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ABSTRACT

We examine dynamics in the gender gap in high school mathematics
achievement using competition data. A clear gender gap is present by ninth
grade, and the gap widens over time. Gender-related differences in dropout
rates and in the mean and variance of year-to-year improvement contribute
to the widening of the gender gap. The most important difference is that
fewer girls make large enough gains to improve their rankings. We also
document a discouragement effect: among students falling just short of
qualifying for a prestigious second-stage exam, some drop out of future
years, and this reaction may be stronger among girls.

I. Introduction

The gender gap in average science and math achievement by the end
of high school has narrowed significantly in recent decades and is qualitatively small
today.1 However, girls are underrepresented among high-achieving math students in
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1. See Xie and Shauman (2003) and Goldin, Katz, and Kuziemko (2006), among others.
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middle and high school, and this may contribute to their underrepresentation in STEM
fields, both in college majors and the workforce.2 These gaps have been shown to vary
with potentially manipulable environmental factors, such as local culture and the pres-
ence of same-gender instructors.3 To the extent that there is a role for policy in addressing
female underrepresentation in STEM, several natural questions arise: at what point in
students’ development do these gaps occur, how do they evolve over time, and why?
This work takes advantage of a new panel data set on American Mathematics Com-

petition (AMC) participants to examine the dynamics of the gender gap over the high
school years within a large population of very high-achieving U.S. math students. The
AMC tests aremuch better than commonly studied tests at identifying and distinguishing
among very high-achieving students, and many of the very best U.S. math students take
these tests. The panel data set used for the first time in this paper allows us to analyze the
development of math achievement by seeing how students perform on tests of similarly
high difficulty in Grades 9, 10, 11, and 12. It also lets us examine dropouts from and new
entry into real-world competition by high-achieving boys and girls. An important lim-
itation of this setting is that our study population consists of students who have chosen to
participate in a competition. They are presumably more interested in competition, and
we only see them perform in a competitive environment.4 This is relevant to interpreting
the finding of this paper that the high-achievement gender gap is already large by ninth
grade (Niederle and Vesterlund 2010). We hope that this limitation is less relevant to the
dynamic analysis that we mostly focus on in this paper. The estimates of the dynamics
compare subsequent outcomes for boys and girls who have in common that they selected
into competing and achieved identical scores in year t.
Section II presents institutional facts on the AMC contests and summary statistics on

the data set. It then presents two basic observations thatmotivate the rest of the paper. The
first observation is that there is already a substantial gender gap among high-achieving
ninth-graders. The other is that the gender gap widens substantially over the high school
years. The first observation motivates examining the individual-level persistence in high
scores. If it is substantial—which we find—then the ninth-grade gap is a large con-
tributor to the end-of-high-school gap andmerits further study. The second observation
motivates a richer examination of the dynamics of achievement among high-achieving
high school students and thegender-related differences in these dynamics.Many potential
explanations have been discussed to account for the single fact that boys outnumber girls
among high math achievers. A fuller understanding of the dynamics can provide a
much larger set of facts that proposed explanations for the end-of-high-school gender
gap would need to explain.
Section III takes a step back from the focus on gender to provide some initial ob-

servations on the dynamics of high achievement in high school. We present several
observations on the environment in which high-achieving high school students are
investing in their math skills. One is that performance is highly persistent even when we

2. See Hedges and Nowell (1995), Guiso et al. (2008), Hyde et al. (2008), and Ellison and Swanson (2010) on
math test scores and Ginther and Kahn (2004) and Carrell, Page, and West (2010) on workforce issues.
3. See Guiso et al. (2008), Pope and Sydnor (2010), and Carrell, Page, and West (2010).
4. See Gneezy, Niedele, and Rustichini (2003), among others, on gender differences in performance in com-
petitive environments.
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subdivide the top percentile very finely. Another is that high-achieving students must
improve their mastery of the precalculus mathematics and problem-solving skills tested
by the AMC contests substantially to maintain their position year-to-year, and the
probability of making substantial gains relative to one’s cohort is low.
Section IV then explores gender-related differences in the dynamics to identify fac-

tors that lead to the widening gender gap. Studies of other environments have identified
several factors that could affect patterns of entry, exit, and improvement in the AMC.
Preferences for competition and differences in how boys and girls allocate their effort
across coursework in different subjects and extracurricular activities could be particu-
larly relevant here.5

Our analyses uncover several gender-related differences. High-achieving girls im-
prove by less from year to year on average than do boyswith similar initial performance.
The variance of the girls’ improvements is lower. Girls at each performance level are
more likely to drop out of participating, and girls are underrepresented among the high-
scoring entrants. To clarify the relative importance of these patterns, we propose amethod
for decomposing the net change in the fraction female among high-scoring students into
several components. The decomposition suggests that the most important gender-related
dynamic difference is that fewer girls are making large enough increases from year to
year to move up into the top rank groups.
Section V ventures into assessing potential explanations for the gender gap in a more

causal-inference style, looking at whether a portion of the gap may be attributable to
gender-related differences in reactions to disappointment. We note that high-achieving
students will be quite disappointed if they fall short of a threshold score needed to move
on to a second-stage exam and that this disappointment can be viewed as a treatment that
is applied at a different cutoff level of performance on different tests.We use a variant of
a regression-discontinuity design to examine a narrow window around the cutoff for
progressing to the second-stage exam and find strong evidence that both boys and girls
are more likely to drop out of participating in future years if they score just below the
cutoff.We also find that the tendency to drop out after experiencing disappointmentmay
be more common among girls.
Finally, SectionVI recaps results and presents conclusions and implications for future

research.
Our investigation is related to a number of literatures. A number of papers, including

our own, have noted that girls are underrepresented among the high-scorers on stan-
dard math assessments and math contests both in the United States and in many other
countries.6 While the dynamics of the gender gap are less studied, there are several

5. For example, laboratory and field evidence suggests that men and boys are more likely to select into experi-
mental and real-world competition than women and girls of equal ability (Buser, Niederle, and Oosterbeek
2014; Niederle and Vesterlund 2007); gender differentials in standardized test performance of high school
students depend on the competitive stakes of the tests (Azmat, Calsamiglia, and Iriberri 2016); and, in a TV
game show testing general knowledge, women earn 40 percent less than men and exit the game prematurely
at a faster rate (Hogarth, Karelaia, and Trujillo 2012). The large literature showing that girls earn higher
grades in all subjects, with particularly large differences in language courses, suggests that girls may be
spending more time on nonmath coursework. See Voyer and Voyer (2014) for a metastudy. Chachra et al.
(2009) provide evidence on the extracurricular activities of engineering students.
6. See Hedges and Nowell (1995), Guiso et al. (2008), and Ellison and Swanson (2010).
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previous studies documenting an increasing gender gap.7 Relative to this literature,
we add a number of newobservations about the gender gap. This includes both our initial
observations that extreme gender gaps among very high-achievers are already present by
ninth grade and that the gender gap among high-achieverswidens over the course of high
school, and themany observations about the dynamics of achievement that we are able to
make due to our unique panel data on high-achieving boys and girls.
Our work is also related to the literature on gender differences in attitudes toward

competition. Using laboratory experiments, Niederle and Vesterlund (2007) and Niederle,
Segal, andVesterlund (2013) found a clear gender gap inwillingness to enter contests. This
may be particularly relevant to our application, as Buser, Peter, andWolter (2017) find that
the gender gap in the preference for competition is highest for high-ability students.8 Prior
experimental and real world evidence has also demonstrated that men and women react
differently to losing contests. Gill and Prowse (2014) find that women who lose a contest
score lower in subsequent contests. Buser (2016) finds that men (but not women) react to
losing by seeking greater challenges. Buser and Yuan (2019) find that, even within pop-
ulations who have already opted into competing, women are more likely to react to losing
by ceasing to compete. Cai et al. (2019) find that women’s performance suffers more than
men’s in response to negative performance shocks on earlier exams taken on the same
day.Our realworld evidence on students’ reactions to disappointment are consistentwith
there being a similar gender gap, although ourmessage is not entirely aligned, as we find
that boys also react to disappointment by dropping out of future competition.9

Our SectionVanalysis is very closely related to the Buser andYuan (2019) regression
discontinuity analysis of students near the threshold for advancing to the second round of
theDutchMathOlympiad. They document a small and insignificant one percentage point
dropout effect for boys, and a large andmarginally significant 11 percentage point dropout
effect for girls. Our much larger sample allows us to use narrower windows and get more
precise estimates.10 We find estimates of 3.4–3.7 percentage points for boys and 4.2–5.6
percentage points for girls, with standard errors of 1.2 percentage points at most. We find
marginally suggestive evidence for the Buser and Yuan (2019) finding that girls are
relatively more likely to react by dropping out, but we document that the effect among
boys is also substantial and that the differential effect for girls relative to boys in the
United States contest is not nearly as large as their point estimates for the Netherlands.
More broadly, ourwork ismotivated in several respects by the rich literature on gender

gaps inwages and career development. As summarized in Blau andKahn (2017), gender
gaps in mathematics and career-oriented college majors declined substantially between
the 1960s and 1980s, but there has been less progress since.11 Of particular relevance is

7. See, for example, Fryer and Levitt (2010) regarding U.S. students, Bharadwaj et al. (2016) regarding
Chilean students, and Contini, Di Tommaso, and Mendolia (2017) regarding Italian students.
8. Sutter and Glätzle-Rützler (2015) report that such differences are robust across a broad age range and visible
as early as age three, so they may help account for our ninth-grade results.
9. Our finding on themagnitude of the ninth-grade gender gap can also be seen as suggestive that differences in
interest in competition are producing part of the real-world effect of girls being underrepresented among the
highest scorers on the contests.
10. Our sample has approximately 100 times as many student–years.
11. Focusing on STEM fields specifically, Ceci et al. (2014) present evidence on lower female propensities to
major in math-intensive subjects in college and higher female propensities to major in non-math-intensive
sciences. They then examine career development in STEM fields and find greater evidence of pipeline leakage
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the subset of the literature that pertains to the dynamics of the gender gap in pay and
workforce participation (Bertrand, Goldin, and Katz 2010; Goldin et al. 2017).

