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Panel data based studies in econometrics use the analysis of covariance approach to control for 
various 'individual effects' by estimating coefficients from the 'within' dimension of the data. 
Often, however, the results are unsatisfactory, with 'too low' and insignificant coefficients. Errors 
of measurement in the independent variables whose relative importance gets magnified in the 
within dimension are then blamed for this outcome. 

Errors-in-variables models have not been used widely, in part because they seem to require 
extraneous information to be identified. We show how a variety of errors-in-variables models may 
be identifiable and estimable in panel data without the use of external instruments and apply it to 
a relatively simple but not uninteresting case: the estimation of 'labor demand' relationships, also 
known as the 'short-run increasing returns to scale' puzzle. 

1. Introduction 

Panel data based on various longitudinal surveys have become ubiquitous in 
economics in recent years. Their popularity stems in part from their ability to 
allow and control for various 'individual effects' and other relatively slowly 
changing left-out variables. Using the analysis of covariance approach, one can 
estimate the relevant relationships from the 'within' dimension of the data. 
Quite often, however the 'within' results are unsatisfactory, 'too low' and 
insignificant. The tendency is then to blame this unhappy outcome, among 
other things, on errors of measurement in the independent variables whose 
relative importance gets magnified in the within dimension. 

That errors of measurement are important in micro data is well known but 
has had little influence on econometric practice. ~ The standard errors-in- 

*We would like to thank the NSF and NBER for research support; Gary Chamberlain, 
Bronwyn H. Hall, Adrian Pagan, Ariel Pakes, Whitney Newey, William Nordhaus and the 
anonymous referees for a number of very helpful comments; and John Bound, Adam Jaffe and 
Bruce Meyer for excellent research assistance. 

rMatters are somewhat better in sociology: see Griliches (1984) for general discussion, and 
Bielby, Hauser and Featherman (1977) for an applied example. 
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variables model has not been applied widely, partly because in the usual 
context it requires extraneous information to identify the parameters of 
interest. It is rather obvious but does not appear to be widely known that in 
the panel data  context a variety of errors-in-variables models may be identifiable 
and estimable without the use of external instruments. 

It is clear that once one has a time series and one is willing to assume that 
errors of measurement  are serially uncorrelated then one can use lagged values 
of the relevant variables as instruments. The problem in panel data is that 
because one is likely to assume the presence of correlated individual effects, 
lagged values are not valid instruments without further analysis. But, because 
the errors of measurement are assumed to have a particular time series 
structure (usually uncorrelated over time), different transformations of the data 
will induce different and deducible changes in the biases due to such errors 
which can be used then to identify the importance of these errors and recover 
the ' t rue '  parameters.  We exposit and develop this idea and illustrate its 
application in a relatively simple but not uninteresting case: the estimation of 
' l abor  demand '  relationships, also known as the 'short-run increasing returns 
to scale' puzzle; see Solow (1964) and Medoff and Fay (1985). 

In the next four sections we first outline our approach in a very simple 
context; next we present the algebra for the more general case and discuss the 
different estimation strategies; we turn then to a description and discussion of 
our empirical example and conclude with recommendations for a particular 
empirical strategy which should be followed when analyzing such data. 

2. The problem of errors in variables in panel data: An introduction 

The following simple model will serve to illustrate our main ideas. Let the 
true equation be of the form 

Yi'  = Oli "~- ~Z i '  "~- T i t '  (1) 

where the a i are unobserved individual effects which may be correlated with 
the true independent variable of interest, the z , .  The ~bt are the standard 'bes t  
case'  disturbances: i.i.d., with mean zero and variance o~. The z ,  are not 
observed directly, however. Only their erroneous reflection, the x , ,  

x i t  = z i t  + vi i  , (2) 

are observed, where vit is an i.i.d, measurement error with variance a~ 2. If OLS 
is applied to the observed variables, the equation to be estimated is 

flit = a -~- f lXi t  -- f lVi ,  "Jr Tit  "~- ( O l i -  a ) ,  (3) 
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and the resulting parameters will be biased for two distinct reasons: (1) 
because of the correlation of the x ,  with the left-out individual effects (usually 
upward), and (2) downward because of the negative correlation between the 
observed xit and the new composite disturbance term. 

It is clear that in panel data one can eliminate the first source of bias by 
going 'within' by analyzing deviations around individual means. It is also 
reasonably well known that going within might exacerbate the second source of 
bias and make things worse rather than better ? What is less obvious is that 
there are different ways of eliminating the first source of bias, that they imply 
different consequences for the size of the  second bias, and hence provide an 
opportunity for identifying its magnitude and recovering the '  true' coefficients. 

An alternative to the 'within' estimator is a first difference estimator, which 
also sweeps out the individual effects. We shall show in the next section that 
assuming stationary and uncorrelated measurement errors the plims of the 
difference and within estimators are 

plimb u = f l  1 var(dx) ' 

where 

r - 1  
plimb~=fl  1 T vary ' (4) 

d yit = ) ' i t - Y i t - t ,  .Pit = Y ,  - Yi, 

and similarly for the other variables. 
For the most likely case in economics: positively serially correlated' true' x 's 

(z 's) with a declining correlogram and, for T > 2, 

2T 
var(dx) < varY, (5) 

T - 1  

and hence [bias bal > [bias bwl. That is, errors of measurement will usually bias 
the first difference estimators downward (toward zero) by more than they will 
bias the within estimators. 

Note, however, that if we have estimated both b d and b w we have already 
computed vardx and vary and hence have all the ingredients to solve out for 
the unknown o 2 and ft. In fact, consistent estimates can be had from 

fl = [2bw/var( d x  ) - ( T -  1 ) b d / T  var Y ] 

/ [ 2 / v a r d x -  ( T -  1 ) / T  varY], (6) 

o 2 =  ( f l  - bd)var(dx) /2 f l .  (7) 

2See Griliches (1979) for a related discussion in the context of the analysis of sibling data and 
Freeman (1984) and Chowdhury and Nickell (1985)in the zero-one variable (impact of unioniza- 
tion) context. 
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The first difference and within estimators are not the only ones that can yield 
such implicit estimates of the bias. If we define d ~ = 1 - LJ as the difference 
opera tor  ' j  periods apart ' ,  where L is the lag operator, then dJy, = Y t -  Yt-j 
(and similarly for dJxt )  and, for example, d r l y = y r - y  I is the ' longest '  
difference possible in a particular panel. For T > 2 several more slope estima- 
tors can be computed based on 'different lengths' differences with 

pl im bj = fl - 2 f l o f  / v a r (  dJx ), (8) 

implying additional estimates of fl and o f .  These take the form of 

(9) 

where ¢0j is the covariance between dJy and dJx while s f is the comparable 
variance of dJx. Such estimates can be combined optimally to improve upon 
their individual efficiency. 

I t  is worth noting that these 'contrast '  or 'moments '  estimators can be given 
a straightforward instrumental variables interpretation. Let us take as an 
example/~21, i.e., an estimate derived by solving the implied bias relationship 
f rom OLS estimates computed using differences two periods apart ( y r -  Y r - 2 )  
and one period apart  ( Y r - Y r - 1 ) .  The numerator  of (9) can be rewritten as 

x 'F~F2Y - x ' F { F l y  = x ' [  F~F 2 - F{F1]y  = x ' Q y  = w 'y ,  

and similarly also for the denominator of (9), where F 2 and F 1 are appropriate 
'differencing'  matrices. In the simplest T =  3 case, where we are 
using three cross-sectional equations to estimate one fl, these matrices take the 
( - 1  0 1) and (0 - 1  1) form, respectively, and the resulting instrumental 
variable can be seen to equal w = (x I - x 3 x 3 - x 2 x 2 - xl)  3 If the measure- 
ment  errors are stationary and uncorrelated ( 0 2  = 02,  Ov,ot,h = 0 for h 4: 0), 
then E w ' x  = w 'z  and w is a valid instrument for x. 

