(
1−G

(
1− γ (1− Fi (x∗i ))π

s
i

nπs0 + γ
∑

k

(
1− Fk

(
x∗k
)) (

πsk − πs0
)))

and

x∗j =
∑
s 6=0

(
π
ρ′(s)
j − πρ

′(s)
0

)(
1−G

(
1− βρ

′(s)
j

))

=
∑
s6=0

(
π
ρ′(s)
j − πρ

′(s)
0

)1−G

1−
γ
(

1− Fj
(
x∗j

))
π
ρ′(s)
j

nπ
ρ′(s)
0 + γ

∑
k

(
1− Fk

(
x∗k
)) (

π
ρ′(s)
k − πρ

′(s)
0

)


=
∑
s 6=0

(πsi − πs0)

1−G

1−
γ
(

1− Fj
(
x∗j

))
πsi

nπs0 + γ
∑

k

(
1− Fk

(
x∗k
)) (

πsk − πs0
)
 .

Hence,

x∗i > x∗j ⇐⇒ Fi (x∗i ) < Fj
(
x∗j
)
⇐⇒ pi > pj ⇐⇒ βsi > β

ρ′(s)
j for all s ∈ S\ {0} .

Proof of Theorem 2. Suppose towards a contradiction that p̃i > pi for some i. Let i ∈ argmax p̃i
pi

.

Since p̃i > pi, we must have xi (p̃; π̃) < xi (p;π). Combined with the assumption that xi (p; π̃) ≥
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xi (p;π), we have xi (p̃; π̃) < xi (p; π̃). But, for every s 6= 0, we have

βsi (p̃; π̃) =
γp̃iπ̃

s
i

nπ̃s0 + γ
∑

j p̃j

(
π̃sj − π̃s0

) =

pi
p̃i
γp̃iπ̃

s
i

pi
p̃i
nπ̃s0 + pi

p̃i
γ
∑

j p̃j

(
π̃sj − π̃s0

)
≥ γpiπ̃

s
i

nπ̃s0 + γ
∑

j pj

(
π̃sj − π̃s0

) = βsi (p; π̃) ,

where the inequality follows because pi
p̃i
≤ pj

p̃j
for all j ∈ I and pi

p̃i
< 1. This implies rsi (p̃; π̃) ≥

rsi (p; π̃), and hence (since π̃si ≥ π̃s0 for all s 6= 0) xi (p̃; π̃) ≥ xi (p; π̃). Contradiction.

The proof of the strict inequality is almost identical: Now p̃i ≥ pi implies xi (p̃; π̃) ≤ xi (p;π),

which combined with the assumption that xi (p; π̃) > xi (p;π) again implies xi (p̃; π̃) < xi (p; π̃).

The same argument now gives a contradiction.

Proof of Theorem 3. By Theorem 2, it suffices to show that xj (p; π̃) ≥ xj (p;π) for all j. Note

that, for all j,

xj (p; π̃)− xj (p;π) =
∑
s 6=0

(
π̃sj − π̃s0

)
rsj (p; π̃)−

∑
s 6=0

(
πsj − πs0

)
rsj (p;π)

=

(
π̃sj − π̃s0

)
rsj (p; π̃) +

(
π̃s
′
j − π̃s

′
0

)
rs
′
j (p; π̃)

−
(
πsj − πs0

)
rsj (p;π)−

(
πs
′
j − πs

′
0

)
rs
′
j (p;π) ,

and π̃s0 = πs0 and π̃s
′

0 = πs
′

0 .

For j = i, note that βsi (p; π̃) ≤ βsi (p;π), and hence rsi (p; π̃) ≤ rsi (p;π) = 0, so rsi (p; π̃) = 0.

