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Abstract. The usual quantile regression estimator of Koenker and Bassett (1978)
is biased if there is an additive error term. We analyze this problem as an errors-
in-variables problem where the dependent variable suffers from classical measurement
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demonstrate that when the number of knots in the quantile grid is chosen to grow at
an adequate speed, the sieve maximum-likelihood estimator is asymptotically normal,
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Carlo simulations and illustrate our estimator with an application to the returns to
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have been obscured in previous work by measurement-error bias.
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1. Introduction

Economists are aware of problems arising from errors-in-variables in regressors but
generally ignore measurement error in the dependent variable. In this paper, we study
the consequences of measurement error in the dependent variable of conditional quan-
tile models and propose a maximum likelihood approach to consistently estimate the
distributional effects of covariates in such a setting. Quantile regression (Koenker and
Bassett, 1978) has become a very popular tool for applied microeconomists to consider
the effect of covariates on the distribution of the dependent variable. However, as left-
hand side variables in microeconometrics often come from self-reported survey data, the
sensitivity of traditional quantile regression to LHS measurement error poses a serious
problem to the validity of results from the traditional quantile regression estimator.

The errors-in-variables (EIV) problem has received significant attention in the linear
model, including the well-known results that classical measurement error causes attenu-
ation bias if present in the regressors and has no effect on unbiasedness if present in the
dependent variable. See Hausman (2001) for an overview. In general, the linear model
results do not hold in nonlinear models.1 In this paper, we focus on the linear quan-
tile regression setting. Hausman (2001) observes that EIV in the dependent variable in
quantile regression models generally leads to significant bias, a result very different from
the linear model intuition.

In general, EIV in the dependent variable can be viewed as a mixture model.2 We
show that under certain assumptions on the degree of ill-posedness, by choosing the
growth speed of the number of knots in the quantile grid, our estimator has fractional
polynomial of n convergence speed and asymptotic normality. We suggest using the
bootstrap for inference.

1Schennach (2008) establishes identification and a consistent nonparametric estimator when EIV exists
in an explanatory variable. Carroll and Wei (2009) proposed an iterative estimator for the quantile
regression when one of the regressors has EIV. Studies focusing on nonlinear models in which the left-
hand side variable is measured with error include Hausman et. al (1998) and Cosslett (2004), who study
probit and tobit models, respectively.
2A common feature of mixture models under a semiparametric or nonparametric framework is the ill-
posed inverse problem, see Fan (1991). We face the ill-posed problem here, and our model specifications
are linked to the Fredholm integral equation of the first kind. The inverse of such integral equations
is usually ill-posed even if the integral kernel is positive definite. The key symptom of these model
specifications is that the high-frequency signal of the objective we are interested in is wiped out, or at
least shrunk, by the unknown noise if its distribution is smooth. To uncover these signals is difficult and
all feasible estimators have a lower speed of convergence compare to the usual

p
n case. The convergence

speed of our estimator relies on the decay speed of the eigenvalues of the integral operator. We explain
this technical problem in more detail in the related section of this paper.
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Intuitively, the estimated quantile regression line x
i

b�(⌧) for quantile ⌧ may be far from
the observed y

i

because of LHS measurement error or because the unobserved conditional
quantile u

i

of observation i is far from ⌧ . Our ML framework effectively estimates the
likelihood that a given quantile-specific residual ( "

ij

:= y
i

� x
i

�(⌧
j

)) is large because of
measurement error rather than observation i’s unobserved conditional quantile u

i

being
far away from ⌧

j

. The estimate of the joint distribution of the conditional quantile and
the measurement error allows us to weight the log likelihood contribution of observation
i more in the estimation of �(⌧

j

) where is is more likely that u
i

⇡ ⌧
j

. We show in
simulations that a mixture of normals can accommodate a wide set of EIV distributions.3

In the case of Gaussian errors in variables, this estimator reduces to weighted least
squares, with weights equal to the probability of observing the quantile-specific residual
for a given observation as a fraction of the total probability of the same observation’s
residuals across all quantiles.

An empirical example (extending Angrist et al., 2006) studies heterogeneity in the
returns to education across conditional quantiles of the wage distribution. Correcting for
likely measurement error in the self-reported wage data, we estimate considerably more
heterogeneity across the wage distribution in education-wage gradient. In particular, the
returns to education for latently high-wage individuals have been increasing over time
and are much higher than previously estimated. By 2000, the return to education for
the top of the conditional wage distribution was over three times larger than returns for
any other segment of the distribution. We also document that increases in the returns to
education between 2000–2010, while still skewed towards top earners, were shared more
broadly across the wage distribution.

The rest of the paper proceeds as follows. In Section 2, we introduce model specifica-
tion and identification conditions. In Section 3, we consider the MLE estimation method
and analyzes its properties. In Section 4, we discuss sieve estimation. We present Monte
Carlo simulation results in Section 5, and Section 6 contains our empirical application.
Section 7 concludes.

Notation: Define x to have dimension d
x

and domain X . Define the space of y

as Y . Denote a ^ b as the minimum of a and b, and denote a _ b as the larger of
a and b. Let �!

d

be weak convergence (convergence in distribution), and �!
p

stands for

convergence in probability. Let �!
d

⇤ be weak convergence in outer probability. Let f("|�)

3See Burda, Harding, and Hausman (2008, 2011) for other applications demonstrating the flexibility of
a finite mixture of normals.
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be the p.d.f of the EIV e parametrized by � where � has dimension d
�

and domain ⌃.
Assume the true parameters are �

0

(·) and �
0

for the coefficient of the quantile model
and parameter of the density function of the EIV. Define ||(�

0,

�
0

)|| :=
p

||�
0

||2
2

+ ||�
0

||2
2

as the L2 norm of (�
0,

�
0

), where || · ||
2

is the usual Euclidean norm. For �
k

2 Rk, define
||(�

k,

�
0

)||2 :=
p

||�
k

||2
2

/k + ||�
0

||2
2

and ||(�
k

, �)||1 = ||�
k

||1 + |�
0

|1. Finally, we use the
notation x - y for x = O(y) and x -

p

y for x = O
p

(y).

2. Model and Identification

We consider the standard linear conditional quantile model, where the ⌧ th quantile of
the dependent variable y⇤ is a linear function of x

Q
y

⇤
(⌧ |x) = x�

0

(⌧).

However, we are interested in the situation where y⇤ is not directly observed, and we
instead observe y where

y = y⇤ + "

and " is a mean-zero, i.i.d error term independent from y⇤ and x.
Unlike the linear regression case where EIV in the left hand side variable does not

matter for consistency and asymptotic normality, EIV in the dependent variable can
lead to severe bias in quantile regression. More specifically, with ⇢

⌧

(z) denoting the
check function (plotted in Figure 1)

⇢
⌧

(z) = z(⌧ � 1(z < 0)),

the minimization problem in the usual quantile regression

�(⌧) 2 argmin

b

E[⇢
⌧

(y � xb)], (2.1)

is generally no longer minimized at the true �
0

(⌧) when EIV exists in the dependent
variable. When there exists no EIV in the left-hand side variable, i.e. y⇤ is observed,
the FOC is

E[x(⌧ � 1(y⇤ < x�(⌧)))] = 0, (2.2)

where the true �(⌧) is the solution to the above system of FOC conditions as shown
by Koenker and Bassett (1978). However, with left-hand side EIV, the FOC condition
determining b�(⌧) becomes

E[x(⌧ � 1(y⇤ + " < x�(⌧)))] = 0. (2.3)
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Figure 1. Check Function ⇢
⌧

(z)

0

τ

1−τ

For ⌧ 6= 0.5, the presence of measurement error " will result in the FOC being satisfied at
a different estimate of � than in equation (2.2) even in the case where " is symmetrically
distributed because of the asymmetry of the check function. In other words, in the
minimization problem, observations for which y⇤ � x�(⌧) and should therefore get a
weight of ⌧ may end up on the left-hand side of the check function, receiving a weight
of (1� ⌧) . Thus, equal-sized differences on either side of zero do not cancel each other
out.4

A straightforward analytical example below demonstrates the intuition behind the
problem of left-hand errors in variables for estimators concerned with estimating the
distributional parameters. We then provide a simple Monte-Carlo simulation to show the
degree of bias in a simple two-factor model with random disturbances on the dependent
variable y.

