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Abstract

Bargaining power in real bargaining situations enter and exit periods of stability, and these

dynamics may have non-trivial effects on the bargaining outcome. To capture this phenom-

enon, we develop a continuous-time bargaining model in which bargaining power evolves over

time according to a stochastic process. We define a notion of durability for the bargaining

power as a condition on the stochastic process and we show that durabilty plays a central

role when agents are optimistic. In particular, when bargaining power becomes more durable

after a date, optimistic parties are enticed to wait until that date, leading to a period of

disagreement. This "durability effect" is closely related to a an empirical regularity in bar-

gaining, the "deadline effect". Using the same analysis that leads to the durability effect,

we show that when players are optimistic and bargaining power is durable around a period

during which a (possibly stochastic) deadline is likely to arrive, the parties are enticed to

delay the agreement until the deadline, as widely observed in experiments and real-world

negotiations. We show that this deadline effect is stronger when the bargaining power is

more durable around the likely time of deadline, or when the uncertainty about the deadline

is smaller, or the parties are optimistic.



1 Introduction

In an ongoing bargaining, bargaining power of the sides may become more durable in some

periods and less durable in some others. There are many examples for such varying durability

of bargaining power in congressional decision making, wage bargaining, international peace

negotiations, and intra-household bargaining. For example, in congressional decision making,

each party’s bargaining power becomes more durable immediately after a general election

because the election determines how much control each party will have in the government for

a while. For another example, in a wage bargaining between a union and an employer, the

bargaining power of each side is tied to the price of the firm’s product and the unemployment

rate. The employer negotiates from a strong position in recessions and from a weak position

in booms. As the economy becomes more stable, the bargaining power of each side becomes

more durable. Lastly, for a recent example in policy making, consider the energy policy in

the US. There are several policy alternatives, such as off-shore drilling, developing alternative

energy sources, and improving the energy efficiency. The political appeal of these alternatives

depends on the global oil prices. When the price of oil is stable (as in the 1990s and early

2000s), the political appeal of those policies remain stable, leading to a stable bargaining

power for the proponents of each policy alternative. When the price of oil becomes volatile (as

in 1973 and 2008), the bargaining power becomes less durable. For example, in the summer

of 2008, the oil prices were high and off-shore drilling was a hot, winning alternative, but in

the fall of 2008, the oil prices were low and off-shore drilling was no longer appealing.

In this paper, we explore the role of durability of bargaining power in bargaining patterns

and outcomes. We consider two players who want to divide a dollar. We define a player’s

bargaining power as the share of the surplus she gets in addition to her continuation value.

(The surplus is the total cost of not reaching an agreement at the time.) We develop a

continuous-time bargaining model in which bargaining power evolves over time according to

a stochastic process. We define a notion of durability for the bargaining power as a condition

on the stochastic process, measuring how slowly the bargaining power changes as time passes.

We show that durability plays a central role when agents are optimistic, which is reportedly

common in real life negotiations (see Babcock and Loewenstein (1997)). We also provide a

rationale for the deadline effect, which turns out to be closely related to durability.

We first observe that the standard model of sequential bargaining with commonly used

assumptions cannot capture issues related to the durability of the bargaining power. In se-

quential bargaining, at any instance, the proposer gets the entire surplus, leaving the other

party indifferent between agreeing and disagreeing. Hence, the proposer has all the bar-

gaining power for that instance. While this could be a reasonable way to model bargaining

power, the usual assumptions for bargaining protocol are not appropriate for modeling bar-
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gaining power. For example, Rubinstein’s (1982) alternating-offer bargaining assumes that

bargaining power shifts from one end to the other frequently. Similarly, random proposal

model with independence (Binmore, 1987) assumes that bargaining power is so transient

that the bargaining power now has no impact on the bargaining power a moment later.1

In order to study durability of the bargaining power, we modify the standard bargain-

ing setup by modeling the bargaining power explicitly as a continuous-time process. More

specifically, we assume that the bargaining power is exogenously given as a continuous-time

stochastic process which can take values between 0 and 1 (as opposed to just 0 or 1) and

which has piecewise-continuous sample paths almost surely. When this process moves more

slowly, the bargaining power is more durable. We introduce a formal measure of durability

in terms of the stochastic rate at which the process changes. The players have possibly

heterogenous beliefs for the future values of this process but they observe and agree on the

current instantaneous bargaining power. The payoffs are determined by the requirement that

each player’s share of the surplus is consistent with the instantaneous bargaining power, and

agents’ agreement/disagreement decisions are characterized by individual rationality at all

times and states.

The payoffs are uniquely determined, and the behavior corresponds to the subgame per-

fect equilibrium of a standard bargaining game in which, at each time, each player proposes

with probability equal to her current bargaining power. Under the common-prior assumption,

we obtain an intuitive closed-form solution. Unlike in the case of alternating-offer bargain-

ing, the solution has many robustness properties in the continuous-time limit. Hence, our

model fits into the standard bargaining framework, but it is more general, more tractable,

more flexible, and it allows us to model durability of the bargaining power.

Durability has a profound role when the players have heterogenous beliefs about the

bargaining power, in particular, when they are optimistic about what the bargaining power

will be in future dates. We demonstrate this with the following phenomenon, which we call

the durability effect. We show that if players are optimistic about their bargaining powers at

some time t∗, and the bargaining power will become more durable after t∗, then there will

be a period of inactivity before t∗ in which there will not be any agreement, and there will

be an agreement afterwards with high probability.

For example, suppose that at t∗, there will be a general election that will determine

how much control each party will have in the government for the next several years. In

that case, starting from t∗, the bargaining powers of the parties will be highly durable

for a while. On the other hand, it is natural to assume that the bargaining power is less

1One can take the probability of being the proposer as the bargaining power, but then the above model
can only capture the case in which the bargaining powers of individuals throughout the process is known at
the beginning, ruling out all the phenomena we are interested in.
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durable before the election. For example, prior to the election, there may be several different

events, such as a terrorist attack, a financial meltdown, or a political scandal, that affect the

election results. Hence, there may be a time t̂ before the election at which the parties have

a considerable uncertainty about the election results, facing considerable uncertainty about

the bargaining power after t∗. In that case, our result implies that, if the uncertainty leads

parties to have highly optimistic beliefs about the election results, it will not be possible to

pass any policy bill between t̂ and the election time t∗, and those bills will pass right after

the election (possibly with different terms, depending on the election results). Likewise, in

the wage-bargaining example, suppose that, at t∗, the country is to join the EU, making the

local economy more stable. As we explained above, that makes the bargaining power more

durable. Then, our result suggest that the parties may wait the country to join the EU to

sign long-term employment contracts.

The intuition for this result is as follows. At t∗, knowing that their bargaining powers in

a considerable future will be similar to their current bargaining powers, the agents will hold

very similar beliefs about their future bargaining powers, and they will reach an agreement,

each getting a share that is in accordance with her bargaining power at t∗. That is, each

party’s share in the actual agreement at t∗ is closely related to their bargaining power at

t∗. Then, at the earlier time t̂, if the parties are highly optimistic about their bargaining

powers at t∗, they will also be optimistic about those shares. Such optimism may render

an agreement at t̂ impossible because agreement has to give each agent at least as much as

what she expects to get from waiting until t∗.

One of the most robust empirical regularities in bargaining is the phenomenon called the

deadline effect : the agreement is delayed until the very last minute before the deadline. Such

behavior is commonly observed in a wide range of laboratory experiments as well as real-life

negotiations (see e.g., Roth, Murnighan, and Schoumaker (1988)). For example, the unions

and employers reach “eleventh-hour agreements” just before the unions’ deadline to strike.

Litigants often reach a “settlement on the courthouse steps.”

We observe that the durability and the deadline effects are closely related. Imagine that

the durability of bargaining power does not necessarily change much, but there is a deadline,

after which the parties cannot agree. Suppose that the time of the deadline is stochastic. For

example, it is uncertain when an arbitrator will make a decision, after which bargaining is

moot. Suppose also that it is very likely that the deadline will arrive within a small interval of

time that starts at t∗. In that case, the effective discount factors in that interval will be very

small, depending on the conditional probability of arrival at that moment. This is similar to

stretching the time in that interval, stretching more when the arrival is more likely. If the

bargaining power is somewhat durable in that interval, this stretching of time amounts to

making bargaining power more durable. In that case, our result about the durability effect
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tells us that this will lead to a period of inactivity before t∗, followed by an agreement with

high probability, as in the deadline effect. Therefore, the durability and the deadline effects

are two sides of the same coin, and the mechanism that leads to the durability effect can

also explain the deadline effect.