The above results were derived assuming that the measurement errors were 
not  serially correlated, while the true z ' s  are. It is possible to allow for serial 
correlation in the measurement errors, the v's, provided that we are willing to 
make  one of the following three types of assumptions: 

(1) The correlation is of the moving average form of order k and the 
available sample is long enough in the time dimension, T > k + 1, to 
allow the use of more distant instruments. 

3 Th i s  is one  of two such poss ible  ins t ruments .  The other  can be der ived using the a l te rna t ive  
F 1 = ( - 1 1 0). A. Pagan  suggested this s implif icat ion.  
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(2) 

(3) 

The measurement errors are stationary while the true underlying variables 
(the z 's) are not. 4 For example, x 4 - x 1 can be used as an instrument for 
x 3 - x 2 as long as E v 4 v  3 = EVEV 1 but cov(z4, z3) ~ cov(z2, zl). We shall 
come back to this point in the next section. 

More generally, one can always allow for correlation in the measurement 
errors if its magnitude is know a priori. For example, if x is a gross 
capital stock measure based on a twenty-year life assumption and the 
i.i.d, measurement errors occur in the measurement of investment, then 
the first-order serial correlation of the errors in the capital stock is 
approximately 19/20--0 .95 .  The first difference bias formula now be- 
comes 

- 2fla2(1 - p , )  - O . l f l o  f 

plim(bd--  fl) v a r d x  v a r d x  ' (10) 

and a similar expression can be worked out for the bias of the within 
estimator. Other forms of serial dependence in the errors of measurement 
can be tested for and consistent estimators can be derived in their 
presence. 

These results have been derived assuming only one independent variable. If  
there are more independent variables in the equation, but they are not subject 
to error, they can be swept out from all the other variables and the formulae 
reinterpreted in terms of the variances of residuals from regressions on these 
other variables. If  some of them are also subject to measurement error, the 
formulae become more complex but can be similarly derived provided that 
these measurement  errors are mutually uncorrelated (or correlated with a 
known correlation structure). 

We now turn to the consideration of the general case and the formulation of 
opt imal  estimators for it. 

3. Derivation of results 

We now reconsider our basic model, eq. (1), and derive the relationship 
among the various estimators. The general specification of (1) for an observa- 
tion on an individual unit (there are N such units or individuals) is 

y = z f l  + la + ~,  ( l l a )  

x = z  + v, ( l l b )  

y = x f l  + l a  + TI - v'fl  = x f l  + l a  + e, ( l l c )  

4 This was suggested to us by A. Pakes. 
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with 

v ( , )  : z ,  v(o) = 

where y, z, x, y and v are T x 1 vectors, l is a vector of ones,/3 is a constant, 
but  a varies across the N units or individuals, while 2 and I2 are T x T 
symmetric  matrices. 

The within estimator and difference estimator can be seen to arise from the 
t ransformat ion of eq. ( l lc) ,  

Ry = Rxfi + Ra + Re, (12) 

where each row of R must sum to zero to eliminate a. For instance, the R for 
the first difference estimator will be a bi-diagonal matrix with - 1  on the 
diagonal and + 1  on the superdiagonal. The within estimator has R = I r -  J 
where J is 1 / T  times a matrix of all ones. We calculate for this class of 
estimators 

p l im( f l r  ) = [E(x 'R 'Rx ) ] -1E(x 'R 'Ry )  

= [E(z 'Qz) + E(o'Qo)] 1E[v'Qvlfi, 

(13) 

where 

Q = R'R,  E(o 'Qv)  = tr[QI2], 

and all plims in the paper are taken as N--+ oo. For ease in derivation of the 
results, we assume that all the random variables are jointly covariance sta- 
tionary. For  the present we also assume that both */it and vit are not serially 
correlated and that 2 and ~2 are both diagonal matrices. (We shall relax all of 
these assumptions below.) With these assumptions we calculate the probability 
limit of the first difference estimator as 

plim bd-- fi= [2o2(1 -- P,) + 2o2f t )  

= --[o2(1--Pl)Wot2]-lo;fi, 
(14) 

where Oj is the j t h  serial correlation coefficient between the true regression 
variables z. Note  that as expected the inconsistency increases as the correlation 
increases so long as it is positive. First differencing ' removes more of the 
signal' for given o 2 and o~ 2 the higher is Pl, which exacerbates the errors in 
variables problem. 
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Table 1 

Comparison of first difference and within estimator. 

99 

C o n d i t i o n s  for  
T p l i m b d -  fl p l im bw - fl I b d - - l b d l > O ,  p , > 0  

T - - ,  oo - ( , , ~  - oCp, ) - , , , 2 .e  

- ( 4 -  0~,)-'o~ 
- ( 0 2  - ( o 2 / 3 ) ( 2 0 x  + 0 2 ) ) -  lo2J~ 

- ( ° 2  - ( o2 /6 ) (301  + 2/)2 + 03 ) ) -  1o2/~ 

- ( o ~  - (2o~2/(T - 1 ) ) F . , ( ( T - j ) / T ) p : )  ~o~2,~ 

Same  

2 1 
~01 + ~P2 < Pl 
1 1 l 
~Pl + ~P2 + ~P3 < 01 

( 2 / T ) ( p ]  + P2 q- "'" ) < Pl 

For the within estimator, the probability limit is 

plim bw _ ~8 = _ [ o2 _ 2o2 ] -1  
T ( T -  1) E ( T - J ) o J  °~2fl" (15) 

The formula is the same as in the usual OLS with errors of measurement case, 
except for the term involving the serial correlation coefficients pj for the z 's  
which arises from the within transformation 

1 
~,, = x , , -  -~ E x , .  

To compare the inconsistencies between the first difference and within estima- 
tors note that plim b d does not depend on T (as N ---, oo), but that plim b w does 
depend on T because of the within transformation. The conditions which 
cause the within estimator to be less inconsistent, which we expect to be the 
usual case, are given in table 1. 

For  T = 2, the estimators give numerically identical results since the within 
transformation and first differences are related by the formula ½ dx = ~. For 
T = 3, the condition for b w to be less biased than b d is Pl > P2 which is assured 
with a declining correlogram. For T =  4, the required condition is Pl > 2p2 
+ ! p ,  which again follows from a declining correlogram. The general result 3 3 
follows by induction. This condition then is a sufficient condition for the 
within estimator to be less inconsistent. The steepness in the decline of the 
correlogram will determine the differences in magnitude, but in many cases we 
would expect a substantial difference. 

The situation reverses if we difference the data more than one period apart. 
Then the probability limit of the least squares estimator based on differences j 
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periods apart is 

+o,,) °,B. p l i m b s _ f l = _ ( o 2 ( l _ o j )  2 12 (16) 

For example, take T = 3 and j = 2. The inconsistency of b 2 is smaller than b w 
so long as Pl > P2 for positive Px- For T =  4 and j =  3, the condition is 
5p3 < 3& + 202, which holds under the assumption of a declining correlogram. 
For T = 4 and j = 2, so that the 'longest' difference is not used, the condition 
is 4p2 < 3pl + lp 3 so that a declining correlogram is not sufficient to assure 
that the inconsistency in b 2 is less than b w. The general result is that for a 
given sample T, the estimator with j = T -  1 will be less inconsistent than b w, 
but for intermediate 1 < j  < T -  1 no definite ordering can be made. Note that 
our comparison only involves the inconsistency in the estimators for the case 
N-- ,  ~ .  For  moderate size N, the mean square error may be a better 
comparison criterion, and the estimator with j = T - 1  eliminates a non- 
negligible proportion ( T -  2 ) / ( T -  1) of the observations. 

In the more general case of serial correlation in the v's and ~/'s, 2 and:~2 'are 
not diagonal anymore. For our two leading special cases, 

tr[Q~2 ® I ]  = 2 N ( T -  1)o~2(1 - r ) ,  

for first differences, and 

(17) 

plim b w - fl  = - [o~ 2 

× [o~? - 

2 ] 
T ( T -  1) E[°~(T-J)os+°'2'(T-j)rs] 

2°: ] 
T ( T -  1) ~ ( T - j ) r j  ft. 

