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Around mid-March of 2020, as the US and much of the rest of the world was

facing an unprecedented health threat in the form of COVID-19, an abrupt shift in

the tone and policies of the United States and United Kingdom occurred. In early

March, for instance, Prime Minister Boris Johnson said that “we should all basically

just go about our normal daily lives.” Likewise, on March 11, President Donald

Trump reassured the American people that “The vast majority of Americans, the

risk is very, very low.” Just five days later, however, the Trump administration

recommended that “all Americans, including the young and healthy, work to engage

in schooling from home when possible. Avoid gathering in groups of more than

10 people. Avoid discretionary travel. And avoid eating and drinking at bars,

restaurants, and public food courts.”1 The British government likewise markedly

changed course, with a series of partial measures preceding a March 23 lockdown

order. Although Trump and Johnson had been receiving briefings about COVID-19

for several weeks, the proximate cause of the shift in both countries appears to have

been the March 16 release of a headline-grabbing epidemiological model produced

by London’s Imperial College, which predicted that there could be as many as

2,200,000 deaths in the US and 510,000 in the United Kingdom.”2

The Imperial College model was not the only one to feature prominently in

public policy. The Institute for Health Metrics and Evaluation (IHME) at the Uni-

versity of Washington released and frequently updated state-level estimates which

garnered substantial attention. Its predictions contrasted markedly with (the most

extreme) ones from Imperial College. Both sets of predictions turned out to be

quite far off in important ways. This fact should not be surprising. There is, un-

avoidably, much uncertainty about key parameters early in an epidemic.3 And it

also takes longer to produce models that use frontier methods and incorporate data

from multiple sources.
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3The models can be faulted, however, for providing standard errors that did not accurately

reflect the degree of uncertainty underlying the course of the epidemic. For discussion, see Avery et

al. (2020). Stock (2020) noted the importance of uncertainties that existed early in the pandemic.
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Given the importance of the topic and the impact that these early models had,

it is not surprising that many economists quickly became interested in applying

their skills to improve understanding of the COVID-19 pandemic. One goal of this

paper is to provide an overview of the extant epidemiological literature to facilitate

economists who wish to make incremental contributions. We begin by introducing

the classic SIR (susceptible/infected/recovered) model, which serves as the basis

of much of modern epidemiology of infectious disease, both theoretical and empir-

ical. As we will discuss, the classic model is useful for building intuition about

the possible paths of a pandemic. Researchers typically build on this model in a

variety of ways, depending on the specific research question, the characteristics of

the epidemic, and the available data. We then turn to methods and challenges

of implementing these models in empirical epidemiology. With this background in

place, we return to the two high-profile forecasting models, explain where they fit

into the landscape of empirical epidemiology, discuss the policy imperatives which

drove their prominence, and offer critiques. Finally, we consider the related eco-

nomics papers, ones that expand on SIR-type models, leverage them to provide

policy advice, or offer estimates that could help inform them.

The COVID-19 pandemic poses a wealth of policy challenges. We believe

that there are fruitful synergies for economists who acquaint themselves with some

basic epidemiology models and empirical techniques and then consider how their

economist’s toolbox could dovetail with the existing epidemiology literature to pro-

duce useful insights.

Epidemiological Theory

Epidemiological theory has been rooted in empirical facts from the start. In

17th Century London, haberdasher turned statistician John Graunt kept weekly

records of the causes of death in London parishes. He used these data to estimate

the risks of dying from different diseases. His work, arguably, was instrumental in

the development of biostatistics, demography, and epidemiology. After him, doctors

and medical researchers started relying on statistics and then statistical models to

help them predict the spread of infectious disease. In the 18th Century, Daniel

Bernoulli devised the first true epidemiological model, to study the spread of small-

pox (Bernoulli (1766)). In 1906, W.H. Hamer suggested that the spread of infection

should depend on the number of susceptible and infected people. He introduced the

mass action law for the rate of new infections. Kermack and McKendrick, in 1927,

leveraged these insights to create the SIR model, the workhorse model still the basis

of much of modern epidemiology. (Kermack and McKendrick (1927)).

In the past century the field of epidemiology has advanced along lines simi-

lar to those of economics. Theorists have developed more sophisticated models to

bring out many insights. And in recent years the field has taken an empirical turn,

developing increasingly sophisticated models leveraging vast and detailed new data

sources. It should be noted that just as a relatively small share of economists focus
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on real-time forecasting of the economy, a relatively small share of epidemiologists

focus on real-time forecasting of new pandemics. Epidemiology is a much broader

subject, encompassing the study of the distribution and determinants of health and

disease outcomes across various populations. The particular niche of the epidemi-

ology literature that is especially relevant for the current pandemic are the models

that focus on spread of an infectious disease. We will start with a discussion of the

workhorse model in this class, the SIR model. We note that this classic model of-

fers several basic insights and provides a tractable framework amenable to building

upon.

The Standard SIR Model

SIR is an acronym for the three states (sometimes referenced as “compart-

ments”) in the model: Susceptible, Infected, and Recovered. At each time t each

member of the population is in one of these states, with proportions in these states

given by S(t), I(t), and R(t) where S(t) + I(t) +R(t) = 1 for a population of unit

mass.

There are only two ways to move from one state to another. First, currently

infected people may become non-infectious and move to the recovered state. People

in the recovered state may still be sick (or even dead) but they share the two

key characteristics that they are not infectious and also not susceptible to future

infection. Second, a susceptible person can contract the disease through contact

with a currently infected person. Transition rates between states are governed by

parameters γ and R0, which serve as summary statistics for (1) the recovery rate

and (2) the number of people an infectious person would infect over the course of

their disease in a fully susceptible population.

One way to motivate the model is to suppose that agents are uniformly ran-

domly matched in continuous time. Assume that each meets on average R0γ others

per unit time and that any susceptible agent matched with an infected agent be-

comes infected. As a result, new infections occur at a flow rate of γR0StIt per unit

time. Suppose also that each infectious agent recovers with probability γ per unit

time, creating a flow of γIt individuals per unit time moving from the Infected to

the Recovered state.

These dynamics can be summarized by the following continuous time dynamic

equations for the values of S(t), I(t) and R(t) given the two possible transitions from

S to I for new infections and from I to R for sick people who become non-infectious.