In order to formalize this idea, we consider some date t∗, such that bargaining power is

somewhat durable around t∗. We show that if it is sufficiently likely that the deadline arrives

within a sufficiently small neighborhood of t∗ and the parties are sufficiently optimistic about

their bargaining power at t∗, then they will not settle until sometime around t∗, and they

will reach an agreement "just before the deadline" with high probability.2 (With some small

probability they will fail to agree before the deadline.) This result provides a rationale for

the deadline effect based on optimism. More importantly, we find explicit conditions under

which the deadline effect occurs. We demonstrate that whether there will be a deadline effect

depends on the ratio of arrival rate of deadline to the "inverse rate of durability". When

this ratio exceeds a cutoff value, there is a deadline effect. That is, keeping everything else

constant, if we make the deadline arrive faster, or make the bargaining power more durable

around the deadline, then the deadline effect will be stronger. Moreover, the cutoff is a

decreasing function of the optimism level about the bargaining power at t∗, i.e. optimism

makes the deadline effect stronger.

A firm deadline is often imposed upon negotiators in order to prevent them from dragging

out the negotiations indefinitely. Ironically, such deadlines themselves sometimes entice

parties to delay the agreement. The above comparative statics show that, if this happens

because of the parties’ optimism, then one may be able to avoid such a deadline effect by

making the time of deadline more uncertain, or putting the deadline in a period at which

the bargaining power is less durable.

In this paper, abstracting from the details, we model the bargaining power as the share

one gets from the surplus. This is consistent with both sequential bargaining, in which

the bargaining power is represented as the power to propose, and the (asymmetric) Nash

bargaining. It is also consistent with applied work, where one models bargaining power

by ability to make a take-it-or-leave-it offer. Within this abstract model, we gain some

insights into how the durability of bargaining power affects the outcome. In the specific

real-world examples, however, the parties’ bargaining powers are related to specific factors

within the application. Of course, one needs to analyze the specific situation with its details

to understand how durability affects the bargaining outcome in that specific situation.

2Durability at t∗ is crucial for this result. Indeed, we show that under the usual independence assumption,
the deadline effect disappears in the continuous-time limit when there is any uncertainty about the deadline.
This is because the independence assumption leads to an extremely discontinuous (and extremely non-
durable) bargaining power in continuous time, leading to a highly discontinuous equilibrium behavior.
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The outline of the paper is as follows. In the next section, we lay out our model and

characterize the unique solution. In Section 3, we present the solution under the common

prior assumption. In Section 4, we formally introduce our notions of durability. In Section

5, we present our main result which shows the durability effect. Section 6 establishes the

relationship between the deadline and the durability effects. Section 7 concludes. We present

the proofs in an appendix. Throughout, we demonstrate our general results with examples

from a canonical stylized model which may be of interest in itself. In this model, the

bargaining power changes only after certain events that arrive with Poisson distribution

and the deadlines are exponential so that the rates of durability and deadlines are constant.

2 The Model

Two risk-neutral agents, i, j ∈ {1, 2}, want to divide a dollar among themselves before a
deadline. (The possible divisions are of the form (x, 1− x) for x ∈ [0, 1].) The set of times
t is a continuum T = [0,∞). The agents discount the future payoffs, so that the payoff of
getting x at t for an agent is e−rtx for some constant discount rate r. The payoffs are 0

if agents never agree. The agents can strike a deal only on a grid T ∗ = {0, 1/n, 2/n, . . .},
where n is a large integer. The (instantaneous, relative) bargaining power of an agent is

defined as the portion of the surplus, or the gain from agreement, the agent gets in addition

to his continuation value from delay. Here, an agent i’s continuation value from delay at t is

defined as the amount x̄i such that i is indifferent between getting x̄i at t and waiting until

t+1/n for another opportunity to strike a deal. The surplus is defined as 1− x̄1− x̄2. Hence,
assuming that the surplus is positive, the instantaneous bargaining power of an agent i is

πit =
xi − x̄i

1− x̄1 − x̄2
(1)

where xi is his share. In this paper, we take the agents’ bargaining powers as the primitives

of the model and compute the agents’ continuation values, which in turn determine whether

agents agree and (if so) how they divide the dollar at any given time. (Here, we make the

standard assumption that the bargaining power is independent of the continuation values.)

We allow the agents’ bargaining powers to be stochastic and the agents to have subjective

beliefs about how their bargaining power will evolve. We consider a state space Ω, endowed

with a σ-algebra Σ and a filtration (Ft)t∈T . The instantaneous bargaining power of agent

1 is given by an adapted stochastic process π1t : Ω → [0, 1], t ∈ T , such that the mapping

(ω, t) 7→ π1t (ω) is measurable. We define the process (π
2
t )t∈T by π2t = 1 − π1t . If the true

state of the world is ω, then the bargaining power of agent i at t is πit (ω). We endow (Ω,Σ)
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with two probability distributions P 1 and P 2, representing the beliefs of agents 1 and 2,

respectively. For any random variable X and any event A, we write Ei
t [X] (ω) and Pr

i
t (A|ω)

for the conditional expectation of X and the conditional probability of A, respectively, at

state ω with respect to (Ω,Ft, P
i). We suppress the dependence on ω in our notation and

simply write Ei
t [X] or Pr

i
t (A) when it does not lead to a confusion. Note that with this

specification, at any t, the agents know and agree on the instantaneous bargaining power at

t but may hold subjective beliefs about how the bargaining power will evolve.

The common-prior assumption (CPA) is

P 1 = P 2. (CPA)

We define the optimism at time t about time s ≥ t (as a function of ω) as

yt,s = E1
t

£
π1s
¤
+E2

t

£
π2s
¤
− 1. (2)

Here, yt,s is the amount by which an agent over-estimates her own bargaining power with

respect to the other agent, i.e. yt,s = Ei
t [π

i
s] − Ej

t [π
i
s] for i 6= j. Under the common prior

assumption, yt,s = 0 for all t and s ≥ t. In general, when t < s, yt,s can take any value in

[−1, 1]. We simplify our notation by using yt = yt,t+1/n.

We model the deadline as a positive random variable d with cumulative distribution

function F . For simplicity, we assume that d is stochastically independent from Ft, t ∈ T .

At t = d, the negotiation automatically ends, and each agent gets payoff of 0 at any t > d

if they have not agreed at d or before. For t ≤ s, 1−F (s)
1−F (t) is the conditional probability that

the deadline will not arrive before s given it has not arrived by t. The deadline is said to be

deterministic if and only if d = d∗ with probability 1 for some d∗ ∈ [0,∞]. The case d∗ =∞
corresponds to the case that there is no deadline. We define the effective discount factor

between t and s as

δt,s = e−r(s−t)
1− F (s)

1− F (t)
. (3)

For notational convenience, we write δt for δt,t+1/n. Agents discount the t + 1/n payoffs by

the effective discount factor δt.

We let V i
t denote the continuation value of agent i at t, as a function of ω. By individual

rationality, V i
t is restricted to be in [0, 1]. For any t = k/n ≥ 0, we let

St+1/n ≡ E1
t

£
V 1
t+1/n

¤
+E2

t

£
V 2
t+1/n

¤
denote the size of the pie at t+1/n as perceived by the agents at t. Under the common-prior
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assumption, St+1/n = 1 for each t ≥ 0. It can take any value in [0, 2] in general. If

δtSt+1/n > 1,

there cannot be an agreement that would satisfy both agents’ expectations, as the sum of

their continuation values from delay exceeds 1. Assuming that the agents are individually ra-

tional, we reckon that there will not be an agreement at such t. In that case, the continuation

value of i at t will be

V i
t = δtV

i
t+1/n.

Now consider the case that δtSt+1/n ≤ 1. In that case, the surplus is 1 − δtSt+1/n, and by

(1), we conclude that the agents agree on the division (V 1
t , V

2
t ) with

V i
t = πit

¡
1− δtSt+1/n

¢
+ δtE

i
t

£
V i
t+1/n

¤
;

an agent’s continuation value will be simply his share in the agreement. The last two

difference equations can be combined as

V i
t = πitmax

©
1− δtSt+1/n, 0

ª
+ δtE

i
t

£
V i
t+1/n

¤
. (4)

The continuation values are determined by the difference equation (4), the boundary condi-

tion that V i
t = 0 for t > d, and the condition that V i

t ∈ [0, 1].
Formally, a solution is a stochastic process V : Ω × T ∗ → [0, 1] that satisfies (4) and

boundary condition, meaning that continuation values are consistent with the exogenously

given bargaining power and the fact that each gets zero after the deadline. As we will show

below in Proposition 1, there is a unique solution. When the time of arrival is bounded, i.e.,

F (t̄) = 1 for some t̄ <∞, the solution is computed by applying backward induction. Oth-
erwise, the solution can be computed by applying backward induction to the finite horizon

approximation, by setting F (t̄) = 1, and letting t̄→∞.
In this model, the agents’ bargaining powers are taken as primitives, and the agents’

behavior is derived using backward induction and individual rationality, assuming that,

at a given date, the agents will divide the dollar according to the agents’ instantaneous

bargaining powers–when there is an individually rational division. As in Nash (1950), we

take the instantaneous bargaining at a given date as a black box, hence the analysis in this

paper does not necessarily refer to a game. Nevertheless, it can be formalized as a game.