) 

1 

(19) 

T - 1  2 202 T ] 
tr[Qf~®I] =N ---T--Or- T~ ~ ( T - j ) r  s , 

j = l  

for the within estimator, where rj is the j t h  serial correlation in tl/e measure- 
ment error v. 

The inconsistency of the first difference estimator is therefore 

plim b a -  t3 = - [o.2(1 - 0,)  + o,Y( 1 - q ) ]  'o2( 1 - rl)fl- (18) 

The bias of the first difference estimation here as compared to eq. (12) is less if 
q > 0. The more highly positively correlated the measurement error is, the 
more you eliminate using first differences. However, the presumption that 
r 1 > 0 seems less strong in economic data than the assumption we used before 
that pl > O. 

The inconsistency of the within estimator is 



Z. Griliches and J.A. Hausman, Errors in variables in panel data 101 

As with first differences, the inconsistency in the within estimator decreases 
with respect to the uncorrelated case so long as all rj > 0. Again this assump- 
tion is not as compelling as the analogous assumption about the pj. To 
compare the bias of the first difference and within estimators, first note that, 
for T = 2, they are identical as before. For T___ 3, it may be reasonable to 
assume that #j > ~ > 0 for all j. That is, serial correlation is higher in the true 
variable than in the measurement error. Then, for the case T = 3, the within 
estimator is less biased than the first difference estimator if (Pl - 0 2 ) / ( r l  - r2) 
> ( 1 -  0 1 ) / ( 1 -  rt) which holds if the serial correlation in the true variable 
decreases less slowly than the serial correlation in the measurement error. 5 This 
type of condition generalizes to values,of T larger than 3. While the condition 
seems plausible that 0j > rj and that the decrease in the serial correlation of the 
z ' s  be less than for the o's, it is not overwhelming. Counterexamples are easy 
to construct. The particular case under consideration would need to be 
examined. 

The ' long' difference estimator is the same as in eq. (18) with pl and r 1 
replaced by Oj and rj, respectively. Note that the most favorable case need no 
longer be j = T -  1 because §. decreases along with pj. The j which minimizes 
the inconsistency maximizes the ratio ( 1 -  p j ) / ( 1 -  rj). For a positive and 
declining correlogram for both Oj and §. the tradeoff is between removing too 
much signal and removing some of the noise. If both z and v follow AR1 
processes with Pl > rl, then j = T -  1 will minimize the inconsistency. On the 
other hand, if z follows an AR1 process and v follows an MA1 process, then 
j = 1 can be optimal. The optimal choice depends on both the type of process 
as well as the particular correlation coefficients. 

It would be interesting to know which combinations of estimators of the 
form ( X ' Q x ) - l X ' Q y ,  used to eliminate a from eq. (11), have good properties 
with respect to errors of measurement. Even if we choose the minimization of 
the inconsistency as our criterion, the optimal combination will depend on the 
properties of Z and I2. In the uncorrelated case, diagonal 12, with a declining 
correlogram for z, the long difference estimator, j = T -  1, minimizes minus 
the inconsistency. For the correlated case of non-diagonal I2, the optimal 
estimator depends on both X and /2. A potential topic for future research 
would be to characterize this dependence for interesting classes of stochastic 
processes determining ~ and 12. 6 

We now turn to the question of consistent estimation. In the general 
correlated case, with 12 unrestricted, the problem remains unidentified. That is, 
external instruments uncorrelated with the measurement error are required for 
consistent estimation. While the assumption of stationarity of the measurement 

5The necessary and sufficient condition is (1 - 01)/(1 - rl) < (1 _ ~ta12 _ ~02)/( 1 _ ~r 12 _ ~r2) . x  

6The inconsistency of the estimator may well constitute the major part of a criterion such as 
asymptotic mean square error given the quite large samples, in N, which are often present with 
panel data. 
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errors in combinat ion with non-stationarity of the underlying true variables 
(the z 's) does allow identification also in the correlated errors case, we do not 
find it especially compelling and focus first on the non-stationary z ' s  and 
uncorrelated v 's  case. The procedures we develop can be used also in the 
'par t ia l '  correlation case, e.g., if v follows the MA(m)  process with m < T, and 
can be also extended to the stationary case. The strategy we propose here is to 
take advantage of the existence of alternative consistent estimators, i.e. over- 
identification, to test the assumption of no correlation in the o's and their 
stationarity. If  the alternative estimates of fl are mutually coherent, then the 
researcher can have some confidence that his assumptions hold true. 

Our estimation strategy starts with the original eq. (11c), 

y = x B + l a + e ,  

and looks for instrumental variables of the form 

w = P x ,  

where the matrix P must satisfy three sets of conditions: 

I ' P = O ,  

E w ' x  = Ew ' z ,  i.e., Ex 'P ' v  = 0 ~ tr I2P = 0, (20) 

E x ' P ' x  4: O. 

The first requirement assures the elimination of a, the individual effects, from 
(11). The second requirement allows the use of those x ' s  and their combina- 
tions which are uncorrelated with the particular measurement error v t. Its 
content  will change depending on the assumptions made about the serial 
correlation structure of the o's. The final requirement is one of non-zero 
correlation between the instrument w and x. 

The simplest and least restrictive set of assumptions to start with are (1) that 
the z ' s  are non-stationary and (2) the v 's  are non-stationary and white 
(uncorrelated) to some order. Under these assumptions we need to difference 
the y ' s  to get rid of the a 's ,  and we can use non-corresponding adjacent x 
levels to instrument the x difference. Starting with the case of correlated errors 
we can either relax the restrictions further by allowing for serial correlation in 
the errors up to some order or restrict the model further by imposing the 
assumption of stationarity on the measurement errors. In the latter case 
additional combinations of differences in the x ' s  become valid instruments? 

7If the z ' s  were also stationary, there would be no gain in ins t rumen t s  here since the additional 
ins t ruments  would have zero variance. On the other hand,  it is remarkable that under stationarity 
of ( x , ,  a~) the original specification y = Xfl + la + r/ can be estimated using differenced x ' s  as 
ins t ruments  since, e.g., E[x~2- xn)ai] = 0 .  This approach would allow an application of the 
H a u s m a n - T a y l o r  (1981) procedure where other right-hand-side variables are included, say D, and 
( D - D.) are used as additional instruments. 



Table 2 

Potential list of  instruments  for T = 4 under different assumptions about I2; y = z f l  + l a  + ~ ,  x = z + v .  

Equations to be 
est imated 

Valid instruments  a 

Non-stat ionary o 's  Stationary v 's  

No  correlation MA(1) No  correlation MA(1) MA(X)&(3) 
R- 
t,, 
g. 