Ṡ(t) = −S(t)I(t)R0γ

İ(t) = S(t)I(t)R0γ − γI(t)

Ṙ(t) = γI(t)

The number of periods that an infected agent remains in the infected state



4 JOURNAL OF ECONOMIC PERSPECTIVES

follows an exponential distribution with parameter γ, so the expected amount of

time in the infected state is 1
γ . With R0γ contacts per person per unit time with

others, each infected person has an expected number of R0 contacts while infected.

That is, the parameter R0 can be thought of as the expected number of people

that a newly infected person will directly infect in a population where everyone is

susceptible.4

The initial level of infection at time 0 is another exogenous parameter of the

model, and is typically assumed to be quite small, e.g., one infection per 10 million

people. If R0 > 1, the number of infections is larger than the number of recoveries

in early periods while the proportion in the susceptible state remains close to 1. As

a heuristic approximation, we would expect contacts with people infectious at time

0 to directly produce a total of R0I(0)S(0) new infections, which is approximately

R0I(0) if S(0) is close to 1. This set of new infections would produce approximately

R2
0I(0) subsequent new infections. And these would produce R3

0I(0) and so on.

For this reason, the initial growth rate of infections in an SIR model with R0 > 1

is approximately exponential. Formally, one equilibrium of the system is S(t) =

1, I(t) = 0, R(t) = 0 for all t, but this equilibrium is locally unstable if R0 > 1 for

then adding a small number of infected agents leads to contagious growth of I(t).

By contrast, an equilibrium with I(t) = 0 is locally stable if R0 < 1 as a small

infection dies out in that case.

Over time, the rate of growth of infections declines because the proportion

of people in the susceptible state diminishes continuously as the infection spreads.

Regardless of when the infection takes place, each infected person has an expected

number R0 of contacts with others while infectious, but as time passes, more and

more of those contacts are with people who are not susceptible. The model has a

“herd immunity” threshold of S ≡ 1/R0. When S(t) = S, the expected number of

people that a newly infected person will directly infect is equal to 1. The important

implication of this property is that once the fraction of the population that is

susceptible is below the herd immunity threshold S, a small infection introduced

into the population will die out with the size of the infectious population never

increasing.5

Importantly, note that reaching “herd immunity” does not mean that people

will not continue to be infected. New infections continue to occur. They are just

outnumbered by recoveries that are occurring. When R0 is large, number of people

who are infectious when the herd immunity threshold is reached is large, so being

limited by the number of recoveries is not comforting. Indeed, in these models there

can be substantial “overshooting” with many more than 1 − S people eventually

4A common alternative description of the SIR model defines Ṡ(t) = −S(t)I(t)β, İ(t) =
S(t)I(t)β − γI(t) and then identifies R0 separately as the ratio R0 = β

γ
. It is also equivalent

to assume a proportionally higher probability KR0γdt (where K is a known positive constant)

that any pair of agents meet in combination with probability 1
K

that a susceptible agent matched
with an infected agent becomes infected.

5Formally, the herd immunity threshold is such that S(t) = S, I(t) = 0, R(t) = 1−S is a stable

equilibrium in the model for any S ≤ S.
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infected. The number of people who escape the epidemic does not have as simple a

formula, but is obviously very important practically. In an uncontrolled epidemic it

can be described as the solution to a simple implicit equation.6 Numerical examples

indicate that that overshooting can be dramatic with a significant fraction of the

population getting infected after herd immunity is reached. For example, with

R0 = 2 we reach ”herd immunity” when half the population has been infected, but

the infection will not completely die out another 30% of the population has been

infected. With R0 = 2.5 herd immunity is reached when 60% have been infected,

but only 11% of the population will remain uninfected in an uncontrolled epidemic.

In short, even with a moderate R0, few escape an uncontrolled epidemic. The

“social distancing” policies that have been used to suppress COVID-19 infection

rates are essentially an attempt to reduce R0.

One other noteworthy feature of SIR models is that for many values of R0,

the time-path of new infections (and deaths) has a shape that is fairly symmetric

about its peak and looks somewhat like a normal density. This provides a potential

explanation for one of the earliest empirical observations in epidemiology: Farr

(1840) noted that the time series of deaths in a smallpox epidemic and in four other

epidemics “which have not yet been effectually controlled by medical science” were

roughly symmetric and bell shaped. Figure 1 below reproduces Figure 1A from

Ferguson et al. (2020) illustrating the predictions of their SIR-like model for Great

Britain and the US.

6Formally, we can define the fraction who escape infection, S(∞), as S(∞) ≡ limt→∞ S(t).

The equation that can be solved to find it is S(∞) = e−R0(1−S(∞)). Intuition for the formula is
that 1 − S(∞) agents are eventually infected. Each on average has R0 interactions with others
that would cause infection in someone who is susceptible. So the probability of escaping infection

is the probability of zero events given a distribution that is Poisson with mean R0(1− S(∞)).
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Figure 1. Figure reproduced from Ferguson et al. (2020) Figure 1A: “Un-

mitigated epidemic scenarios for GB and the US. (A) Projected deaths

per day per 100,000 population in GB and US.”

Some Conceptual Lessons from the Standard SIR Model

When a serious contagious disease becomes prevalent, two things will typically

occur: people will modify their behavior to avoid getting sick; and governments

will enact policies aimed at slowing or stopping the spread. We can think of the

original R0 as a compound parameter, one that embodies both the underlying bi-

ological ability of the pathogen to jump from person to person in various types of

interactions as well as the number of interactions of each type that people have

in the ordinary course of their daily lives.7 As self-interested behavior and gov-

ernment policies reduce interactions, it is as if the R0 parameter in the equation

describing how infections transmit is reduced to some time- and state-dependent

Rt0. 8 It is important to remember that all the parameters of SIR models are simple

encapsulations of more complex biological events. The cycle of infection involves

the population biology of the pathogen outside the host, the behavior and popula-

tion biology of the host and the interaction of the pathogen and the host. Spatial,

temporal and between-host differences in the details of these events lead to the

heterogeneity of the parameters that modelers now find important. While much of

7This approach has parallels to a classic predator-prey theory in biology, whose models have

almost exactly the same form and dynamics as an SIR model. In that literature, there is a
parameter governing transition from “freely roaming” to “prey,” which is a compound parameter

with a fixed attack rate for a particular predator-prey combination as well as a contact rate

between predator and prey, which can vary geographically and over time. See Gotelli (2008) for a
description.

8See Chernozhukov, Kasaha, and Schrimpf (2020) and Goolsbee and Syverson (2020) for em-
pirical evidence on the impact of endogenous behavioral changes and various government policies.
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epidemiology is focused on understanding these details, they are typically absent

from the models currently used to predict the course of diseases.

