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Introduction

Consider a forecaster who each period must predict a probability distribution over

an exogenous set of outcomes such as the weather.  The forecaster is said to be calibrated

if in the asymptotic limit, the empirical frequencies in periods where each particular

probability distribution is forecast exactly match the forecast probabilities. That is,

calibration requires that (asymptotically) it should have rained in exactly 1/3 of the

periods in which the forecast probability of rain was 1/3, and so on.3   Recently, Foster

and Vohra (1994) proved the existence of random strategies that are approximately

calibrated to any desired degree.  That is, for any ε >0, there is a randomized forecast rule

that is calibrated with probability 1− ε . Their construction,  which relies on a series of

approximations, is somewhat complicated; this note provides a  shorter and simpler one.

Our proof shows that “K-initialized myopic strategies” are approximately calibrated when

K is large.  These strategies first  “initialize” by making each forecast exactly K times,

and thereafter play, in each period t,  the minmax strategy in a static game whose payoffs

depend on the history until t in a way we define below.4

As a caveat to these results, note that calibration is a relatively weak notion:  for

example, it is a calibrated forecast to predict a 50% chance of heads when facing a

deterministic alternation between heads and tails.  However, Fudenberg and Levine

(1996) show that calibration can be extended to conditional forecasts, provided that the

number of events conditioned on does not grow to rapidly with time.5

                                                
3 Dawid (1982) defines a stronger notion of calibration, requiring that conditional frequency predictions be
correct.  Dawid (1985) and Oakes (1985) showed that no forecasting rule can be exactly calibrated for all
possible sequences.  This stronger notion of calibration is shown by Kalai, Lehrer and Smorodinsky (1996)
to be equivalent to the more traditional version of merging.
4 There is a related  decision-theoretic notion of calibration based on actions:  a decision rule is calibrated
if every action that is used with positive frequency  earns nearly the most that was possible against the long-
run frequency of opponents’ play in periods that action was used.  Rules that are calibrated in this sense
regardless of how opponents play are studied by Fudenberg and Levine (1996) and Hart and Mas-Colell
(1996).  The analysis of Hart and Mas-Colell shows the close connection of calibration to Blackwell’s
(1956) notion of approachability.
5 See also the previous two footnotes.
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The Model 

Each period t = 1 2, ,... , the player chooses from a finite set of announcements

a A∈ , then observes an outcome x X∈ , a finite set.  Mixed actions are denoted

byα ∈∆( )A .  To each announcement a corresponds a vector of probabilities over

outcomes of p a X( ) ( )∈∆ .   We denote by λ  the greatest distance (in the Euclidean

norm) of any probability vector from the set of points p A( ) .  We will also write e x( ) for

the unit vector that  puts weight one on the outcome x.  The player’s choice in each period

t (that is, his forecast rule) can depend only on the information his information at that

time, which is the sequence of all previous pairs ( , )a xτ τ  of announcements and

outcomes.

Given a history of announcements and outcomes up through and including date t,

we define n at ( )  to be the number of times that the action a has been chosen, and  P at ( )

to be the vector whose has components are the number of times that each outcome has

occurred in the time periods when a was chosen.  Thus  P a n a Xt t( ) / ( ) ( )∈∆  represents

the empirical distribution of outcomes conditional on the action a.

For any action a we may define a quadratic cost associated with that action.

c a n a
P a

n a
p at t

t

t

( ) ( )
( )

( )
( )= −

2

This measures the deviation of the empirical frequencies from the forecast probabilities,

weighted by the number of observations.  The overall cost is just c c at ta
= ∑ ( ) .  The

distribution of this random variable depends upon the strategy of both the player and

nature.  The idea is to show how to pick α t  so that E c ct t t− −−1 1   can be made smaller than

any given positive ε, uniformly over histories, and regardless of the strategy  chosen by

Nature.   A standard strong law of large numbers argument then implies that almost surely

the average cost c tt /  is bounded asymptotically, and that this bound can be taken to be

arbitrarily small.  It is also straightforward to show (Foster and Vohra provide a proof)
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that the existence of  rules with arbitrarily low average cost implies the existence of rules

that are approximately  calibrated.