(Y2 - Y l )  =/~(x2 - xl )  

(Y3 - Y 2 )  = # ( x 3  - x 2 )  

(Y4 -Y3)  = ~(x4  - x3) 

(Y3 - Y l )  = f l ( X 3  - -  Xl) 

(Y4 - -  Y 2 )  = f l ( X 4  - x2) 

(Y4 - Y l )  = /~(x4  - xl )  

X4 X4 X I + X  2,  X 4 X I + X 2 , X 4  

X 1, X4 X 1, X2 + X 3 , X4 X 2 + X 3 

Xl ,  X2 X1 Xl ,  X3 + X 4 X1, X3 + X 4 

X 2 X 2 X 2 

X3 X3 X3 

X2, X3 X2, X3 

X 1 + X 2 

X 2 + X 3 

X 3 + X 4 

X2 

X3 

a 

_ - -  X 1 - -  X 4 - -  X 1 - -  X 4 

Y4 -- Y3 X4 X3 X2 X2 

- - X  1 - - X  4 

x2 j~ x~ j 

Total number  of  
ins t ruments  8 5 11 10 9 

a Only one possible list of instruments which exhausts  all available information is presented. For some equations, valid instruments  are not  listed. For 
example, x 3 is valid for the Y2 - Yl difference in the no-correlation case. However, the information from this instrument is redundant. The information 
is already included in the instruments for the other equations. 
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To the extent that we have enough data (time periods) some versions of this 
model will be heavily overidentified and hence some of these restrictions are 
testable. We shall illustrate our approach and list the different possible sets of 
instruments for the T = 4 case in table 2. Consider, for example, the second 
line of table 2. It corresponds to estimating fl from the cross-sectional 
difference between Y3 and Y2. (Note that each such cross-section has N degrees 
of freedom.) For  uncorrelated measurement errors, x 1 and x 4 are both valid 
instruments. If the errors are correlated according to a MA(1) or higher order 
scheme there are no valid instruments for this difference without imposing 
further restrictions. If we are willing to assume stationarity for the v's, we gain 
x 2 + x 3 as an instrument. The quality or contribution of such an instrument is 
dubious, however, since it depends on var(z2) - var(z 3) ~ 0 and non-negligi- 
ble. As we relax the no-correlation assumption in the stationary v's case, we 
lose some instruments, but can form other 'combinations' of difference estima- 
tors which use all of the available information in the data. They are shown in 
the southeast comer of this table where the comer/3 is given by [ x ~ ( y  2 -- Yl) + 
x ~ ( y  4 - y 3 ) ] / [ x ' 3 ( x 2  - Xl) + x ' 2 ( x  4 - x3) ]. A more general version of table 2 
for arbitrary T is given in the appendix (co-authored with Bruce Meyer) with a 
discussion of the rules for constructing and finding the relevant number of 
such instruments. 

The asymptotically efficient way of combining all the different/~ estimators 
in table 2 is using a 'system' estimator where the estimated fl 's are constrained 
to be equal and the covariance of the stochastic disturbances 2; is taken into 
account in weighting them and in computing the variance of the resulting 
coefficient. It is important to note that a 3SLS or GLS type estimator is 
i n c o n s i s t e n t  because instruments from a given equation are not orthogonal to 
the disturbances in another equation unless they are also contained in the 
instrument set of that equation. 

It is useful, as a start, to estimate each equation in table 2 separately by 
2SLS using different instrumental variables in each equation. But to combine 
such estimators optimally we use the Generalized Method of Moments estima- 
tor, developed by Hansen (1982) and White (1982), and allow also for 
conditional heteroscedasticity. The estimator is 

1 N 
f l * =  [~ct~.t~U 1wt3~ l - lx t l~U ll~py wi th  U = - - ~ # , ' ~ , ~ # , ,  (21)  

N i 

where ~ are the stacked dJe's and ~ is calculated from an initial consistent 
estimate of fl, ~ are the stacked dJx's, )3 are the stacked dJy 's, and ~, is the 
matrix of instruments. 8 The asymptotic covariance matrices of the estimator is 
V ( f l * )  = [~ '#U-1~ ,~] -1 .  This asymptotic covariance matrix is different from 

8 Note that w is a block-diagonal matrix. 
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a simple weighting of fliv from 2SLS. Effectively we estimate each instrument 
equation combination (or orthogonality condition) separately, compute their 
associated estimated variance-covariance matrix, and then pool the individual 
f l 's  using this matrix for weighting them. 

We now turn to the question of whether the no-correlation assumption in 
the errors in measurement is valid. Some such assumption about the form of 
the process generating the measurement error is needed because the general 
correlated case is unidentified without the use of special stationarity assump- 
tions or other extraneous variables as instruments. Note that if we applied least 
squares (OLS) to the equations in table 2, equation by equation, we would 
expect the estimates of fl to differ according to our previous formulae. 
Similarly, it can be demonstrated that in the IV case with correlated errors in 
measurement different estimates of fl will have different probability limits. 
Therefore, a testing procedure is to estimate a system of equations based on 
different d j ' s  in unrestricted form so that each equation is allowed to have its 
own ft. A large sample X 2 test with m - 1 degrees of freedom for equality of 
the flj's is equivalent to the implicit test in table 2 that all the flj's are equal. An 
alternative specification test is to take an equation, say the first, and restrict the 
set of instruments. For x i t - x , _ l ,  instead of using all the other x ' s  as 
instrumental variables we could restrict the list to those x ' s  which are at least 
two time periods away. I.e., use only the instruments given in column 2 or 4 of 
table 2. The test statistic proposed by Hausman (1978) or Hausman and Taylor 
(1981) provides a large sample X 2 test with one degree of freedom. Lastly, 
overidentification tests of the Sargan (1958) and Hansen (1982) type can also 
be used. Under stationarity assumptions these various tests are closely related 
but have different operating characteristics because they are based on different 
degrees of freedom. In the general case of non-stationarity of the x ' s  they will 
differ, although Newey (1983) provides a partial guide to their comparability. 

There is an alternative, asymptotically equivalent approach to estimation 
based on treating the y and x as jointly normally distributed and using 
maximum likelihood estimators to estimate the 'unobservables': ~2 and the 
variance-covariance matrices of the z's. We can rewrite our original (11) 
model as 

Yx = Z l f l  + l a  + 'l~l = X l f l  "]- l a  + 711 -- flU1, 

d y  -- (dz)f l  + d~l, (22) 

X = Z - l - V ,  

where d y  and dz are now ( T -  1) × 1 vectors. Since the relationship between a 
and z t is free, the Yx equation is unconstrained and can be ignored in what 
follows. We consider then the ( 2 T - 1 ) ×  ( 2 T - 1 )  matrix of observable mo- 
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ments  of  all the data:  

d y '  • x xx '  ' 

whose expectat ion,  given our  model,  is 

M ( ~ 9 ) = ( f l Z d z . d z ' + £  f l d z . z ' )  
~ d z ' . z  z z ' + ~  ' 

(23) 

where 

~2 = E d ~ .  d~' .  

We  leave ~2 unconstra ined and hence the identification of fl hinges on our  
assumpt ions  about  $2 and the order of  zz'. For  T =  4 and 12 diagonal, the 
interesting right half  of M ( O )  can be written as 

F Z21 -- Zll Z22 -- Z12 Z23 -- Z13 Z24 -- Z14 ] 
/ z . -  z 4/ 
[Z41 -- Z31 Z42 -- Z32 Z43 -- Z33 Z44 Z34J 

Zll "+- .T1 Z12 Z13 Z14 
Z22 -'1- ,I- 2 Z23 Z24 

Z33 q- "/'3 Z34 
Z Zl.4 q'- "r4 

where the zii 's are the appropriate  second-order  moments  of  the unobservable 
z ' s  and  the Tt's are the diagonal elements of $2. We have then the twenty-four  
dist inct  observable moments  of  the d y .  x '  and x .  x '  variety and thirteen 
unknowns  [ten components  of  zz' ,  r ,  and four ~-'s, where ~t = o2(t)]  and the 
model  is heavily over-identified. It  can be constrained further by assuming 
~t = ,r, that  the o 's  are stationary, a n d / o r  it can be relaxed by adding another  
set of  Tij terms to allow for MA(1) or MA(2) correlation between these 
measu remen t  errors. 

More  generally, under  our assumptions,  S is a sufficient statistic for M ( O )  
and  we can estimate the unknown parameter  vector O by ' f i t t ing'  the model  
M ( O )  to the observed matrix of  variances and covariances S using either the 
L I S R E L  or  M O M E N T S  statistical packages and different versions of the 
mode l  can then be compared  using likelihood ratio tests. 9 

9See J~reskog and SSrbom (1981) and Hall (1979), respectively, and Aigner et al. (1984) and 
Griliches (1984) for additional discussions of such models. Note that fourth moments are not being 
used in either estimation or inference here. 