As an example, consider the following perfect-information game, Γ. At each t ≤ d, Nature

chooses a publicly observable number π1t ∈ [0, 1], and we set π2t = 1− π1t . If t = k/n ≤ d for

some k, then one of the agents is recognized where the probability of recognition for agent
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i is πit. The recognized agent offers a division (x
1, x2), with x1 + x2 = 1. If the other agent

accepts the offer, then the game ends yielding a payoff vector δtx = (δtx1, δtx2); otherwise,

the game continues. If t > d, the game ends with payoff vector (0, 0). The agents’ beliefs

about πit and d are as described above. Here, we introduce an additional public signal π1t to

the model of Yildiz (2003), a signal that represents the "true" probability of agent 1 making

an offer at t. The next result states that the behavior described in this paper corresponds

to the (generically unique) subgame perfect equilibrium of Γ, where the bargaining power

is represented as probability of making an offer (in the present transferable utility case). It

also shows that there is a unique stochastic process for agents’ continuation values that solve

Eq. (4). The proof is similar to that of Theorem 1 in Yildiz (2003), and hence is omitted.

Proposition 1. There exists a unique solution V to difference equation (4) with the boundary
condition Vt = 0, t ≥ d. In any subgame perfect equilibrium of game Γ, for each t ∈ T ∗ and

each i, after π1t is revealed but before the proposer at t is recognized, the continuation value

of agent i is V i
t . In any subgame perfect equilibrium and at any t ∈ T ∗, if δtSt+1/n > 1, then

there will be no agreement at t; if δtSt+1/n < 1, the agents agree on a division that makes

the responder indifferent between accepting and rejecting the offer.

If one restricts πit to be in {0, 1}, the game Γ becomes a sequential bargaining model sim-
ilar to that of Yildiz (2003),3 who extends the usual models of sequential bargaining, such as

Rubinstein (1982), by allowing the agents to have subjective beliefs about the recognition.

In view of Proposition 1, this model extends Yildiz (2003) and the above models in several

directions. First, the bargaining power here can take any value in [0, 1], while the sequential

bargaining models allocate the entire instantaneous bargaining power to one agent or the

other, by restricting πit to be in {0, 1}. Second, the bargaining power here is defined as a func-
tion of the real time, independent of how frequently the agents come together to negotiate.

This allows us to consider more realistic and better-behaved processes of bargaining power.

For example, assuming alternating offer bargaining or independent recognitions as n→∞,
requires a process of bargaining power that shifts from one extreme to the other infinitely

frequently, while we can focus on processes with piecewise-continuous sample paths. Third,

our model allows a stochastic deadline with arbitrary distributions. When the discounting

is due to the random bargaining breakdowns, the usual models allow stochastic deadlines,

but it is usually assumed to have exponential distribution, as the discount rate is usually

constant. We do not impose any such restriction on deadlines because that would rule out

the critical class of stochastic deadlines that approximate deterministic deadlines. Finally,

as Yildiz (2003), we generalize the usual models by allowing the agents to hold subjective

beliefs about their bargaining power.
3Ali (2006) extends the model of Yildiz (2003) to multilateral bargaining, but as usual, the uniqueness

result here cannot be extended to multilateral bargaining.
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Remark 1 (Continuous-time limit). In this paper, to simplify the exposition, we take real-

time differences between any consecutive index times equal. When the sample paths are

piecewise continuous almost surely, this is irrelevant for the continuous-time limit. In that

case, regardless of how one approaches continuous time, as long as one uses a deterministic

grid, the continuous-time limit is the same, and our results remain intact. This is remarkable

because in usual bargaining models there is a discontinuity at the continuous-time limit, and

the limit depends on how we approach continuous time. For example, in the alternating-offer

bargaining, if the real-time delays after the dates at which Agent 1 makes an offer are K

times as long as those after Agent 2 makes offers, then Agent 1 gets K times as much as

Agent 2 gets in the continuous-time limit. The critical difference here is that in those models

the process of bargaining power depends crucially on the grid and is not even well-defined

in the continuous-time limit.

Throughout the paper, we will illustrate our concepts and results on the following

tractable and useful model that embodies certain plausible assumptions. It is reflective

of the situations in which the bargaining power changes only in occurrence of certain events.

Example 1 (The Poisson Model). Consider a Poisson process (Nt)t∈T with arrival rate λ.

The bargaining power changes only at the time of an arrival, and at each arrival, the new

bargaining power is drawn from a fixed distribution Gi according to each agent i. That is,

if Nt (ω) = lims↑tNs (ω), then π1t (ω) = lims↑t π
1
s (ω), and conditional on Nt 6= lims↑tNs, the

distribution of π1t is G
i, independent of the history, according to agent i.

That is, the bargaining power remains constant until some important event, such as a

major terrorist attack or a financial meltdown, occur. When such an event occur, the balance

of the power between the parties is completely reset. The parties agree how often such events

occur (common λ), but they may disagree on these events’ impact on the bargaining power.

Intuitively, bargaining power becomes less durable as λ increases. In the limit λ = 0,

bargaining power never changes: πit = πis for all t, s. In the other limit λ = ∞, bargaining
power is completely transient: πit and πis are stochastically independent for all t 6= s.

In this example, the expected bargaining power has a simple form:

Ei
t

£
πis
¤
= e−λ(s−t)πit +

¡
1− e−λ(s−t)

¢
π̄i (5)

where π̄i is the expected value of πi according to agent i after each arrival, i.e. π̄1 =R
πdG1 (π) and π̄2 =

R
(1− π) dG2 (π). By (2) and (5), the optimism level at date t for the

bargaining power at date s is

yt,s =
¡
1− e−λ(s−t)

¢
ȳ (6)

where ȳ = π̄1 + π̄2 − 1 is the level of optimism about the bargaining power in the long run.
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The level of optimism for the bargaining powers in the near future is low, as the agents

know that their bargaining powers will be similar to the current ones. As they consider later

dates, the level of optimism grows, for they expect the bargaining power to be shifted by

the underlying reality, about which they hold optimistic beliefs. Moreover, as λ increases

and the bargaining power becomes less durable, the individuals become more optimistic. As

s→∞ or λ→∞, yt,s approaches ȳ.
Finally, one can easily check–as we do in the Appendix–that the solution to (4) is

V i
t =

b

a+ ȳ (a− b)
πit +

a− b

a+ ȳ (a− b)
π̄i (∀i ∈ N, t ∈ T ∗) (7)

where a = 1/
¡
1− e−r/n

¢
and b = 1/

¡
1− e−(r+λ)/n

¢
, and the agents immediately reach an

agreement, agent i receiving V i
0 . As n→∞,

V i
t →

r

r + λ+ ȳλ
πit +

λ

r + λ+ ȳλ
π̄i. (8)

The share V i
t of agent i is a convex combination of the current bargaining power, π

i
t, and the

expected value of long-run bargaining power, π̄i. In the limit, the weights are determined by

the ratio of the arrival rate λ of new events that reset the bargaining power to the discount

rate r. An important aspect of Eqs. (7) and (8) is that as the bargaining power becomes

more durable (i.e. λ decreases), the weight of the current bargaining power πit increases.

3 Bargaining with a Common Prior

We first compute the continuation values under (CPA) to illustrate the workings of our

model in this simple setting and to demonstrate that the durability of the bargaining power

process does not play an important role when agents share the same beliefs. Under CPA,

St+1/n is identically 1 before the deadline, so that the agents agree at each date (if they have

not yet agreed), and (4) simplifies to

V i
t = πit (1− δt) + δtEt

£
V i
t+1/n

¤
, (9)

where Et denotes the common conditional expectation operator. The solution to this differ-

ence equation and its limit as n → ∞ are easily computed as in the following result. The

proof is omitted.
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Proposition 2. Under (CPA), for each t ∈ T ∗,

V i
t =

1

1− F (t)
Et

" ∞X
k=tn

e−r(k/n−t) (1− F (k/n))
¡
1− δk/n

¢
πik/n

#
(a.s.).

If in addition the sample paths t 7→ πit (ω) are piecewise continuous for almost all ω, then

lim
n→∞

V i
t ≡ V̄ i

t =
1

1− F (t)
Et

∙Z
s≥t

e−r(s−t) (f (s) + r (1− F (s))) πisds

¸
(∀t) (a.s.) .

This proposition shows that the overall bargaining power of an agent is the expected

value of a weighted sum (or integral) of his future instantaneous bargaining powers. The

agents weigh their bargaining power at different situations differently. First, as expected,

they discount the future bargaining powers in the same way as they discount their future

payoffs, using the effective discount rate δt. Second, they put higher weight to the bargaining

power at the times at which it is more likely that they will face a deadline. This is reflected

by the term
¡
1− δk/n

¢
in the discrete sum and f (s) in the limiting integral. The rationale

for this is somewhat deeper. When the probability of deadline is high, so is the cost of delay.

Hence, there is a wide range of individually rational divisions, which can be traced as we vary

the agents’ relative bargaining power. In that case, the bargaining power has a large impact

on the share agent would get if the negotiation continues until that day. Therefore, at the

beginning of the negotiation, the agents put a high weight on their instantaneous bargaining

power at that time. In particular, if there is a firm deadline, the agents’ bargaining power

just before the deadline will have a large impact.

