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1 Introduction

This paper considers a quasi-differencing (QD) framework that can yield
√
T consistent and uni-

formly asymptotically normal estimators of autoregressions and multiple regressions when the pre-

dictors are persistent and possibly non-stationary. The approach can also be used to estimate

dynamic stochastic general equilibrium (DSGE) models. The critical values are invariant to the

presence of deterministic trends.

Let θ be an unknown parameter vector and let θ0 be its true value. We propose non-linear QD

estimators that can generically be defined as

θ̂K = argmin
θ∈Θ

g(θ)′WT g(θ), (1)

where g(θ) is a K×1 vector of moments, WT is a K×K positive-definite matrix, and Θ is a bounded

set containing values of θ.1 The basic premise of QD estimation is that for θ̂K to have classical

properties, g(θ) needs to be uniformly bounded in probability and that a central limit theorem can

be applied. To this end, g(θ) is defined as the difference between the normalized autocovariances of

the variables in the model and the data, all quasi-differenced at a persistence parameter that is to

be estimated jointly with other parameters of the model. The normalization and quasi-differencing

together provide a non-linear transformation of the autocovariances to result in estimators that are

robust to possible non-stationarity in the data.

Achieving asymptotic normality without knowing when the exogenous process has an autore-

gressive unit root can be very useful in applied work because the answers to many macroeconomic

questions are sensitive to assumptions about the nature of the trend and to whether the correspond-

ing regressions are estimated in levels or in first-differences. The price to pay for practical simplicity

and robustness is that the proposed estimators are
√
T consistent rather than super-consistent when

the regressors are truly non-stationary. While other asymptotically normal estimators robust to

non-stationary regressors are available, they apply only to specific linear models. The QD estima-

tion framework is general and can be used whenever the variables can be quasi-differenced in the

way discussed below.

We establish uniform asymptotic normality of QD-based estimators in many different settings.

Throughout, we use the notion of uniformity given in Mikusheva (2007a), who studied uniform

coverage properties of various inference procedures for the AR(1) model.

Definition 1 A family of distributions F
(1)
θ,T (x) = Pθ,T {ξ1 < x} is asymptotically approximated by

1The optimization is performed over an expanded neighborhood of the set of admissible values of θ so that the
parameter of interest is not on the boundary of the support. For the AR(1) model, the admissible values are (−1+δ, 1]
where δ > 0. We optimize over Θ = [C1, C2], where C1 < −1 + δ < 1 < C2. When the context is clear, Θ will not be
explicitly specified.
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(converges to) a family of distributions F
(2)
θ (x) = Pθ{ξ2 < x} uniformly over θ ∈ Θ if

lim
T→∞

sup
θ∈Θ

sup
x

∣∣∣F (1)
θ,T (x)− F (2)

θ (x)
∣∣∣ = 0.

In our analysis, F
(2)
θ (x) is in the family of Gaussian distributions.

The paper is structured as follows. Section 2 provides a rigorous analysis of the AR(1) model.

Section 3 extends the analysis to AR(p) models, while Section 4 studies predictive regressions.

Section 5 considers non-linear estimation of structural parameters. Simulations are presented in

Section 6. The relation of QD estimation to other
√
T -consistent estimators is discussed in Section

7. All proofs are in the Appendix. As a matter of notation, the indicator function I(a) is one if a

is true and zero otherwise. We let W (·) be the standard Brownian motion and use ⇒ to denote

weak convergence.

2 The AR(1) Model

To systematically motivate the idea behind QD estimation, we begin with the simple AR(1) model

with parameter α and whose true value is α0. For t = 1, . . . , T , the data are generated by

yt = α0yt−1 + εt, y0 = 0. (2)

Hereafter, we let εt be the deviation between the dependent variable and the conditional mean

evaluated at the true parameter value, while et is the deviation evaluated at an arbitrary value of

the parameter vector. The error εt does not need to be iid or Gaussian, but it cannot be conditional

heteroscedastic or heteroscedastic.