Example 1. Consider the bivariate data-generating process

y
i

= �
0

(u
i

) + �
1

(u
i

) · x
i

+ "
i

4For median regression, ⌧ = .5 and so ⇢.5(·) is symmetric around zero. This means that if " is sym-
metrically distributed and �(⌧) symmetrically distributed around ⌧ = .5 (as would be the case, for
example, if �(⌧) were linear in ⌧), the expectation in equation (2.3) holds for the true �0(⌧). However,
for non-symmetric ", equation (2.3) is not satisfied at the true �0(⌧).
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where x
i

2 {0, 1}, the measurement error "
i

is distributed N (0, 1), and the unobserved
conditional quantile u

i

of observation i follows u
i

⇠ U [0, 1]. Let the coefficient function
�
0

(⌧) = �
1

(⌧) = �

�1

(⌧), with �

�1

(·) representing the inverse CDF of the standard
normal distribution. Because quantile regression estimates the conditional quantiles
of y given x, in this simple setting, the estimated slope coefficient function is simply
the difference in inverse CDFs for x = 1 and x = 0. For any quantile ⌧ , b�

1

(⌧) =

bF�1

y|x=1

(⌧) � bF�1

y|x=0

(⌧) where bF (·) is the estimated CDF of y. With no measurement
error, the distribution y|x = 1 is N (0, 4) and the distribution of y|x = 0 is N (0, 1).
Then

p lim b�
1

(⌧) = (

p
4�

p
1)�

�1

(⌧) = �
1

(⌧),

or the estimated coefficient tends the truth at each ⌧ by the consistency of quantile
regression as an estimator of the conditional distribution of y given x. With non-zero
measurement error, quantile regression still consistently estimates the conditional dis-
tribution of y given x (now y|x = 1 ⇠ N (0, 5) and y|x = 0 ⇠ N (0, 2)), but the
measurement error prevents consistent estimation of the partial effect of x on the con-
ditional quantile of y. The probability limit of the estimated coefficient function under
measurement error ˜�

1

(·) is

p lim ˜�
1

(⌧) = (

p
5�

p
2)�

�1

(⌧),

which will not equal the truth for any quantile ⌧ 6= 0.5.

This example also illustrates the intuition offered by Hausman (2001) for compression
bias for bivariate quantile regression. For the median ⌧ = 0.5, because �

�1

(0.5) = 0,
�(⌧) =

b�(⌧) =

˜�(⌧) = 0 such that the median is unbiased. For all other quantiles,
however, since

p
5�

p
2 < 1, the coefficient estimated under measurement error will be

compressed towards the true coefficient on the median regression �
1

(0.5).

Example 2. We now consider a simulation exercise to illustrate the direction and mag-
nitude of measurement error bias in even simple quantile regression models. The data-
generating process for the Monte-Carlo results is

y
i

= �
0

(u
i

) + x
1i

�
1

(u
i

) + x
2i

�
2

(u
i

) + "
i

with the measurement error "
i

again distributed as N (0, �2

) and the unobserved condi-
tional quantile u

i

of observation i following u
i

⇠ U [0, 1]. The coefficient function �(⌧)

has components �
0

(⌧) = 0, �
1

(⌧) = exp(⌧), and �
2

(⌧) =
p
⌧ . The variables x

1

and x
2

are
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Table 1. Monte-Carlo Results: Mean Bias

EIV Quantile ( ⌧)
Parameter Distribution 0.1 0.25 0.5 0.75 0.9

�
1

(⌧) = e⌧

" =0 0.006 0.003 0.002 0.000 -0.005
" ⇠ N (0, 4) 0.196 0.155 0.031 -0.154 -0.272
" ⇠ N (0, 16) 0.305 0.246 0.054 -0.219 -0.391

True parameter: 1.105 1.284 1.649 2.117 2.46

�
2

(⌧) =
p
⌧

" =0 0.000 -0.003 -0.005 -0.006 -0.006
" ⇠ N (0, 4) 0.161 0.068 -0.026 -0.088 -0.115
" ⇠ N (0, 16) 0.219 0.101 -0.031 -0.128 -0.174

True parameter: 0.316 0.5 0.707 0.866 0.949
Notes: Table reports mean bias (across 500 simulations) of slope coefficients estimated for
each quantile ⌧ from standard quantile regression of y on a constant, x

1

, and x
2

where y =

x
1

�
1

(⌧) + x
2

�
2

(⌧) + " and " is either zero (no measurement error case, i.e. y⇤ is observed) or
" is distributed normally with variance 4 or 16. The covariates x

1

and x
2

are i.i.d. draws from
LN(0, 1). N = 1, 000.

drawn from independent lognormal distributions LN(0, 1). The number of observations
is 1,000.

Table 1 presents Monte-Carlo results for three cases: when there is no measurement
error and when the variance of " equals 4 and 16. The simulation results show that
under the presence of measurement error, the quantile regression estimator is severely
biased. Furthermore, we find evidence of the attenuation-towards-the-median behavior
posited by Hausman (2001), with quantiles above the median biased down and quantiles
below the median upwardly biased, understating the distributional heterogeneity in the
�(·) function. For symmetrically distributed EIV and uniformly distributed �(⌧), the
median regression results appear unbiased. Comparing the mean bias when the variance
of the measurement error increases from 4 to 16 shows that the bias is increasing in
the variance of the measurement error. Intuitively, the information of the functional
parameter �(·) is decaying when the variance of the EIV becomes larger.

2.1. Identification and Regularity Conditions. In the linear quantile model, it is
assumed that x�(⌧) is increasing in ⌧ for any x 2 X , implying that �(·) is a component-
wise increasing function up to a linear transformation. Therefore, WLOG, we can assume
that the coefficients �(·) are increasing and refer to the set of functions {�

k

(·)}dx
k=1

as
co-monotonic functions.

Condition A1 (Properties of �(·)). We assume the following properties on the coeffi-
cient vectors �(⌧):
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(1) �(⌧) is in the space M [B
1

⇥ B
2

⇥ B
3

... ⇥ B
d

x

] where the functional space M is
defined as the collection of all functions f = (f

1

, ..., f
d

x

) : [0, 1] ! [B
1

⇥ ...⇥B
d

x

]

with B
k

⇢ R being a closed interval 8 k 2 {1, ..., d
x

} such that each entry f
k

:

[0, 1] ! B
k

is monotonically increasing in ⌧ .
(2) Let B

k

= [l
k

, u
k

] so that l
k

< �
0k

(⌧) < u
k

8 k 2 {1, ..., d
x

} and ⌧ 2 [0, 1].
(3) The true parameter �

0

is a vector of C1 functions with derivative bounded from
below by a positive constant, implying that each component of �

0

is strictly
monotonic.

(4) The domain of the parameter � is a compact space ⌃ and the true value �
0

is in
the interior of ⌃.

(5) Without loss of generality, �
k

(0) � 0.

Monotonicity of �
k

(·) is important for identification because in the log-likelihood func-
tion, f(y|x) =

´
1

0

f(y�x�(u)|�)du is invariant when the distribution of random variable
�(u) is invariant. The function �(·) is therefore unidentified if we do not impose further
restrictions. Given the distribution of the random variable {�(u) | u 2 [0, 1]}, the vector
of functions � : [0, 1] ! B

1

⇥ B
2

⇥ ... ⇥ B
d

x

is unique under the rearrangement if the
functions {�

k

(·)}dx
k=1

are co-monotonic, which we assume WLOG as discussed above.
Under assumption A1, it is easy to see that the parameter space ⇥ := M ⇥ ⌃ is

compact under the L1 norm. The following lemma will be instrumental in proving the
consistency of our ML estimator.

Lemma 1. The space M [B
1

⇥B
2

⇥B
3

...⇥B
k

] is a compact and complete space under

Lp

, for any p � 1.

Proof. See Appendix C.1. ⇤

Condition A2 (Properties of x). We assume the following properties of the vectors x

that comprise the design matrix X:

(1) E[x0x] is non-singular.
(2) The domain of x, denoted as X , is bounded continuous on at least one dimension,

i.e. there exists k 2 {1, ..., d
x

} such that for every feasible x�k

, there is a open
set X

k

⇢ R such that (X
k,

x{�k}) ⇢ X .

Condition A3 (Properties of EIV). We assume the following properties of the mea-
surement error ". The probability density function of the EIV is denoted f("|�) and the
true density is abbreviated f

0

(") := f("|�
0

).
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(1) f("|�) is differentiable in " and �.
(2) For all � 2 ⌃, there exists a uniform constant C > 0 such that E[| log f("|�)|] <

C.
(3) f(·|�) is non-zero all over the entire space R and bounded from above uniformly.
(4) E["] =

´1
�1 "f("|�) = 0.5

(5) Define �
"

(s|�) :=
´1
�1 exp(is")f("|�)d" as the characteristic function of " given

PDF f("|�). Given assumption A3.4, �0
✏

(s|�)|
s=0

= 0.
(6) | log(f("))|  C(1 + "�) and E[|"2�|f

0

(")] < 1. For some � > 0 and for all
�
1

, �
2

2 ⌃, | log(f("|�
1

))� log(f("|�
2

))|  C||�
1

� �
2

||
2

(1 + "�)

(7) There is a positive constant C > 0 such that |f 0
(")| < C and |@

�

f(")| < C, for
all " and � 2 ⌃.