By Proposition 2, the share of agent i is

V i
0 =

∞X
t∈T∗

e−rt (1− F (t)) (1− δt)E
£
πit
¤

where E denotes the unconditional expectation operator. That is, the share of an agent

is an additive function of the expected value of his instantaneous bargaining powers in the

future, and it is independent of how the bargaining powers at different dates interact with

each other, e.g., whether the instantaneous bargaining power changes frequently, or whether

the agents will learn about their future bargaining power from past, and so on. In that sense,

under the common-prior assumption, the durability of bargaining power per se does not play

an important role in determining the outcome.
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4 Durability of Bargaining Power

In this section, we formally introduce two notions of durability, one weak and one strong.

Definition 1 (Weak Durability). We say that the bargaining power is weakly durable on
[t1, t2] with inverse rate of durability c > 0 if for all [t, s] ⊆ [t1, t2], for all i, and for all ω ∈ Ω,

|Ei
t [π

1
s] (ω)− π1t (ω) | ≤ c(s− t). (10)

That is, in expectation, the bargaining power is Lipschitz-continuous in time. The inverse

rate of durability c captures the rate by which agents’ expectations about the bargaining

power in the near future can deviate from the current bargaining power. Since the current

bargaining power is known, weak durability puts the following bound on how optimistic

agents can be about the bargaining power in the near future:

yt,s = E1
t

£
π1s
¤
+E2

t

£
π2s
¤
− 1 ≤ 2c (s− t) . (11)

It is this aspect of weak durability that leads to the durability effect. When the bargaining

power is weakly durable, agents cannot be too optimistic, and hence their continuation values

are close to their instantaneous bargaining powers. This in turn leads to an ex-ante delay.

Weak durability is the crucial ingredient for our results. For some results, we will also

use a stronger durability notion. Towards defining this stronger notion, let us write

L (c, t1, t2) =
©
ω |

¯̄
π1t (ω)− π1t1 (ω)

¯̄
≤ c(t− t1), ∀t ∈ [t1, t2]

ª
for the set of states at which the bargaining power is Lipschitz-continuous in time over the

interval [t1, t2].

Definition 2 (Strong Durability). We say that the bargaining power is strongly durable
on [t1, t2] with inverse rate of durability c > 0 if there exist c0, c00 ≥ 0 such that c0 + c00 ≤ c

and for all [t, s] ⊆ [t1, t2], for all i, and for all ω ∈ Ω,

Prit (L (c
0, t, s) |ω) ≥ 1− c00(s− t). (12)

That is, in each agent’s view, the bargaining power is Lipschitz-continuous in time with

the exception of some rare events which happen with a rate slower than c00. Note that strong

durability implies weak durability. The difference |π1s − π1t |, which is bounded by 1, cannot
exceed c0(s− t) on the event L (c0, t, s). Hence, under strong durability,

|Ei
t [π

1
s]− πit| ≤ (1− c00(s− t))c0(s− t) + c00(s− t) ≤ (c0 + c00)(s− t) ≤ c(t− s), (13)

12



implying weak durability.

Example 2 (Durability in the Poisson Model). The bargaining power in the Poisson model

is strongly durable with inverse rate of λ, which is the arrival rate of the Poisson process.

To see this, note that according to agent i, the conditional distribution of π1s at t < s is the

mixture of point mass at π1t with probability e−λ(s−t) and Gi with probability 1 − e−λ(s−t).

Thus, for any t ≤ s, we have

Prit(π
i
s0 = πit, ∀s0 ∈ [t, s]) ≥ 1− e−λ(t−s) ≥ λ(s− t),

establishing the condition for strong durability for c0 = 0 and c00 = λ. This is intuitive since

for higher λ, the bargaining power jumps more frequently and hence is less durable.

5 Durability Effect

We next present our main result, which demonstrates the durability effect. Consider two

dates t̂, t∗ such that t̂ ≤ t∗. After t∗, the bargaining power becomes relatively more durable,

and t̂ is close to t∗. Our main result will conclude that agents will not agree at any t < t̂.

To state our result, we need to introduce two conditions, one on the level of optimism

before t̂ (regarding the bargaining power at t∗) and one on the durability of the bargaining

power after t∗. The first condition ensures that at all dates before t̂, the agents are sufficiently

optimistic about their bargaining power at date t∗.

Condition O for
¡
t̂, t∗

¢
. Given dates

¡
t̂, t∗

¢
, the following inequality holds

β̄
¡
t̂, t∗

¢
≡ inf

t<t̂
(δt,t∗ (1 + yt,t∗)− 1) /δt,t∗ > 0. (14)

Note that δt,t∗ (1 + yt,t∗) is the discounted size of the pie at t∗ as perceived by the agents

at t. When the agents are optimistic about t∗, they hold inflated expectations about t∗, and

δt,t∗ (1 + yt,t∗) may exceed the actual size of the pie at t, which is 1. The condition O states

that prior to t̂ the normalized distance between δt,t∗ (1 + yt,t∗) and 1 is bounded away from

zero. When t̂ = t∗, this condition implies that yt,t∗ is discontinuous in t at t = t∗. This

may be plausible only when t∗ corresponds to the date of a discrete event that resets the

bargaining powers, such as an election. When t̂ < t∗, this condition may hold even when

yt,t∗ is continuous. (That is why we introduced a separate date t̂.) The next set of conditions

ensure that the bargaining power becomes sufficiently durable after t∗.

Condition D for (t∗, ε). Given date t∗ and the parameter ε > 0 (which controls the

13



required level of durability), there exists te > t∗ and c > 0 that satisfy

c(te − t∗) ≤ ε/4 and δt∗,te ≤ ε/4, (15)

such that the bargaining power is weakly durable on [t∗, te] with inverse rate of durability c.

Condition SD for (t∗, ε). Given date t∗ and the durability parameter ε > 0, there

exists te > t∗ and c > 0 that satisfy Eq. (15) such that the bargaining power is strongly

durable on [t∗, te] with inverse rate of durability c.

The durability condition D requires that bargaining power is sufficiently durable for a

sufficiently long while. As ε decreases, the bargaining power needs to be durable for a longer

period of time and with higher rate of durability (i.e. with lower c). The strong durability

condition SD requires in addition that bargaining power must be strongly durable.

The next proposition, which is our main result, establishes that under the durability and

optimism conditions, agents will wait until some time near t∗ to settle. Let ta (ω) be the

first date with an agreement regime, namely the settlement date, at state ω. We use the

convention that ta (ω) =∞ when they fail to agree before the deadline. Let

Ate = {ω | ta (ω) ≤ min (d (ω) , te)}

denote the states at which the agents agree before the deadline and before some date te.

Proposition 3. For any t̂, t∗ ∈ T ∗ and ε ∈ (0, β̄
¡
t̂, t∗

¢
] that satisfy the optimism condition

O for
¡
t̂, t∗

¢
and the durability condition D for (t∗, ε), the agents disagree at each t < t̂.

Moreover, if the strong durability condition SD for (t∗, ε) holds with date te, then Prit∗ (A
te) ≥

1− 2ε/ (πt∗ + ε) for all i ∈ {1, 2}.

That is, if the bargaining power is sufficiently durable after t∗ and the agents remain suf-

ficiently optimistic about t∗ until t̂, then they will not settle before t̂. Moreover, with strong

durability, at t∗, each agent assigns high probability that they will reach an agreement before

te (and before the deadline arrives). Therefore, with high probability, they will settle after

t̂ and before the bargaining power ceases to be durable. The second part of the proposition

also implies that, when ε is small, the individuals agree soon after t∗ with high probability.

This is because any discounting can be represented as arrival of deadline, and the proposition

concludes that they agree before any arrival and hence before any discounting. Our proof,

which is presented in the appendix, relies on the following lemma.

Lemma 1. Assume that the bargaining power is weakly durable with inverse rate of durability
c on some [ts, te] with ts, te ∈ T ∗. Then, for each t ∈ [ts, te] ∩ T ∗ and i,¡

πit − c(te − t)
¢
(1− δt,te) ≤ V i

t ≤
¡
πit + c(te − t)

¢
(1− δt,te) + δt,te .

14



That is, when the bargaining power is durable, the payoffs at t are within a bounded

interval around the bargaining power. If both δt,te and c(te − t∗) are small, i.e. bargaining

power is sufficiently durable for a long enough time, then the payoff of an agent at t will

be close to her bargaining power at t. We obtain the lower bound by applying backward

induction using the smallest possible values for V i and largest possible values for V j under

the durability assumption. Upper bound is obtained similarly.

Under condition D, for t = t∗, the lower bound becomes (πit∗ − ε/4) (1− ε/4). Under

condition O and ε ≤ β̄
¡
t̂, t∗

¢
, this implies that at any t < t̂, δt,t∗ (E1

t [V
1
t∗ ] +E2

t [V
2
t∗ ]) > 1, and

hence it is impossible to satisfy both agents’ expectations from waiting until t∗. Therefore,

there cannot be an agreement at any t < t̂. Hence the first statement in Proposition 3.