Main Result

Notice that given P nt t− −⋅ ⋅1 1( ) ( ) and ,  ct  is determined entirely by a xt t, .  Thus at

time t  we may take

g a x E c c a a x xt t t t t t( , ) [ | , ]= − = =− −1 1  = E c a x ct t t t t− −−1 1[ | , ]

= + +
+

− −−
−

−
−( ( ) )

( ) ( )

( ( ) )
( ) ( )n a

P a e x

n a
p a c at

t

t
t1

1

1

2

11
1

to be the payoffs in a zero- sum game in which the player picks a, and the opponent picks

x.  If α γ∈ ∈∆ ∆( ), ( )A X , we let gt ( , )α γ  denote the expected value of g a xt ( , ) .  Our

goal is to prove the existence of a strategy that ensures that this change in cost from

period to period is always small.    

The particular strategies we examine, called K-initialized  myopic strategies,  have

the following special form:  First, each pure strategy a  is repeated K times.  This is called

the initialization phase.  Following the initialization phase, at time t α t  is chosen to be a

maxmin strategy in the time- t  game with payoffs gt .  This strategy is characterized by

the two parameters, K ,λ   where we recall that λ  is the fineness of the grid p A( ) .

Theorem:  For any ε  there exist K ,λ  so that the K-initial myopic strategy has

limsup /c tt ≤ ε  almost surely.

To prove this, we will show that after the initialization period the value of the

period-t  games defined by gt  remains uniformly small.   Notice that these are not

dynamic games.  Rather, each gt  corresponds to a “stage game” which is a one-shot

simultaneous-move game with fixed strategy spaces A,X and payoffs determined by the

initial conditions n Pt t− −1 1, .
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To find the bounds on the payoffs to the gt , we can use the minmax theorem,

which asserts that the player can guarantee himself exactly min max ( , )( ) ( )γ α γ∈ ∈∆ ∆X A tg a  in

each period.  That is, we can suppose that the opponent’s equilibrium strategy  γ t X∈∆( )

is chosen to minimize the player’s payoff  on the assumption that the player correctly

forecasts γ t .
6

The proof shows that the (infeasible) strategy of first performing the initialization,

and  thereafter selecting p a( )  as close as possible to the actual γ t , guarantees that gt

does not exceed the specified bound.  It follows from the minmax theorem that there is a

strategy in the static games that guarantees this result regardless of Nature’s play.

However, our analysis does not reveal  what this strategy is.

 Our theorem follows directly from the following lemmas.

Lemma 1:  For each a  and γ t ,

g at t( , )γ = −
+

− −
+

+
+

+ −−

−

−

− − −

P a

n a
a

P a

n a n a n a
p a at

t
t

t

t t t
t

1

1

2

1

2

1
2

1 1

2

1 1

1

1

( )

( )
( )

( )

( ( ) ) ( ) ( )
( ) ( )γ γ .

The proof of this, found in the Appendix, consists of algebraic manipulation.

Lemma 2:  If a K-initial myopic strategy is used, then after the initialization phase

g
Kt ≤

+
+1

1
2λ

Proof: . Examining the expression for gt  in lemma 1, we see that the first two terms are

always negative. The third term is bounded by 
1

1K +
 after the initialization phase, since

every action has been played at least this often.  Intuitively,  the potential period-t

increment to the player’s average prediction error is largest when there are some actions

                                                
6 Since we are discussing the stage game, which is finite, the minmax theorem applies immediately.
Complications can arise in applying the minmax theorem to infinite games. Note that we are not asserting
that the player can correctly forecast the realized value of xt , but only its distribution.
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that the player has only chosen rarely, for then the expected change in the empirical

distribution P at ( )  corresponding to a  can be large; the initialization phase serves to

bound this maximum increment. Finally, the fourth term in the expression is made less

than or equal to λ2  by picking the a which is closest on the grid to γ t .  This gives an

upper bound on the value of the gt  game.

æ

Appendix

Lemma 1:  For each a  and γ t ,

g at t( , )γ = −
+

− −
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Proof:   In what follows we fix γ t  and a pure action a.  From the definition of gt , we

write
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where for notational simplicity we have suppressed the dependence of n,P,p on a, which

is being held fixed.   

First we write out the squares:
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Next we apply ( ( )) ( )y e x x ytx t⋅ = ⋅∑ γ γ  for y p=  and γ ty
g e y( ) , ( )=∑ 1  to find
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Examining the expression
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we may check, by multiplying out the final square, that it is equal to the previous

expression, and therefore to g at t( , )γ .  Multiplying out the first square, canceling nt−1  in

the second term, and applying e y( )
2

1=  leads to
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Again apply ( ( )) ( )y e x x ytx t⋅ = ⋅∑ γ γ , this time for y Pt= −1  and γ ty
g( ) =∑ 1 and

combine terms to find
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