Policies that reduce the reproduction rate R0 are often described as “flattening

the curve,” referring to the graph that shows the rise of cumulative infections over

time. A change in behavior that reduces R0 to Rt0 at any time t affects the fraction

S(∞) of the population that permanently escapes infection. But the standard

formula for the herd immunity threshold remains relevant to thinking about the

possible long run outcomes: if we are not in the herd immunity region,i.e., if S(t) >

S, then the infection will once again spread if government restrictions are removed

and people go back to their normal behaviors. If we are in the herd immunity

region, then the infection will die out even if all restrictions are removed. Indeed,

in this way the SIR model illustrates a clear intuition for how temporary policies

can provide long-term benefits: implementing policies that reduce Rt0 when we are

approaching the herd immunity threshold will reduce overshooting.

In the case of COVID-19, reaching the herd-immunity threshold is widely be-

lieved to entail a devastating loss of life. The SIR model suggests that two other

approaches may be appealing in such situations. First, we might put in place poli-

cies to reduce Rt0 with the intention of maintaining those policies until a vaccine is

developed, thereby keeping the system from ever reaching the herd-immunity region.

Second, we might enact more aggressive temporary measures for a period of time

sufficient to drive prevalence to a level that is low enough so that less-economically

costly means of keeping Rt ≡ Rt0S(t) below one become feasible. For example, Hong

Kong’s suppression of COVID-19 has involved, among other measures, hospitalizing

everyone who tests positive to ensure isolation and conducting aggressive contact

tracing. This is extremely expensive on a per-infected person basis, but has cost

trillions less than the US approach, not to mention limiting Hong Kong’s loss of

life.

The SIR model is also helpful for thinking about vaccines. Vaccines are typ-

ically not perfect and not available to or willingly received by everyone. Suppose,

for instance, that a vaccine was effective in preventing the disease completely and

permanently in 60% of the people who received it and did nothing for the other

40% who received it. Administering such a vaccine to the entire population with,

say, 10% infected or recovered would result in an additional 0.9 × 0.6 = 54% of the

population immune, so that S(t) = 1 − 0.1 − 0.54 = 0.36. Depending on the value

of R0, that number could be sufficient to achieve herd immunity. Achieving herd

immunity via a vaccine rather than via infections is also advantageous in that it

mitigates overshooting.

Variants of the SIR Model

There are many variants of the SIR model. As usual, the choice to add or

subtract complexity from a model should depend on what one is studying. Common

variants of the SIR model add additional disease states, referred to as compartments,
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to provide a more realistic model of disease progression and transmission. The SEIR

model includes an “exposed” state to account for individuals who have been infected

with the disease, but are not yet themselves infectious (Hethcote (2000) and Li and

Muldowney (1995)). The SAIR variant includes an “asymptomatic” compartment,

for individuals who are infectious but may never develop symptoms. Because of

the apparently strong contribution of asymptomatic and presymptomatic carriers

to the spread of COVID-19, these variants, and particularly the SEIR model, have

been particularly common in recent epidemiological studies (for example, Kissler

et al. (2020) and Prem et al. (2020)). Epidemiologists sometimes also introduce

additional compartments, not to reflect disease states, but simply as a mathematical

means of making the transmission time process more flexible. Champredon et al.

(2018) provides such an example, although this aim can be accomplished directly

as in Zhigljavsky et al. (2020). These variants may be especially useful if one were

interested in studying the impact of policies for which timing within the disease

cycle is critical, like protocols for testing, contact tracing, and quarantining. For an

excellent review of many of these extended forms, see Blackwood and Childs (2018).

A broader category of models divides compartments even further, into dozens

or even hundreds of different geographic and age states, and then allows contact, in-

fection, and recovery rates to vary across classes (Blackwood and Childs (2018) and

Hethcote (2000)). Ebola, for example, is spread through contact with bodily fluids

even after death, and one might capture this effect on disease dynamics by consid-

ering populations of health care and funeral workers (Champredon et al. (2018)).

Given the current understanding about how COVID-19 seems to be transmitted, it

is easy to think of subpopulations who will have many more risky interactions than

average: those living in crowded urban apartments, frequenting bars and night-

clubs, using public transportation, attending crowded religious services, working in

a nursing home, and so forth.

Models with heterogeneous subpopulations again behave much like the classic

SIR model whereby the growth rate of a contagious disease is initially exponential

then then slows (and eventually dies out) over time. (See, for example, see (Diek-

mann, Heesterbeek, and Metz (1990), Dushoff and Levin (1995), and Lajmanovich

and Yorke (1976)). A common pattern in these models is that variations in within-

class contact or transmission rates across subgroups produce a faster overall spread

of infection than in a well-mixed SIR, with infections concentrated in certain high-

risk subgroups. Thereafter, however, dynamics tend to slow down relative to a well-

mixed model, because contact rates between subgroups are typically lower than the

average transmission rate (Bolker, 1999). In general, these features tend to lead

to less complete spread of diseases in age- and spatially-structured models than an

analogous homogeneous SIR model although this is not always the case (Gomes et

al. (2020) and Hébert-Dufresne et al. (2020)). Britton, Ball, and Trapman (2020)

provides an illustration in which heterogeneity reduces the herd immunity thresh-

old from 60% to 43%. In addition, heterogeneity can also lead to a longer overall

persistence of diseases. For example, geographic structure can make it difficult to

fully eradicate a disease, allowing periodic resurgences ((Lloyd and May, 1996)).
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The polio virus provides an example of the perverse impacts that can emerge

from heterogeneity. Changes in hygiene practices in the US around the middle of

the twentieth century led to a decrease in infectiousness in polio, which in turn

led to an increase in its average age of onset. Because younger children typically

experienced much milder cases of the virus, this increase in age of onset led to an

overall increase in the mortality and morbidity associated with being infected with

polio, which persisted until the widespread adoption of a vaccine ((Melnick, 1990)).

Real-world disease states and processes are more complex than those assumed

in all of these models, of course. For example, “infected” could be treated as a

multidimensional continuum of states, instead of a single state. People can vary

in the severity of their symptoms, their health outcomes, and the degree of infec-

tiousness. Likewise, whether an exposure results in an infection can depend on the

nature and dosage of the exposure. Also, the extent to which people develop immu-

nity will vary. All of these factors are subject to individual, spatial, and temporal

heterogeneity.