There is a simple intuition for the second statement, which concludes that each individual

assigns high probability to reaching an agreement soon after t∗. If the continuation value of

an agent i at t∗ is high, then she must assign a high probability Prit∗(A
te) on reaching an

agreement in the near future because she gets 0 if they fail to agree before the deadline (or

a small payoff if they wait). Unfortunately, this argument does not lead to a very high lower

bound for Prit∗(A
te). It leads to a lower bound for Pr1t∗(A

te) +Pr2t∗(A
te) that is nearly 1. In

the Appendix, using more subtle arguments based on strong durability, we show that each

of these probabilities is nearly 1.

Proposition 3 suggests that certain events that lock-in the agents’ bargaining powers for

a long enough period may generate ex-ante settlement delay. How much durability is enough

for delaying the settlement? Our next result answers this question and provides intuitive

comparative statics for the durability effect.

Corollary 1. For any t̂, t∗ ∈ T ∗ that satisfy optimism condition O, assume that for some

ε ∈ (0, β̄
¡
t̂, t∗

¢
] the bargaining power is weakly durable on [t∗, t∗+ε+log (4/ε) /r] with inverse

rate of durability c such that

c < r
ε/4

log(4/ε)
.

Then, in the continuous-time limit (i.e. for large n), the agents disagree at each t < t̂.

Proof. Pick n large enough so that 1/n ≤ ε and c ≤ r (ε/4) / (log(4/ε) + r/n). Let te =

max {t ∈ T ∗|t∗ < t ≤ t∗ + 1/n+ log (4/ε) /r}. Then, δt∗,te ≤ e−r(te−t
∗) ≤ ε/4. Moreover,

since te − t∗ ≤ log(4/ε)/r + 1/n,

c(te − t∗) ≤ r
ε/4

log(4/ε) + r/n
[log(4/ε)/r + 1/n] = ε/4.

The result then follows from Proposition 3.

Corollary 1 provides intuitive comparative statics for the durability effect. The higher
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the optimism before event date (in which case we can choose a higher ε) and the higher the

discount rate, the stronger the durability effect becomes, i.e. the less durable the bargaining

power could be over a shorter interval and still generate the durability effect. A higher level

of optimism about bargaining power translates itself into a higher level of optimism about

payoffs, which makes the durability effect stronger. The rationale for the comparative statics

with respect to the discount rate is somewhat deeper. A higher discount rate increases the

scope of trade at t∗, which brings the (worst case) payoffs at t∗ closer to the bargaining

powers at t∗ (cf. Lemma 1). Hence, keeping the optimism for t∗ constant, a higher discount

rate makes durability effect stronger. We next demonstrate Proposition 3 in the context of

the Poisson model. Interestingly, the sufficient conditions are also necessary in the Poisson

model because durability is constant.

Example 3 (Durability Effect in the Poisson Model). Fix a date t∗ and two arrival rates λ̂

and λ such that λ̂+ r > (λ+ r) (1 + ȳ) /ȳ. The last condition is analogous to the optimism

condition (O). Assume that the arrival rate is at the higher level λ̂ for all t < t∗, drops to

λ at t∗ and remains at λ for all t ≥ t. We have already seen that, at t∗ and thereafter, the

agents agree on a division with shares V i
t as in (7). In particular, in the limit n→∞,

V i
t∗ =

r

r + λ+ ȳλ
πit +

λ

r + λ+ ȳλ
π̄i. (16)

Now, consider any t < t∗. By (16), the total pie at t∗ is perceived by the agents at t as

St,t∗ = E1
t

£
V 1
t∗
¤
+E1

t

£
V 1
t∗
¤
= 1 +

r

r + λ+ ȳλ
yt,t∗

where yt,t∗ =
³
1− e−λ̂(t

∗−t)
´
ȳ by (6). Since the agents can guarantee themselves a payoff

e−r(t
∗−t)E1

t [V
1
t∗] by waiting until t

∗, there cannot be an individually rational agreement at

date t when e−r(t
∗−t)St,t∗ > 1. After some algebraic manipulation, this condition can be

written as

1 +
λ

r
<

y

1 + y

1− e−(λ̂+r)(t
∗−t)

1− e−r(t∗−t)
≡ R (t∗ − t) . (17)

As t approaches t∗, R (t∗ − t) approaches (1+λ̂/r)ȳ/ (1 + ȳ) and the inequality is satisfied by

assumption. Hence, just before t∗, there is a period of disagreement at which the individuals

cannot reach an agreement. The length of this period, denoted by ∆∗, is given by

R (∆∗) = 1 + λ/r. (18)

In the last date t with t < t∗ −∆∗, the individuals recognize that, if they do not reach an

agreement at t, they will never reach an agreement until t∗, and the perceived total payoff
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from disagreement is e−r∆
∗
St,t∗ < 1. Hence, at that date they reach an agreement. Note

that the length ∆∗ of disagreement period is increasing in the level of long-run optimism ȳ.

That is, the higher the optimism, the stronger the durability effect. It is also increasing the

initial arrival rate λ̂ and decreasing in the final arrival rate λ. This is because a higher λ̂ and

a lower λ correspond to a higher drop in the arrival rate and a larger increase in durability,

leading to a stronger durability effect.

6 Deadline Effect and Durability

In this section, we explore the deadline effect under optimism and durability. We first illus-

trate that under a firm deadline, optimism leads to a deadline effect. We then demonstrate

that with continuous sample paths deadlines act as making bargaining power more durable.

Hence, using the durability effect of Proposition 3, we then establish a robust deadline effect

under durability for stochastic deadlines. As in Corollary 1, we further provide monotone

comparative statics for the deadline effect. We finally show that the usual independence as-

sumption leads to a discontinuity, in that the deadline effect disappears even with a vanishing

amount of uncertainty about the deadline.

6.1 Deadline Effect with a Deterministic Deadline

We first show that if there is a deterministic deadline at t∗, then sufficient optimism about

the bargaining power at t∗ will entice agents to wait until t∗ and agree at t∗. This behavior

is known as the deadline effect.

Proposition 4. Let t∗ ∈ T ∗ be such that there is a deterministic deadline at some d∗ ∈
(t∗, t∗ + 1/n), and e−r(t

∗−t) (1 + yt,t∗) > 1 for each t < t∗. Then, the agents disagree at each

t < t∗ and agree at t∗.

At t∗, since the deadline is imminent, the continuation values are zero, and they agree,

each i getting his bargaining power πit∗. But, e
−r(t∗−t) (1 + yt,t∗) > 1 implies that agents are

willing to wait until t∗ to get their bargaining power at t∗. Hence, they will never agree

before t∗. Note that a deterministic deadline at (t∗, t∗ + 1/n) is equivalent to bargaining

power remaining constant between t∗ and the deadline. Hence, it can be considered as

a stronger version of the durability conditions D and SD in the last section. Then, the

deadline effect in this proposition can be considered as an instance of the durability effect

in the previous section.
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6.2 Durability and Stochastic Deadlines

In fact, in our model there is a deep connection between deadlines and variations in durability.

In our model, time is a relative notion that affects the behavior only through the effective

discount factor δt,s. Hence, any stochastic deadline can be represented as a transformation

τ of time by e−rt (1− F (t)) = e−rτ(t), or

τ (t) = t− 1
r
log (1− F (t)) .

Then, a high arrival rate at a given t can be replicated by stretching the time around t:

τ 0 (t) = 1 +
1

r

f (t)

1− F (t)
.

If πit is continuous at t, such a transformation of time is equivalent to making bargaining

power change more slowly, or more "durable." Therefore, in our analysis deadlines and

variations in durability of the bargaining power play similar roles.

6.3 Robust Deadline Effect with Durable Bargaining Power

Since the deadlines are equivalent to making the bargaining power more durable, a stochastic

deadline with small uncertainty leads to a durability effect, enticing the agents to wait until

the bargaining power becomes more durable, which happens around the deadline. Therefore,

under optimism and any amount of durability, such a stochastic deadline leads to a deadline

effect. Our next result establishes this, formally.

Proposition 5. Consider any t̂, t∗ ∈ T ∗ that satisfies inft<t̂ e
−r(t∗−t) (1 + yt,t∗) > 1. Assume

that the bargaining power is weakly durable on [t∗, t∗+ γ] with inverse rate of durability c for

some γ, c > 0. Then, there exist ε ∈ (0, 1), τ ∈ (t∗, t∗ + γ) and n̄ <∞ such that the agents

disagree at each t < t̂ whenever

F (τ)− F (t∗) > 1− ε (19)

and n > n̄. Moreover, if the bargaining power is strongly durable and Pri0 (π
i
t∗ > 0) = 1, then

for any μ > 0, we can pick ε so that agent i assigns at least probability 1− μ that they will

reach an agreement before the deadline arrives (and before τ).