(8) For any � 2 ⌃,
´

q

�q

|�
"

(s|�)��
"

(s|�
0

)|2ds � C
q

||���
0

||2
2

for any q > 0 and some
constant C

q

> 0.

Note that assumptions A3.6–A3.8 hold for all exponential families.
Lemma 1 and the above conditions on the parameters, covariate matrix, and mea-

surement error allow us to state our main identification result.

Theorem 1 (Nonparametric Global Identification). Under Condition A1-A3, for any

�(·) and f(·) which generates the same density of y|x almost everywhere as the true

function �
0

(·) and f
0

(·), it must be that:

�(⌧) = �
0

(⌧) for all ⌧

f(") = f
0

(") for all ".

Proof. See Appendix C.1. ⇤

3. Maximum Likelihood Estimator

Denote ✓ := (�(·), �) 2 ⇥. For any ✓, define the expected log-likelihood function L(✓)

as follows
L(✓) = E[log g(y|x, ✓)], (3.1)

with the empirical log likelihood being denoted

L
n

(✓) = E
n

[log g(y|x, ✓)]. (3.2)

5Note that this can always be achieved by a normalization of the constant term �0(⌧).
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Using the fact that the unobserved conditional quantile is the CDF of y|x and CDFs are
distributed uniformly, the conditional density function g(y|x, ✓) is given by

g(y|x, ✓) =
ˆ

1

0

f(y � x�(u)|�)du. (3.3)

3.1. Consistency. The ML estimator is defined as:

(

b�(·), b�) 2 arg max

(�(·),�)2⇥
E

n

[g(y|x, �(·), �)]. (3.4)

where g(·|·, ·, ·) is the conditional density of y given x and parameters, as defined in
equation (3.3). Defining E

n

as the empirical average operator E
n

h(x) := 1

n

P

n

i=1

h(x
i

),
the following theorem states the consistency property of the ML estimator.

Lemma 2 (MLE Consistency). Under conditions A1-A3, the maximum-likelihood esti-

mator

(

b�(·), b�) 2 arg max

(�(·),�)2⇥
E

n



log

ˆ
1

0

f(y � x�(⌧)|�)d⌧
�

exists and converges to the true parameter (�
0

(·), �
0

) under the L2

norm in the functional

space M and Euclidean norm in ⌃ with probability approaching 1.

Proof. See Appendix C.2. ⇤

The identification theorem is a special version of a general MLE consistency theorem
(Van der Vaart, 2000). Two conditions play critical roles here: the co-monotonicity of
the �(·) function and the local continuity of at least one right-hand side variable. If
we do not restrict the estimator in the family of monotone functions, then we will lose
compactness of the parameter space ⇥ and the consistency argument will fail.

3.2. Convergence rate of the parametric component. As we are trying to estimate
�(·) and " via MLE from the mixture distribution of y = x�(⌧) + ", where ⌧ ⇠ U [0, 1]

and " ⇠ f(·|�
0

), the estimation of �(·) is ill-posed. However, with the condition that
one of the variables in x is continuous, we are able to estimate � at a much faster rate.

Condition A4 (Variation on Characteristic Function).

(1) |�
x�0(s)| � C/s, for some generic constant C > 0.

(2) There exists a generic constant c > 0 such that for any (�, �) 2 ⇥ and any s 2 R,

V ar
x

✓

�
x�

(s)

�
x�0(s)

◆

� cE
x

"

�

�

�

�

�
x�

(s)� �
x�0(s)

�
x�0(s)

�

�

�

�

2

#

.
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The first condition in the above assumption can be derived from the fact that x and
�
0

(⌧) are bounded and x�0
0

(⌧) > c for all ⌧ 2 [0, 1], where c > 0 is a constant. In the
Lemma below, we show that � converges to �

0

at rate n� 1
4 .

Lemma 3 (Convergence Rate of b�). If conditions A1–A4 hold, the ML estimator b� has

the following property:

b� � �
0

! o
p

(n� 1
4
). (3.5)

Proof. See Appendix C.2. ⇤

4. Sieve Estimation

In the last section we demonstrated that the maximum likelihood estimator restricted
to parameter space ⇥ converges to the true parameter with probability approaching 1.
However, the estimator still lives in a large space with �(·) being d

x

-dimensional co-
monotone functions and � being a finite dimensional parameter. Although theoretically
such an estimator does exist, in practice it is computationally infeasible to search for the
likelihood maximizer within this large space. In this paper, we consider a spline estimator
of �(·) to mimic the co-monotone functions �(·) for their computational advantages in
calculating the sieve estimator. The estimator below is easily adapted to the reader’s
preferred estimator. For simplicity, we use a piecewise constant sieve space, which we
define as follows.

Definition 1 (Sieve Space). Define ⇥

J

= ⌦

J

⇥ ⌃, where ⌦

J

stands for increasing
piecewise constant functions on [0, 1] with J knots at

�

j

J

 

for j = 0, 1, ..., J�1. In other
words, for any �(·) 2 ⌦

J

, �
k

(·) is a piecewise constant function on intervals [

j

J

, j+1

J

) for
j = 0, . . . , J � 1 and k = 1, . . . , d

x

.

In general, the L2 distance of the space ⇥
J

to the true parameter ✓
0

satisfies d
2

(✓
0

,⇥
J

) 
J�1 for some generic constant C, see Chen (2008). It is easy to see that ⇥

J

⇢ ⇥. We
propose approximating �(·) with a piecewise constant function. However, higher-order
splines could be used to attain a faster convergence rate. The sieve estimator is defined
as follows:

Definition 2 (Sieve Estimator).

(�
J

(·), �) = argmax

✓2⇥
J

E
n

[log g(y|x, �, �)] (4.1)

where J
n

! 1 as n ! 1.
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For the sieve space ⇥

J

and any (�
J

, �) 2 ⇥

J

, define ˜I as the following matrix:

˜I := E

2

6

4

0

B

@

´ 1
J

0

f
⌧

d⌧,
´ 2

J

1
J

f
⌧

d⌧, ...,
´

1

J�1
J

f
⌧

d⌧

g

1

C

A

0

B

@

´ 1
J

0

f
⌧

d⌧,
´ 2

J

1
J

f
⌧

d⌧, ...,
´

1

J�1
J

f
⌧

d⌧

g

1

C

A

03

7

5

where f
⌧

:=

@f(y�x�|�)
@

�

|
�=�(⌧)

. When J goes to infinity, the smallest eigenvalue of eI goes
to 0. Therefore, we require the following measure of ill-posedness.

Condition A5 (Ill-posed Measure). Define mineigen(I) as the minimum eigenvalue for
a given matrix I. Let one of the following two assumptions on the degree of ill-posedness
hold:

(1) Mild ill-posedness: mineigen(˜I) � C/J� for some � > 0 and constant C > 0.
(2) Strong ill-posedness: mineigen(˜I) � C exp(��J) for some � > 0 and constant

C > 0.

These ill-posed measures are closely related to the smoothness of the PDF of the EIV.
A sufficient condition for mild ill-posedness is the following discontinuity assumption on
f .

Condition A6 (Discontinuity of f). Suppose there exists a positive integer � such that
f 2 C��1

(R), and the �th order derivative of f equals:

f (�)

(x) = h(x) + c
�

�(x� a), (4.2)

with h(x) being a bounded function and L1 Lipschitz except at a, c
�

being a non-zero
constant, and �(x� a) is a Dirac �-function at a.

Note that for the symmetric Laplace distribution, � = 1. If the PDF of EIV follows
a smooth (e.g., Gaussian) distribution then mineigen(˜I) � C exp(��J) with � = 2.

The following Lemma establishes the consistency of the sieve estimator.

Lemma 4 (Sieve Estimator Consistency). If conditions A1-A5 hold and J
n

! 1 slowly

enough then the sieve estimator defined in (4.1) is consistent.

Proof. See Appendix C.3. ⇤

Unlike the usual sieve estimation problem, our problem is ill-posed with decaying
eigenvalue with speed J�. However, the curse of dimensionality in � is not at play
because of the co-monotonicity of �(·)—each entry of the vector of functions �(·) is
a function of a single variable ⌧ . It is therefore possible to use sieve estimation to
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approximate the true functional parameter with the number of intervals in the sieve J

growing slower than
p
n.

Theorem 2. Under conditions A1-A4 and A5.1 (the mild ill-posedness case), the fol-

lowing results hold for the sieve-ML estimator:

(1) Suppose �  �, where � is defined in Assumption A2. If the number of knots J
n

satisfies the growth condition J
�(1+�)+�

n

/n
1
4 ! 0 as J

n

! 1, then

||�
J

n

� �
0

||
2

= O
p

✓

max

✓

1

J
n

,
J�

np
n

◆◆

.