Empirical Epidemiology

The field of epidemiology does not divide itself into theory and empirical work

as neatly as does economics. There is more diversity in research styles and questions.

It does appear, though, that, like economics,9 the field has become more empirically-

oriented over time. Most relevant to economists, perhaps, are branches estimating

parameters of disease processes, forecasting the courses of epidemics, and estimating

policy effects.

As noted above, epidemiologists’ forecasts of the future course of COVID-19

received tremendous attention in the early days of the epidemic. These forecasts

can combine theoretical modeling, calibration of some parameters, and estimation of

others. Broadly speaking, forecasting models are often regarded as falling into two

main styles. Those based on SIR-type models are in a class called “mechanistic,”

which, like structural empirical models in economics, assume that a model is exactly

correct and calibrate or estimate parameters to obtain a predictive model. There

is another class of predictive models termed “phenomenological,” which may be

motivated by theories of disease spread but are not derived directly from those

theories. Instead they posit a functional form for the evolution of cases or apply

time-series methods to predict future outcomes based on available observations.

This is not a neat distinction, however, and forecasts can combine elements of both

types.

In economics, choice of empirical model and technique is often driven by re-

alities of data quality and availability. Economists interested in policy evaluation

have, for instance, invested enormous effort into developing techniques for causal

inference with observational data, which is what we often have. Something simi-

lar is true for epidemiologists interested in forecasts: their models are designed to

9See Angrist et al. (2020).
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leverage the data available on an epidemic in its earliest crucial stages to great-

est advantage. These early numbers tend to come from boots-on-the-ground efforts

such as contact tracing or case counts, and they can be used to estimate parameters

of either phenomenological or mechanistic models. To be clear, data from contact

tracing differs from case counts in that it has information about the source of and

the resulting infections from a particular infection, but it may not include most or

all infections. Case counts attempt to document all infections, but not the tree of

connections among them.

Mechanistic Forecasts

Even under ideal circumstances, reliably estimating parameters of mechanistic

epidemiological models, such as the SIR, can be quite challenging due to their

nonlinear and dynamic nature. The simplest idea for estimating R0 —taking a list

of initial infections, tracking down the number of additional infections that can be

traced directly to each of those initial ones, and dividing to obtain an estimate of

R0—is not accepted practice, due to the fact that incomplete contact tracing and

asymptomatic cases would lead to downward-biased estimates. Instead, researchers

often employ some more sophisticated variant of the following two-step method-of-

moments approach: start with the log growth rate of the epidemic as implied by an

SIR model, γ(R0−1), and equate that to an empirical log growth rate from the case

counts. To identify γ and R0 separately, then, one can use (potentially incomplete)

contact tracing data to infer the distribution of length of time between infections,

which helps tie down γ.

Most of us have internalized the notion that more data always lead to bet-

ter estimates, but a counter-intuitive situation can exist here. As the epidemic

spreads and more data become available, the quality of (at least some of) the data

can be compromised. First, contact tracing efforts will inevitably fall behind in a

fast-growing epidemic, and the resulting data might be increasingly lower quality.

Second, as an epidemic grows, behavioral responses can emerge, which could con-

taminate an estimate of R0. Third, increased testing can identify asymptomatic

cases, which could contaminate case growth rates, as cases which would not have

been included in early case counts are included in later ones. In short, more data

can lead to worse estimates, as discussed in (Ferretti et al., 2020). There is a

trade-off, though: these limited sample sizes early in an epidemic make capturing

heterogeneity of many types problematic, to say nothing of capturing changes in

parameters over time.

We should stress that epidemiologists have studied these issues in depth for

many years. Asymptotic analyses of the properties of MLE and other estimators of

parameters in homogeneous and heterogeneous SIR models can be found in Rida

(1991) and Britton (1998). Markov Chain Monte Carlo methods for the Bayesian

estimation of heterogeneous SIR models are described in Demiris and O’Neill (2005).

And modern applications of disease models typically involve parameterization ap-
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proaches that are more sophisticated than those described above. See, for example,

Mills, Robins, and Lipsitch (2004), Massad et al. (2010) and Viboud et al. (2018).

Phenomenological Forecasts

In contrast to mechanistic methods, phenomenological approaches are often

relatively straightforward to implement for the early stages of an epidemic. Early

case data are used to fit the assumed growth curve, using maximum likelihood, for

instance. As additional case data come in, the parameter estimates are refined to

reflect the new information. Information on the source of any particular case, typi-

cally provided by contact tracing, would not be necessary. With limited early data,

it can be difficult to estimate as many parameters as one would want to estimate

for a realistic compartmental (mechanistic) model, and this fact can make simple

phenomenological approaches appealing. For example, Tuite and Fisman (2018)

use a simple functional form with just three parameters, estimated by maximum

likelihood, in which the way an epidemic declines is determined by one of the pa-

rameters. They note that they “are agnostic about the nature of factors that slow

growth, but they could be postulated to include behavioural change, public health

interventions, increased immunity in the population, or any other dynamic change

that slows disease transmission.”

As epidemics progress, phenomenological approaches that use time-series tech-

niques to predict changes remain well-suited to making near-term predictions. These

models can be less useful, however, for other tasks. Observation error can rise as

larger swaths of a population are infected and contact tracing becomes less reli-

able, and tightly-parameterized models lack the flexibility to respond to qualitative

changes in disease behavior that are inconsistent with earlier apparent patterns.

For example, a model which posits a symmetric, bell-shaped evolution of cases over

time cannot accommodate repeated changes in rate of spread due to changing regu-

lations, changing public perception, and “quarantine fatigue.” In a later section, we

will see how early fits from the IHME model accurately characterized initial growth

rates in case numbers across much of the US, but its predictions of peak infection

numbers and long-term dynamics have proven to be much less reliable.

Policies and Causal Inference

Epidemiologists and other health researchers have long been interested in the

effects of healthcare interventions. The use of randomized controlled trials—often

called the “gold standard” for causal inference—was pioneered by health researchers.

During epidemics, however, the earliest data available are typically observational.

Even in randomized trials, noncompliance raises concerns about selection biases.

And, of course, the very nature of an infectious disease implies that a treatment

applied to one agent may affect others. As a result, epidemiologists have recognized
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that the methods most commonly used in other medical fields for policy evaluation

may be less appropriate for epidemiological applications (Halloran and Struchiner,

1995; Hernán and Robins, 2006). By now, however, they have developed a variety

of techniques to address field-specific concerns. See Hernán and Robins (2020) for

an extensive exposition.