Conversely, βs
′
i (p; π̃) ≥ βsi (p;π), and hence rs

′
i (p; π̃) ≥ rs′i (p;π). Therefore,

xi (p; π̃)− xi (p;π) =
(
π̃s
′
i − π̃s

′
0

)
rs
′
i (p; π̃)−

(
πs
′
i − πs

′
0

)
rs
′
i (p;π)

≥
(
π̃s
′
i − π̃s

′
0 − πs

′
i + πs

′
0

)
rs
′
i (p;π)

≥ 0,

where the last inequality uses π̃s
′
i > πs

′
i and π̃s

′
0 = πs

′
0 .

For j 6= i, note that βsj (p; π̃) ≥ βsj (p;π), and hence rsj (p; π̃) ≥ rsj (p;π). Conversely, βs
′
j (p; π̃) ≤
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βs
′
j (p;π), and hence rs

′
j (p; π̃) ≤ rs′j (p;π) = 0, so rs

′
j (p; π̃) = 0. Therefore,

xj (p; π̃)− xj (p;π) =
(
π̃sj − π̃s0

)
rsj (p; π̃)−

(
πsj − πs0

)
rsj (p;π)

=
(
πsj − πs0

) (
rsj (p; π̃)− rsj (p;π)

)
≥ 0,

where the second equality uses π̃sj = πsj and π̃s0 = πs0.

For the strict inequality, note that pi > 0 implies βs
′
i (p; π̃) > βsi (p;π), as π̃s

′
i > πs

′
i . Since

G has positive density on its (interval) support, 0 < rs
′
i < 1 and βs

′
i (p; π̃) > βsi (p;π) imply

rs
′
i (p; π̃) > rs

′
i (p;π), and hence xi (p; π̃) > xi (p;π) (and, by Theorem 2, xi (p̃; π̃) > xi (p;π)).

Finally, since Fi has positive density of its (interval) support, 0 < pi < 1 and xi (p̃; π̃) > xi (p;π)

imply p̃i < pi. The j 6= i case is symmetric.

Proof of Proposition 5. Let ri (βsi ) (resp., r̃i (βsi )) denote the expected disutility inflicted on

the attacker from the defender’s ex post optimal retaliation strategy at belief βsi , when the new

weapon is unavailable (resp., available). We claim that ri (βsi ) ≤ r̃i (βsi ) for every βsi . To see this,

let Pr (a|A) denote the probability that the defender retaliates with weapon a given arsenal A, and

note that

ri (βsi ) = Pr (a = l|A = {0, l})wl = wl − Pr (a = 0|A = {0, l})wl,

while

r̃i (βsi ) = Pr (a = l|A = {0, l, n})wl + Pr (a = n|A = {0, l, n})wn

≥ wl − Pr (a = 0|A = {0, l, n})wl,

and Pr (a = 0|A = {0, l, n}) ≤ Pr (a = 0|A = {0, l}) by revealed preference.

Now, as in the proof of Proposition 1, for every i we have

x∗i =
∑
s6=0

(πsi − πs0) ri (βsi ) .

Hence, shifting up ri (·) is analogous to shifting down Gi (·), so by the same argument as in the

proof of Proposition 3, this decreases pi for all i.

Proof of Claim 5. We check that these strategies form an equilibrium. Note that the defender’s
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posterior beliefs (βsi ) are given by

β0
0 = 3

4 β0
1 = 1

4

β1
0 = 1

2 β1
1 = 1

2

β2
0 = 1

4 β2
1 = 3

4

Recall that the defender retaliates iff βs1 > 1−y. Hence, when y = yL the defender never retaliates,

and when y = yH the defender retaliates when s ∈ {1, 2}. Therefore,

x∗ =
(
π1

1 − π1
0

)
r1 +

(
π2

1 − π2
0

)
r2 = (0)

1

2
+

(
1

2
− 1

6

)
1

2
=

1

6
.

Hence, the attacker attacks whenever he has an opportunity.

Proof of Claim 6. First, note that these retaliation probabilities deter attacks when x = xL,

and yield a higher defender payoff than any strategy that does not deter attacks when x = xL. So

the commitment solution will deter attacks when x = xL. Note also that it is impossible to deter

attacks when x = xH . So the commitment solution must have p1 = 1
4 .