II. The High-Achievement Gender Gap in AMC Scores

In this section, we bring out some basic facts about the gender gap
amongAMChigh-scorers. Ellison and Swanson (2010) noted a large gender gap at high
achievement levels and that the gaps are much wider at very high achievement levels
above those that can be reliably measured with more commonly used standardized tests.
Among the new observations here are that the high-achievement gender gap is already
quite large and has the same distinctive pattern by the time students are in ninth grade
and that the gap grows wider over the high school years.

A. Background and Data

The primary subject of our analysis is a database of scores on the Mathematical Asso-
ciation of America’s AMC 10 and AMC 12 contests for 1999–2007. The tests are 25-
question, multiple-choice tests designed to identify and distinguish among students at
very high performance levels. They are administered to more than 200,000 students
in about 3,000 U.S. high schools. The AMC 10 is open to students in Grades 10 and
below. The AMC 12 is open to students in Grade 12 and below.
Several features make the AMCs well suited to studying the dynamics of high math

achievement during the high school years. One is that the tests are reliable even for very
high-achieving students.12A second is that the tests are very popular among thevery best
U.S.math students.13A third is thatmany high-achieving students take the tests annually
over a four-year period, which lets us track their year-to-year improvement. The benefits
and costs of participating in the AMC contests are myriad and vary across students.
Immediate benefits and costs include the psychic benefit (enjoyment) or cost (stress)
associated with the competition itself (Niederle and Vesterlund 2007); extrinsic benefits
such as praise, AMC and school prizes, and credentials for college applications; and
intrinsic satisfaction or disappointment from performing well or poorly. Future benefits
include the knowledge gained by studying and access tomore elite levels of competition.
By 2007, the AMC offered four tests per year: the AMC 10A and 12Awere offered

on one date in early February, and theAMC10B and 12Bwere offered twoweeks later.
One motivation was to accommodate students whose school was on vacation or can-
celled due to snow on the A date. But schools can offer both the A-date and B-date

in fields such as psychology, life science, and social science, rather than in math-intensive fields in which
women are more underrepresented.
12. Ellison and Swanson (2010) note that AMC scores are a stronger predictor of how students will do when
retaking the math SAT than the previous math SAT score, and the tests remain a calibrated predictor of future
test scores at upper tail percentiles that are an order of magnitude higher than can be measured with the SAT.
13. While the 3,000 AMC-offering schools is a small fraction of the total number of high schools in the United
States, Ellison and Swanson (2016) note that at least 80 percent of the highest-performing students on several
other math contests and mathematical research contests took the AMCs. At less rarefied achievement levels, a
back-of-the-envelope calculation suggests that about 20 percent of the students at participating schools with
800s on the SAT math take the AMC contests.
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tests, and some students choose to take a test on both dates. In 2007, about 3 percent
of A-date-takers also took a B-date test.14 The test multiplicity necessitates rescaling
scores from the various year t tests to make them comparable to other tests from the
same year. In the years 2000–2006, the way in which we do this is to think of year t
scores as predictors of year t + 1 AMC 12 scores. We run separate linear regressions of
year t + 1 AMC 12 scores on scores on each year t test and consider two year t scores to
be equivalent if the predicted year t + 1 AMC 12 score is the same. This year-ahead
prediction is not possible in the final year of our data, so in 2007 we instead normalize
scores by comparing the performance of students who take both an A test and a B test
in 2007.15

Our normalization is not designed to put year t and year t¢ scores on a common scale.
Instead, we mostly avoid the difficulties inherent in comparing scores across calendar
years by focusing on students’ ranks within the set of students who participated in a
given year. In Section III.A, we present evidence that transforming scores to log ranks
produces ameasure inwhich the additive improvement in performance fromyear to year
is similar over a wide range of (high) initial performance levels. This ability to renor-
malize scores in such a way is another attractive feature of the AMC environment.
Our raw data consist of separate files of student-level scores on each test in each year.

The records contain a school identifier, the state in which the school is located, an
anonymization of the student’s name, and the student’s gender, grade, age, and home
ZIP code. We create a student-level panel data set by merging these files, assuming that
two scores belong to the same student if the name and school match and the age, grade,
and gender are consistent, or if the name and state are the same and the city, home ZIP
code, age, grade, and gender are consistent.16

In the full pre-2007 data set, we match 43 percent of Grade 9–11 student–years to a
score in the subsequent year. Note that failures to match result from both students who
do not participate in the following year and the limitations of our matching procedure;
for example, we will miss students who report their name inconsistently, students who
skip a grade,most studentswhomove, etc. Onewould expect high-achieving students to
bemore likely to take the AMC in subsequent years. Our match rates are consistent with
this. For example, amongGrade 9–11 students whowere among the 500 highest scoring
students in their cohort, the subsequent-year match rate is 80 percent.

14. The structure of the AMC contests changed twice in the period we study. In 1999, all students took a
common test similar to the AMC 12. In 2000, the AMC introduced the AMC 10 and offered younger students
the option of taking either test. The AMC 10 and 12 are similar—14 of the 25 questions were common to both
tests in the first year—but to be less intimidating to younger students and less affected by knowledge of above
grade-level material, the AMC 10 avoids logarithms and trigonometry and rarely has questions as difficult as
the five most difficult on the AMC 12.
15. Online Appendix A provides more details on the methodology and the resulting normalizations. An AMC
10 score of x turns out to be roughly equivalent to a score of 7/8 x on the AMC 12, but there are idiosyncratic
differences from test to test of about five to ten points on the AMC 12’s 150-point scale. There is more top-
coding of AMC 10 scores than AMC 12 scores, but an order of magnitude less than on the SAT. A perfect 150
on the AMC 10 is usually equivalent to about a 130 on the AMC 12. A few hundred students per year score at
least 130 on the AMC 12 versus about 15,000 who get perfect scores on the math SAT.
16. Only unique matches are kept in the data set for analysis. Students’ demographic variables are missing for
3–6 percent of observations. We consider two values of a variable to be “consistent” if they match or if one or
more values is missing. Grade is considered a match between a year t observation and a year t0 observation if
gradet - gradet0= t – t0.
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In our analyses of the evolution of students’ scores we define a student’s Adjusted-
Score in year t to be the rescaling of the score that they received on the first test offered by
their school in that year. Note that, at schools that offer both the A-date and B-date tests,
students who only take the B-date test in year t are coded as not participating in that year.
The primary reason for this decision is that we think doing otherwise would lead to
miscounts of high-scoring students.17

B. Summary Statistics and the Gender Gap in AMC Participation

In this section, we present some summary statistics on AMC scores and participation
rates. Gender differences in participation rates are not large, but there is some evidence
of gender-related selection into the contests.
Table 1 summarizes participation and scores by grade and gender. The top panel

contains information for female students. Female participation grows substantially
from ninth to tenth grade, from an average of about 19,000 ninth-grade girls per year
to about 28,000 tenth-grade girls per year. One reason for the growth may be that
some teachers hesitate to recommend the AMC tests to ninth-graders, regarding the

Table 1
Summary Statistics—Participation and Scores

Grade Level
Number of
Students

Statistics on AdjustedScore

Mean SD % ‡100 % ‡120

Girls

Grade 9 18,984 56.8 14.8 0.7 0.04
Grade 10 28,008 60.3 15.3 1.2 0.06
Grade 11 28,348 66.3 15.7 2.9 0.11
Grade 12 23,294 69.1 16.2 4.5 0.18

Boys

Grade 9 21,067 61.7 16.6 2.5 0.26
Grade 10 31,152 66.0 17.2 4.0 0.40
Grade 11 33,988 72.8 17.2 7.8 0.64
Grade 12 31,391 76.0 17.8 11.3 1.04

Notes: Table reports average annual AMC participation and scores by gender and grade level, weighting each
year 1999–2007 equally.