Analyses of Genomic Data

Analysis of the SARS-CoV-2 genome has revealed thousands of different strains

of the virus circulating around the world. (Consult nextstrain.org/ncov/global for

current phylogeny.) There are many reasons why the medical community might

be interested in the existence of these multiple strains. For instance, there could

be differences across them in communicability or virulence, or there could be less-

than-perfect immunity across strains. Korber et al. (2020) presents laboratory and

epidemiological evidence suggesting that the COVID-19 variant which is now most

common is more infectious than the strain that was dominant in Wuhan.

For the purposes of estimating epidemiological models, there is another immedi-

ately useful application of these techniques: to trace the spread of various mutations

in order to determine where and when epidemics began in various regions. In fact,

genomic data can serve as a type of substitute for contact tracing or detailed micro-

level data on social networks and other human interactions, allowing researchers to

trace the source of a particular group of infections without ever knowing anything

about the agents’ contacts. Researchers in Israel used genomic data, for instance,

to produce the often-cited fact that 80% of all COVID infections there were caused

by 1-10% of infected agents (Miller et al., 2020). Another genomic study, Worobey

et al. (2020), noted that although cases have been reported as early as January

in the US and Europe, genetic evidence suggests that these introductions failed to

spread, and that it was only though later introductions at higher incidence that

SARS-CoV-2 was able to establish in the general population. If true, these findings

may indicate that even if the virus cannot be fully eradicated, control measures

may well prove to be effective if incidences can be brought low enough.

Early High Profile Models—What Went Wrong?

The introduction recounted how an early prediction model from Imperial Col-

lege had a seemingly huge effect on policy decisions in the US and UK. In fact,

one could argue that policy imperatives drove the prominence of that and another

high-profile prediction model from IMHE early in the pandemic. Policy makers were

desperate for guidance on mask-wearing and social distancing, predictions on the

number of ICU beds necessary in a particular city, likely timing of peak infections,

and so forth. Those two models were up and running early in the pandemic and

provided those numbers that policy makers needed. It is instructive to take a closer
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look to understand how their predictions were produced and what ultimately went

wrong.

The headline-grabbing figures from the Imperial College model were the most

extreme predictions out of many that they produced. They arose from assump-

tions that governments would not mandate any mitigation strategies, such as mask-

wearing or social distancing, and, indeed, that people would not choose to engage

in any of those strategies themselves. Those assumptions were often omitted from

the initial reporting and public discussion of the predictions. Much of the Impe-

rial College report, however, consisted of discussions of the potential impact of just

such policies, along the lines of an earlier policy discussion on mitigating pandemic

influenza in Ferguson et al. (2006).

Some information about the details of the Imperial College model were given,

but initially, the source code was not public. The early reports made certain details

clear: the model was based on the familiar SIR framework and that extreme predic-

tions were derived assuming that neither official actions nor individual choices would

be taken to slow the spread of the virus. R0 was taken as a single, fixed parameter,

with a value of 2.4. Their estimated death rate for those infected was 0.9 percent.

Both estimates were based on early experience with COVID-19 in places such as

China and Italy, but obviously associated with significant uncertainty. The source

code for the model was eventually released at the end of April, and researchers were

able to reproduce its results from its assumptions by early June. (See “Influential

Pandemic Simulation Verified by Code Checkers,” Nature, June 18, 2020.) Al-

though this delay is understandable, it was also arguably a contributor to confusion

surrounding predictions early in the pandemic.

Meanwhile, as the number of COVID-19 cases was ramping up in the United

States, alternative predictions were being offered by IHME at the University of

Washington. Their phenomenological model began by assuming a particular func-

tional form for how the number of cases in a locality would rise and then fall over

time, with location-specific parameters estimated to fit early case numbers. The

model could easily be fit separately to data on each state, and predictions were

refined as new data came in. The intention was that local officials could then use

these location-specific and daily predictions to plan extra hospital capacity and

procure medical equipment, which many of them did. The notion, however, of a

common function form—that is, that the basic shape of increase, peak, and decline

of infections would be the same in all locations, from Italy to India, from Wuhan

province to Topeka, Kansas—seems to ignore crucial information about how mitiga-

tion strategies varied across locations and changed over time. More recent versions

of the IHME model have taken an alternative approach, as we discuss in a moment.

Roughly speaking, the originally publicized IHME model was assuming a bell

shape for the daily deaths and trying to find the parameters governing that bell

shape based on the early observations. In a model of this form, once growth has

started to slow, there will be limited uncertainty about the size or timing of the

peak. Also, the bell-shape symmetry implies that deaths will start falling as rapidly

as they grew.
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Figure 2 shows a series of screen grabs from the IHME model predicting daily

US deaths (from the Internet Archive, at approximately one-week intervals starting

in early April 2020). The first four predictions, going down the first column and

through the end of April, have several common features resulting from the bell-shape

assumptions: the predicted shape of deaths over time is symmetric; the predicted

number of deaths goes to zero quickly, around June 1; and the error bands are large

in the short run and go to zero around the time that the predicted number of deaths

goes to zero. Note that in these first four panels, estimates of the parameters are

being updated regularly as new data come in.

April JuneMay

Figure 2. Weekly screenshots of the IHME US deaths predictions

In early May 2020, IHME switched away from the curve-fitting approach to a

more mechanistic SIR-type framework. Roughly, the model predicted the deaths in

the next few days in a phenomenological way, and then fit an SIR-based model to

the past and short-term future predictions to generate long-run predictions. The

middle column shows that starting in May, the model allowed for asymmetry. They

also started using a smoothing algorithm on the existing case data. The way error

bands were calculated changed, but error bands still shrunk eventually instead of

growing, reflecting that declining deaths implied that epidemics in SIR models with

Rt less than one die out in an exponential manner. As a result of these changes,

predictions of positive numbers of deaths stretched into the summer 2020. Starting

in June, the final column, another substantial change was made to the calculation

of error bands, whereby they start small and increase as time proceeds, reflecting
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increasing, not decreasing, uncertainty in predictions further into the future.

In Figure 3, we overlay these same predictions on a common scale, color-coded

so that earlier predictions are lighter. For readability, we do not include error bands.

Clearly, their predictions of US deaths over time change, as it becomes clear that

the pandemic will not die out at the beginning of the summer and a symmetric

model of US deaths is inaccurate. Even so, the initial predictions of the size and

location of the (first) peak were fairly accurate.