Z. Grifiches and J.A. Hausman, Errors in variables in panel data 107 

4. An empirical example 

The empirical example we consider is related to the old conundrum of 
'short-run increasing returns to scale'. Let l = logarithm of employment and 
q = logarithm of output. The relationship between l and q depends on what is 
assumed about the production function, what is held constant, and what 
expectational assumptions are made about the relevant prices. If the produc- 
tion function is assumed to be Cobb-Douglas with a labor elasticity a, then 
one can derive two alternative relationships: the first based on inverting the 
production function and the second on solving the value of marginal produc- 
tivity equals the wage condition: 

1 1 - a  
l =  q - - k ,  (24a) 

O~ Ot 

l = log a + q - w', (24b) 

where k is the logarithm of capital services and w' is logarithm of the real 
wage log w -  log P, where P is the price of the product. In either form, the 
coefficient of q should be one or higher. In econometric practice one tends to 
get coefficients which are less than one, implying short-run increasing returns 
to labor alone [Brechling (1973), Sims (1974)]. Adding lags helps a little, but 
usually not enough. A reasonable interpretation of the data and one rationale 
for the introduction of lags is that labor is hired in anticipation of 'normal' or 
expected output, while actual output is subject to unanticipated 'transitory' 
fluctuations. Since this argument is isomorphic with the errors-in-variables 
model [see Friedman (1957), Maddala (1977)], we can apply our framework to 
it. 

We shall use data on 1,242 U.S. manufacturing firms for the six years, 
1972-1977, from the NBER R&D panel [Cummins, Hall and Laderman 
(1982)], and adopt the second interpretation of the equation to be estimated. In 
this model, 

lit = d ,  + qi* + { - wit + (log a i - l o g  ~) + 1~i t } ,  (25) 

q* is the expected or 'permanent'  output level, d t is a set of individual year 
constants (time dummies), and the bracketed term represents a composite 
'disturbance' which consists of three terms: (1) a real wage term, which 
presumably differs in some consistent fashion across firms and moves, more or 
less in unison for all the firms, over time; specifically, we assume that 

w[t=~,+Yt+~t (26) 

has a variance component structure with 3't subsumed in the d t and ~, 
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a s sumed  to be  uncor re la ted  with q , ;  (2) a term associa ted  with the fact that  the 
l a b o r  e las t ic i t ies  a~ might  differ across firms; and  (3) a pure  i.i.d, d i s tu rbance  
t e rm ~ , .  W e  do  not  observe the expected ou tpu t  var iable  q,* but  only the 

ac tua l  o u t p u t  

q .  = qi* + v i t ,  (27) 

where  v .  is an  i.i.d. ' e r ror '  or  t rans i tory  componen t  in q,t- No te  that  v .  need 
no t  be  an ac tua l  ' m e a s u r e m e n t '  error. Observed  q .  may  be measured  correct ly  
b u t  re la t ive ly  to the conceptua l  var iable  desired in the model ;  q~t is e r roneous  1° 
W e  can  rewri te  the model  in terms of observables  as 

li, = a i + [3qi ~ + d,  + ( - [ 3 v ~ , -  % + rl,t),  (28) 

where  we expec t /3  = 1 and the a i are a set of  ind iv idua l  firm effects incorpora t -  
ing  bo th  p e r m a n e n t  real wage differences and differences in the l abor  elast ici ty 
across  firms and  hence l ikely to be cor re la ted  with the qit- 

To  r ecap i tu l a t e  the model ,  we assume that  workers  are hi red in an t ic ipa t ion  
of  ac tua l  d e m a n d ,  that  actual  d e m a n d  is met  p r imar i ly  by  unan t i c ipa ted  
f luc tua t ions  in hours  of work  per  man  (which are unobservab le  in our  da ta )  
and  i nven to ry  f luctuat ions,  and  that  we can subsume the real wage var iable  
in to  the  t ime  dummies  and  the ind iv idua l  firm effects, n Our  focus then is on 
the  e s t ima t i on  of  B and o~, the var iance  of the ' e r ro r '  (v)  in q, its unan-  
t i c ipa t ed  c o m p o n e n t .  

T a b l e  3 p resen ts  the es t imated  /~'s for different  cuts of the data ,  total ,  
wi th in ,  first differences,  and  ' l ong '  differences, and  the associa ted  net  var iance  
of  q (net  of  yea r  and  indus t ry  d u m m y  variables) .  I t  also shows a set of para l le l  
i n s t r u m e n t a l  var iab le  es t imates  of /3, where da ta  on capi ta l  are used as an 
ex te rna l  i n s t rumen t  for q. The  vafidi ty of  such external  ins t ruments  depends  
on  the lack  of  a firm-specific shor t - run  movemen t  in real wages, or  the 
n o n - c o r r e l a t i o n  of  the capi ta l  measures  with %. No te  that  the OLS results 
b e h a v e  as p red ic ted ,  with the first difference es t imator  being lower than  the 
wi th in  one.  The  long difference es t imate  is greater  than  bo th  the first difference 
e s t ima te  a n d  the within es t imate  as the der iva t ions  in sect ion 3 predic ted .  

The re  are  two ways of  in terpre t ing  these results.  The  first would  main ta in  
the  a s s u m p t i o n  t h a t / 3  = 1, ignore the po ten t ia l  presence  of  cor re la ted  individ-  

l°They need not be 'errors' as far as other variables are concerned. For example, both hours 
worked per man and materials used are likely to be related to such transitory output fluctuations. 

~An alternative interpretation would divide l into two components, ' fixed' labor which changes 
only in response to permanent changes in q, and 'variable' labor which is related to t~. We 
experimented also with the use of distributed lags in certain of our models. While lagged q is 
present when errors in variables are not accounted for, only current q has any statistical or 
'economic' significance in the errors in variables models. Thus, 'costs of adjustmcnt' do not seem 
important on an annual basis in our model once errors in variables are accounted for. 



Z. Griliches and J.A. Hausman, Errors in variables in panel data 109 

Table 3 

Estimates of the employment-output relationship for 1,242 U.S. manufacturing firms, 1972-77; 
lit = ai + flqit + dt a 

Estimation method  Instrumental  variables 
and degrees of Net variance estimates 
freedom of q fl MSE fl MSE 

(1) Total 2.265 0.966 0.158 
d.f. = 7,425 (0.003) 

(2) Within 0.0313 0.643 0.011 
d.f. = 6,203 (0.008) 

(3) First difference 0.0246 0.480 0.015 
d.f. = 6,204 (0.010) 

(4) ' Long'  difference 0.1359 0.731 0.047 
d.f. = 1,240 (0.016) 

0.994 
(0.0O3) 

n . c .  

0.159 

0.868 0.019 
(0.153) 

1.063 0.062 
(0.039) 

aThe terms in parentheses are the estimated standard errors. Total regressions contain also five 
year and twenty-two industry dummy variables. The within and first difference regressions include 
also year dummies. The instrumental variables used are the logarithm of net plant, the first 
difference in log net plant and the long difference in log net plant, respectively. 

ual effects, and accept the instrumental variable results as vindicating this 
position. There are difficulties with this view, however. The implied 'error' in 
variables variance of o f is 0.038, which is larger than the variance of the first 
differences of q which should contain 2of, if the model were right! Also, it is 
unlikely that net investment which is the first difference in net plant is 
independent of the unmeasured fluctuations in real wage rates. Hence, the 
consistency of the external instrumental variable estimates is rather suspect. 