(2) If J

n

n

1
2�+2

! 1, then for every j = 1, . . . , J there exists a sequence of numbers

µ
kjJ

n

with µ
kjJ

n

= O
⇣

J

�

np
n

⌘

, such that:

µ
kjJ

n

(�
k,J

(⌧
j

)� �
k,0

(⌧
j

)) �!
d

N (0, 1).

Proof. See Appendix C.3. ⇤

By fixing the number of interior points, we can use ML to estimate the sieve estimator.
We discuss how to compute the sieve-ML estimator in the next section.

4.1. Inference via Bootstrap. In the last section we proved asymptotic normality
for the sieve-ML estimator ✓ = (�(⌧), �). However, computing the convergence speed
µ
kjJ

for �
k,J

(⌧
j

) by explicit formula can be difficult in general. To conduct inference,
we recommend using nonparametric bootstrap. Define (xb

i

, yb
i

) as a resampling of data
(x

i

, y
i

) with replacement for bootstrap iteration b = 1, . . . B, and define the estimator

✓b = argmax

✓2⇥
J

Eb

n

[log g(yb
i

|xb

i

, ✓)], (4.3)

where Eb

n

denotes the operator of empirical average over resampled data for bootstrap
iteration b. Then our preferred form of the nonparametric bootstrap is to construct
the 95% Confidence Interval pointwise for each covariate k and quantile ⌧ from the
variance dV ar(�

k

(⌧)) of each vector of bootstrap coefficients
�

�b

k

(⌧)
 

B

b=1

as b�
k

(⌧)±z
1�↵/2

·
q

dV ar(�
k

(⌧)) where the critical value z
1�↵/2

⇡ 1.96 for significance level of ↵ = .05.
The following lemma establishes the asymptotic normality of the bootstrap estimates

and allows us, for example, to use the empirical variance of the bootstrapped parameter
estimates to construct bootstrapped confidence intervals.

Lemma 5 (Validity of the Bootstrap). Under conditions A1-A5 and choosing the number

of knots J according to the condition stated in Theorem 2, the bootstrapped estimates
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defined in equation (4.3) have the following property

�b

k,J

(⌧)� �
k,J

(⌧)

µ
kjJ

⇤�!
d

N (0, 1) (4.4)

Proof. This result follows from Theorem 5.1 of Chen and Pouzo (2013), who establish
the validity of the nonparametric bootstrap in semiparametric models for a general
functional with finite-dimensional parameterization. ⇤

4.2. Weighted Least Squares. Under a normality assumption of the EIV term ", the
maximization of Q(·|✓) reduces to the minimization of a simple weighted least square
problem. Suppose the disturbance " ⇠ N (0, �2

). Then the maximization problem (4.1)
becomes the following, with the parameter vector ✓ = [�(·), �]

max

✓

0
Q(✓0|✓) := E [log(f(y � x�0

(⌧))|✓0)(x, y, ✓)|✓] (4.5)

= E
"ˆ

1

⌧

f(y � x�(⌧)|�)´
1

0

f(y � x�(u)|�)du

✓

�1

2

log(2⇡�02
)� (y � x�0

(⌧))2

2�02

◆

d⌧

#

.

It is easy to see from the above equation that the maximization problem of �0
(·)|✓ is

to minimize the sum of weighted least squares. As in standard normal MLE, the FOC
for �0

(·) does not depend on �02. The �02 is solved after all the �0
(⌧) are solved from

equation (4.5). Therefore, the estimand can be implemented with an EM algorithm that
reduces to iteration on weighted least squares, which is both computationally tractable
and easy to implement in practice.

Given an initial estimate of a weighting matrix W , the weighted least squares estimates
of � and � are

b�(⌧
j

) = (X 0W
j

X)

�1X 0W
j

y

b� =

s

1

NJ

X

j

X

i

w
ij

b"2
ij

where W
j

is the diagonal matrix formed from the jth column of W , which has elements
w

ij

.
Given estimates b"

j

= y � X b�(⌧
j

) and b�, the weights w
ij

for observation i in the
estimation of �(⌧

j

) are

w
ij

=

� (b"
ij

/b�)
1

J

P

j

� (b"
ij

/b�)
(4.6)
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where �(·) is the PDF of a standard normal distribution J is the number of ⌧s in the
sieve, e.g. J = 9 if the quantile grid is {⌧

j

} = {0.1, 0.2, ..., 0.9}.

5. Monte-Carlo Simulations

We examine the properties of our estimator empirically in Monte-Carlo simulations.
Let the data-generating process be

y
i

= �
0

(u
i

) + x
1i

�
1

(u
i

) + x
2i

�
2

(u
i

) + "
i

where n = 100, 000, the conditional quantile u
i

of each individual is u ⇠ U [0, 1], and the
covariates are distributed as independent lognormal random variables, i.e. x

1i

, x
2i

⇠
LN(0, 1). The coefficient vector is a function of the conditional quantile u

i

of individual
i

0

B

@

�
0

(u)

�
1

(u)

�
2

(u)

1

C

A

=

0

B

@

1 + 2u� u2

1

2

exp(u)

u+ 1

1

C

A

.

In our baseline scenario, we draw mean-zero measurement error " from a mixed normal
distribution

"
i

⇠

8

>

>

<

>

>

:

N (�3, 1) with probability 0.5

N (2, 1) with probability 0.25

N (4, 1) with probability 0.25

We also probe the robustness of the mixture specification by simulating measurement
error from alternative distributions and testing how well modeling the error distribution
as a Gaussian mixture handles alternative scenarios to simulate real-world settings in
which the econometrician does not know the true distribution of the residuals.

We use a gradient-based constrained optimizer to find the maximizer of the log-
likelihood function defined in Section 3. See Appendix A for a summary of the con-
straints we impose and analytic characterizations of the log-likelihood gradients for a
mixture of three normals. We use quantile regression coefficients for a ⌧ -grid of J = 9

knots as start values. For the start values of the distributional parameters, we place
equal 1/3 weights on each mixture component, with unit variance and means -1, 0, and
1.

As discussed in Section 2.1, the likelihood function is invariant to a permutation of the
particular quantile labels. For example, the log-likelihood function defined by equations
(3.1) and (3.3) would be exactly the same if �(⌧ = .2) were exchanged with �(⌧ = .5).
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Figure 2. Monte Carlo Simulation Results: Mean Bias of b�
1
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Notes: Figure plots mean bias of estimates of �
1

(⌧) for classical quantile regression (blue line)
and bias-corrected MLE (red line) across 500 MC simulations using the data-generating process
described in the text with the measurement error generated as a mixture of three normals.

Rearrangement helps ensure that the final ordering is consistent with the assumption
of x�(⌧) being monotonic in ⌧ and weakly reduces the L2 distance of the estimator
b�(·) with the true parameter functional �(·). See Chernozhukov et al. (2009) for further
discussion. Accordingly, we sort our estimated coefficient vectors by x̄b�(⌧) where x̄ is the
mean of the design matrix across all observations. Given initial estimates ˜�(·), we take
our final estimates for each simulation to be

n

b�(⌧
j

)

o

for j = 1, ..., J where b�(⌧
j

) =

˜�(⌧
r

)

and r is the element of ˜�(·) corresponding to the jth smallest element of the vector x̄˜�(·).

5.1. Simulation Results. In Figures 2 and 3, we plot the mean bias (across 500 Monte
Carlo simulations) of quantile regression of y (generated with measurement error drawn
from a mixture of three normals) on a constant, x

1

, and x
2

and contrast that with the
mean bias of our estimator using a sieve for �(·) consisting of 9 knots. Quantile regres-
sion is badly biased, with lower quantiles biased upwards towards the median-regression
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Figure 3. Monte Carlo Simulation Results: Mean Bias of b�
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Notes: Figure plots mean bias of estimates of �
2

(⌧) for classical quantile regression (blue line)
and bias-corrected MLE (red line) across 500 MC simulations using the data-generating process
described in the text with the measurement error generated as a mixture of three normals.

coefficients and upper quantiles biased downwards towards the median-regression coeffi-
cients. While this pattern of bias towards the median evident in Table 2 still holds, the
pattern in Figures 2 and 3 is nonmonotonic for quantiles below the median in the sense
that the bias is actually greater for, e.g., ⌧ = 0.3 than for ⌧ = 0.1. Simulations reveal
that the monotonic bias towards the median result seems to rely on a symmetric error
distribution. Regardless, the bias of the ML estimator is statistically indistinguishable
from zero across quantiles of the conditional distribution of y given x, with an average
mean bias across quantiles of 2% and 1% (for �

1

and �
2

, respectively) and always less
than 5% of the true coefficient magnitude.6 The mean bias of the quantile regression

6As an example of the validity of the bootstrap (and in particular the asymptotic results in Theorem
2), we varied the sample size in the simulations and calculated how the width of the pointwise 95% con-
fidence intervals changed. Decreasing the sample size from 50,000 to 10,000 observations—an increase
in

p
n by a factor of 2.24—increased the width of the confidence intervals for both �1 and �2 (averaged

across quantiles) by a factor of 2.25.
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Figure 4. Monte Carlo Simulation Results: Distribution of Measurement Error
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Notes: Figure reports the true measurement error (dashed blue line), a mean-zero mixture of
three normals ( N (�3, 1), N (2, 1), and N (4, 1) with weights 0.5, 0.25, and 0.25, respectively)
against the average density estimated from the 500 Monte Carlo simulations (solid red line).
For each grid point, the dotted green line plots the 5th and 95th percentile of the EIV density
function across all MC simulations.

coefficients, by contrast, is on average over 18% for nonlinear �
1

(·) and exceeds 27% for
some quantiles.