The condition (19) quantifies the notion that the deadline arrives around t∗ and the

uncertainty about the deadline is small. When the distribution of the deadline converges to

the point mass at t ∈ (t∗, τ), this condition is satisfied for any ε. Under this condition, the
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probability that the deadline will arrive before t∗ is quite small, less than ε. Since the agents

remain optimistic about their bargaining power at t∗ (i.e. inft<t̂ e
−r(t∗−t) (1 + yt,t∗) > 1),

this implies that the optimism Condition O of Proposition 3 is satisfied. Moreover, under

(19), δt∗,τ ≤ (1− F (τ)) / (1− F (t∗)) < ε/ (1− ε) is also small. Since we can choose τ

arbitrarily close to t∗ so that c (τ − t∗) is as small as needed, the durability condition D

of Proposition 3 is also satisfied. Proposition 3 then implies that the agents will not settle

before t̂. Likewise, the second statement follows from the second part of Proposition 3. Under

the above conditions Proposition 3 states that, at t∗, an agent will assign high probability

of reaching an agreement before the deadline arrives. Since the probability of arrival of a

deadline before t∗ is small, the Bayes rule then implies that the agent will assign a high

probability of reaching an agreement.

To sum up from an agent’s point of view, if the uncertainty about the deadline is suffi-

ciently small and the agents are sufficiently optimistic about their bargaining power around

the deadline, then they will wait sometime very close to the deadline but they will settle

before the deadline arrives with very high probability. Hence the deadline effect.

How much uncertainty is small enough though? In order to answer this question, we

introduce a standard way to measure the speed of arrival.

Definition 3. For any interval [t1, t2], we say that the deadline arrives faster than the rate
ρ on average over [t1, t2] if (1− F (t)) / (1− F (t1)) ≤ e−ρ(t−t1) for all t ∈ [t1, t2].

Note that our requirement is slightly weaker than the requirement that d is first-order

stochastically dominated by the exponential distribution with rate ρ conditional on d ≥ t1,

which would have imposed the above inequality for all t ≥ t1. It is also weaker than the

requirement that its hazard rate exceeds ρ over the interval. Our next result, under regularity

assumptions, quantifies how fast the deadline arrival rate should be to generate the deadline

effect. The deadline effect prevails when deadline arrives sufficiently faster than the inverse

rate of durability.

Proposition 6. Let t̂, t∗ ∈ T ∗ be such that β ≡ inft<t̂
£
1 + yt,t∗ − er(t−t

∗)/ (1− F (t∗))
¤
> 0.

For some ε ∈ (0, β], assume that the bargaining power is weakly durable on [t∗, t∗+ε+ log(4/ε)
r

]

with the inverse rate of durability c. If the deadline arrives faster than r̂− r ≥ 0 on average
over the interval [t∗, t∗ + ε+ log(4/ε)

r
] for some r̂ with

r̂ >
c log(4/ε)

ε/4
,

then in the continuous-time limit the agents disagree at each t < t̂. Moreover, if the bargain-

ing power is strongly durable, then at t∗ each agent assigns at least probability 1−2ε/ (πt∗ + ε)

that they will reach an agreement before the deadline arrives.
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The sufficient condition for the deadline effect depends only on the ratio of the normalized

arrival rate of deadline (r̂) to the inverse rate of durability of the bargaining power (c). When

this ratio is above a cutoff value (i.e. deadline arrives sufficiently faster than the inverse rate

of durability), the deadline effect prevails. How much faster should the deadline arrive than

the inverse rate of durability is determined by the optimism about t∗. When the optimism

for t∗ is higher, we can choose ε higher and the cutoff becomes lower. In that case, a less

durable bargaining power or a slower deadline arrival rate suffices to generate a deadline

effect. In summary, deadline effect is stronger (i) when players are initially more optimistic

about the deadline (in particular, bargaining power is expected to vary enough until the

deadline), (ii) when the bargaining power is more durable around the likely time of deadline,

and (iii) the uncertainty about the deadline is less.

Example 4 (Deadline Effect in the Poisson Model). Suppose that the arrival rate of the

Poisson process is λ̂ before some t∗ and λ after t∗, where λ̂ can be higher or lower than

λ. Moreover, a stochastic deadline arrives with constant hazard rate r̂ − r starting at t∗

(i.e. F (t) = 1 − e−(r̂−r)(t−t
∗) for t ≥ t∗). Starting at t∗, the effective discount factor is

δt,s = e−r̂(s−t). Hence, in the limit n→∞, at t∗, the agents agree on a division with shares

V i
t =

r̂

r̂ + λ+ ȳλ
πit +

λ

r̂ + λ+ ȳλ
π̄i. (20)

Once again, as in Example 4, at any t < t∗, the the agents will disagree at t if

e−r(t
∗−t) (E1

t [V
1
t∗] +E1

t [V
1
t∗]) > 1. By (6) and (20), the latter condition can be written as

1 +
λ

r̂
<

y

1 + y

1− e−(λ̂+r)(t
∗−t)

1− e−r(t∗−t)
≡ R (t∗ − t) . (21)

The expression on the left-hand side is monotonically decreasing in r̂, the arrival rate of

deadline. In particular, there is a cutoff value

rc = sup
0<t≤t∗

λ/ (R (t∗ − t)− 1) ,

such that when r̂ > rc the agents will never agree until t∗ and reach an agreement at t∗. Note

that the condition R (t∗ − t) > 1 for all t < t∗ is equivalent to Condition O of Proposition

3 for this model (with t̂ = t∗). When this condition is satisfied and the bargaining power

is not completely transient (λ 6= ∞), the Poisson model features the deadline effect when
the deadline arrives sufficiently fast (i.e. if r̂ > rc), in line with Propositions 5 and 6. On

the other hand, when r̂ < rc, we will not observe the deadline effect: the parties will reach

an agreement before t∗. Finally, as in Example 4, there is a period of disagreement right

before t∗ with length ∆∗, given by R (∆∗) = 1 + λ/r̂. We can measure the strength of the

20



deadline effect by∆∗. For fixed r, ∆∗ is increasing with r̂−r, the arrival rate of the deadline,
decreasing with λ, the inverse rate of durability before the deadline, and increasing with λ̂,

the inverse rate of durability during the deadline. Therefore, the deadline effect is stronger

when (i) the uncertainty about the deadline is smaller, (ii) the bargaining power before the

deadline is less durable, and (iii) the bargaining power during the deadline is more durable.

Spier (1992) shows that, in a pre-trial negotiation with incomplete information, the set-

tlement probability will be a U-shaped function of time, consistent with the deadline effect.

Ma and Manove (1993) also develop a model in order to explain the deadline effect. In that

model, the delay is not costly and a party can wait as much as she wants before making an

offer, and his opponent has to wait for his offer. Then, the party who is to make an offer

waits until the deadline and makes a last minute take-it-or-leave it offer. Roth, Murnighan,

and Schoumaker (1988) informally discuss a possible explanation based on the idea that

there is no cost of delay except for a cost at the end due to a slight uncertainty about the

deadline.4 Like Spier, our model is not geared towards explaining the deadline effect, but

it naturally yields the deadline effect even when the delay is costly, and it suggests possible

ways to avoid the deadline effect.

6.4 Discontinuity of Deadline Effect under Independence

We now show that durability is crucial for the deadline effect under stochastic deadlines:

when the beliefs about the future are independent of the past and the deadline is stochas-

tic, there is an immediate agreement in the continuous time limit. We need the following

independence assumption to state our result.

Assumption IND. For any i, t < s and πi ∈ [0, 1], the conditional probability F i
s(π

i) ≡
Prit(π

i
s ≤ πi|ω) is independent of ω.

That is, the beliefs about the future bargaining powers do not depend on the past obser-

vations, including the past bargaining powers. Assumption IND implies that the optimism

at t < s for s is a function of s alone, i.e.

yt,s = Et[π
1
s] +Et[π

2
s]− 1 =

Z
π1∈[0,1]

π1dF 1
s (π

1) +

Z
π2∈[0,1]

π2dF 2
s (π

2)− 1 ≡ Y (s).

This further implies that whether there will be agreement at date t is deterministic. The

following proposition provides conditions under which the deadline effect disappears when

the deadline becomes stochastic.
4Roth and Ockenfels (2002) consider a similar model in which the delay is motivated by the possibility

that the last offer may not go through. They use this model to explain why the deadline effect is observed
in e-Bay auctions but not in Amazon auctions.
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Proposition 7. Assume that the deadline is stochastic with continuous distribution (i.e. F
is continuous). Under Assumption IND, assume also that either (i) Y (t) ≥ 0 for all t, or
(ii) Y (t) is a continuous function. Then, for any ε > 0, there exists n such that if n > n,

the agents agree before ε (in states in which the deadline does not arrive before date ε).

That is, under Assumption IND, if the deadline is stochastic, then there will be an

immediate agreement in continuous-time limit, so long as agents are optimistic or the level

of optimism is a continuous function of time. Under the independence assumption, any

uncertainty about the deadline makes the deadline effect disappear and leads to an immediate

agreement. More generally it shows that, under Assumption IND, the equilibrium outcome is

discontinuous with respect to the distribution of the deadline (as the uncertainty of deadline

vanishes). This discontinuity is due to the extreme discontinuity assumption inherent in the

independence assumption: the bargaining power is completely transient in the sense that

the bargaining power now has no effect on the bargaining power a moment later.