17. Miscounting is a concern because most schools offer only the A-date tests, and some of the most serious
students will take a B-date test at another area school that offers it if their school does not. Our procedure avoids
double-counting these students if the alternate location they find is a school offering the test on both dates,
which we think is by far the most common situation in which this occurs. Alternatively, we could have used all
of the B-date scores with some set of matching rules to filter out potential out-of-school students. Any such
procedure could at most increase the sample size by 2 percent.
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tests as too advanced. Awareness of the AMCs also presumably diffuses over time.
Female participation remains roughly constant from 10th to 11th grade. It then drops
by about 18 percent from 11th to 12th grade.18 One reason may be that 12th-grade
scores and awards come out too late to be listed on college applications.
The bottom portion of the table reports comparable statistics for boys. Male partic-

ipation is about 11 percent higher than female participation in ninth grade. Its growth
from ninth grade to tenth grade is similar to that for girls. The series then diverge a bit
more, as male participation continues to grow from 10th grade to 11th grade, and has
an 11th-to-12th grade decline that is less than half as large as that for females. The
pool of 12th-grade AMC takers is about 43 percent female. While the gender gap in
AMCparticipation increases over the course of high school, andwewill later investigate
differential dropout rates in detail, a first takeaway is that participation rates among
high-achieving girls and boys are not too different for the AMC 12. Most AMC takers
presumably come from the high end of the SAT population, and the population of
students with SAT scores of 600 or above is also 43 percent female.
The table also provides summary statistics on normalized AMC scores. The AMC

tests are not a good source for insights on average performance given the highly selected
populations, so we will not say much about them. Our previous papers focused on
counts of students achieving scores above certain high thresholds, for which we think
selection is less of an issue. Scoring 100 on the AMC 12 can be thought of as roughly
similar in difficulty to scoring 780 or 800 on themath SAT.Among 12th-graders scoring
at this level or higher, we find a male-to-female ratio of about 3.4:1. The male-to-female
ratio among students achieving comparable scores on the SATs is about 2:1. The gender
gap could be different on the AMC and SAT due to differences in what is being tested
and to the fact that the SAT is a cruder instrument. But the magnitude of the difference
suggests that there are some gender-related differences in participation rates, as would
be expected given the literature on gender differences in attitudes toward competition.
Scoring 120 on theAMC12 represents amuch higher level of achievement—roughly

in the 99.99th percentile of the full U.S. 12th-grade population. Here, we think that
selection into test-taking is less important. Our primary reason for saying this is that
reaching the highest levels of performance on theAMC12 requires a great deal of natural
ability and effort directed toward mastering high school mathematics, and we feel that it
is unlikely that students not interested in participating in math competitions would exert
the effort necessary to excel at these levels. We see this as analogous to saying that there
are unlikely to be many high school students who can throw a curveball and a 90-mph
fastball who are not participating in competitive baseball. Note that the male-to-female
ratio is much larger among students reaching the 120 level. This is part of a larger pattern
noted in Ellison and Swanson (2010).

C. The Gender Gap in High Math Achievement over the High School Years

In this section, we illustrate how the gender gap amongAMChigh-scorers changes over
the course of high school. Two important observations are that the gender gap is already
large in ninth grade and widens substantially over the high school years.

18. We have constructed the sample to include 9th-, 10th-, 11th-, and 12th-graders from all years, so the drop in
female participation noted here should not be contaminated by the time trend in AMC participation.

1686 The Journal of Human Resources

at
 M

A
SS

A
C

H
U

SE
T

T
S 

IN
ST

 O
F 

T
E

C
H

 o
n 

Ju
ly

 3
, 2

02
4.

 C
op

yr
ig

ht
 2

02
1

D
ow

nl
oa

de
d 

fr
om

 



Figure 1 reports the percentage of AMChigh-scorers in each gradewho are female for
various definitions of high scoring. The top line in the figure uses the least restrictive
definition, examining the 5,000 highest-scoring students in each grade–year. These are
very high-achieving students, but not extremely unusual ones: one could think of them
as on a trajectory to score 780 or 800 on the math SAT by the end of high school. At the
left endpoint we see that there is a substantial gender gap in ninth grade: only 30.5
percent of the high-scoring ninth-graders are female. Looking from left to right along
this line, the gender gap widens in each subsequent year. By 12th grade, only 21.8 percent
of the top 5,000 high-scorers are female. The drop from ninth grade to tenth grade is the
largest, but the decline is fairly steady.
The lower series present comparable estimates using more and more stringent defi-

nitions of “high-achieving,” going all the way to a definition that is two orders of mag-
nitude more demanding and examines just the top 1 percent of our initial high-achieving
pool. That each of the curves slopes downward indicates that the finding that the gen-
der gap widens over the course of high school is quite robust to how one defines high-
scoring. In proportional terms, the decline in the percent female from ninth grade to 12th
is between 29 percent and 35 percent along every curve except the lowest one.19

Ellison and Swanson (2010) highlighted that the gender gap is much larger when one
examines more extreme high-achievers. A comparison of the leftmost points of the
series in Figure 1 shows clearly that this pattern is already present by ninth grade. Girls
comprise 30.5 percent of the top 5,000 ninth-graders, but only 8.4 percent of the top 50
ninth-graders. One implication is that, if performance is highly persistent (which we

Figure 1
Percent Female by Grade and Achievement Level
Notes: Figure reports the average percent female, for each achievement group, across the six cohorts that we
observe for all four of their high school years during 1999–2007.

19. The 19 percent estimate for the top group is noisy given the small sample sizes: the top 50 is only 7–8
percent female, which means that there are typically just three or four girls in the top 50 of each grade–year.
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find), then the larger gender gap observed among extreme high-achievers relative to
ordinary high-achievers cannot be primarily driven by things that are happening during
high school. The subsequent analyses in this paper investigate the second fact visible
in the slopes in this figure: the gender gap widens over the high school years among
ordinary high-achievers, extreme high-achievers, and everyone in between.

III. Dynamics of Achievement among High-Achievers

In this section, we take a step back from gender-related issues and
present some more general evidence on the dynamics of achievement among high-
achieving math students. Our observations include that the distribution of mathematical
achievement is sufficiently spread out so that the top ninth-graders are already very high
in the overall score distribution, that high-achieving students must substantially im-
prove from year to year to keep up with their cohort, that there is substantial perfor-
mance persistence, and that it is unlikely that students will greatly improve their within-
cohort rank.

A. Growth and Variation in Absolute Performance

Although it is becoming increasingly common to take calculus in the junior year, and the
AMC contests only cover precalculus topics, top students are increasing their command
of the AMCmaterial and problem-solving techniques over the course of high school.20

To give some sense of performance improvement, Table 2 lists the average overall rank
that a student needed to have in order to be in the grade-specific top 50, top 100, top 500,
etc. For example, to rank among the top 100 ninth-graders, one only needs to score in the
top 1,173 overall, whereas a 12th-grader needs to score in the top 241 overall to be in the
top 100 in their cohort.
One immediate observation is that some students have already reached very high

achievement levels by ninth grade. For example, the 500th best ninth-grader is already
well within the top 5,000 12th-graders and hence is already at the level where wewould
expect a nearly perfect SAT score. The 50th best ninth-grader is well within the top 500
12th-graders.
While some ninth-graders are already very good, the table also makes very clear that

students must improve substantially from year to year to maintain their within-cohort
position. The right panel reports the percentage reduction in the overall rank that students
in various positions must make to maintain their within-grade rank. High-scoring ninth-
graders will need to improve their overall rank by roughly 40–60 percent in order to
achieve the same position relative to their peers as a tenth-grader. High-scoring tenth-
graders will need to improve their overall rank by about 50 percent. The required im-
provement between 11th and 12th grades is somewhat smaller, but still notable given that
most high-scoring 12th-graders will be studying calculus or something more advanced.
The similarity of the percentage change numbers within each column is striking,

given that the stringency of the definition of high achievement varies by two orders of

20. In 2015, more than 120,000APCalculus examswere taken by students in 11th grade and below. It was less
common for the cohorts we study, but there were already more than 30,000 students in 11th grade or below
taking AP Calculus when our first cohort was in 11th grade (2001).

1688 The Journal of Human Resources

at
 M

A
SS

A
C

H
U

SE
T

T
S 

IN
ST

 O
F 

T
E

C
H

 o
n 

Ju
ly

 3
, 2

02
4.

 C
op

yr
ig

ht
 2

02
1

D
ow

nl
oa

de
d 

fr
om

 



magnitude from the top to the bottom. This suggests that the log of a student’s rank is a
natural cardinal measure of performance to use when analyzing high-achieving stu-
dents. We see this as another feature of the AMC environment that makes it attractive to
study.21

One simple way to get a feel for what year-to-year improvement is typical at the
individual level is to examine the distribution of log(Ranki,t+1) – log(Rankit) among
students who take the test in both years t and t+ 1. This variable has a mean of -0.28 for
ninth-graders, -0.39 for tenth-graders, and -0.26 for 11th-graders. These are substantial
increases in performance.
The degree to which students improve from year to year likely differs for students in

different parts of the distribution. For example, the effort that students are putting into
improving their knowledge and problem-solving skills will differ. AMC performance in
any given year is a noisymeasure of a student’s underlying achievement level, whichwe
think of as the average score they would get if given similar tests multiple times. This
standard measurement error problem implies that one cannot estimate average achieve-
ment gains as a function of initial achievement via an OLS regression. Assuming this is
classical measurement error, however, we can use instrumental variable (IV) regressions
to estimate this relationship when some instrument for year t achievement is available.
Table 3 presents estimates of improvement as a function of initial performance obtained
from IV regressions of log(Ranki,t+1) – log(Rankit) on –(log(GradeRankit) – log(5000)),
using the log of a student’s within-grade rank in year t–1 as an instrument.22 The negative

Table 2
Growth in Absolute Performance

Within-Grade
Rank

Corresponding Overall Rank

Decrease in Overall Rank
Necessary to Maintain
Within-Grade Rank

across Grade Transitions

Grade 9 Grade 10 Grade 11 Grade 12 9/10 10/11 11/12

5,000 52,554 32,686 15,654 11,395 38% 52% 27%
1,000 15,674 5,734 3,293 2,186 63% 43% 34%
500 8,350 3,234 1,738 1,356 61% 46% 22%
100 1,173 668 290 241 43% 57% 17%
50 875 310 152 106 65% 51% 30%

Notes: Table reports the full-population rank of the Nth-best student in each grade.