Figure 4 shows a different output of the IHME model: predictions of hospital

utilization. With this outcome, the initial predictions are starkly different from

later ones. Not coincidentally, many locations prepared for much greater hospital

utilization during the first “surge” than was needed.

We should note that IHME does publish their source code and is forthcoming

about changes. That being said, the model is complicated enough that reading

through the source code and documented changes is difficult and time-consuming,

certainly for us but also, one would imagine, for most researchers.

The Imperial College and IMHE models filled a void early on for policy-makers

scrambling to understand the pandemic, decide how strongly to react, convey poli-

cies to constituents, and allocate resources. But many other predictive models are

now available, some with well-designed online dashboards where users can insert

different assumptions, some backed by state-of-the-art epidemiology theory, some

leveraging empirical innovations and new information. We cannot hope to survey all

of the predictive models here, but both the Centers for Disease Control and Preven-

tion (CDC) and the website FiveThirtyeEight.com highlight and compare several

of the most well-known and well-received of them.10 Table 1 shows fifteen models

highlighted by FiveThirtyEight.com (including IHME), their basic approaches, and

some details about their implementation. These models largely agree in their short-

run predictions, but divergence appears at forecasting horizons of six weeks or more.

We have organized them by predicted mortality levels. In part, this divergence may

reflect different assumptions about how social distancing and government policies

will evolve.

As this article was being completed in late summer 2020, it seemed that that

predictive models about the future of the epidemic had faded from popular dis-

course. Discussions of reported cases, deaths, and trends seemed, by mid-July,

to be getting more attention than forecasts from epidemiological models. Google

Trends indicates that searches for “IHME Model” peaked in mid April and had

fallen by 90 percent by early July. Attention by academics also seems to have

fallen: Google Scholar indicates that Ferguson et al. (2020), released on March 16,

had already been cited 828 times in early July, while the later May 21 report by

the Imperial group (Unwin et al., 2020) providing more sophisticated estimates of

10The CDC has come under criticism from many quarters for allowing political considerations

to influence how they present and describe predictive models.
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High Predicted Mortality Level (by Sept. 5th)
Source Approach Details
The University of Texas COVID-19 Modeling Consortium, University of Texas
https://covid-19.tacc.utexas.edu/projections/

Model 1 uses a curve fitting ap-
proach, and Model 2 is an SEIR
model with compartment “D”
(dead)

Uses anonymized mobile phone data and daily
reported deaths to make predictions for three
weeks ahead

COVID Scenario Pipeline, Johns Hopkins University
https://github.com/HopkinsIDD/COVIDScenarioPipeline

SEIR model Projects the spread of the epidemic and im-
pacts on healthcare for different interventions

ERDC SEIR Model, U.S. Army Engineer Research and Development Center
https://github.com/reichlab/covid19-forecast-hub/blob/master/

data-processed/USACE-ERDC_SEIR/metadata-USACE-ERDC_SEIR.txt

SEIR model with compartments
for unrecorded infections and iso-
lated individuals

Uses Bayesian inference to choose parameters

EpiGro, University of Arizona
https://www.sciencedirect.com/science/article/pii/

S1755436516300329

Curve fitting model Based on properties of curves implied by SIR
model

Medium Predicted Mortality Level (by Sept. 5th)
Source Approach Details
DeepCOVID Model, Georgia Tech
https://www.cc.gatech.edu/~badityap/covid.html

Deep learning model Assumes that the effect of interventions is im-
plicitly captured in mobility data

IHME COVID-19 Projections, IHME (University of Washington)
https://covid19.healthdata.org/united-states-of-america

Hybrid model that incorporates
statistical and disease transmis-
sion models

Uses social distancing information and mobile
phone data to estimate contact between peo-
ple

COVID-19 Projections Using Machine Learning, Youyang Gu
https://covid19-projections.com/

SEIR with machine learning to
choose parameters

Estimates incorporate all infected individu-
als of SARS-CoV-2 virus, not only individuals
who tested positive from a COVID-19 test

Columbia University COVID-19 Projections, Shaman Group
https://github.com/shaman-lab/COVID-19Projection

Metapopulation SEIR with fil-
tering to determine parameters

Includes projections for daily cases, infections,
mortality, and cumulative hospital usage

Global Epidemic and Mobility Model (GLEAM), Northeastern University
https://covid19.gleamproject.org/

SEIR model with mobility data Region level model with several types of hu-
man mobility between regions

Low Predicted Mortality Level (by Sept. 5th)
Source Approach Details
COVID-19 Simulator, MGH, Harvard Medical School, Georgia Tech, Boston
Medical Center
https://www.covid19sim.org/

SEIR model Includes state-level variations in mobility and
tracks hospital usage

Bayesian SEIRD Model, University of Massachusetts
https://github.com/dsheldon/covid

SEIR model with additional
compartments “D” (death) and
“H” (hospitalized-and-will-die)

Employs Bayesian inference and time-varying
dynamics

UCLA-SuEIR Model, UCLA
https://covid19.uclaml.org/

SuEIR model Has compartment for unobserved infections

A Shiny App, Iowa State
http://www.covid19dashboard.us/

New spatiotemporal epidemic
modeling (STEM) framework

Nonparametric model emphasizing 7-day for-
ward projections down to county level

DELPHI Epidemiological Model, MIT
https://www.covidanalytics.io/

SEIR with under- detection, hos-
pitalization, and government in-
terventions

Varies effective contact rate and societal/ gov-
ernment response by state

LANL Model, Los Alamos
https://covid-19.bsvgateway.org/

Dynamic model that forecasts fu-
ture cases and deaths

Allows for a variety of interventions, resulting
in a wide prediction interval

1

Table 1—Predictive epidemiological models
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R0 for US states had been cited just three times.

One likely reason for the initial surge and subsequent decline of interest in

predictive models is that they were seen as relevant to policy choices: whether to

require businesses to close and people to stay home, how much to invest in hospital

bed capacity. By contrast, predictive models appear to have much less relevance to

pressing decisions such as when to reopen in-person schools. In addition, though,

they have likely lost popular credibility. The initial IHME forecast predicted that

the epidemic would all but die out in the US by early June. The Imperial College

model was often linked to its most extreme predictions. Finally, the waning interest

may also reflect that the future course of the disease is not readily predictable by any

model, but rather will depend to a considerable extent on how individuals behave

and what policies are enacted.