Figure 4 shows the true mixed-normal distribution of the measurement error " as
defined above (dashed blue line) plotted with the estimated distribution of the measure-
ment error from the average estimated distributional parameters across all MC simu-
lations (solid red line). The 95% confidence interval of the estimated density (dotted
green line) are estimated pointwise as the 5th and 95th percentile of EIV densities across
all simulations. Despite the bimodal nature of the true measurement error distribution,
our algorithm captures the overall features of true distribution very well, with the true
density always within the tight confidence interval for the estimated density.

In practice, the econometrician seldom has information on the distribution family
to which the measurement error belongs. To probe robustness on this dimension, we
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Table 2. MC Simulation Results: Robustness to Alternative Data-
Generating Processes

A. EIV ⇠ T B. EIV ⇠ Mixture of 2 N
�
1

�
2

�
1

�
2

Quantile QReg MLE QReg MLE QReg MLE QReg MLE
0.1 0.07 0.01 0.09 -0.03 0.14 0.04 0.18 0.03
0.2 0.05 -0.02 0.06 -0.02 0.15 0.05 0.16 0.00
0.3 0.04 -0.02 0.05 -0.06 0.09 0.05 0.09 0.00
0.4 0.03 0.00 0.03 -0.02 0.03 0.05 -0.01 0.01
0.5 0.01 0.02 0.01 0.01 -0.02 0.08 -0.06 0.02
0.6 0.00 0.04 -0.01 0.06 -0.06 0.03 -0.09 0.03
0.7 -0.03 0.05 -0.03 0.05 -0.09 0.05 -0.11 0.00
0.8 -0.06 0.05 -0.06 0.03 -0.11 0.02 -0.12 0.02
0.9 -0.10 0.03 -0.10 0.04 -0.13 -0.02 -0.11 -0.04

Note: Table reports mean bias of slope coefficients for estimates from classical quantile regres-
sion and bias-corrected MLE across 200 MC simulations of n = 1, 000 observations each using
data simulated from the data-generating process described in the text and the measurement
error generated by either a Student’s t distribution (left-hand columns) with three degrees
of freedom or a mixture of two normals N (�2.4, 1) and N (1.2, 1) with weights 1/3 and 2/3,
respectively.

demonstrate the flexibility of the Gaussian mixture-of-three specification by showing that
it accommodates alternative errors-in-variables data-generating processes well. Table 2
shows that when the errors are distributed with thick tails (as a t-distribution with
three degrees of freedom) in panel A or as a mixture of two normals in panel B, the
ML estimates that model the EIV distribution as a mixture of three normals are still
unbiased. As expected, quantile regression exhibits typical bias towards the median
under both distributions and for both slope coefficients (visible as positive mean bias
for quantiles below the median and negative bias for quantiles above the median). By
comparison, ML estimates are generally much less biased than quantile regression for
both data-generating processes. Our ML framework easily accommodates mixtures of
more than three normal components for additional distributional flexibility in a quasi-
MLE approach.

6. Empirical Application

To illustrate the use of our estimator in practice, we examine distributional hetero-
geneity in the wage returns to education. First, we replicate and extend classical quantile
regression results from Angrist et al. (2006) by estimating the quantile-regression analog
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of a Mincer regression,

q
y|X(⌧) = �

0

(⌧) + �
1

(⌧)education
i

+ �
2

(⌧)experience
i

+ �
3

(⌧)experience2
i

+ �
4

(⌧)black
i

(6.1)
where q

y|X(⌧) is the ⌧ th quantile of the conditional (on the covariates X) log-wage dis-
tribution, the education and experience variables are measured in years, and black is an
indicator variable. In contrast to the linear Mincer equation, quantile regression assumes
that all unobserved heterogeneity enters through the unobserved rank of person i in the
conditional wage distribution. The presence of an additive error term, which could
include both measurement error and wage factors unobserved by the econometrician,
would bias the estimation of the coefficient function �(·).

Figure 5 plots results of estimating equation (6.1) by quantile regression on census
microdata samples from four decennial census years: 1980, 1990, 2000, and 2010, along
with simultaneous confidence intervals obtained from 200 bootstrap replications.7 Hori-
zontal lines in Figure 5 represent OLS estimates of equation 5 for comparison. Consistent
with the results in Figure 2 of Angrist et al., we find quantile-regression evidence that
heterogeneity in the returns to education across the conditional wage distribution has
increased over time. In 1980, an additional year of education was associated with a 7%
increase in wages across all quantiles, nearly identical to OLS estimates. In 1990, while
the education-wage gradient was mostly constant across the conditional wage distribu-
tion, higher conditional (wage) quantiles saw a stronger association between education
and wages, especially for top conditional quantiles. By 2000, the education coefficient
was roughly seven log points higher for the 95th percentile than for the 5th percentile.
Data from 2010 shows a large jump in the returns to education for the entire distribu-
tion, with top conditional incomes increasing much less from 2000 to 2010 as bottom
conditional incomes.8 Still, the post-1980 convexity of the education-wage gradient is
readily visible in the 2010 results, with wages in the top quartile of the conditional distri-
bution being much more sensitive to years of schooling than the rest of the distribution.
In 2010, the education coefficient for the 95th percentile percentile was six log points

7The 1980–2000 data come from Angrist et al.’s IPUMS query, and the 2010 follow their sample selection
criteria and again draw from IPUMS (Ruggles et al., 2015). For further details on the data including
summary statistics, see Appendix B.
8While some of the increase from 2000–2010 in the returns to education may be driven by selection
into employment with the incidence of recession-driven layoffs being more acute on low-wage earners,
additional testing shows that results using the 2014 ACS are very similar to the 2010 data. The
observation that the OLS estimates also jump from 2000–2010 suggest that this increase is not driven
by the difference between the unconditional and conditional distribution of income given education.
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Figure 5. Quantile Regression Estimates of the Returns to Education, 1980–2010
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Notes: Figure reports quantile regression estimates of log weekly wages (self-reported) on ed-
ucation, a quadratic in experience, and an indicator for blacks for a grid of 19 evenly spaced
quantiles from 0.05 to 0.95. Horizontal lines indicate OLS estimates for each year, and boot-
strapped 95% simultaneous confidence intervals are plotted for the quantile regression estimates
for each year. The data comes from the indicated decennial census year and consist of 40-49
year old white and black men born in America. The number of observations in each sample is
65,023, 86,785, 97,397, and 106,625 in 1980, 1990, 2000, and 2010, respectively.

higher than the education coefficient for the 5th percentile. The dependence of the
wage-education gradient on the quantile of the wage distribution suggests that average
or local average treatment effects estimated from linear estimators fail to represent the
returns to education for a sizable portion of the population.

Although quantile regression recovers effects on the conditional distribution of the
outcome, it is worth noting two things.9 First, our exercise here of comparing estimates
across years arguably makes the unconditional versus conditional distinction less impor-
tant. Second, given the substantial variation in wages left unexplained by the Mincer
9See DiNardo et al. (1996) and Powell (2013) for further discussion and methods that recover effects on
the unconditional distribution.



22 HAUSMAN, LUO, AND PALMER

model, the empirical difference between effects on the unconditional and conditional dis-
tributions of the dependent variable is likely small. Appendix Figure B1 illustrates this
point for the 0.9 quantile estimates, showing that because of the relatively low goodness
of fit of equation (6.1) (as is the case in many cross-sectional applied microeconomics
settings), over 63% of the observations in the top unconditional decile are also in the
top conditional decile.