21. When student performance can only bemeasured as awithin-year z-score, the dynamics of the year-to-year
changes in relative-to-cohort performance are more difficult to analyze for high-scoring students because
changes are highly asymmetric: high-achieving students can only improve their performance very slightly from
year to year, but can easily do much worse.
22. These regressions are run on the subsample for which previous year scores are available. The identifying
assumption is that rank in year t - 1 is another (noisy) measure of the student’s position in the latent expected
achievement distribution in year t, and that measurement error in year t-1 is uncorrelated with measurement
error in year t.
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coefficient estimates on the term reflecting initial achievement levels indicates that stu-
dents at higher achievement levels in the initial year are expected to make even larger
improvements in log rank.
The constant term in these regressions can be thought of as the average improvement

for a student who has the 5,000th best score in their cohort in year t. The estimates
suggest that these improvements in log rank are -0.50 for tenth-graders and -0.33 for
11th-graders. If we convert the mean improvements in Rank needed to maintain a given
within-grade rank in Table 2 to changes in log(Rank), they would be approximately
-0.74 in tenth grade and-0.32 in 11th grade.Hence, a tenth-graderwho ranks 5,000th in
their grade must improve by substantially more than the expected amount in order to
maintain their rank. Intuitively, this reflects that there are many more students ranked
below the 5,000th student than above. If the 5,000th-ranked student makes the average
improvement, then there will be more students jumping ahead of them due to above-
average gains than falling behind due to below-average gains.
Standard deviations of the full sample increases in log rank are 0.73, 0.86, and 0.96 for

9th to 10th, 10th to 11th, and 11th to 12th grades, respectively. Note that these will
reflect both the measurement error of the test as a measure of students’ underlying
achievement levels in both years and also true variation in the growth in achievement
from year to year. Online Appendix B presents a calculation examining changes over
multiple years to estimate the relative importance of the two components. It suggests
that themeasurement error component is larger than the variation in achievement growth
component, but that there is still substantial heterogeneity in students’ true year-to-year
achievement growth.23

Table 3
Average Achievement Gains as a Function of Initial Achievement

Dep. Var.: log(Ranki,t+1) – log(Rankit)

10th/11th 11th/12th

Variable Coeff. SE Coeff. SE

Constant -0.50*** (0.005) -0.33*** (0.005)
-[log(GradeRankit - log(5000)] -0.07*** (0.004) -0.05*** (0.004)

Number of observations 81,430 100,270
Root MSE 0.92 1.01

Notes: Standard errors in parentheses. *p< 0.05, **p< 0.01, ***p < 0.001. Table reports the results of IV
regressions of growth in absolute performance as a function of initial performance relative to cohort.
log(GradeRankit) instrumented with log(GradeRanki,t–1).

23. Further evidence on the role of measurement error can be observed in Online Appendix Table A3, which
shows that the sign of the estimated relationship between -[log(GradeRankit) - log(5000)] and log(Ranki,t+1)-
log(Rankit) flips when we instrument for log(GradeRankit), as in Table 3. That is, measurement error in
log(GradeRankit) leads to substantial mean reversion, which obscures the relationship between initial
achievement and year-to-year improvement in the OLS regression.
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B. Persistence and Mobility in Relative-to-Cohort Performance

We now focus on how students move up and downwithin their cohort from year to year.
Figure 2 presents a graphical view of the estimated rank-to-rank transition matrix. For
example, the height of the darkest shaded portion at the bottom of the leftmost bar
indicates that there is a 36 percent chance that a student who is among the top 50 in their
cohort in year twill again rank in the top 50 in year t+ 1, and the portion of the same bar
just above this indicates that there is an additional 16 percent chance that such a student
will rank from 51 to 100 in year t+ 1.24
One clear observation from the figure is that performance in year t is a strikingly

strong predictor of performance in year t+ 1, even when making comparisons that rely
on incredibly fine distinctions in year t performance. Comparing students who were
ranked in the top 50 in their grade in year t to those ranked 51–100, for example, the
higher-ranked students are more than twice as likely to achieve a top 50 score in year
t+ 1 (36 percent vs. 16 percent) and less than half as likely to score outside the top 500
(10 percent vs. 25 percent). Similar patterns are visible over and over in the other bars.
Students who were ranked 51–100 are more than twice as likely to achieve a top-100

Figure 2
Persistence in Math Performance—Forward Transition Matrix
Notes: Figure reports the forward transition probability of each year-within-grade rank group for students in
each year-within-grade rank group.

24. Due to the discreteness of AMC scores, there will typically be a number of students tied for positions that
cross each boundary. For example, in 2006, 14 11th-graders had scores of 124, which left them tied for
positions 196–209. In this situation, wewould include the experience of each of these studentswithweight 0.64
in our calculation of what happened to students with ranks of 201 to 500 in year t. Andwe similarly record each
student’s outcome as their probability of being in each rank group as though ties are broken at random.
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score in year t+ 1 than are students whowere ranked 101–200 at t. Students ranked 101–
200 at t are more than twice as likely to achieve a top-200 score at t+ 1 than are students
who ranked 201–500, and so on.
A second observation is that it is possible to move up in the distribution, but sub-

stantial improvements are quite unlikely. To help visualize this, we have outlined boxes
that correspond to the diagonal of the transition matrix using dashed lines. Some sub-
stantial improvements are present. For example, 14 percent of those ranked 101–200
within their grade in year t move into the top 100 in year t+ 1, including some moving
into the top 50. But the chances of improving by even one rank group is never above 16
percent, and the chances of all of the three-or-more group improvements are sufficiently
small as to be very hard to see in the figure.
A third observation is that dropping out of participation is relevant even among high-

achieving students. The heights of the white outlined boxes at the top of each bar corre-
spond to the percentage of students we were not able to find in the year t+1 data. Among
students who are ranked 1,001–5,000 in their grade in year t, we are unable to match 35
percent to a year t+1 score. The fact that the unmatched rate is 35 percent for students with
ranks from1,001–5,000 and just 14 percent for studentswith ranks from1–50 suggests that
at least 20 percent of the students in the 1,001–5,000 rank group truly do not participate
in year t. Dropping out appears to be less and less likely as one moves up in the ranks. The
majority of the unmatched students in the top group are probably unmatched because of
the limitations of our data set rather than due to the students actually dropping out.25

One final comment on the figure is that we feel it bolsters the case that the AMC is an
interesting measurement tool. While we always encourage readers to look up old test
questions online, with the belief that many will feel that the test seems nicely designed
to test problem-solving skills and students’ command of core precalculus topics, such
impressions cannot tell us how noisy a test is as a measure of some student capability,
nor how much we should care about the capability being measured. The level of per-
sistence in Figure 2 makes very clear that the AMC test is a sufficiently accurate and
consistent measure of some capability related to high achievement such that it is a good
predictor of year-ahead performance. And our earlier results on students’ gains from
year to year indicate that the capability beingmeasured is something that builds over the
high school years rather than something more stable like differential quickness or
accuracy in performing calculations.
We also present here a longer horizon backward-looking transitionmatrix. The bars in

Figure 3 show the fraction of students who achieved the rank corresponding to that bar
in 12th grade who were in each rank category in ninth grade. At the very highest levels
of achievement, the performance persistence we noted earlier remains striking. For

25. To investigate this issue, we looked manually through published lists of 2006 and 2007 high-scorers.
Among the top 50 students in each grade in 2006, we failed to find 2007 matches for 2.6 percent of ninth-
graders, 4.3 percent of tenth-graders, and 12.1 percent of 11th-graders. These figures should be compared to the
sum of the dropout rate and the probability of finishing outside the 2,000 in our algorithmic match, which is
about 18 percent on average across grades. Several factors are involved in the superiority of this manual match
over our algorithmic match: manually, we were able to identify students who switched schools, students who
took the test at a testing center in one year and in their high school in another year, and students who appear to
have listed their first name differently in different years. It is worth noting that matching failures are likely more
prevalent at the highest score levels due to high-performing students taking the exams at testing centers in lieu
of or in addition to their own high schools.
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example, we can see in the first bar that there are more holdovers from the ninth-grade
top 50 in the 12th-grade top 50 (about 25 percent) than there are students who have
moved up from the entire 201–40,000 range (about 21 percent). Only 5 percent scored
outside the top 1,000 as ninth-graders. Although there are a substantial fraction, 35
percent, whom we were unable to match to a ninth-grade score, given how few students
manage tomove up from the 1,000+ range into the top 50, we imagine that many of these
students are students we failed tomatch rather than true entrants. Some causes ofmatching
failures, including students who switch high schools or skip grades, will likely be more
frequent here as we are matching across a three-year span.
At the still extremely high level of students who rank 201–500 among 12th-graders,

there is more heterogeneity in ninth-grade origins. Students moving down from the top
200, holdovers from the ninth-grade 201–500 group, and students moving up from the
501–1,000 group each comprise about 10 percent of this group. We also see a much
larger number of students who had not done as well in ninth grade, with 25 percent
coming from outside the top-1,000 ranges.
At the lower (but still high) levels of 12th-grade achievement in the figure, improvement

since ninth grade plays an even more prominent role. Only about 5–9 percent of these
students in the 12th-grade 501–1,000 and 1,001–5,000 rank groups are students who have
dropped down from a higher ninth-grade rank group. Meanwhile, 12 percent and 19
percent, respectively, are students who have moved into these groups after having scores
that placed them outside the top 5,000 ninth-graders. These students have improved
by enough to overcome both their initial disadvantage and the substantially higher score

Figure 3
Early Performance of Top Math Students—Backward Transition Matrix
Notes: Figure reports the probability of each within-ninth-grade rank group for students in each within-12th-
grade rank group.
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needed to make the within-grade top 5,000 as a 12th-grader. The fraction of students that
we cannot match to a ninth-grade score is also much larger in these groups, at 53 percent
and 62 percent, respectively. The fact that the failure-to-match rate is so much larger here
than it was for the top-50 students suggests that a substantial number of the unmatched
12th-graders in these groups are true entrants who had not participated in ninth grade.
Early in this section, we noted that the gender gap among high-achieving math

students is already large in ninth grade. Given that performance is highly persistent, it
is not surprising that the girls are not able to overcome their initial disadvantage. But
performance persistence makes it all the more striking that the gender gap among high-
achieving math students widens substantially over the high school years. Some of the
more detailed findings in this section highlight channels that could be relevant: large
performance improvements are needed to maintain one’s within-cohort rank, some
students are dropping out of participating (at least at all but the highest ranks), and the
three-year time span between ninth and 12th grades is long enough to allow quite a
number of students who were not high-performers in ninth grade to improve or enter
and achieve a high rank by the end of high school. Gender-related differences in any of
these dimensions could contribute to the widening gender gap.