Epidemiology-Related Research in Economics

Economists have responded enthusiastically to demands for COVID-related

research and analysis. We cannot attempt to cover this burgeoning literature in

its entirety. Rather, our focus will be tighter, on research that leverages SIR-type

models, expands upon them, or offers estimates that could help inform them. We

chose this sub-literature as our focus because we feel that it is an area where cross-

discipline knowledge and the use of complementary models and tools have already

and will continue to yield real insights.

Further, we think it is useful to organize much of this sub-literature into three

strands. These strands represent salient features of this pandemic as opposed to

previous ones, and we feel that economists are well-positioned to make contributions

in those three areas. First, economists have recognized the potential endogeneity of

parameters such as Rt0, as the precautions taken could be a function of disease preva-

lence or current cases. Second, several economics papers have focused on the effects

of allowing various types of heterogeneity in SIR-type models. Third, economists

have taken the political economy issues involving endogenous social distancing and

government policies seriously, issues which could also greatly influence Rt. We will

discuss each of the three strands in turn.

Endogeneity

The Rt0 parameter in an SIR model is a potentially endogenous parameter

which reflects both how easily communicable a particular pathogen is as well as

how people behave and interact given the current state of an epidemic. It is natural

that economists would recognize this endogeneity and model it theoretically and

allow for it in empirical analyses. Applying traditional economics approaches to in-

corporating behavioral responses into epidemiological models is not new, and dates

back at least to work on the AIDS epidemic in the 1990s (Kremer, 1996; Philipson
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and Posner, 1993). Recently, a strand of COVID-related literature accommodating

and studying an endogenous reproduction number has emerged. Toxvaerd (2020)

and Kudlyak, Smith, and Wilson (2020) develop models that endogenize the social

distancing as reflecting a cost and benefit of avoiding infection and discuss impacts

on the time path of infections. Farboodi, Jarosch, and Shimer (2020) develop a

tractable model of forward-looking individual distancing in which they can compare

equilibrium and social optimizing distancing. They calibrate to epidemiological es-

timates of R0 from early in the pandemic. They then show that, given a particular

choice for the disutility of social distancing, the laissez-faire equilibrium, where so-

cial distancing is the result of endogenous individual choices, roughly matches the

degree of distancing in the US as measured by cell-phone mobility data. They find

that the optimal government policy in the US, taking externalities into account,

is immediate, but not particularly restrictive, social distancing of long duration.

Eichenbaum, Rebelo, and Trabandt (2020) develop another model in which the

primary channel for distancing is to reduce consumption of social goods, which

is restrictive as a model of distancing activities, but creates clean connections to

macroeconomic activity.

Goolsbee and Syverson (2020) study endogenous social distancing from an em-

pirical perspective. They provide an estimate of how important endogenous in-

dividual actions are relative to government policies designed to lower Rt. Using

county-level mobility data in a border discontinuity design, they find that, of the

60% decrease in US activity observed, only about 7 percentage points can be ex-

plained by government regulations across different states and municipalities. Their

research suggests that ignoring endogeneity in these models could be problematic

and could, in particular, lead researchers to mistakenly attribute effects on disease

dynamics to government policies. Chernozhukov, Kasaha, and Schrimpf (2020) find

substantial causal effects of government policies using a more sophisticated dynamic

model of consumer choices, while still finding that providing information on risks is

also quite important.

It should be noted that the endogeneity of Rt0 has also been recognized and

addressed by epidemiologists. Reluga (2010) is most similar to how some economists

have set up the problem—it develops a differential game version of the SIR model in

which agents can, at each instant, take a costly social distancing action that reduces

their instantaneous probability of infection. It computes equilibria for several sets

of parameter values covering scenarios in which the disease spreads at different rates

and a vaccine is closer or farther off, and compares equilibrium payoffs to the social

optimum. Reluga (2010) also provides references to earlier literature, much of which

is less utility-focused. A recent example of work of this style is Eksin, Paarporn,

and Weitz (2019), which discusses variants of the SIR model that make how people

distance in response to current or cumulative cases as a primitive (instead of deriving

this from a utility function) and notes that distancing could make the long-run

fraction infected much lower than would be predicted by an SIR model calibrated

early stages of the epidemic. While economists’ first inclination will be to regard

it as a drawback that distancing behavior is a primitive rather than derived from
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dynamic optimization given an assumed utility function, a skeptic could easily note

that there is quite limited evidence on the utility-consistency of the ways in which

people socially distance over the course of an epidemic, nor that models with utility

functions calibrated to rationalize how people have distanced in past epidemics will

provide better predictions than would models in which behavior itself is calibrated

to behavior in past epidemics.

Heterogeneity

In many branches of economics it has become standard to incorporate hetero-

geneous consumer preferences and/or firm profit functions. Given this norm, it is

not surprising that economists are also increasingly incorporating heterogeneity into

their COVID-related work.

One of the most striking features of COVID-19 is the how fatality rates vary

with age. The calibrations in Ferguson et al. (2020), for example, assume an infec-

tion fatality rate of 9.3% for those over 80, 2.2% for those 60-69, 0.15% for those

40-49, and 0.03% for those 20-29. Economic activities also vary with age, of course.

It is, therefore, natural to assess the potentially disparate impact that policies may

have on different age groups, consider explicitly age-varying policies, or both.

Several recent papers use calibrated multi-population SIR models where sub-

populations are interpreted as age groups to discuss the economic and health con-

sequences of lockdown and reopening policies. Rampini (2020) considers a two-

population model calibrated to reflect those under and over age 55 and notes that

a two-phase reopening in which the young are released before the old can reduce

hospital overcrowding, mortality, and economic losses. Favero, Ichino, and Rus-

tichini (2020) and Baqaee et al. (2020) make finer distinctions of subpopulations.

The former considers a fifteen-population model corresponding to subsets defined

by five age groups and three occupation types. The latter uses a five popula-

tion model corresponding to age groups, but calibrates interactions between age

groups using contact survey data,11 data on activity differences across occupations,

and industry-specific worker age distributions. In other words, they take an es-

timates of the average R0 from the epidemiology literature and choose a matrix

of subgroup-to-subgroup infection rates that is consistent both with that R0 and

with the differences across groups in the contact surveys and mobility data. The

results of Baqaee et al. (2020) are sobering: even slow re-opening policies that pri-

oritize industries on a GDP-to-risk basis tend to produce conditions that require

subsequent reversals of policy with new shutdowns if individuals relax their levels

of social distancing. Acemoglu et al. (2020) analyze a much broader class of time-

and age-varying policies and provide estimates of the Pareto frontier of optimal

policies that minimize economic losses and deaths. They note that age-dependent

policies can provide substantial gains relative to uniform policies, with the greatest

11“Contact surveys” are distinct from contact tracing. The former simply obtains data on
typical daily contacts of randomly-selected people, both within and across various subgroups.
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improvement coming from doing as much as one can to protect those in the oldest

group when prevalence is high among those in younger age groups.