In order to relate this result to the Poisson model, notice in Example 4 that if we increase

λ, keeping everything else constant (and r̂ <∞), the deadline effect eventually disappears.
Intuitively, Assumption IND corresponds to the case λ = ∞. In that case, (21) necessarily
fails and there is no deadline effect in the continuous-time limit, as long as the deadline is

stochastic (i.e. r̂ <∞).

7 Conclusion

In an ongoing bargaining, bargaining power may be more durable in some periods and less

durable in some others. We model the bargaining power as a stochastic process defined

on continuous time and focus on the realistic and tractable case that bargaining power is

continuous except for rare events, i.e. with piecewise-continuous sample paths. We formally

introduce a notion of durability, as Lipschitz continuity, and quantify the level of durability, in

terms of the Lipschitz coefficient. We show that durability plays a profound role, especially

when the parties are optimistic. In particular, if the bargaining power is anticipated to

become more durable at some given time t∗ (e.g. after an election), then there will be a

period in which optimistic parties will rather delay their agreement to that time t∗.

We observe that, under piecewise-continuous sample paths for bargaining power, arrival

of a stochastic deadline in a period is mathematically equivalent to making the bargaining

power more durable, making deadlines and durability two faces of the same coin. Using the

same logic that leads to the durability effect, we show that if a (possibly stochastic) deadline

is likely to arrive around a given time, then there will be a period in which optimistic parties

will delay agreement sometime very near the arrival of deadline and reach an agreement just
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before the deadline with high probability, as in the real-life negotiations. This deadline effect

becomes stronger (i) as the deadline becomes firmer in the sense having higher arrival rate, or

(ii) as the bargaining power around the deadline becomes more durable, or (iii) as the initial

optimism about the deadline effect gets larger (which is intuitively inversely related to the

durability of bargaining power until the time of deadline). We hope that such comparative

statics will be helpful for practitioners who want to design procedures of conflict resolution,

or formal negotiation rules.

Appendix

Proof of Equation (7 ). By Proposition 1, it suffices to verify that V is indeed a solution to (4). We

check it using mathematical induction backwards on time. Check that, by (7) for t+ 1/n and (5),

Ei
t

h
V i
t+1/n

i
=

be−λ/n

a+ ȳ (a− b)
πit +

a− be−λ/n

a+ ȳ (a− b)
π̄i. (22)

Since π1t + π2t = 1 and π̄1 + π̄2 = ȳ + 1, this yields

St+1/n = E1t
£
V 1t+1

¤
+E2t

£
V 2t+1

¤
=

a+ ȳ
¡
a− be−λ/n

¢
a+ ȳ (a− b)

.

Thus,

1− δtSt+1/n = 1− e−r/nSt+1/n = (a+ ȳ (a− b))−1 > 0. (23)

Hence, the agents agree at t. In order to verify (4), write

V i
t =

b

a+ ȳ (a− b)
πit +

a− b

a+ ȳ (a− b)
π̄i

=
1

a+ ȳ (a− b)
πit +

be−(r+λ)/n

a+ ȳ (a− b)
πit +

¡
a− be−λ/n

¢
e−r/n

a+ ȳ (a− b)
π̄i

= πitmax
©
1− δtSt+1/n, 0

ª
+ δtE

i
t

h
V i
t+1/n

i
,

where the first equality by (7), the second equality by definitions of a and b, and the last equality

by (23) and (22).

Proof of Lemma 1. For t = te, the inequalities in the lemma are trivially satisfied because δt,te = 1.

Towards an induction, assume that for each i,³
πit+1/n − c(te − (t+ 1/n))

´ ¡
1− δt+1/n,te

¢
≤ V i

t+1/n

≤
³
πit+1/n + c(te − (t+ 1/n))

´ ¡
1− δt+1/n,te

¢
+ δt+1/n,te .
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By the weak durability assumption, Ei
t[π

i
t+1/n] ∈ [πit − c/n, πit + c/n]. Hence,

LHSi ≡
¡
πit − c(te − t)

¢ ¡
1− δt+1/n,te

¢
≤ Ei

t

h
V i
t+1/n

i
≤
¡
πit + c(te − t)

¢ ¡
1− δt+1/n,te

¢
+ δt+1/n,te ≡ RHSi. (24)

Recall that

V i
t = πitmax

n
1− δtE

j
t

h
V j
t+1/n

i
, δtE

i
t

h
V i
t+1/n

io
+
¡
1− πit

¢
δtE

i
t

h
V i
t+1/n

i
.

Combining the last two statements we obtain the necessary bounds. To find an upper bound, we

write

V i
t ≤ πitmax

©
1− δtLHSj , δtRHSi

ª
+
¡
1− πit

¢
δtRHSi = πit (1− δt) + δtRHSi

=
¡
πit + c(te − t)

¢
(1− δt,te) + δt,te − c(te − t)(1− δt)

≤
¡
πit + c(te − t)

¢
(1− δt,te) + δt,te .

Here, the first inequality is by (24), the next equality is by RHSi+LHSj = 1, and the last equality

and inequality are by simple algebra. Similarly,

V i
t ≥ πitmax

©
1− δtRHSj , δtLHSi

ª
+
¡
1− πit

¢
δtLHSi = πit (1− δt) + δtLHSi

=
¡
πit − c(te − t)

¢
(1− δt,te) + c(te − t)(1− δt)

≥
¡
πit − c(te − t)

¢
(1− δt,te) .

Proof of Proposition 3. To prove the first part, substituting t = t∗ in Lemma 1, we obtain

V i
t∗ ≥ (1− δt∗,te)(π

i
t∗ − c(te − t∗))

≥ (1− β̄
¡
t̂, t∗

¢
/4)(πit∗ − β̄

¡
t̂, t∗

¢
/4) (25)

for each i. Then, we have,

δt,t∗
¡
E1t [V

i
t∗ ] +E2t [V

2
t∗ ]
¢
≥ δt,t∗(1− β̄

¡
t̂, t∗

¢
/4)

¡
E1t
£¡
π1t∗ − β̄

¡
t̂, t∗

¢
/4
¢¤
+E2t

£¡
π2t∗ − β̄

¡
t̂, t∗

¢
/4
¢¤¢

= δt,t∗
£
(1− β̄

¡
t̂, t∗

¢
/4)(1 + yt,t∗ − β̄

¡
t̂, t∗

¢
/2)
¤

> δt,t∗
£
1 + yt,t∗ − β̄

¡
t̂, t∗

¢¤
≥ 1,

where the first inequality uses (25), the second inequality uses yt,t∗ ≤ 1 and the last inequality uses
the definition of β̄

¡
t̂, t∗

¢
. Hence, the agents expect to be better off waiting until t∗. Therefore,

they disagree at t, proving the first part of the proposition.

To prove the second part, recall that L (c0, t∗, te) is the set of states in which the bargaining power
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"does not jump" between t∗ and te. By the strong durability assumption, Prit∗ (Ω \ L (c0, t∗, te)) ≤
c00 (te − t∗). We will find a lower bound for Prit∗(A

te ∩ L (c0, t∗, te)). Towards this end, write also
ΩA = {ω|ta (ω) <∞} for the set of states with agreement. Note that

(πit∗ − c(te − t∗))(1− δt∗,te) ≤ Ei
t∗ [V

i
t∗ ] = Ei

t∗ [V
i
t∗ | ΩA]

= Ei
t∗ [V

i
t∗ |Ate ∩ L

¡
c0, t∗, te

¢
]Pr(Ate ∩ L

¡
c0, t∗, te

¢
)

+Ei
t∗ [V

i
t∗ |Ate \ L

¡
c0, t∗, te

¢
]Pr(Ate \ L

¡
c0, t∗, te

¢
)

+Ei
t∗ [V

i
t∗ |ΩA\Ate ]Pr(ΩA\Ate)

≤ Ei
t∗ [V

i
t∗ |Ate ∩ L

¡
c0, t∗, te

¢
]Pr(Ate ∩ L

¡
c0, t∗, te

¢
) + c00(te − t∗) + δt∗,te , (26)

where the first inequality follows from Lemma 1 and the last inequality follows since Prit∗(A
te \

L (c0, t∗, te)) ≤ Prit∗(Ω \ L (c0, t∗, te)) ≤ c00(te − t∗), V i
t∗ ∈ [0, 1], and

Et∗ [V
i
t∗ |ΩA\Ate ] = Et∗ [δt∗,ta(ω)V

i
ta(ω) | ΩA\Ate ] ≤ δt∗,te .

Therefore, towards finding a lower bound for Pr(Ate ∩ L (c0, t∗, te)), we will find an upper bound
for Ei

t∗ [V
i
t∗ |Ate ∩ L (c0, t∗, te)].