IV. Gender Differences in Dynamics
and a Decomposition

In this section, we look at gender-related differences in the dynamics of
year-to-year performance and present a decomposition that lets us quantify the relative
importance of several factors to the broadening of the gender gap in achievement over
the high school years.

A. Differences in Dynamics

We first look for gender-related differences in year-to-year improvement within the
population of students who participate in the AMC tests in consecutive years. Table 4
presents estimates from an OLS regression:

logðGradeRank it+1Þ - logðGradeRank itÞ = b1Femalei +b2logðGradeRankitÞ
+b3logðGradeRankitÞ2 +b4Femalei
· logðGradeRankitÞ+ b5Femalei
· logðGradeRankitÞ2 + b6B-Dateit
+b7Bothit + dgðitÞ + ct + eit

where the dg and gt are grade and year dummies. Note that the dependent variable is the
increase in a student’s rank, so that a positive coefficient on any variable implies that an
increase in that variable is associated with decreased year-to-year improvement in AMC
performance. The first column of Panel A reports estimates from this regression run on
the set of students who ranked in the top 5,000 within their grade in the initial year. The
negative coefficient on the initial rank indicates substantialmean-reversion inwithin-grade
rank, as one would expect given that test scores are a noisy measure of underlying ability.
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The primary coefficient of interest in the regression is the coefficient on the female
dummy. It is positive and highly significant, indicating that girls are improving by less
from year to year than boys by about 31 log points. The second main estimate of
interest is whether there are gender-related differences in the variance of year-to-year
improvement. Panel B of the table reports gender-specific means of the squared resid-
uals from the above regression. Again, we find a statistically significant gender dif-
ference: there is greater year-to-year variance in the boys’ performances. Hence, we
have identified two separate features of the dynamics that would tend to contribute to a
widening of the gender gap among the highest achievers: (i) the girls’ mean improve-
ment from year to year is lower, and (ii) the variance in their year-to-year improvement
is also lower.
In the above regression, there is also a moderately sized but statistically signif-

icant coefficient on the interaction between the female dummy and within-grade rank,

Table 4
Gender Differences in Within-Cohort Rank Dynamics for High-Achieving Students

Dep. Var.: log(GradeRanki,t+1) – log(GradeRankit)

Variable Top 5,000 in Grade at t Top 500 in Grade at t

Panel A

Female 0.31*** 0.32***
(0.012) (0.055)

log(GradeRankit) -0.25*** -0.09***
(0.007) (0.024)

log(GradeRankit)
2 -0.02*** 0.01

(0.002) (0.010)

Female · log(GradeRankit) -0.03* 0.01
(0.014) (0.065)

Female · log(GradeRankit)2 -0.01 0.01
(0.007) (0.039)

Panel B

r̂2
male 1.51*** 2.18***

(0.009) (0.033)

r̂2
female 1.20*** 1.99***

(0.015) (0.078)

Number of observations 81,570 9,682

Notes: Regression sample is restricted to students in Grades 9, 10, or 11 in the initial year and whose genders are
nonmissing. The log(GradeRankit) control is adjusted by subtracting the sample mean. Regressions also include
unreported year and grade dummies, dummies for students taking theB-test (B-Dateit), and dummies for students
taking both the A-test and B-test (Bothit). The latter variables are intended to control for unobserved differences
in students’ commitment to the contests. Standard errors in parentheses. *p< 0.05, **p< 0.01, ***p< 0.001.
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indicating that the gender gap in mean improvement is larger for higher achievers. To
examinewhether thismay reflect a substantial difference among the highest achievers, the
second column of Table 4 estimates the same regression on the sample of even higher
achievers who were ranked in the top 500 in their cohort in the initial year. We find that
things are not appreciably different at this level. The gender gap in mean improvement is
estimated to be 32 log points per year, and the residual variance is again lower for the girls.
In unreported results, we also estimated the above regressions separately on 9th-, 10th-,
and 11th-graders and did not find substantial differences in either finding across grades.
Differential rates of dropping out of test taking could also contribute to changes in the

gender gap among high-scorers. To explore this we define an indicator Dropoutit+1 for
whether each year t high-scorer could not be found in the year t+ 1 data, and estimate the
OLS regression:26

Dropoutit+1 = b1Femalei +b2logðGradeRank itÞ+ b3logðGradeRankitÞ2
+b4Femalei · logðGradeRankitÞ+ b5Femalei
· logðGradeRankitÞ2 +b6B-Dateit +b7Bothit + dgðitÞ + ct + eit

The first column of Table 5 reports estimates run on students who were in the top
5,000 in their grade in year t. The primary coefficient of interest is the female dummy.
The estimate of 0.023 indicates that girls are 2.3 percentage points more likely to drop
out of participating than boys with comparable scores. The estimate is highly statisti-
cally significant, so we have identified a third factor contributing to the widening of the
gender gap over the course of high school.
The second through fourth columns of the table present similar regressions estimated

separately on the students in 9th, 10th, and 11th grades. The gender gap in dropout rates
is larger in the 11th to 12th grade transition than in the other years.Girls are 4.5 percentage
points less likely to participate in 12th grade than boys who had comparable 11th-grade
scores. Early in high school, the gender gap in dropout rates is much smaller.
All regressions include controls for the student’s within-grade rank in the initial year.

The positive coefficients on these controls reflect that higher-scoring students are sub-
stantially less likely to drop out. The coefficients are quite similar across all three grades,
indicating that this relationship is fairly stable over the course of high school.
The final column of Table 5 looks at more extreme high-scorers whowere among the

top 500 students in their grade inyear t. The point estimate of the gender-related difference
in dropout rates ismuch smaller in this sample, just 0.2 percentage points, but the standard
error is such that we can neither reject that the gender gap is zero, nor that it is the same as
in the top 5,000 sample.
We noted earlier that some high-scorers at the end of high school are students who

came later to math competitions. To examine whether there are also gender-related
differences in this aspect of the dynamics, Figure 4 graphs the fraction female among all
Grade 9–11 students who were in each rank group in some year from 1999–2006, and
the fraction female among Grade 10–12 students in the rank group in 2000–2007 who

26. Recall that Dropoutit+1 will reflect both true dropouts and students we fail to match for other reasons. The
B-test dummy takes on a value of 0.02 and is statistically significant. We suspect that this reflects in part that a
higher fraction of students taking B-date tests are students taking the test at a location other than their regular
school, which makes us more likely to fail to match their performances across years. We hope that such
matching failures are not gender-related.
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Table 5
Gender Differences in Dropout Rates for High-Achieving Students

Dep. Var.: Dropout t/t+ 1

Sample: Top 5,000 in Grade X in Year t
Top 500

Variable All Grades Grade 9 Grade 10 Grade 11 All Grades

Female 0.023*** 0.005 0.021*** 0.045*** 0.002
(0.004) (0.006) (0.006) (0.007) (0.013)

log(GradeRankit) 0.069*** 0.073*** 0.066*** 0.069*** 0.030***
(0.002) (0.004) (0.004) (0.004) (0.006)

log(GradeRankit)
2 0.008*** 0.008*** 0.009*** 0.008*** 0.004

(0.001) (0.001) (0.001) (0.001) (0.002)

Female · log(GradeRankit) 0.001 0.006 -0.004 -0.002 -0.005
(0.005) (0.008) (0.008) (0.008) (0.016)

Female · log(GradeRankit)2 0.001 0.004 -0.005 0.001 0.007
(0.002) (0.004) (0.004) (0.004) (0.008)

Number of observations 119,325 39,284 39,747 40,294 12,020

Notes: Regression sample is restricted to students in Grades 9, 10, or 11 in the initial year and whose genders are
nonmissing. The log(GradeRankit) control is adjusted by subtracting the sample mean. Regressions also include
unreported year and grade dummies, dummies for students taking the B-test (B-Dateit), and dummies for students
taking both the A-test and B-test (Bothit). The latter variables are intended to control for unobserved differences in
students’ commitment to the contests. Standard errors in parentheses. *p < 0.05, **p < 0.01, ***p < 0.001.

Figure 4
Gender Composition of AMC Entry
Notes: Figure reports the gender composition of highly ranked students new to the AMC in comparison with
students in the rank group in the previous year. All calculations are simple unweighted averages of the means
for each grade–year cell.

Ellison and Swanson 1697

at
 M

A
SS

A
C

H
U

SE
T

T
S 

IN
ST

 O
F 

T
E

C
H

 o
n 

Ju
ly

 3
, 2

02
4.

 C
op

yr
ig

ht
 2

02
1

D
ow

nl
oa

de
d 

fr
om

 



are entrants. In all but the top rank group, we find that the fraction of female students
among the entrants is slightly lower than the fraction among the students who were in
that group in the previous year. On average, the difference is about one percentage
point.27 This gender difference inAMCentry is a fourth contributor to the broadening of
the gender gap over the high school years.
To recap, we have identified four gender-related differences in the dynamics of

student achievement that will contribute to the widening of the gender gap in high
achievement on the AMC over the high school years. High-achieving girls are on
average not improving by as much from year to year, there is less variance in their
year-to-year improvement, they are more likely to drop out of participating (espe-
cially after 11th grade), and we see fewer girls among the high-scoring entrants whom
we cannot find in the previous year’s data.