When p1 = 1
4 , the defender’s posterior beliefs (βsi ) are given by

β0
0 = 9

10 β0
1 = 1

10

β1
0 = 3

4 β1
1 = 1

4

β2
0 = 1

2 β2
1 = 1

2

With these beliefs, ignoring the effect on deterrence, it is not optimal for the defender to retaliate

when s ∈ {0, 1}. Furthermore, retaliating after s ∈ {0, 1} weakly increases the attacker’s incentive

to attack. So the commitment solution involves retaliation only when s = 2.

Finally, when s = 2, it is profitable for the defender to retaliate when y = yH and unprofitable

to retaliate when y = yL. So the solution involves retaliation with probability 1 when y = yH ,

and retaliation with the smallest probability required to deter attacks by the x = xL type attacker

when y = yL. This solution is given by retaliating with probability 1
2 when y = yL.

Proof of Theorem 4. By the defender’s FOC with commitment, for all i ∈ I,

p̃i = 1− Fi

∑
s 6=0

(πsi − πs0)

1−Gi

 nπs0 + γ
∑

j 6=i p̃j

(
πsj − πs0

)
− γp̃iπ0

i − l̄i

nπs0 + γ
∑

j 6=i p̃j

(
πsj − πs0

)
+ γp̃i

(
πsi − π0

i

)
 (8)

for some constant l̄i ≥ 0. Fix a vector l̄ =
(
l̄i
)n
i=1
≥ 0, and let p̃

(
l̄
)

=
(
p̃i
(
l̄
))
i∈I denote a solution
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to (8). We claim that p̃i
(
l̄
)
≥ pi for all i.

To see this, recall that p is the unique fixed point of the function h : [0, 1]n → [0, 1]n, where

hi (p) is the unique solution p′i to (7). Similarly, p̃i
(
l̄
)

is the unique fixed point of the function

h̃ : [0, 1]n → [0, 1]n, where h̃i (p) is the unique solution p′i to

p′i = 1− Fi

∑
s 6=0

(πsi − πs0)

1−Gi

 nπs0 + γ
∑

j 6=i pj

(
πsj − πs0

)
− γp′iπ0

i − l̄i

nπs0 + γ
∑

j 6=i pj

(
πsj − πs0

)
+ γp′i

(
πsi − π0

i

)
 .

Note that h̃i (p) is non-decreasing in pj for all j ∈ I. In addition hi (p) ≥ h̃i (p) for all i ∈ I and

p ∈ [0, 1]n. As h and h̃ are monotone and continuous, and p and p̃ are the greatest fixed points of

h and h̃, respectively, p = limm→∞ h
m ((1, . . . , 1)) ≥ limm→∞ h̃

m ((1, . . . , 1)) = p̃.

Proof of Proposition 7. Under the assumption min
{
ysi , y

s′
i , ỹ

s
i , ỹ

s′
i

}
> 0, the defender’s FOC is

necessary and sufficient for optimality. Under the FOC,

ys
′
i = 1− γpiπ

s′
i

nπs
′

0 + γ
∑

j pj

(
πs
′
j − πs

′
0

) ,
ỹs
′
i = 1−

γp̃iπ
s′
i + γfi (x̃i)

(
πs
′
i − πs

′
0

)
li (ỹ)

nπs
′

0 + γ
∑

j p̃j

(
πs
′
j − πs

′
0

) .