We observe a different pattern when we correct for measurement-error bias in the
self-reported wages used in the census data using ML estimation procedure. We esti-
mate �(·) for quantile grid of 33 knots, evenly distributed ( ⌧ 2 {j/34}33

j=1

) using our
maximum likelihood estimator developed in Section 3 above. As in our simulation re-
sults, for the error distribution, we choose a mixture of three normals with the same
default distributional start values (equal weights, unit variances, means of -1, 0, 1). For
coefficient start values, we run the maximization procedure with start values taken from
three alternatives and keep the estimate that results in the higher log-likelihood value:
standard quantile regression, the weighted least squares procedure outlined in Section
4.2, and the mean of bootstrapping our ML estimates (using the WLS coefficients as
start values for bootstrapping). We again sort our estimates by x̄�(⌧) to enforce mono-
tonicity at mean covariate values (see section 5 for details). We smooth our estimates
by bootstrapping (following Newton and Raftery, 1994) and then local linear regression
of b�

1

(⌧) on ⌧ to reduce volatility of coefficient estimates across the conditional wage
distribution.10 Finally, we construct nonparametric 95% pointwise confidence intervals
by bootstrapping and taking the 5th and 95th percentiles of the smoothed education
coefficients for each quantile.

Figure 6 plots the education coefficient b�
1

(⌧) from estimating equation (6.1) by MLE
and quantile regression, along with nonparametric simultaneous 95% confidence inter-
vals. The results suggest that in 1980, the quantile-regression estimates are relatively
unaffected by measurement error in the sense that the classical quantile-regression es-
timates and bias-corrected ML estimates are nearly indistinguishable. For 1990, the
pattern of increasing returns to education for higher quantiles is again visible in the ML
estimates with the very highest quantiles seeing an approximately five log point larger
increase in the education-wage gradient than suggested by quantile regression, although

10Due to ill-posedness, our raw estimates are noisy. Based on the asymptotics of Theorem 1, as long
as the bandwidth h of our local-linear estimator is O(

1
k ) where k is the number of knots in b�(·),

our smoothing does not affect asymptotic normality or convergence speed since any additional bias
introduced by smoothing is of order O(h) and thus converges to 0 faster than b�(⌧)� �(⌧) for any ⌧ .
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Figure 6. Returns to Education Correcting for LHS Measurement Error
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Notes: Graphs plot education coefficients estimated using quantile regression (red lines) and
the ML estimator described in the text (blue line). Green dashed lines plot 95% Confidence
Intervals using the bootstrap procedure described in the text. See notes to Figure (5).

this difference for top quantiles does not appear statistically significant given typically
wide confidence intervals for extremal quantiles. In the 2000 decennial census, the
quantile-regression and ML estimates of the returns to education again diverge for top
incomes, with the point estimate suggesting that after correcting for measurement error
in self-reported wages, the true returns to an additional year of education for the top of
the conditional wage distribution was a statistically significant 13 log points (17 percent-
age points) higher than estimated by classical quantile regression. This bias correction
has a substantial effect on the amount of inequality estimated in the education-wage
gradient, with the ML estimates implying that top wage earners gained 23 log points
(29 percentage points) more from a year of education than workers in the bottom three
quartiles of wage earners. For 2010, both ML and classical quantile-regression estimates
agree that the returns to education increased across all quantiles, but again disagree
about the marginal returns to schooling for top wage earners. Although the divergence
between ML and quantile regression estimates for the top quartile is not as stark as in
2000, the quantile regression estimates at the 95th percentile of the conditional wage
distribution are again outside the nonparametric 95% confidence intervals for the ML
estimates.
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Figure 7. ML Estimated Returns to Education Across Years
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distribution from Figure 6. See notes to Figure 6 for details.

For each year after 1980, the quantile regression lines understate the returns to educa-
tion in the top tail of the wage distribution. Starting in 1990, correcting for measurement
error in self-reported wages significantly increases the estimated returns to education for
the top quintile of the conditional wage distribution, a distinction that is missed be-
cause of the measurement error in self-reported wage data resulting in compression bias
in the quantile regression coefficients. Figure 7 overlays each year’s ML estimates to
facilitate easier comparisons across years. Over time—especially between 1980 and 1990
and between 2000 and 2010—we see an overall increase in the returns to education,
broadly enjoyed across the wage distribution. The increase in the education-wage gra-
dient is relatively constant across the bottom three quartiles and very different for the
top quartile.

These two trends—overall moderate increases and acute increases in the schooling co-
efficient for top earners—are consistent with the observations of Angrist et al. (2006) and
other well-known work on inequality that finds significant increases in income inequality
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post-1980 (e.g. Autor et al., 2008). Nevertheless, the distributional story that emerges
from correcting for measurement error suggests that the concentration of education-
linked wage gains for top earners is even more substantial than is apparent in previous
work. This finding is particularly relevant for recent discussions of top-income inequality
(see, for example, Piketty and Saez, 2006) and the increasing returns to cognitive perfor-
mance (Lin et al., 2016). The time-varying nature of this relationship between the wage
distribution and education is suggestive in the role of macroeconomic context in mea-
suring the returns to education. If the wage earnings of highly educated workers at the
top of the conditional wage distribution is more volatile, then single-year snapshots of
inequality may under or overstate the relationship between wages and education. Judg-
ment based solely on the 2000 pattern of the education gradient would find significantly
more inequity in the returns to education than estimates using 2010 data. By 2010,
the overall returns to education increased across nearly the entire wage distribution.
Whereas the schooling coefficient for the first quartile decreased from 1990-2000 (the
only segment of the distribution to do so), by 2010, the first decile was back at 1990-
level returns, with the remainder of the distribution below the 90th percentile outpacing
the 1990 returns to education. The particularly high education gradient enjoyed by the
top quartile in 2000 seems to have been smoothed out and shared by the top half of the
wage distribution. Whether the slight decrease in the schooling coefficient for top earn-
ers is simply a reflection of their higher exposure to the financial crisis (e.g. hedge-fund
managers having larger declines in compensation than average workers) is a question to
be asked of future data.

Our methodology also permits a characterization of the distribution of dependent-
variable measurement error. Figure 8 plots the estimated distribution of the measure-
ment error in the 1990 data Despite the flexibility afforded by the mixture specifica-
tion, the estimated density is approximately normal—unimodal and symmetric but with
higher kurtosis (fatter tails) than a single normal.

In light of the near-normality of the measurement error distribution estimated in the
self-reported wage data, we report results for weighted-least squares estimates of the
returns to education (see Section 4.2 for a discussion of the admissibility of the WLS
estimator when the EIV distribution is normal). The computational benefits of WLS
allow us to estimate the wage gradient over a grid of 99 quantile knots. Figure 9 shows
the estimated education-wage gradient across the conditional wage distribution for three
estimators—quantile regression, weighted least squares, and MLE. Both the WLS and
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Figure 8. Estimated Distribution of Wage Measurement Error
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when specified as a mixture of three normal distributions.

MLE estimates revise the right-tail estimates of the relationship between education and
wages significantly, suggesting that the quantile regression-based estimates for the top
quintile of the wage distribution are severely biased from dependent-variable errors in
variables. The WLS estimates seem to be particularly affected by the extremal quantile
problem (see, e.g. Chernozhukov, 2005), leading us to omit unstable estimates in the
top and bottom deciles of the conditional wage distribution. While we prefer our MLE
estimator, the convenience of the weighted least squares estimator lies in its ability to
recover many of the qualitative facts obscured by LHS measurement error bias in quantile
regression with a lower computational burden and without the ex-post smoothing (apart
from dropping bottom- and top-decile extremal quantile estimates) required to interpret
the ML estimates.

7. Conclusion

In this paper, we develop a methodology for estimating the functional parameter �(·)
in quantile regression models when there is measurement error in the dependent variable.
Assuming that the measurement error follows a distribution that is known up to a finite-
dimensional parameter, we establish general convergence speed results for the MLE-based
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Figure 9. 2000 Estimated Returns to Education: WLS vs. MLE
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approach. Under an assumption about the degree of ill-posedness of the problem (A5),
we establish the convergence speed of the sieve-ML estimator. When the distribution of
the EIV is normal, optimization problem becomes an EM problem that can be computed
with iterative weighted least squares. We prove the validity of bootstrapping based on
asymptotic normality of our estimator and suggest using a nonparametric bootstrap
procedure for inference. Monte Carlo results demonstrate substantial improvements in
mean bias of our estimator relative to classical quantile regression when there are modest
errors in the dependent variable, highlighted by the ability of our estimator to estimate
the simulated underlying measurement error distribution (a bimodal mixture of three
normals) with a high-degree of accuracy.