B. A Decomposition of Changes in the Gender Gap

In this section, we define a decomposition of the change in the gender gap into portions
attributable to various differences that provides a measure of their relative importance.
Our analysis focuses on changes in the fraction lfXt of students in achievement group

X at time t who are female. (We will often use being in the top 50, 500, or 5,000 as the
group X.) Here, we relate this to various aspects of differences in the boys’ and girls’
transition matrices.

Proposition 1. The change in the fraction female in group X can be written as:

lfXt+1-l
f
Xt =D

drop
X +Dcont

X +Dgrow
X +Dentry

X +Dmech
X :

See Online Appendix C for algebraic expressions of each term and proof.
The first term in the decomposition, Ddrop

X , can be thought of as the change in female
representation that is due to girls dropping out at a different rate (assuming that the girls
who dropped out would have succeeded at the same rate as the girls who continued to
participate). The second term, Dcont

X , reflects the difference in rates at which girls who
continue to participate improve by enough to remain in rank group X. The third term,
Dgrow
X , reflects the difference in rates at which lower-ranked girls versus boys subse-

quently climb into groupX. The fourth,Dentry
X , reflects any discrepancies between female

representation among the high-scorers who did not participate in the previous year and
what would be expected given the total number of entrants and female representation
among the previous year’s high-scorers.
The final term in the decomposition, Dmech

X , captures mechanical changes that would
occur even if there were no gender-related differences in the transition process, due to
asymmetries in the initial conditions. There are mechanical effects pushing in both
directions. A negative effect is that the girls in each rank group X are disproportionately

27. It is possible that there are gender-related differences in our ability to match students. For example, one
gender could be more likely to fill in their name differently in different years. However, girls are overrepre-
sented in the pool of year t high-scorers whom we cannot match to a year t + 1 score and underrepresented
among year t + 1 high-scorers whom we cannot match to a year t score. The potential gender-related matching
errors suggested by these results have opposite sign.
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found in the lower part of the rank group, so girls in X would be less likely to avoid
dropping into a lower group in the following year. Working in the opposite direction,
there are also more girls in the rank group just below X than in group X. With gender-
independent dynamics, this would result in the set of students who move up into rank
groupX in the next year beingmore heavily female. The sign of the netmechanical effect
Dmech
X will depend on which of these countervailing effects is larger.
As discussed in further detail in Online Appendix C, we implement this decompo-

sition by estimating the transition probabilities both for the full population and for girls
as smooth functions of the initial year rank via local linear regressions,with log(Rank) as
the right-hand-side variable. We do this separately for students in 9th, 10th, and 11th
grades, pooling the data for all six cohorts within each regression.
One version of our basic fact about the widening gender gap was that the percent-

age of female students in the top 5,000 drops from 30.5 in ninth grade to 21.8 in 12th
grade. This is a drop of 8.7 percentage points over three years, which is about three
percentage points per year. The first row of Table 6 presents a decomposition of this
change.28 It indicates that by far the largest source of the drop—responsible for 3.6
percentage points, which is more than 100 percent of the drop—is Dgrow

X , the term in
our decomposition that reflects differences in the rates at which male and female
students at ranks below 5,000 improve their performance and “grow” into the top
5,000. Note that this term is designed to control for how far below the top 5,000 cutoff
male and female students were in the previous year; it is due only to differences in the
probabilities that male and female students at each given rank outside the top 5,000
move up into the top 5,000. This in turn will reflect both the differences we identified
earlier in both average improvements from year to year and in the variance of stu-
dents’ improvements.29

Table 6
Decomposition of Declines in Fraction Female in Top Rank Groups

Grade Level
Achievement

Level
Change in %

Female

Decomposition of Decline

Drop Cont. Grow Entry Mech.

Average Top 5,000 -3.1 -0.4 -1.2 -3.6 -1.1 3.5
9/ 10 Top 5,000 -4.6 -0.1 -1.4 -2.9 -2.2 2.0
10/ 11 Top 5,000 -2.3 -0.4 -1.1 -3.7 -0.8 3.8
11/ 12 Top 5,000 -2.3 -0.9 -1.1 -4.3 -0.4 4.8

Average Top 500 -1.9 -0.3 -1.0 -4.5 -0.4 4.1
Average Top 50 -0.5 -0.3 -0.8 -3.0 0.2 3.1

28. The “average” decomposition is obtained by averaging separately estimated decompositions of the
changes from 9th to 10th, 10th to 11th, and 11th to 12th grades.
29. The latter matters here because students outside the top 5,000 will need to improve by substantially more
than the average amount to move into the top 5,000.
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Two other features of the dynamics are a little less than one-third as important as the
growth effect: Dcont

X , which reflects the reduced rate at which highly ranked female
students who take the test maintain their top-5,000 position, and Dentry

X , which reflects
the lower fraction of female students among “entrant” high-scorers. The difference in
dropout rates is a smaller contributor on average.
The final column indicates that the total drop would be much larger were it not for a

positive mechanical effect. To appreciate why this effect can be large in practice, recall
that the fraction female is much higher in the population of test-takers outside the top
5,000. For example, for tenth-graders it is 0.26 for students in the top 5,000 and 0.40 for
students who are ranked between 5,001 and 20,000. Although each individual 5,001–
20,000 student is not very likely to move into the top 5,000 in 11th grade, together they
will account for about 23 percent of the year t+ 1 Grade 11 top 5,000. If the dynamics
were gender-independent, then the fraction of girls in this moving-up group would be
close to 40 percent, and this would substantially bring up the average percent female
variable in the top 5,000.
The next three rows of the table report the separate 9th to 10th, 10th to 11th, and 11th

to 12th grade decompositions that went into the average discussed above. Recall that
gender gap widened most from ninth grade to tenth grade. The entry effect is relatively
more important at this stage. The changes from 10th to 11th grade are very similar to the
overall average. In the 11th to 12th grade transition, the growth effect is even more
important, dropout plays a role, and the entry effect is unimportant.
The final two rows of the table focus on more extreme high-achievers. Recall that

the fraction female in the top 500 declined from 18 percent in ninth grade to just 12
percent in 12th grade. This 35 percent decrease was larger than the 29 percent de-
crease at the top-5,000 level, although it is smaller in percentage point terms (about
two percentage points per year). The importance of the growth process to the evo-
lution in the gender gap comes through even more strongly here—differences in the
probabilities with which boys and girls at each lower rank are able to move into the top
500 are much more important than the other differences we’ve identified. The entry
and dropout effects are both just minor factors, consistent with the view that few true
entrants will make it all the way to the top 500, and few students will drop out after
earning such high scores.
The bottom row looks at even more extreme high-achievers, who scored in the top 50

in their grade. Here, the dropout and entry effects continue to fade to insignificance
relative to the large growth effect. What remains are the large growth effect and a
continuation effect, again offset in large part by the mechanical effect.30

The small numbers that come up when doing top-50 calculations may make it easier
to understandwhy themechanical effect is so large. On average, 18.1 of the year t+ 1 top-
50 students will be repeats from the year t top 50. They will be joined by 19.5 students
moving up from ranks 51–500. If the students moving up were randomly drawn from
their rank groups, then about 16 percent of themwould be female. Hence, their presence

30. In order to account for noise in the decomposition exercise introduced by the local linear regressions, we
performed a nonparametric bootstrap of the decomposition procedure, resampling at the student level and
holding ranks fixed across 2,000 bootstrap draws. As shown in Online Appendix Table A2, all terms in Table 6
are estimated with a great deal of precision, with the exception of several factors at the top-50 level.
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would increase the overall percent female in the top 50 by about (19.5/50) · (16 – 9)z3
percentage points. The magnitude of these mechanical effects makes the broadening
gender gap even more striking—the widening of the gender gap occurs despite the fact
that every year there are many more girls well positioned to move into the top 50 (or 500
or 5,000) than currently in the top 50 (or 500 or 5,000).

V. Potential Mechanism: Reactions to Disappointment

So far, we have tried to improve understanding of the widening of the
gender gap in highmath achievement over the high school years by providing descriptive
evidence on the dynamics of performance that any potential explanation would have to
account for. In this section, we exploit the multistage nature of the AMC series to provide
evidence with a more causal flavor on the feedback mechanism. Specifically, we inves-
tigate gender differences in how students react to disappointment.
The AMC 10/12 contests are the first stage of a series. A number of awards are given

out along theway, and students take pride in how far they advance. For most of the high-
achieving students in our sample, the most salient potential accomplishment is qualify-
ing for the American Invitational Mathematics Exam (AIME).31 Qualifying keeps their
math competition season alive for another month, and they will list it on their college
applications. Many who fall just short of the cutoff for AIME qualification will be
disappointed. Our discussions of “reactions to disappointment” should be understood
as shorthand for how students react to this disappointment relative to how they react to
the positive feedback that comes with qualifying.
The “rational” response to falling just short might be to redouble one’s efforts. One

consideration pushing in this direction is that not having previously been an AIME
qualifier should raise the incremental benefit that qualifying provides to one’s resume;
and students have learned (given how much students typically improve from year to
year) that they have a good chance of qualifying in the subsequent year. There are,
however, other forces that might push rational students in the opposite direction. For
example, a negative signal about the returns to investing in math could incentivize a
reallocation of effort toward other subjects.32 It also seems plausible that students
might react to the disappointment by investing less inmath for behavioral reasons. In light
of the literature on gender differences in coursework, self-confidence and interest in
competition (for example,Wang,Eccles, andKenny 2013;Niederle andVesterlund 2007,
and Croson and Gneezy 2009), one could easily imagine that there are gender differences
in the rational and behavioral responses.
The rules for advancement from the AMC 10/12 to the AIME are a bit complicated.