Hence, ỹs
′
i ≤ ys

′
i if and only if

γp̃iπ
s′
i + γfi (x̃i)

(
πs
′
i − πs

′
0

)
li (ỹ)

nπs
′

0 + γ
∑

j p̃j

(
πs
′
j − πs

′
0

) ≥ γpiπ
s′
i

nπs
′

0 + γ
∑

j pj

(
πs
′
j − πs

′
0

)
⇐⇒

1

pi

[
p̃i + fi (x̃i)

(
1− πs

′
0

πs
′
i

)
li (ỹ)

]
≥
nπs

′
0 + γ

∑
j p̃j

(
πs
′
j − πs

′
0

)
nπs

′
0 + γ

∑
j pj

(
πs
′
j − πs

′
0

) . (9)

If s and s′ are comparable and s is more informative than s′, then the left-hand side of (9) is greater

for s than for s′. Hence, it suffices to show that

nπs0 + γ
∑

j p̃j

(
πsj − πs0

)
nπs0 + γ

∑
j pj

(
πsj − πs0

) ≤ nπs
′

0 + γ
∑

j p̃j

(
πs
′
j − πs

′
0

)
nπs

′
0 + γ

∑
j pj

(
πs
′
j − πs

′
0

) .
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Fixing i∗ such that πsi = πs0 and πs
′
i = πs

′
0 for all i 6= i∗, this is equivalent to

nπs0+γp̃i∗(πsi∗−π
s
0)

nπs0+γpi∗(πsi∗−π
s
0)
≤

nπs
′

0 +γp̃i∗
(
πs
′
i∗−π

s′
0

)
nπs
′

0 +γpi∗(πs
′
i∗−π

s′
0 )

⇐⇒
[
n+ γp̃i∗

(
πs
i∗
πs0
− 1
)] [

n+ γpi∗

(
πs
′
i∗

πs
′

0

− 1

)]
≤
[
n+ γp̃i∗

(
πs
′
i∗

πs
′

0

− 1

)] [
n+ γpi∗

(
πs
i∗
πs0
− 1
)]

⇐⇒ p̃i∗
(
πs
i∗
πs0
− 1
)

+ pi∗

(
πs
′
i∗

πs
′

0

− 1

)
≤ p̃i∗

(
πs
′
i∗

πs
′

0

− 1

)
+ pi∗

(
πs
i∗
πs0
− 1
)

⇐⇒ p̃i∗

(
πs
i∗
πs0
− πs

′
i∗

πs
′

0

)
≤ pi∗

(
πs
i∗
πs0
− πs

′
i∗

πs
′

0

)
.

Since p̃i∗ ≤ pi∗ (by Proposition 4) and
πs
i∗
πs0
≥ πs

′
i∗

πs
′

0

(as s is more informative than s′), this inequality

is satisfied.
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Baliga, Sandeep and Tomas Sjöström. 2004. “Arms Races and Negotiations.” Review of Economic

Studies 71(2):351–369.

Bar-Gill, Oren and Alon Harel. 2001. “Crime Rates and Expected Sanctions: The Economics of

Deterrence Revisited.” The Journal of Legal Studies 30(2):485–501.

Bartholomew, Brian and Juan Andres Guerrero-Saade. 2016. “Wave Your False Flags! Deception

Tactics Muddying Attribution in Targeted Attacks.” Virus Bulletin Conference .

Bassetto, Marco and Christopher Phelan. 2008. “Tax Riots.” Review of Economic Studies

75(3):649–669.

Berman, Eli, Jacob N. Shapiro and Joseph H. Felter. 2011. “Can Hearts and Minds be Bought?

The Economics of Counterinsurgency in Iraq.” Journal of Political Economy 119(4):766–819.

Blackwell, David. 1951. The Comparison of Experiments. In Proceedings, Second Berkeley Sym-

posium on Mathematical Statistics and Probability. Berkeley: University of California Press

pp. 93–102.

Bond, Philip and Kathleen Hagerty. 2010. “Preventing Crime Waves.” American Economic Journal:

Microeconomics 2(3):138–159.

47



Buchanan, Ben. 2014. “Cyber Deterrence isn’t MAD; It’s Mosaic.” Georgetown Journal of Inter-

national Affairs pp. 130–140.

Buchanan, Ben. 2017. The Cybersecurity Dilemma: Hacking, Trust and Fear Between Nations.

Chassang, Sylvain and Christian Zehnder. 2016. “Rewards and Punishments: Informal Contracting

through Social Preferences.” Theoretical Economics 11(3):1145–1179.
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