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1 Introduction

The most important theoretical result for the optimal non-linear taxation problem is that

optimal marginal tax rates — at interior solutions — are non-negative and zero at the top

and bottom of the skill distribution. Mirrlees (1971) first stated the positivity result but his

proof relied implicitly on restrictive assumptions of separability. Seade (1982) provided an

alternative proof using non-inferiority of leisure.

Unfortunately, Seade’s proof, while mathematically simple, relies on a lemma outside the

standard economic tool-kit which also makes intuition for the result more difficult. This note

provides a simpler proof of Seade’s result using methods entirely familiar to economists.

The modest purpose of this note is to simplify the proof of the result in Seade (1982).1

The main argument in our proof is as follows. Manipulating the standard well-known opti-

mality conditions we show that if marginal tax rates are not positive then there exist two

productivity levels n0 < n1 such that: (i) marginal tax rates are zero at n0 and n1; (ii)

marginal utility of consumption is lower at n0. These two properties together with normal-

ity of leisure imply that utility must be higher at n0 than at n1. However, this violates a

necessary condition for incentive compatibility: more productive agents must be better-off!

We conclude that negative marginal tax rates cannot be optimal.

The next section contains the main argument borrowing heavily on Mirrlees’ (1976)

exposition. The appendix derives the main optimality conditions required for a self-contained

exposition.

1The result in Seade’s paper is restrictive in that it assumes that bunching does not take place at the
optimum. As Ebert (1992) and others has stressed this may be an important qualification.
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2 Positive Taxes

We follow Mirrlees’ (1976) notation closely. There is a continuum of agents that are heteroge-

neous with respect to their productivity n, distributed with density f (n). Agents preferences

are summarized by a concave utility function over consumption, c, and leisure, l, given by

U (c, l). We define an indirect utility over consumption, c, output, y, and productivity, n :

u(c, y, n) ≡ U(c, 1 − y/n). Let e (v, y, n) denote the ‘inverse’ of v = u (c, y, n) with respect

to c.

The marginal tax rate for an agent with productivity n has the same sign as the La-

grangian multiplier on the incentive constraint µ(n), see equation (34) from Mirrlees (1976)

reproduced as equation (34-M76) in the appendix below. We will prove that this multiplier

is positive for n ∈ (n, n̄) as long as output y(n) is strictly positive. Optimality requires that
the multiplier must be zero at the boundaries, µ (n) = µ (n̄) = 0.

From Mirrlees’ equation (33) we have the optimality condition

f − µ0 − µuncev − fλev = 0 (1)

where λ ≥ 0 is the multiplier on the economy-wide resource constraint.
If µ(n) < 0 for some n ∈ (n, n̄) then there must be some “maximal interval” [n0, n1] with

n0 < n1 such that µ(n) ≤ 0 for n ∈ [n0, n1], with µ(n0) = µ(n1) = 0 and µ0(n0) ≤ 0 and
µ0(n1) ≥ 0. Define the expenditure function (without distortions) for agent n by:

m(v, n) ≡ min
c,l
(c+ nl) s.t. U(c, l) = v

Because the marginal tax is zero it follows that the allocation c (n) and l(n) at n0 and n1

solve this minimum expenditure problem — i.e. agents n0 and n1 are not constrained. Using

this and the envelope condition we obtain: mv = 1/Uc = 1/uc = ev (see the appendix for

details).

Combining (1) with these facts we obtain:

m0
v =

1

λ

µ
1− µ00

f0

¶
≥ 1

λ
≥ 1

λ

µ
1− µ01

f1

¶
= m1

v.

More explicitly: mv(v(n
0), n0) ≥ mv(v(n

1), n1) with n0 < n1.

We now show that m0
v ≥ m1

v with n0 < n1 implies that v(n0) ≥ v(n1). Towards a

contradiction, assume instead that v(n0) < v(n1). Strict concavity of U(c, l) implies that

mvv > 0 and normality of leisure implies that mvn = mnv = lv ≥ 0. Thus, n0 < n1 and

v(n0) < v(n1) imply the opposite inequality, mv(n
0, v(n0)) < mv(n

1, v(n1)), a contradiction.
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Thus, v(n0) ≥ v(n1).2

Finally, v(n0) ≥ v(n1) violates incentive compatibility constraints — since output is posi-

tive more productive agents must be better off! It follows that, µ(n) < 0 is not possible and

thus that tax rates are non-negative.

A Optimality Conditions

After a change in variables v (n) = u (c (n) , y (n) , n) the problem Mirrlees (1976) sets up is

to maximize Z
v (n) f (n) dn

subject to, Z
(y (n)− e (v (n) , y (n) , n)) f (n) = G

and,

v0 (n) = un (e (v (n) , y (n) , n) , y (n) , n) .

where e (v, y, n) is the solution of v = u (c, y, n) for c. Once this problem is solved we can

recover consumption and leisure using c (n) = e (v (n) , y (n) , n) and l (n) = 1− y (n) /n.

The first order conditions are:

f − λevf − µ0 − µuncev = 0 (33-M76)

and,

λf (1− ey) = µ (uny + uncey)

where we omit the arguments where functions are evaluated for simplicity (we will be careful

below where it counts).

Define the marginal rate of substitution function s (c, y, n) ≡ uy (c, y, n) /uc (c, y, n).

Then:

sn (c, y, n) =
1

uc (c, y, n)
(uyn (c, y, n)− s (c, y, n)ucn (c, y, n))

and sn > 0 by the single crossing condition. Since, ey (v, y, n) = −s (e (v, y, n) , y, n) the
second optimality condition can be written as:

λ f (1 + s) = µ sn uc (34-M76)

2This observation underlies Theorem 3.1 in Mirrlees (1986, pg. 1212) — that without asymmetric infor-
mation and lump-sum taxation more productive agents are worse off.
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Note that τ (n) = 1 + s (e (v (n) , y (n) , n) , y (n) , n) represents the marginal tax rate faced

by individuals with productivity n. The sign of the marginal tax rate is equal to the sign

of µ (n) since sn > 0 (single crossing) and uc > 0. Equations (33-M76) and (34-M76) are

exactly the same numbered equations in Mirrlees (1976).

From now on we discuss equations (33-M76) and (34-M76) for productivity levels where

µ (n) = 0. Letting c (n) = e (v (n) , y (n) , n) and l (n) = 1− y (n) /n we have that

1− λev (v (n) , y (n) , n)− µ0 = 0 (2)

s (c (n) , y (n) , n) = −1

Note that,

ev (v (n) , y (n) , n) = 1/uc (c (n) , y (n) , n) = 1/Uc (c (n) , l (n)) . (3)

The second optimality condition −s = 1 is by definition equal to:

Ul (c (n) , l (n))

Uc (c (n) , l (n))
= n

which implies that c (n) and l (n) solve minl,c (nl + c) s.t. U(c, l) = v (n). Defining the

expenditure function m (v, n) = min (nl + c) s.t. U(c, l) = v we have shown that Ev (v, n) =

1/Uc (c (n) , l (n)) and thus, using (3), we obtain that

ev (v (n) , y (n) , n) = Ev (v (n) , n)

The argument in Section 2 proceeds by substituting this equality into (2).
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