Note that, we have

Ei
t∗ [V

i
t∗ |Ate ∩ L

¡
c0, t∗, te

¢
] = Ei

t∗ [δt∗,ta(w)V
i
ta(w)|Ate ∩ L

¡
c0, t∗, te

¢
]

≤ Ei
t∗ [δt∗,ta

¡¡
πita + c(te − ta)

¢
(1− δta,te) + δta,te

¢
|Ate ∩ L

¡
c0, t∗, te

¢
]

= Ei
t∗ [
¡
πita + c(te − ta)

¢
(δt∗,ta − δt∗,te) |Ate ∩ L

¡
c0, t∗, te

¢
] + δt∗,te

≤ Ei
t∗ [
¡
πita + c(te − ta)

¢
(1− δt∗,te) |Ate ∩ L

¡
c0, t∗, te

¢
] + δt∗,te

≤ Ei
t∗ [
¡
πit∗ + c0 (ta − t∗) + c(te − ta)

¢
(1− δt∗,te) |Ate ∩ L

¡
c0, t∗, te

¢
] + δt∗,te

≤ Ei
t∗ [
¡
πit∗ + c(te − t∗)

¢
(1− δt∗,te) |Ate ∩ L

¡
c0, t∗, te

¢
] + δt∗,te

=
¡
πit∗ + c(te − t∗)

¢
(1− δt∗,te) + δt∗,te ,

where the first inequality uses Lemma 1 to bound V i
ta from above, the next equality follows by

simple algebra using the fact that δt1,t2δt2,t3 = δt1,t3 , the second inequality follows since δt∗,ta ≤ 1,
the third inequality follows by definition of L (c0, t∗, te), and the last inequality follows by simple
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algebra and the fact that c0 ≤ c. Then, using (26), we obtain

Prit∗(A
te ∩ L

¡
c0, t∗, te

¢
) ≥ (πit∗ − c(te − t∗))(1− δt∗,te)− c00(te − t∗)− δt∗,te£

πit∗ + c(te − t∗)
¤
(1− δt∗,te) + δt∗,te

≥ πit∗ − ε/4− (πit∗ − c(te − t∗))δt∗,te − ε/4− ε/4£
πit∗ + ε/4

¤
+ ε/4

≥ πit∗ − ε/4− ε/4− ε/4− ε/4

πit∗ + ε/4 + ε/4

≥ πit∗ − ε

πit∗ + ε
,

where the inequalities after the first one follow since c(te − t∗) ≤ ε/4, πit∗ ≤ 1 and δt∗,te < ε/4.

Since Prit∗(A
te) ≥ Prit∗(A

te ∩ L (c0, t∗, te)), this completes the proof of the second part.

Proof of Proposition 4. Since δt∗ = 0, δt∗St∗+1/n = 0 < 1. Hence, the agents agree at t∗ with

V i
t∗ = πit∗ . Thus, at any t < t∗,

e−r(t
∗−t) ¡E1t [V 1t∗ ] +E2t [V

2
t∗ ]
¢
= e−r(t

∗−t) ¡E1t [π1t∗ ] +E2t [π
2
t∗ ]
¢

= e−r(t
∗−t) (1 + yt,t∗) > 1.

Therefore, expecting to be better of waiting until t∗, the agents disagree at t < t∗.

Proof of Proposition 5. Define

α = inf
t<t̂

e−r(t
∗−t) (1 + yt,t∗)− 1 > 0.

Pick any ε ∈ (0, α/ (5 + α)) with

4ε/ (1− ε) < (1− ε) (1 + α)− 1. (27)

This is possible because the strict inequality is satisfied at ε = 0. Let

τ = t∗ +min {0.8ε/c, γ/2} ∈ (t∗, t∗ + γ)

n̄ = 1/ (min {ε/c, γ}−min {0.8ε/c, γ/2}) <∞.

Define also

te = min {t ∈ T ∗|τ ≤ t ≤ t∗ +min {ε/c, γ}} ,

which is well defined since we consider n > n̄. Assume also that F (τ) − F (t∗) > 1 − ε. We will

check that conditions O and D are satisfied for ε0 ≡ 4ε/ (1− ε) (as the value of ε in Condition D)

and that ε0 < β̄
¡
t̂, t∗

¢
. The first statement then follows from Proposition 3. To this end, first note

that

F (te) ≥ F (τ) > 1− ε and F (t∗) < ε.
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By definition (see Condition O),

β̄
¡
t̂, t∗

¢
≥ (1− F (t∗)) (1 + α)− 1 > (1− ε) (1 + α)− 1 ≡ β∗ > 0,

where the last inequality follows from ε < α/ (5 + α). Hence, condition O is satisfied. Moreover,

by (27), ε0 < β∗ ≤ β̄
¡
t̂, t∗

¢
. Finally, we check that condition D is satisfied by t∗ and ε0. Firstly,

δt∗,te ≤ (1− F (te)) / (1− F (t∗)) < ε/ (1− ε) = ε0/4.

Secondly,

c(te − t∗) ≤ cmin {ε/c, γ} ≤ ε < ε/ (1− ε) = ε0/4.

Therefore, t∗ and ε0 satisfies condition D.

The last statement in the proposition also follows from Proposition 3. We have

Pri0
¡
Ate
¢
≥ (1− F (t∗))Ei

0

¡
Prit∗

¡
Ate
¢¢

≥ (1− ε)Ei
0

∙
πit∗ − ε0

πit∗ + ε0

¸
.

As ε → 0, we also have ε0 → 0, and the last expression goes to 1 by the bounded convergence

theorem.

Proof of Proposition 6. Take n large enough so that 1/n < ε and c (1/n+ (log(4/ε)) /r̂) ≤ ε/4,

which is possible by the condition on r̂. First note that

β
¡
t̂, t∗

¢
= inf

t<t̂

h
1 + yt,t∗ − er(t−t

∗) (1− F (t)) / (1− F (t∗))
i
> β,

hence t̂,t∗ satisfy condition O. Let te = min
n
t ∈ T ∗ | t ≥ t∗ + log(4/ε)

r̂

o
. We have

δt∗,te = e−r(t−t
∗) (1− F (t)) / (1− F (t∗)) ≤ e−r̂(te−t

∗) ≤ ε/4.

Also, since te ≤ t∗ + 1/n+ log(4/ε)
r , we have that the bargaining power is weakly durable on [t∗, te]

with rate c that satisfies

c (te − t∗) ≤ c

µ
1/n+

log(4/ε)

r̂

¶
≤ ε/4.

Hence, t∗ and ε satisfy condition D with c and te, and the first part of the result follows by

Proposition 3. If, in addition, the bargaining power is strongly durable, then condition SD also

holds and the second part of the result also follows from Proposition 3.

Proof of Proposition 7. Under Assumption IND, St+1/n is deterministic. Hence,
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St = δtSt+1/n if δtSt+1/n > 1 (28)

St = 1 + Y (t)(1− δtSt+1/n) if δtSt+1/n ≤ 1. (29)

For each n, let tn be the first date on which the agents agree, which is deterministic by Assumption

IND. Whenever tn > 0, we have

1 < δ0,tn
¡
E10 [V

1
tn ] +E20 [V

2
tn ]
¢
= δ0,tnStn , (30)

where the first inequality follows from the definition of tn and the second equality follows from

Assumption IND. Since Stn ≤ 2, (30) implies that tn ≤ [0, (log 2) /r]. Thus, tn is a bounded

sequence. Hence, it suffices to show that 0 is the only limit point of the sequence tn. Let t∗ be any

limit point of this sequence and consider a subsequence that converges to t∗. We will show that

t∗ = 0.

Since there is agreement at tn, by Assumption IND, (29) holds at t = tn. We consider the two

conditions separately. First assume (i). Then, if δtn+1/nStn+2/n ≤ 1, then (29) and Y (tn+1/n) ≥ 0
imply that Stn+1/n ≥ 1. If δtn+1/nStn+2/n > 1, then this time (28) implies that Stn+1/n ≥ 1.

Substituting this and Y (t) ∈ [0, 1] in (29), we obtain

Stn ≤ 2− δtn .

Together with (30), this implies that

δ0,tn(2− δtn) > 1.

By taking the limit n→∞ on this inequality, we obtain

δ0,t∗ ≥ 1,

which implies that t∗ = 0, as desired. Here, since F is continuous, δ0,t = δt (1− F (t)) is continuous

in t, and δ0,tn → δ0,t∗ as tn → t∗, and also δtn = e−r/n (1− F (tn + 1/n)) / (1− F (tn))→ 1.5

Next assume (ii) without assuming (i). If Y (tn) ≤ 0, then Stn ≤ 1 by (29), which, by (30),
implies tn = 0. Now, consider the subsequence of (tn) with Y (tn) > 0. If Y (tn + 1/n) ≥ 0 for
all but finitely many n, then the above proof shows that t∗ = 0. So assume Y (tn + 1/n) < 0 for

infinitely many values of n. This subsequence, which we denote by tn0 , also converges to t∗, and

satisfies

Y (tn0 + 1/n
0) < 0 < Y (tn0).

Taking limits in the previous inequality, we obtain Y (t∗) = 0. By (29), we have Stn ≤ 1+Y (tn)→
5This is where the proof fails under a deterministic deadline.
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1 + Y (t∗) = 1, which, by (30) implies that t∗ = 0, as desired.
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