Students qualify if they score at least 120 on the AMC 10 or 100 on the AMC 12. They

31. In the years in our sample roughly 500–750 ninth-graders, 1,000–2,000 10th-graders, 3,000–5,000 11th-
graders, and 4,000–6,000 12th-graders qualify. In later stages, students who score highly enough on the AMC
10/12 and AIME are invited to participate in the USA Math Olympiad (USAMO). High USAMO scorers are
invited to the Math Olympiad Summer Program (MOP). SixMOP students are selected to represent the United
States at the International Math Olympiad (IMO).
32. This reallocation could involve reallocating effort toward other competitive endeavors (for example,
biology, chemistry, physics, linguistics, or informatics olympiads or debate competitions) or to coursework or
noncompetitive extracurriculars.
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also qualify if they are among the top 1 percent of U.S. test-takers on the particular (A or
B) AMC 10 that they took, or among the top 5 percent on the particular AMC 12.33 The
rules are an ex ante attempt to treat the tests roughly equally, but in practice the ex post
level of correctly measured performance at which the cutoff falls varies from test to test.
From our perspective, this is fortuitous in that it makes the AIME qualification “treat-
ment” less collinear with performance.34 As an initial look at the data, Figure 5 provides
a regression discontinuity (RD)–style plot of the probability with which students with
scores in each one-point score band cannot be found in the next year’s data. Students in
the zero band and all students to the right qualified for the AIME. We report the means
separately for boys and girls and add separately estimated regression lines on each side
of the cutoff. The figure strongly suggests that there is a discontinuous jump in the
probability of dropping out of future participation when students fall just short of
the AIME cutoff.

Figure 5
Reactions to Disappointment—“Dropout” Rates
Notes: Figure reports the raw probability that students with scores around the AIME cutoff “drop out” of
participating in the next year, by gender. Running variable is distance between the student’s score on the first
test they took in a given year and the AIME cutoff for that test–year. Lines indicate linear fit within 24 points
of cutoff.

33. Hence, the cutoff can be below 100/120 but never above.
34. Although some students may be aware that the AIME cutoff for the AMC 10 is often 120, and the cutoff for
the AMC 12 is often 100, it would nevertheless be difficult for students to “game” the cutoff and strategically
score just above it. If gaming were common, wewould expect to see bunching of students right at the cutoff. As
shown in Online Appendix Figure A1, the decline in student counts in a neighborhood of the cutoff is smooth
for both boys and girls, and there is no evidence of bunching.
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The noisiness of the female data on the right side of the figure reflects that there are a
limited number of girlswith scoresmore than ten points above theAIME cutoff.35 But in
other cases—for example, the data points for boys exactly at and six points below the
AIME cutoff—substantial departures from the regression lines occur, despite sample
sizes that are quite large. We believe that this reflects the role of unobserved student
characteristics that do not covary smoothly with students’ scores relative to the cutoff.
To illustrate why this is plausible, note that the most common AMC 10 cutoff is 120. In
2002–2006, the unique way to score 120 was to answer all 25 questions and get 20
correct and five wrong.36 The unique way to get the score just below 120, 119.5, was to
attempt just 18 of the 25 questions and get 17 correct and one wrong, with seven left
blank. The students scoring 119.5 and 120 may therefore be different in unobserved
ways. For example, the 120 students may be quicker, less accurate, and more risk-
loving. Such discontinuous changes in unobservables of this variety would make the
standard RD estimator of the causal effect of AIME qualification inappropriate.
We try to estimate effects in a manner that is robust to this potential problem in two

ways. First, we simply estimate a regression similar to our earlier dropout regression,
with the addition of a dummyvariable for failing to qualify for theAIME, andwe restrict
our analysis to the subsample of students who were within two correct answers of the
AIME cutoff on either side. When the AIME cutoff is 120, we include students who
answered 25 questions and got 18 or 19 correct (failing to qualify with a 108 or 114,
respectively), as well as students who got 20 or 21 correct (qualifying with a 120 or 126,
respectively). In such a sample, where the number of students answering each number of
questions is roughly balanced, the qualification dummy would be mostly uncorrelated
with any function of the number of questions answered, and we would hope that our
quadratic in log(GradeRank) would capture any smooth relationship between higher
achievement and dropout rates, whereas the dummy for failing to qualify would capture
any discontinuous jump at the year test-specific cutoff. We also explicitly control for
whether a student scored in each of the subsets of scores, for example, {., 108, 114,
120, 126,.} and {113.5, 119.5, 125.5} that are possible when students attempt a given
number of questions. Given the variety of scoring rules used in different years, this
involves adding a total of 18 dummy variables and can be thought of as an estimator that
will give us the causal effect of failing to qualify on the probability of dropping out,
provided that the unobservables are smooth across the cutoff once we have controlled
for the differences related to the number of questions a student attempted.
The first column of Table 7 presents estimates from this OLS regression.37 Our main

interest in conducting these regressions is on the effect of the disappointing outcome
of failing to qualify for the AIME. The main effect on this variable is substantial, 3.7

35. See Online Appendix Figure A1 for a histogram, by gender, of the distribution of students relative to the
AIME cutoff.
36. In 1999, the AMC had 30 questions and gave five points for a correct answer and two for a blank answer. In
2000–2001, the tests gave six for a correct answer and two for a blank answer. In 2002–2006, the score for a
blank answer increased to 2.5.
37. The regression also includes unreported year and grade fixed effects, a dummy for taking the B-date test, a
dummy for taking both theA-date andB-date tests, a quadratic in log(GradeRank), and Female interactionswith
the linear and quadratic log(GradeRank) terms.We normalizewithin-grade rank separatelywithin each grade so
that the adjusted log of within-grade rank variable has mean zero within each grade for students with scores
exactly at the AIME cutoff. With this normalization, for example, the coefficients on the Female·Grade 9
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percentage points, and highly statistically significant. One way to think about the mag-
nitude is that it is comparable to the participation gender gap for 11th gradegirls—that is, it
means that an 11th-grade boy with a score just below the AIME cutoff will be almost as
likely to drop out of participating as an 11th-grade girl who scored just above the cutoff.
The second main coefficient of interest is the differential effect that failing to qualify

for the AIME has on girls. The estimate indicates that the decrease in the probability of
participation is 1.9 percentage points larger for girls than for boys—that is, girls are even
more likely than boys to cease participating in the AMCs when they experience a
disappointing outcome (this difference is statistically significant at the 3 percent level).
The effect on a girl of just missing the AIME will be the sum of the two estimated

Table 7
Reactions to Disappointment—Regression Discontinuity Evidence
on “Dropout” Rates

Dep. Var.: Dropout t/t+1

Sample:

Within Two Answers

Optimal Bandwidth

Male Female

Estimation:

Variable OLS RD with Controls

Female ·Grade 9 -0.006
(0.011)

Female ·Grade 10 0.009
(0.008)

Female ·Grade 11 0.038***
(0.006)

Below AIME cutoff 0.037*** 0.034*** 0.042***
(0.006) (0.007) (0.012)

Female ·Below AIME cutoff 0.019*
(0.009)

Bandwidth 10/12 12.043 10.575
Number of observations 139,874 701,686 614,014

Notes: Standard errors in parentheses. *p < 0.05, **p< 0.01, ***p< 0.001.

interaction can be thought of as giving the gender difference in dropout rates for students who qualified for the
AIME with the lowest possible score.
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coefficients, so girls with scores just below the AIME cutoff will be 5.6 percentage
points less likely to participate in the following year than girls who just barely qualify for
the AIME. This is consistent with previous literature on gender differences in self-
confidence and responses to competition, suggesting that those findings are relevant
even to the set of highly accomplished girls we are studying, and providing us with a
causal link identifying a factor that contributes to thewidening gap. The gap is, however,
substantially smaller than the roughly ten percentage point gap Buser and Yuan (2019)
found in a similar analysis of Dutch data, and it will only account for a small portion of
the observed widening of the gender gap over the high school years.38

Second, we implement a RD estimator with local linear controls for the running vari-
able (distance to AIME cutoff as in Figure 5), an endogenous bandwidth, and robust
inference, as inCalonico,Cattaneo, andTitiunik (2014), separately on themale and female
samples. In these regressions,we allow for gender-specific nonlinear effects of the running
variable on each side of the cutoff and control for year and grade fixed effects, a dummy for
taking the B-date test, a dummy for taking both the A-date and B-date tests, and dummies
for number of questions attempted.39

As reported in the second column of Table 7, the estimated effect of the failing-to-
qualify “treatment” on boys is that it increases their probability of dropout by 3.4 per-
centage points. This is very similar to the OLS estimate and is similarly significant.40 The
effect for girls in the third column is somewhat smaller than the OLS estimate, at 4.2
percentage points, and remains highly significant, although the standard error is larger.
We can therefore conclude that our finding that both boys and girls are more likely to
drop out of future competition is robust to the more flexible allowance for unobserved
heterogeneity.41

The 0.8 percentage point difference between the male and female dropout effects is
estimated sufficiently precisely to rule out the larger difference found in Buser andYuan
(2019), and suggests that this causal channel can only account for a small portion of the
observed widening of the gender gap. However, the standard errors are sufficiently large
in the “optimal bandwidth” specifications that we must also say that whether the gender
gap in reactions to disappointment is statistically significant is sensitive to how one
controls for potential unobserved heterogeneity.
Disappointment may also affect the performance of students who continue to par-

ticipate in the AMC tests by affecting the effort students put in over the course of the
following year. To look for effects of this type, Table 8 reports coefficient estimates from
regressions like those in Table 4 examining the change in within-grade rank between
year t and year t+ 1, but using RD regressions as in Table 7.
The first main coefficient of interest in this regression is again the coefficient on the

dummy for missing the AIME cutoff. In the OLS regression, we get a positive, sig-
nificant coefficient, which again suggests that students are not doing better after ex-
periencing disappointment. Students with scores just below the AIME cutoff have a