Finally, we revisited the Angrist et al. (2006) question of whether the returns to
education across the wage distribution have been changing over time. We find a some-
what different pattern than prior work, highlighting the importance of correcting for
errors in the dependent variable of conditional quantile models. When we correct for
likely measurement error in the self-reported wage data, we find that top wages have
grown much more sensitive to education than wage earners in the bottom three quartiles
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of the conditional wage distribution, an important source of secular trends in income
inequality.
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Appendix A. Optimization Details

In this section, for practitioner convenience, we provide additional details on our
optimization routine, including analytic characterizations of the gradient of the log-
likelihood function. For convenience, we will refer to the log-likelihood l for observation
i as

l = log
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Appendix B. Data Appendix

Following the sample selection criteria of Angrist et al. (2006), our data comes from
1% samples of decennial census data available via IPUMS.org (Ruggles et al., 2015)
from 1980–2010. From each database, we select annual wage income, education, age,
and race data for prime-age (age 40-49) black and white males who have at least five
years of education, were born in the United States, had positive earnings and hours
worked in the reference year, and whose responses for age, education, and earnings
were not imputed (which would have been an additional source of measurement error).
Our dependent variable is log weekly wage, obtained as annual wage income divided by
weeks worked. For 1980, we take the number of years of education to be the highest
grade completed and follow the methodology of Angrist et al. (2006) to convert the
categorical education variable in 1990, 2000, and 2010 into a measure of the number of
years of schooling. Experience is defined as age minus years of education minus five. For
1980, 1990, and 2000, we use the exact extract of Angrist et al., and draw our own data
to extend the data to include the 2010 census. Table B1 reports summary statistics for
the variables used in the regressions in the text. Wages for 1980–2000 were expressed
in 1989 dollars after deflating using the Personal Consumption Expenditures Index. As
slope coefficients in a log-linear quantile regression specification are unaffected by scaling
the dependent variable, we do not deflate our 2010 data.

Table B1. Education and Wages Summary Statistics
Year 1980 1990 2000 2010
Log weekly wage 6.40 6.46 6.47 8.34

(0.67) (0.69) (0.75) (0.78)
Education 12.89 13.88 13.84 14.06

(3.10) (2.65) (2.40) (2.37)
Experience 25.46 24.19 24.50 24.60

(4.33) (4.02) (3.59) (3.82)
Black 0.076 0.077 0.074 0.078

(0.27) (0.27) (0.26) (0.27)
Number of Observations 65,023 86,785 97,397 106,625

Notes: Table reports summary statistics for the Census data used in the quantile wage re-
gressions in the text. The 1980, 1990, and 2000 datasets come from Angrist et al. (2006).
Following their sample selection, we extended the sample to include 2010 Census microdata
from IPUMS.org (Ruggles et al., 2015).



34 HAUSMAN, LUO, AND PALMER

Figure B1. Overlap between Unconditional and Conditional Wage Distribution
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Notes: Figure plots log weekly wages against years of education from the 1990 decennial Cen-
sus microdata extract used by Angrist et al. (2006). The regression line plots the average
predicted values by year of education from estimating equation (6.1) by classic quantile re-
gression. Lighter colored dots indicate observations in the top 10% of the unconditional wage
distribution (individuals with over $1,326 in weekly wages in 1989 dollars).

Appendix C. Proofs of Lemmas and Theorems

C.1. Lemmas and Theorems in Section 2.

Proof of Lemma 1. For bounded monotonic functions, pointwise convergence is equivalent to
uniform convergence, making a space of bounded monotonic functions compact under any Lp
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C.2. Lemmas and Theorems in Section 3. The following additional lemma is used in
the proofs of Lemmas 2 and 3.

Lemma 6 (Donskerness of ⇥). The set of functions G = {h(y, x,�(·),�) := log(g(y|x,�(·),�))|(�(·),�) 2 ⇥}
is µ-Donsker, where µ is the joint PDF of (y, x).

Proof. By theorem 2.7.5 of Van der Vaart and Wellner (2000), the space of uniformly bounded
monotone functions F satisfies
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E
Q

[|w(y, x)|2] < 1, (C.2)
where Q is some probability measure on (y, x). Since ⇥ is a product space of bounded monotone
functions M and a finite-dimensional bounded compact set ⌃, the bracketing number of F given
measure Q is also bounded by
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i.e., F is Donsker.

In particular, let q = log g and Q = µ, where µ is the joint pdf of (x, y). By A3.8, equation
(3.1) holds with w(y|x) :=

´
1

0

|y � x�(⌧)|�d⌧ . Equation (3.2) is satisfied by Assumption A3.6.
Hence, G is µ-Donsker. ⇤

Proof of Lemma 2. To show the consistency of the MLE estimator, it is sufficient to prove the
satisfaction of the following regularity conditions (Newey and McFadden, 1994).

(1) The parameter space ⇥ = M ⇥ ⌃ is compact.
(2) Global identification holds, i.e., there exists no other ✓0 = (�0,�0

) 2 ⇥ such that
E[log

´
1

0

f(y � x�0
(⌧)|�0

)d⌧ ] = E[log

´
1

0

f(y � x�
0

(⌧)|�
0

)d⌧ ].

(3) The objective function E[log

´
1

0

f(y � x�0
(⌧)|�0

)d⌧ ] is continuous for all ✓0 = (�0,�0
) 2

⇥.
(4) Stochastic equicontinuity of E

n

[log

´
1

0

f(y � x�(⌧)|�)], with ✓ 2 ⇥.

Condition (1) is established by Lemma 1. Condition (2) is provided by Theorem 1. Condition
(3) holds under assumptions A2–A3. For the proof of point (4), see Lemma 6 above. Therefore,
the MLE estimator defined herein is consistent. ⇤

Proof of Lemma 3. By Lemma 2, we know that ||���
0

||
2

!
p

0 and ||���
0

||1 !
p

0, i.e., both
estimators for �

0

and �
0

are consistent. MLE by definition implies that E
n

[log(g(y|x,�,�))] 
E

n

[log(g(y|x,�
0

,�
0

))].
By the information inequality, E[log(g(y|x,�

0

,�
0

))]  E[log(g(y|x,�,�))].
By Lemma 6, G = {h(y, x,�(·),�) := log(g(y|x,�(·),�))|(�(·),�) 2 ⇥} is Donsker. Thus,

E
n

[log(g(y|x,�,�))]� E[log(g(y|x,�,�))]

= E
n

[log(g(y|x,�
0

,�
0

))]� E[log(g(y|x,�
0

,�
0

))] + o
p

(1/
p
n),

implying that
E[log(g(y|x,�,�))]� E[log(g(y|x,�

0

,�
0

))]

= E
n

[log(g(y|x,�,�))]� E
n

[log(g(y|x,�
0

,�
0

))]� o
p

(1/
p
n) � �o

p

(1/
p
n)

and 0  E[log(g(y|x,�
0

,�
0

))]� E[log(g(y|x,�,�))] -
p

1/
p
n.

Let z(y, x) = g(y|x,�,�) � g(y|x,�
0

,�
0

) and define ||z(y, x)||
1

:=

´1
�1 |z(y|x)|dy. Then by

the Scheffe Theorem and Pinskess’ Inequality,

E
x

[||z(y|x)||2
1

]  D(g(·|�
0

)||g(·|�)) (C.3)
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 2(E[log(g(y|x,�
0

,�
0

))]� E[log(g(y|x,�,�))]) -
p

1p
n
,

where D(P |Q) is the K-L divergence between two probability distribution P and Q. Now
consider the characteristic functions of x�(⌧) and x�

0

(⌧) conditional on x and given that
⌧ ⇠ U [0, 1]:

�
x�

(s) =

´1
�1 g(y|x,�,�)eisydy

�
"

(s|�)

�
x�0

(s) =

´1
�1 g(y|x,�

0

,�
0

)eisydy

�
"

(s|�
0

)

Then for any x and s, |�
x�

(s)�
"

(s|�) � �
x�0

(s)�
"

(s|�
0

)| = |
´1
�1 z(y|x)eisydy|  ||z(y|x)||

1

.
Defining m(s) := �

"

(s|�
0

)/�
"

(s|�) and dividing both sides by �
✏

(s|�)�
x�0

(s),

|m(s)�
�
x�

(s)

�
x�0

(s)
|  ||z(y|x)||

1

/|�
x�0

(s)�
✏

(s|�)|. (C.4)

Plugging in (C.4) back into (C.3) and applying Condition A4.1,

E
x

[|m(s)�
�
x�

(s)

�
x�0

(s)
|2]  E

x

[||z(y|x)||2
1

/|�
x�0

(s)�
✏

(s|�)|2] (C.5)

 E
x

[||z(y|x)||2
1

]

s2

C2�
✏

(s|�) -
p

1

n1/2

s2

�
✏

(s|�) .