We turn, therefore, to the estimation of fl and of using only 'internal' 
instruments, i.e., adjacent 'non-corresponding' x's and their combinations. The 
results, based on the differenced form of our model, are summarized in table 4. 
The individual firm effects, the a i, are eliminated by the differencing operation 
which eliminates the correlation between the individual firm effects and output. 
We list eleven such differences in this table: five first differences, four dif- 
ferences two periods apart, and two differences four periods apart. The 
remaining four possible differences (three three periods and one five periods 
apart) can be derived, in the non-stationary errors case, as linear combinations 
of the listed (IV) estimates. 12 In the first column we give the simple OLS results 
for all of these differences. They again yield quite low estimates of t ,  which 
rise significantly as the period of differencing is lengthened. Also, the data 

x2 Even this system has redundancies as far as the total number  of valid orthogonality conditions. 
It will suffice below to use a shortened list of instruments and to impose all of the twenty-four 
distinct orthogonality conditions. With T =  6, the no correlation of errors assumption yields 
twenty-five orthogonality conditions of which one is lost in the elimination of the a 's .  See the 
appendix for additional discussion of the 'fight' number of instruments. 
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seems distinctly non-stationary, especially during the steep recession year of 
1975. Column 2 gives the instrumental variable results under the assumption of 
no correlation in measurement error [labeled MA(0)]. Here, for example, the 
instrumental variables used for the second fine, the difference between 1974 
and 1973, are the levels of output in 1972, 1975, 1976 and 1977. Again, the 
1975-74 difference gives a significantly lower estimate than do the other years, 
as does also the 1973-72 difference. But the latter has a much higher standard 
error due to the absence of good (early) instruments for it. In lines 12 and 13 
we give two different restricted IV results where fl is restricted to be the same 
across all the combination of years. The first is based on combining optimally 
the eleven different 2SLS estimates of fl, using the estimated 2SLS residuals to 
form the appropriate weighting matrix which allows, also, for conditional 
heteroskedasticity. They are not fully efficient because they do not allow a free 
correlation structure between all the different possible instrumental variable 
estimators in such a set-up, and because of the redundancy in the list of 
instruments and equations. Line 14 gives the Generalized Method of Moments 
estimator which takes the individual single instruments as its 'elemental' set 
and uses the 2SLS residuals to form the appropriate weighting matrix (of larger 
dimension). The two different system estimators yield similar results. The null 
hypothesis of equality of fl across these different combinations of years leads 
to a X 2 variable with the number of distinct instruments minus one as its 
degree of freedom which is listed in line 14 of table 4. For the column 2, 
MA(0)- IV estimators, it is 80 with 10 degrees of freedom, and implies a 
rejection of the null hypothesis, although one should recognize that our rather 
large sample size makes rejection of most such hypotheses likely at the usual 
significance levels. 

In column 3 of table 4, we relax the no correlation in measurement error 
assumption and allow for a MA(1) process. To do this, we use only instru- 
ments that are two or more years away from the years used to form the 
particular difference. First, note that the IV estimates rise for most of the 
differences (eight out of eleven). On the basis of a Hausman (1978) test, 
the difference is significant for eight out of the eleven estimates. ~3 

Also note that in five of the eleven equations the estimate of/3 exceeds one, 
although never by a statistically significant amount. However, the difference of 
1975 minus 1974 is again much lower. Primarily because of this one equation, 
which has the lowest standard error, the restricted estimates give an almost 
identical estimate to the no correlation restricted estimate. 

In the last column of table 4 we allow for a MA(2) process in the 
measurement error. Only four of the eleven equations remain individually 

13 Overidentifying restriction tests on sets of instruments  can also be used here. They lead to X 2 
tests with higher degrees of freedom. See Newey (1983). For instance, for the five first difference 
est imates in co lumn 2 of table 4, the test statistics are: 8, 14, 15, 28 and 14. All of these statistics 
are higher than conventional significance levels of a X32 variable. 
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Table 4 

OLS, IV and GMM estimates of the employment-output relationship, a 

111 

Coefficient (standard error) 

Years for Consistent IV estimates 
difference OLS MA(0) MA(1) MA(2) 

(1) 1973-2 0.481 0.276 0.465 0.635 
(0.024) (1.35) (0.145) (1.77) 

(2) 1974-3 0.569 0.842 1.257 1.241 
(0.029) (0.038) (0.292) (0.289) 

(3) 1974-4 0.395 0.512 0.647 
(0.029) (0.021) (0.047) 

(4) 1976-5 0.506 0.748 1.454 3.557 
(0.020) (0.037) (0.322) (3.562) 

(5) 1977-6 0.491 0.726 1.192 1.203 
(0.023) (0.165) (0.249) (0.254) 

(6) 1974-2 0.599 1.003 -0.040 1.597 
(0.022) (0.048) (0.340) (0.996) 

(7) 1975-3 0.581 0.716 0.791 
(0.017) (0.027) (0.141) 

(8) 1976-4 0.587 0.666 3.135 
(0.020) (0.026) (2.537) 

(9) 1977-5 0.617 0.695 1.327 3.068 
(0.019) (0.042) (0.107) (2.096) 

(10) 1976-2 0.708 0.751 -41.795 
(0.017) (0.019) (1572.56) 

(11) 1977-3 0.703 0.754 0.223 
(0.017) (0.020) (0.247) 

(12) Restricted fl 0.567 0,727 0.670 0.916 
OLS & W2SLS (0.015) (0,021) (0.045) (0.161) 

(13) Wald test for 189 89.0 25.0 6.0 
equality of (10) (10) (10) (5) 
#'s (d.f.) 

(14) GMM 0.705 0.678 0.643 
(0.021) (0.038) (0.115) 

(15) Wald test for 155.0 47.0 61.0 
equality of (23) (18) (14) 
#'s (d.f.) 

MA(1) MA(2) 
(16) Hausman test Stationarity vs. MA(0) vs. MA(1) 

(using GMM) 5.7 0.7 0.1 

aThe MA(0) column uses all adjacent non-coinciding x levels as instruments. There are four 
such instruments per equation. The MA(1) and MA(2) columns use only those instruments which 
are one or two periods away, respectively. 

In line 12 all eleven estimates are pooled using the estimated 2SLS residuals allowing for 
conditional heteroskedasticity. Line 14 is based on the pooling of the twenty-four individual 
(independent) orthogonality conditions [nineteen for MA(1), and fifteen for MA(2)]. The sta- 
tionary MA(0) estimate alluded to in line 16, column 2, is computed by adding five additional 
instruments of the x t + xt+ l form. The resulting estimate is 0,66 (0.02). 
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identified, and in all cases the estimated fl rises or remains the same, though 
the precision with which they are estimated declines precipitously. The re- 
stricted estimate rises to 0.92, but the GMM estimator falls to 0.64, and is not 
significantly different from the MA(1) one. The estimated coefficients are quite 
unstable at this point. A GMM estimator using a subset of five instruments 
yields fl = 1.2 (0.2), implying that the relationship may not be stable over time 
(as is already indicated by the high X 2 value for the pooling tests). 

We can also test the hypothesis of stationarity of the error mechanism by 
using additional instruments to estimate the various models. In the MA(0) case 
it is rejected using the Hausman test (see line 16, column 1 of table 4). It is 
rather cumbersome, however, within the GMM framework to test similar 
hypotheses in the MA(1) and MA(2) context. Moreover, the Hausman tests 
may not be very powerful against such a hypothesis since they focus on the 
resulting changes in fl rather than on the estimation of the correlation 
structure of the errors, which is of direct interest in this context. Maximum 
likelihood procedures are more convenient for this purpose since they yield 
explicit estimates of the various error variances and covariances. 

Maximum likelihood estimates of this same range of models are given in 
table 5. The model given in (23) is estimated using the LISREL-V program. It 
differs from the GMM estimators by assuming joint normality for all of the 
variables and by not allowing for conditional heteroskedasticity explicitly. The 
latter fact explains why the computed standard errors are somewhat lower in 
this table. We show only the estimated fl and the associated standard errors 
and X 2 statistics. Because the 75-74 difference is an outlier in many respects, 
the residual from the fitted model being twice as large as for the other years 
and exceeding four times its estimated standard error, we present also results 
based only on using four differences (but all six x levels) in the bottom half of 
the table. Except for the final size of fl, the results are similar to the system 
estimates in table 4. Here the stationarity of the v's is rejected resoundingly 
and so is also the no-correlation assumption. If 75-74 is eliminated from the 
system, the fit improves significantly and the MA(1) assumption appears to be 
adequate. 14 As we relax the various restrictions, the estimated fl 's rise towards 
one and beyond, though the precision with which they are estimated falls 
concomitantly. 