38. The estimate here is sufficiently precise to rule out an effect close to that found in Buser and Yuan (2019).
Their data set is two orders of magnitude smaller, resulting in standard errors that are sufficiently large that they
typically cannot rule out a smaller gap of the size we estimate.
39. In these regressions we use the default optimal bandwidth as implemented in Stata’s rdrobust package. An
optimal bandwidth of 12 points is selected for males, vs. 10.6 for females.
40. Both rdrobust results described here are highly significant (p-values £ 0.01) according to both conventional
and robust inference methods; conventional standard errors are reported in the Table for brevity.
41. This contrasts with Buser and Yuan (2019), who are unable to find an effect for boys.
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larger increase in their expected year rank (that is, they do worse) than do students with
scores just above theAIME cutoff. Themagnitude is not very large in economic terms—
students’ ranks are increasing by a little more than 10 percent. However, the fact that it is
positive is noteworthy: we have seen that scoring just below the AIME cutoff induces
some students to drop out, and the most natural guess would be that these dropouts are
relatively weak students, which would result in the pool of continuing students with
scores just below the AIME cutoff being positively selected.
In contrast to our earlier result on girls’ reacting worse to disappointment in terms of

being more likely to drop out, girls who continue participating despite experiencing
disappointment show less of a disappointment effect in their performance. This could
reflect that the sample of continuing girls is more selected, but could also reflect that girls
who do not drop out are less likely to reduce their effort. Regardless, it appears that
differences in dropout rates are the channel throughwhich gender differences in reactions
to disappointment might contribute to a widening gender gap. The positive coefficient

Table 8
Reactions to Disappointment—Regression Discontinuity Evidence
on Achievement Gains

Dep. Var.: log(GradeRanki,t+1) – log(GradeRankit)

Sample:

Within Two Answers

Optimal Bandwidth

Male Female

Estimation:

Variable OLS RD with Controls

Female ·Grade 9 0.412***
(0.030)

Female ·Grade 10 0.309***
(0.022)

Female ·Grade 11 0.285***
(0.017)

Below AIME cutoff 0.097*** 0.048* 0.048
(0.017) (0.020) (0.039)

Female ·Below AIME cutoff -0.067**
(0.025)

Bandwidth 10/12 13.041 8.156
Number of observations 85,545 324,325 247,507

Notes: Standard errors in parentheses. *p < 0.05, **p< 0.01, ***p< 0.001.
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estimate on the female dummy indicates that (along the lines of what was reported
earlier) girls just above and below theAIME cutoff are still improving by less on average
than boys with comparable scores.
The remaining columns of the table provide estimates of the effect of failing to qualify

for the AIME on subsequent year performance from the optimal bandwidth RD pro-
cedure. The effect of failing to qualify for the AIME on boys’ year-to-year improvement
is estimated to be smaller at 0.048 and onlymarginally significant; the point estimate for
girls’ reactions is identical at 0.048, though it is not statistically significantly different
from zero.
To summarize, students appear to react to the disappointment at falling short of the

AIME cutoff both by being more likely to drop out and by improving by less in the
subsequent year conditional on not dropping out. The dropout effect may be larger for
girls, though this result is sensitive to specification. This could be one factor contributing
to the widening of the gender gap, particularly given girls’ lower performance in earlier
grades and particularly if the observed disappointment effects generalize to other parts
of the score distribution; however, consistent with our above decomposition results,
these effects can at most account for a small portion of the observed widening.

VI. Conclusions

We used data from the American Mathematics Competitions to docu-
ment that the gender gap among high-achieving math students is already quite large by
ninth grade. Girls comprise just 30 percent of the 5,000 highest-scoring ninth-graders
on the AMC contests, 18 percent of the 500 highest scoring ninth-graders, and just 8
percent of the top 50. One takeaway is that, to fully understand the gender gap in high
math achievement among high school students, it will be necessary to examine pre-high
school data. We hope that our paper will spur further work in this direction.
A secondmain finding, which is the focus of most of this paper, is that the gender gap

in high math achievement widens substantially over the high school years. The largest
change occurs between ninth and tenth grades, but it is a fairly steady process clearly
visible in every year. The fraction female among students who are among the top 5,000
in their grade on the AMC test drops from 30 percent in ninth grade to 22 percent in 12th
grade. Among students who are among the top 500 in their grade, the drop is from 18
percent in ninth grade to just 12 percent in 12th grade. These are substantial changes.
They would be hard to reconcile with the simplest views of gender gaps stemming from
some time-invariant biological difference, and theymotivate lookingmore closely at the
year-to-year dynamics of student performance over the high school years.
Our initial analysis of the dynamics of high math achievement brings out several

new facts. Two that are particularly important are that high-achieving students must
substantially improve their absolute performance from year to year to maintain their
within-cohort rank, and that within-cohort ranks are nevertheless quite persistent.
The persistence reinforces our earlier comment that pre-high school factors are important
drivers of the gender gap in high school. The need for substantial improvement to stay in
place derives from a combination of two effects. One is that the typical high-achieving
math student is substantially improving their knowledge and problem-solving skills
from year to year. The other is that there are many more students outside the top 500
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than in the top 500. Some lower-ranked students are making far-above-average im-
provements, and this forces highly ranked students to make above-average improve-
ments to maintain their place. Thus, our high-achieving students are exerting substantial
effort to bolster already highly advanced math skills. There are many, many demands on
elite high school students’ time that could lead to systematic differences in the oppor-
tunity costs of and interest in making such investments.
We have identified four distinct gender-related differences in the dynamics of student

performance that contribute to the widening gender gap. In comparison with boys who
had the same score in the previous year, high-achieving girls are more likely to drop out
of participating in the AMC tests (particularly in 12th grade), and the performance gains
of those who do participate again are lower on average and less variable. Girls are also
underrepresented in the pool of high-scoring “entrants” whom we could not match to
a score in the previous year. Our decompositions point to “growth” differences, the
underrepresentation of girls in the set of students who manage to move up from lower
ranks to high ranks, as the most important source of the widening gap. The other effects
are more moderate in size, but in combination and cumulated over the years they also
contribute substantially to the observed widening of the gender gap.
From ninth to tenth grade, the dearth of female entrants is important, and from 11th to

12th grade, dropouts become an issue. But the growth differences are consistently the
largest effect both across grades and across levels of achievement. In most cases, they
account for well over 100 percent of the observed widening of the gender gap. Again,
this suggests a line of further inquiry—why are there so few girls who move up sub-
stantially relative to their cohort in the later high school years?
Any potential explanation for the gender gap in high math achievement will have to

reckon with these facts. Several explanations suggested by the literature seem prom-
ising. Being a top performer on the AMC requires a substantial amount of both ability
and effort. Girlsmay have lower valuations than boys for the rewards associatedwith top
performance on theAMCcontests, based on intrinsic preferences, societal conditioning,
future college or career expectations, or some combination thereof (Wiswall and Zafar
2018). Girls may enjoy the AMC competition less than boys and therefore invest less
effort toward it (Niederle andVesterlund 2007).Girlsmay bemore risk-averse than boys
and thus less likely to invest all their effort in one extracurricular activity with a risky
payoff (Borghans et al. 2009). Girls may have more promising alternative extracurric-
ular activities competing for their time than boys (Wang, Eccles, and Kenny 2013).
These and other factors may contribute to the gender gap in ninth grade. More impor-
tantly for our purposes, they may contribute to the widening of the gender gap as the
effort required to maintain one’s rank increases, as the number of future opportunities
to succeed decrease and college applications loom larger (that is, the stakes increase)
(Azmat, Calsamiglia, and Iriberri 2016), and as students receive feedback on past
performance.42

Our final section examines one potential contributor and suggests that reactions to
disappointment may be part of the answer. Both boys and girls who experience the
disappointing outcome of just barely failing to qualify for theAIME aremore likely to not
participate in the following year. The dropout effect may be larger for girls, although the

42. Women more often attribute past successes to luck than to inner attributes (and past failures to inner
attributes), while men do the opposite (Beyer 1990; Felder et al. 1994).
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significance of this difference is not very clear. Apart from psychological effects related
to disappointment, of course, one could also potentially explain such reactions in more
standard “rational” ways; for example, high-achieving girls might have a greater breadth
of other skills and interests that compete for their time and might therefore rationally shift
more effort away from math contests toward other activities to maximize chances of
college admission or long-run success. We hope to see future work on this as well.
A limitation of all of our work on the AMC contests is that the data concern per-

formance in a competitive environment. We believe that many of the investments in
problem-solving skills and mastering precalculus mathematics that the AMC contests
measure will also benefit students in later-life environments. In our earlier work, we
presented somedata onSAT scores consistentwith this view, but it would nice to have this
complemented with work on the dynamics of achievement as measured with other in-
struments. It would be even more complementary to be able to track AMC participants
forward and examine how participation, achievement, disappointment, etc. on the AMC
tests affect outcomes that arewell established to be important in later life, such as choice of
college major, pursuit of postgraduate education, and career choices. Agarwal and Gaule
(2018) perform such an exercise on a more extreme set of high-achievers in high school
math competition, students who advance all the way to the International Mathematics
Olympiad (IMO). They find that IMO scores are highly predictive ofmath publications
and citations 20 years in the future; IMO gold medalists are fifty times more likely to
win the Fields medal than are graduates of a top-10 math Ph.D. program who did not
participate or advance quite this far in high school math contests. AMC scores and
participation are surely not as strongly predictive as this of any subsequent achievement,
but it would be very interesting to see how they relate to longer-run outcomes.
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