Using the fact that for any random variable a and any number b, V ar(a)  E[(a � b)2], we
have that E

x

[|m(s)� �

x�

(s)

�

x�0 (s)
|2] � V ar

x

(

�

x�

(s)

�

x�0 (s)
). Inequality (C.5) then implies that
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x

(

�
x�

(s)

�
x�0

(s)
) -

p

1
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s2

�
✏

(s|�) . (C.6)

Applying Condition A4.2, inequality (C.6) implies that

E
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�

�
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(s)

�
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(s)
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�
✏

(s|�) . (C.7)

We can rewrite m(s)� �

x�

(s)

�

x�0 (s)
as (m(s)� 1)� �

x�

(s)��

x�0 (s)

�

x�0 (s)
. Using that 1

2

a2 � b2  (a� b)2 for
any a, b 2 R, we can bound inequality (3.5) from below and get that

1

2

E
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h
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(C.8)
Combining (C.8) with (C.7),

E
x

[|m(s)� 1|] -
p

1

n1/2

s2

�
✏

(s|�) , (C.9)
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or, equivalently,

|�
✏

(s|�
0

)� �
✏

(s|�)|2 -
p

s2

n1/2

. (C.10)

Thus, applying Condition A3.9 along with (C.10), it follows that ||� � �
0

||
2

-
p

n�1/4. ⇤

C.3. Lemmas and Theorem in Section 4. The following lemma establishes mild ill-
posedness (Condition A5.1).

Lemma 7. If the function f satisfies Conditions A1–A6 with degree � > 0 then

(1) the minimum eigenvalue of ˜I, denoted as r(˜I), satisfies
1

J�

- r(˜I).

(2) For any ✓, 1

J

�

- sup

p2⇥
J

�✓

||p||
d

||p|| where ||p||
d

:=

�

�

�

p0eIp
�

�

�

1
/2

.

Proof. Suppose f satisfies discontinuity Condition A6 with degree � > 0, and without loss
of generality, we assume that c

�

= 1. Denote l
J

= (f
⌧1 , f⌧2 , ..., f⌧J , g�). For any p

J

2 ⇥
J

� ✓,
p
J

˜Ip0
J

= E[

´
R

(l

J

p

0
J

)

2

g

dy] � CE[(l
J

p0
J

)

2

] for some constant C > 0 since g is bounded from above.

Define c := inf

x2X ,⌧2[0,1](x�
0
0

(⌧)) > 0. Let S(�) :=
P

�

i=0

⇣

�
�

i

�

�

⌘

2

, where
�

b

a

�

stands for the
combinatorial number choosing b elements from a set with size a. Then

S(�)E

ˆ
R
(l
J
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J

)

2dy
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�

X
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✓
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✓

l
J
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y +
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2�uJc

◆

p0
J

✓

y +
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2�uJc

◆◆

2

dy

3

5 .

where u > 0 is a constant that will be specified later. By the Cauchy-Schwarz inequality,
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By the discontinuity assumption,
�

X
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(�1)

j

✓
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�
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c
i

uJ
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x
j

p
j

1

A ,

with c
j

uniformly bounded from above since f (�) is L1 Lipschitz except at a. Noting that the
intervals

�

Qi

J

 

do not intersect each other as J ! 1 and u ! 0,
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�
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Finally, when the u is chosen to be large enough (and only depending on �, sup c
i

and c),
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E[x2
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J2�

||p||2
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with the constant c(�) > 0 only depending on � and u. Thereforep0eIp % 1

J

2� ||p||2
2

. Hence, the
smallest eigenvalue of eI is bounded by c

J

�

from below with some generic constant c depending
on �, X , and the L1 Lipschitz coefficient of f (�) at set R� [a� ⌘, a+ ⌘]. ⇤
Proof of Lemma 4. The proof of this Lemma is based on Chen (2008) results of sieve extremum
estimator consistency. Under the following five conditions (abbreviated CA1–CA5 for “Chen
Assumptions 1–5”) from in Theorem 3.1 of Chen (2008), the sieve estimator is consistent.

Condition CA1 (Identification).

(1) L(✓
0

) < 1, and if L(✓
0

) = �1 then L(✓) > �1 for all ✓ 2 ⇥

J

\{✓
0

} and for all J � 1.
(2) There are a nonincreasing positive function �(·) and a positive function m(·) such that

for all " > 0 and J � 1, L(✓
0

)� sup

✓2⇥
J

:d(✓,✓0)L(✓J)�"

L(✓) � �(J)m(") > 0.

Condition CA2 (Sieve Space). ⇥

J

⇢ ⇥

J+1

⇢ ⇥ for all J � 1 and there exists a sequence
⇡
J

✓
0

2 ⇥

J

such that d(✓
0

,⇡
J

✓
0

) ! 0 as J ! 0.

Condition CA3 (Continuity).

(1) L(✓) is upper semicontinuous on ⇥

J

under metric d(·, ·)
(2) |L(✓

0

)� L(⇡
J

✓
0

)| = o(�(J)).

Condition CA4 (Compact Sieve Space). ⇥

J

is compact under d(·, ·).
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Condition CA5 (Uniform Convergence).

(1) For all J � 1, plim sup

✓2⇥
J

|L
n

(✓)� L(✓)| = 0.
(2) bc(J) = o

p

(�(J)) where bc(J) := sup

✓2⇥
J

|L
n

(✓)� L(✓)|.
(3) ⌘

J

n

= o(�(J
n

)).

We verify each of these assumptions below.
For Identification: Let d be the metric induced by the L2 norm || · ||

2

defined on ⇥. By
assumption A4 and compactness of ⇥, L(✓

0

) � sup

✓2⇥:d(✓,✓0)
L(✓

k

) > 0 for any " > 0. So,
letting �(k) = 1, the identification condition holds.

For the Sieve Space: Our Sieve space satisfies ⇥

J

⇢ ⇥

2J

⇢ ⇥ for J = 1, 2, .... In general
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2
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2
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2
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1

,⇥
2

,⇥
3

... with J
n

being an
increasing function and lim

n!1 J
n

= 1.
For the Continuity condition: Since we assume f is continuous and L1 Lipchitz in Assumption

A3, (1) is satisfied. (2) is satisfied under the construction of our Sieve space.
The Compact Sieve Space condition is trivial. The Uniform Convergence condition is also

easy to verify since the entropy metric of space ⇥

k

is finite and uniformly bounded by the
entropy metric of ⇥. Therefore we have stochastic equicontinuity, i.e., sup

✓2⇥
J

n

|L
n

(✓)�L(✓)| =
O
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(

1p
n

). In CA5.3, ⌘
J

is defined as the error in the maximization procedure. Since � is constant,
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n
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J

n

)� sup

✓2⇥
J

n

L
n

(✓
J
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) ! 0, (3) is verified.
Hence, the Sieve MLE estimator is consistent. ⇤

Proof of Theorem 2. Suppose ✓ = (�(·),�) 2 ⇥

J

n

is the Sieve estimator. By the consistency of
the Sieve estimator established by Lemma 4, ||✓ � ✓

0

||
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.
The first-order conditions give
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E
n

[g
�

(y|x,�,�)] = 0. (C.12)

It is easy to see that ⇥

J

n

⇢ ⇥. By Lemma 3, �
n

, the estimator of �
0

, will always converge to
�
0

at rate of at least n� 1
4 .

By construction of the sieve, there exists a set of parameters (�⇤
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Our strategy is to show that our estimator � would converge to �⇤
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with a certain speed. From
the first order condition, we know that
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Define ⌃ := U [0, 1]⇥⇥. Consider a mapping H : ⌃ 7! R, H((u, ✓)) =
p
n(E

n

[

f

u

g

]�E[

f

u

g

]). By
Donskerness of ⇥ and U [0, 1], ⌃ is Donsker. By A1–A5, we have pointwise CLT for H((u, ✓)).
By Condition A2, the Lipschitz condition guarantees that E[|fu
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Therefore, stochastic equicontinuity holds: for � small enough,
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Performing a Taylor expansion of E
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Notice that by Lemma 7, the minimum eigenvalue of eI, denoted as r(eI), satisfies r(eI) � 1
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.
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use to obtain the asymptotics of �
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��⇤
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. Such a case is in general difficult to show for ill-posed
systems unless certain local quadratic assumptions are made, such as Chen (2008). However,
in our specific problem, we use a deconvolution to prove the following lemma to show that �

n

will converge to �⇤
n

with at least a certain speed.
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Proof. Our argument follows the proof of Lemma 3. Donskerness of ⇥ implies that

0  E[log(g(y|x,�⇤
n

,�
0

))]� E[log(g(y|x,�
n

,�))] -
p

1p
n
. (C.13)

By Lemma 3, |���
0

| = o
p

(n� 1
4
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where D(P |Q) is the K-L divergence between two probability distribution P and Q. Now
consider the characteristic functions of x�
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It follows that
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Therefore, for some constant c > 0,
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Using the relationship between the CDF and characteristic function of a random variable x
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The first term of the right-hand side of equation (C.15) is weakly bounded from above by
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Putting these together, since �  �/2, we know that the right hand side has an upper bound
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). Therefore, J�
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and the second statement in Theorem 2 holds. ⇤