Our empirical results are not easily summarized. First, we found that it is 
quite likely that correlation exists between firm effects and measured output. 
Second, traditional covariance techniques are subject to errors in variables 
which have a sizeable effect, in the predicted direction. Next, 2SLS and 
system-IV estimators reduce the magnitude of the bias. Correlation in measure- 
ment error seems present, although an MA(1) process seems adequate for our 
particular data set 15 

14The est imated first-order correlation of the errors is positive and about 0.3. 

15A MA(1) process in measurement  error could well arise because of differences in fiscal years 
across firms and the change in fiscal years among many firms which took place in 1976. 
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Table 5 

Maximum Likelihood estimates of B in the employment-output relationship coefficients (standard 
errors) and model X 2 's. ~ 

Non-stationary v's Difference Stationary v's Difference 
J~ in X 2 's fl in X 2 's 

(1) Full data 5 
differences 

MA(0) 0.701 0.689 
(0.015) (0.014) 

402 440 

0.780 0.763 
(0.028) (0.020) 

324 78 (5) 414 

1.355 0.715 
(0.220) (0.022) 

304 20 (4) 401 

MA(1) 

MA(2) 

38 (5) 

26 (1) 

13 (1) 

(2) Without 75-74 

MA(O) 

MA(1) 

MA(2) 

0.789 0.739 
(0.024) (0.018) 

199 261 

1.274 0.906 
(0.157) (0.032) 

123 76 (5) 215 

1.356 0.885 
(0.200) (0.034) 

117 6 (4) 213 

62 (5) 

46 (1) 

2 (1) 

aThe numbers in the main columns are first the estimated coefficient /3, its standard error (in 
parentheses) and the ×2 statistic for the estimated model as a whole. The numbers in columns 2, 3 
and 4 are the respective differences in the X 2 and the associated degrees of freedom. 

Lastly, we return to the puzzle: Is fl really less than one? Apart from 
1975-1974, the system-MA(1) results and the maximum likelihood estimates 
indicate that fl = 1, while the GMM estimates put it closer to 0.7, bu t  the 
precision of these estimates is not very high. The following might be a possible 
interpretation. Approximately 0.006 of the variance of log of output is unan- 
ticipated. 16 This is less than 0.3% of the total variance in log output, but it 
accounts for close to 50% in the variance of its first differences, t7 Allowing for 
such errors raises the estimated fl from about 0.5 to about 0.9, for most years, 

16And unadjusted to as far as labor input is concerned. This same fluctuation may not be an 
'error '  as far as more flexible inputs such as materials or hours per man are concerned. In similar 
computations using data on French firms, Jacques Mairesse found that while the employment- 
output relationship behaves very similarly to what has been reported here, the materials-output 
relationship yields coefficients of 1 also in the within, first difference, and long difference versions. 
As far as material purchases are concerned, such fluctuations are not 'errors'! 

17For the MA(1) version, the numbers are approximately 0.0095 for the variance and 0.0035 for 
the covariance of such errors. In the non-stationary case, these numbers vary significantly from 
year to year. 
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leaving us rather close to the expected unitary elasticity. A related interpreta- 
tion of these results arises from the distinction between variable and overhead 
labor. If 'overhead' labor does not vary much over the horizon and range of 
our data and the size of shocks that we observe, our estimates would imply that 
it accounts for about 10 percent of manufacturing employment. Our results are 
also consistent with Sims (1974), whose final estimate of the 'total' fl was 
about 0.8 for a specification which used the number of workers rather than 
manhours as the dependent variable. 

5. A suggested research strategy 

The general approach that we suggest can be summarized as follows: 
(i) Estimate eq. (11) by GLS (variance components) and by the within 

estimator. Do a test for equality of the estimates using a Hausman (1978) or 
Hausman-Taylor (1981) type test. 

(ii) If the hypothesis in (i) is rejected, calculate some differenced estimates 
(of different lengths) by OLS. If they differ significantly, errors in measurement 
may well be present. 

(iii) Estimate the equations in table 2 or their equivalent by Instrumental 
Variables, Maximum Likelihood, or the Generalized Method of Moments. 
Then do a specification test(s) of the no-correlation assumption in the errors in 
measurement. If they do differ significantly, the specification of a correlated 
errors in measurement process, use of outside instruments, or respecification 
of the original model (11) seems to be called for. 

6. Notes on the literature 

For work on panel data, see Maddala (1971), Mundlak (1978), Hausman 
(1978), Hausman and Taylor (1981) and Chamberlain (1982). For the impor- 
tance of errors in such contexts, see Griliches (1979, 1984) and Freeman 
(1984). For an earlier effort at identifying the error variance from the contrast 
between levels and first differences in a single series, see Karni and Weissman 
(1974). For a related attempt to derive consistent estimators in error-ridden 
panel data in the context of zero-one variables, see Chowdhury and Nickell 
(1985). For estimation methods in such contexts, see Aigner et al. (1984) and 
Hansen (1982). 

Appendix on optimal instruments 

by Z. Griliches, J. Hausman and Bruce Meyer 

Consider the model (11): 

Yit = git[  ~ + ai  + l~it' (A.1) 
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where a t is potentially correlated with zit , 

Xi t  ~ Zit "Jv Oit , 

Yi t  = X i t f l  + a i  + l~it --  U i t~ ,  i = 1 . . . . .  N,  

Stacking the observations for a given i we have 

Yi = xi f l  + lai + ~i - -  OiJ~ 

= x i f l +  l a  i +  e i, i =  1 . . . . .  N ,  

t = l  . . . . .  T. 

(A.2) 

(A.3) 

(A.4) 

where y~, x;, 7/i, v i and e, are all T-dimensional column vectors and l is the 
vector of l 's.  Also let var0/i) = Z and var(vi) = ~2, i = 1 . . . . .  N. The model can 
be stacked once more to obtain 

y =  xf l  + a + * l -  vfl, (A.5) 

where y, x, a, 7/and v are N T  × 1 column vectors. 
This appendix examines instrumental variables estimators of the form 

flxv = ( w ' x ) - l w ' Y ,  where w = ( IN® P ) x  for some T ×  T matrix P. Note that 
the various difference estimators as well as the within estimator can be written 
in this form. For w to be a valid instrument, P must satisfy three require- 
ments. One needs 

I 'P = 0, (A.6) 

1 N 
plim ~ ~ x',Pe; = 0, (A.7) 
N--* ov iffil  

1 N 

plim ~ ~ x[Px; * O. (A.8) 
N---+ oo i = 1  

An efficient estimate of fl will use all non-redundant instruments w, satisfy- 
ing (A.6)-(A.8). By non-redundant we mean that each instrument contains 
some information about x not included in the other instruments. I.e., in the 
multiple regression of x on the w's, the coefficients on the w's should all be 
identified and asymptotically non-zero. In general, this is a stronger condition 
than the w's being linearly independent. However, here the two conditions will 
be the same. After obtaining a complete set of instruments, the efficient fl is 
calculated as a weighted average of the fl 's from each w. The inverse of the 
variance-covariance matrix of the fl 's is the appropriate weighting matrix. 

The number of non-redundant instruments equals the number of linearly 
independent P matrices satisfying (A.6)-(A.8). In most cases (A.8) is not 
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binding. In such cases the number of linearly independent P matrices equals 
T 2 minus the number of unique linear restrictions (A.6) and (A.7) impose 
on P. 