Ellison (2020) surveys models in the epidemiology literature that take a broader

view of heterogeneity—reflecting that those who ride public transportation or fre-

quent bars will have many more contacts than others in their age group, for example—

and discusses their implications for an analysis of COVID-19.12 One cautionary

observation is that these models have more parameters that need to be calibrated,

and long run outcomes can be sensitive to activity levels of the less active, particu-

larly when we are considering relaxing restrictions. It is difficult to calibrate these

parameters early in an epidemic and predictions that do not allow for heterogeneity

may be overconfident.

Ellison (2020) also notes that conclusions drawn from applying homogeneous

SIR models to a world that is more like a heterogeneous SIR model would be biased

in a number of ways. As noted earlier, homogeneous SIR models may substantially

overstate the fraction of the population that must be infected in order to achieve

herd immunity. A second related observation is that (targeted) lockdown polices can

also be more cost effective in heterogeneous populations. There can be substantial

gains either from taking permanent measures to reduce spread among the highly

active or from temporarily locking down less active groups to minimize overshoot-

ing of herd immunity thresholds. We look forward to seeing such heterogeneities

incorporated into more policy analyses.13

Political Economy

An extraordinary characteristic of this health crisis in the US is the degree

to which it has been politicized, even to the extent that simple precautions like

wearing a mask have become freighted with political meaning. Evidence suggests

that social distancing and mask-wearing are very important weapons in combating

COVID-19,14 so understanding political obstacles to improving, or simply variation

in, these behaviors is quite important. A trio of papers attempt to address this

issue by looking specifically at the role of the media. They have found evidence of

correlation or causal effects of media consumption on knowledge about COVID-19

and behavior regarding it. Jamieson and Albarraćın (2020) find that, controlling

for party affiliation and other demographics, use of conservative media was asso-

ciated with significantly lower levels of knowledge about the virus and the disease

characteristics associated with it. Simonov et al. (2020) exploit quasi-random as-

signments of channel positions in a cable line-up to estimate the effect of full Fox

News viewership on non-compliance with stay-at-home orders, finding an increase

12Jackson and Lopez-Pintado (2013) is an example within economics.
13Given the substantial fraction of deaths which have occurred in nursing homes, one such

extension that seems very natural would be to incorporate a nursing home sector. This would

allow one to model impacts of policies like those discussed in Chen, Chevalier, and Long (2020).
14Abaluck et al. (2020), Chernozhukov, Kasaha, and Schrimpf (2020)
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of 12-25% non-compliance. Finally, Bursztyn et al. (2020), also interested in the

effect of Fox viewership, exploit a different instrument, the broadcast time of Han-

nity and Tucker Carlson Tonight relative to sunset in a particular location. They

document a much different tone to the COVID-related content on the two shows

early in the epidemic and find that areas with greater exposure to Hannity—more

dismissive of the risks—experienced significantly more cases and deaths.

Barrios and Hochberg (2020) use data on internet searches to document that

Republican-dominated areas perceive less risk from the virus than do Democratic-

dominated areas. Finally, Ajzenman, Cavalcanti, and Da Mata (2020) find similar

political effects in Brazil, another country struggling with high caseloads and deaths

and with a president dismissive of the severity of the pandemic. They find differen-

tial effects on behavior following presidential speeches disparaging social distancing,

based on the level of political support for the president by location. Additional

papers documenting the political divide and its effects on behavior and health out-

comes during the pandemic are cited in these papers as well.

Although none of these papers use epidemiological models or methods, their

estimates are useful for understanding how the parameters in the epidemiological

models might vary over time and by geographic location. In fact, their specifications

and results suggest ways in which Rt0 might be parameterized in an empirical model

with a variety in covariates.

Conclusion

The symbiotic relationship between academic research and government policy-

making existed long before the spring of 2020. Many researchers aim to produce

research that is topical, useful, and policy-relevant. Policy-makers seek out expert

advice and prediction, often in the form of theoretical or empirical models. Our

current crisis, however, has put the structure and the mechanics of this relationship

in stark relief.

We think that it is important to draw a distinction between two different roles

that models have served during the pandemic. Models can help us predict and they

can help us understand, and policy-makers have demanded both types. For instance,

they can help us predict timing and magnitude of infections and hospitalizations,

as well as need for equipment and other resources. The ability to generate detailed

predictions for specific localities is important, especially for local decision-makers

who have to set policy and allocate resources. Ultimately, though, the test of

these models’ usefulness is typically empirical in nature, whether that be using

retrospective data to judge various models after the fact or using previous and

contemporary data from similar settings. The opacity of such models may not be

entirely unimportant, but it could be second-order: as long as a “black box” works,

we may not care what is in it.

Or models can help us understand. They can help us understand, for in-

stance, an important interaction of factors, or a mechanism which can indirectly
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affect spread of a disease. Such models need not be able to generate location- and

day-specific predictions of number of hospital beds needed, but they are no less

important in informing policy-making and resource allocation in different ways.

Understanding the process by which these models’ predictions and insights can

be accessed by policy-makers has also gained importance. The normal process of

writing, vetting, and publishing scientific and economic research is being stretched

to its limits given the urgency of the situation.15 Direct and wide dissemination

can work for certain types of knowledge: detailed predictions from empirical mod-

els lend themselves to the now-ubiquitous COVID “dashboards,” that make those

predictions available to policy-makers and others with just a click or two. There

is no reason to believe that the models which have the best designed websites and

interfaces are the ones producing the most careful and accurate predictions, though.

Conveying more subtle insights, such as how government policies might inter-

act with endogenous social distancing, seems substantially more difficult but no

less important. One would hope that robust lines of communication and estab-

lished respectful relationships between experts and policy-makers could facilitate

such dialogues.

We wrote this paper in hopes of spurring interesting and important research by

economists on epidemics and COVID-19, in particular. If this extraordinary period

in time also spurs a rethinking of the complicated relationship between research and

policy-making, the dialog between experts and non-experts, and the practical uses

of both theoretical and empirical modeling, we will all reap the benefits.
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