Requirement (A.6), 

l 'P = O, 

assures the elimination of a, the fixed effects, by having the columns of P sum 
to zero. This imposes T linear restrictions. Requirement (A.7), 

1 .¥ 
p l i m ~  ~ x;Pe i = O, 

i=1  

is the usual requirement that an instrument be uncorrelated with the composite 
error term. Rewriting (A.7), we have 

1 N 

p l i m ~  ~ (z, + v~ ) 'P (~ , -  vgB) 
i=1  

o r  

1 N T T 

p l i m ~  Z ~ Y'. v,v~,Pt~= O. 
t = l  t = l  r = l  

The implied restrictions on P depend on 12, the covariance of v,. For 
example, if the v, are not stationary or serially correlated, then p,, must equal 
zero whenever t = T. This imposes T additional restrictions on P. If the vi, are 
stationary, then only the sum of the diagonal elements of P must equal 
zero. This imposes one linear restriction. Note that the additional restriction 
M A ( T -  1) imposes vis-a-vis M A ( T -  2) is redundant. 

In certain circumstances (A.6) and (A.7) will imply that (A.8) is not satisfied. 
This occurs when T 2 minus the number of restrictions implied by (A.6) and 
(A.7) is less than or equal to T ( T - 1 ) / 2 -  ( T - 1 ) .  T ( T - 1 ) / 2 -  ( T - 1 )  is 
always the dimension of the space of P matrices satisfying (A.6) and (A.7), but 
not satisfying (A.8). To see this, note that when (A.8) is not satisfied, P is of 
the form 

0 - A ]  
A 0 ' 

where A is any triangular array with T ( T -  1)/2 elements. (A.6) imposes T -  1 
independent linear restrictions on A or P, since one of the restrictions is 
redundant. The restrictions of (A.7) always hold when P has the above form. 

Table 6 gives the number of non-redundant instruments. This equals also the 
number of P matrices satisfying (A.6) and (A.7) unless (A.8) is violated. Then 
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Table 6 

The optimal number of instruments, a 

117 

(A) T = 6 c a s e  

1. Stationarity and no correlation 29 

2. No stationarity and no correlation 24 

3. Stationarity, MA(1) 28 

4. Stationarity, MA(2) 27 

5. Stationarity, MA(3) 26 

6. Stationarity, MA(4) 25 

7. Stationarity, MA(K) ,  K >  4 25 

8. No stationarity, MA(1) 19 

9. No stationarity, MA(2) 15 

10. No stationarity, MA(3) 12 

11. Nostationari ty,  MA(K),  K>_4 0 b 

(B) Arbitrary T case 

1. Stationarity and no correlation 

2. No stationarity and no correlation 

3. Stationarity and MA(K) ,  K < T - 2 

4. Stationarity and MA(K) ,  K > T -  2 

5. No stationarity and MA(K)C 

T 2 - ( T +  1) 

T 2 -- (2T) 

T 2 -- ( T +  K +  1) 

T 2 -- ( T +  T -  1) 

T 2 -  [2T + ( T - 1 )  + " ' '  + ( T -  K)] 

aThe number of P matrices satisfying (A.6)-(A.7) and the number of valid instruments is the 
same as long as [ T -  [2T+ ( T -  1) + . - .  + ( T -  K)]] > ( T -  1)(7"/2 - 1). 

bThe number of P matrices satisfying (A.6)-(A.7) is ten here, even though there are no valid 
instruments. 

c0 if [ T -  [2T+ (T - 1) + . - .  + ( T -  K)]] _< ( T -  1)(7"/2 - 1). The number of P matrices is still 
TE - [2T + ( T - 1 )  + . . .  + ( T -  K)]. 

no valid instruments are available. Both the T = 6 case and the arbitrary T case 
are presented. 

In our framework, it is fairly easy to construct an optimal set of instruments 
under any assumptions about v. One lists linearly independent P matrices 
satisfying (A.6)-(A.8).  Since a basis for this space can be written using P 
matrices with entries of 1, - 1  and 0, it is fairly easy to check linear indepen- 
dence. As a given basis of a vector space is not unique, the set of instruments 
will not be either. 

References 

Aigner, D., C. Hsiao, A. Kapteyn and T. Wansbeek, 1984, Latent variable models in econometrics, 
in: Z. Griliches and M. Intriligator, eds., Handbook of econometrics, Vol. 2 (North-Holland, 
Amsterdam) 1321-1393. 



118 Z. Griliehes and J.A. Hausman, Errors in variables in panel data 

Bhargava, A. and D. Sargan, 1983, Estimating dynamic random effects models from panel data 
covering short time periods, Econometrica 51, no. 6. 

Bielby, W.T., R.M. Hauser and K.K. Featherman, 1977, Response errors of non-black males in 
models of the stratification process, in: A. Goldberger and D. Aigner, eds., Latent variables in 
socioeconomic models (North-Holland, Amsterdam) 227-251. 

Brechling, F.P.R., 1965, The relationship between output and employment in British manufactur- 
ing industries, Review of Economic Studies 32, no. 3. 

Chamberlain, G., 1982, Multivariate regression models for panel data, Journal of Econometrics 18, 
no. 1. 

Chamberlain, G. and Z. Griliches, 1975, Unobservables with a variance-components structure: 
Ability, schooling and the economic success of brothers, International Economic Review 16, 
no. 2. 

Chowdhury, G. and S. Nickell, 1985, Hourly earnings in the U.S.: Another look at unionization, 
schooling, sickness and unemployment using PSID data, Journal of Labor Economics 3, 38-69. 

Cummins, C., B.H. Hall and E.S. Laderman, 1982, The R&D master file: Documentation, 
Unpublished (Harvard University and NBER, Cambridge, MA). 

Fay, J.A. and J.L. Medoff, 1985, Labor and output over the business cycle: Some direct evidence, 
American Economic Review 76, no. 4. 

Freeman, R.B., 1984, Longitudinal analyses of the effects of trade unions, Journal of Labor 
Economics 2, 1-26. 

Friedman, M., 1957, A theory of the consumption function, NBER general series 63 (NBER, New 
York). 

Griliches, Z., 1979, Sibling models and data in economics: Beginnings of a survey, Journal of 
Political Economy 78, no. 5, part 2. 

Griliches, Z., 1984, Data problems in econometrics, in: Z. Griliches and M. Intriligator, ed~., 
Handbook of econometrics, Vol. 3 (North-Holland, Amsterdam) forthcoming. 

Hall, B. H., 1979, MOMENTS: The moment matrix processor user manual (Stanford, CA). 
Hansen. L., 1982, Large sample properties of generalized methods of moments, Econometrica 50, 

no. 4. 
Hausman, J., 1978, Specification tests in econometrics, Econometrica 46, no. 6. 
Hausman, J. and W. Taylor, 1981, Panel data and unobservable individual effects, Econometrica 

49, no. 6. 
J~Sreskog, K.G. and D. SiSrbom, 1981, LISRELV: Analysis of linear structural relationships by 

maximum likelihood and least squares method (National Education Resources, Chicago, IL). 
Karni, E. and I. Weissman, 1974, A consistent estimator of the slope in a regression model with 

errors in variables, Journal of the American Statistical Association 69. 
Maddala, G. S., 1971, The use of variance components models in pooling cross-section and time 

series data, Econometrica 39, no. 2. 
Maddala, G. S., 1977, Econometrics (McGraw-Hill, New York). 
Mundlak, Y., 1978, On the pooling of time series and cross section data, Econometrica 46, no. 1. 
Newey, W., 1983, Specification testing and estimation using a generalized method of moments, 

Ph.D. thesis (MIT, Cambridge, MAt). 
Sargan, J. D., 1958, The estimation of economic relationships using instrumental variables, 

Econometrica 26, no. 3. 
Sims, C. A., 1974, Output and labor input in manufacturing, Brookings Papers on Economic 

Activity no. 3. 
Solow, R., 1964, Draft of presidential address on the short-run relation of employment and output, 

Unpublished draft. 
White, H., 1982, Instrumental variables regression with independent observations, Econometrica 

50, no. 2. 