Assumption A (εt,Ft) is a stationary ergodic martingale-difference sequence with conditional

variance E(ε2
t |Ft−1) = σ2 = γ0 and E((ε2

t − σ2)2|Ft−1) = µ4.

The least squares estimator α̂OLS is defined as the solution to g(α) = 0, where g(α) =

1
T

∑T
t=1 etyt−1 is the sample analog of the moment condition

Egt(α
0) = E[εtyt−1] = 0,

with et = (yt − αyt−1). When α0 < 1, α̂OLS is
√
T consistent and asymptotically normal. While

α̂OLS is super-consistent at α0 = 1, its distribution is non-standard which makes inference difficult.

In particular, the t-statistic for testing α0 = 1 is non-normal in finite samples and converges to

the so-called Dickey-Fuller distribution. The issue of non-standard inference arises because of two

problems. First, when α0 = 1, the sample moment evaluated at a value α 6= α0 = 1 explodes, and

second, the normalized sample moment evaluated at the true value does not obey a central limit
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theorem. Specifically, g(α) = 1
T

∑T
t=1 etyt−1 is stochastically unbounded, and 1

T

∑T
t=1 εtyt−1 ⇒

σ2
∫ 1

0 W (r)dW (r), where W (r) is the standard Brownian motion.

Our starting point is to resolve the second issue by exploiting the autocovariance structure of

the errors. Specifically, for j ≥ 1, it holds that

E(εtεt−j) = 0. (3)

Furthermore, for all |α0| ≤ 1 and εt = yt − α0yt−1, the population moment condition has a sample

analog that obeys a central limit theorem:

√
T

 1

T

T∑
t=j+1

εtεt−j − E(εtεt−j)

⇒ ξj ∼ N(0, σ4). (4)

Obviously, α0 is unknown and εt is not observed. However, we can quasi-difference yt at some

α and then optimize over all possible values of α by matching the sample autocovariances of the

quasi-differenced data2

γ̂j(α) =
1

T

T∑
t=j+1

etet−j

with those of the model evaluated under the assumption that α is the true value. Precisely, the

model implied moments are

γj(α) = Eαetet−j = I(j = 0)σ2,

where Eα is the expectation taken under the (not necessarily correct) assumption that α is the

true value. In cases when γj(α) is constant, the dependence of γj on α can be suppressed. For

example, in the AR(1) under consideration, γj(α) = 0 for all j ≥ 1, and we may write γj instead

of γj(α). This is also true of the AR(p) and predictive regressions considered in the sections 3 and

4. However, in more complex models such as the one considered in Section 5, γj often depends on

α in a complicated and analytically intractable way. For clarity, we keep the explicit dependence

of γj on α throughout.

Let gNQD(α) = (g0,NQD(α), . . . , gK,NQD(α))′, where

gj,NQD(α) = γ̂j(α)− γj(α),

be the difference between the model-implied and the sample autocovariance of et. The estimator

is defined as

α̂K,NQD = argmin
α

gNQD(α)′WT gNQD(α).

2To be more precise, we should write γ̂j(α, α
0, σ2) because the data are generated under α0 and σ2, and we

quasi-difference the data at α. For notational simplicity, the dependence of γ̂j on α0 and σ2 are suppressed.
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Although α̂K,NQD is a standard GMM estimator, viewing it from the perspective of a covariance

structure estimator helps understand the analysis to follow. In standard covariance structure

estimation where a typical element of g(α) is gj(α) = 1
T

∑T
t=1 ytyt−1 − Eαytyt−1, each sample

autocovariance is a function of the data yt and hence depends on α0, but it does not depend on α.

In our gj,NQD(α), both the sample and model moments depend on α. It differs from the standard

formulation of covariance structure estimation but it is necessary because
√
T ( 1

T

∑T
t=1 ytyt−1 −

Eαytyt−1) does not obey a central limit theorem at α = α0 = 1.

The NQD solves one of the two problems inherent in least squares estimation by making
√
Tgj,NQD(α0) asymptotically normal for all |α0| ≤ 1. However, the estimator still has non-

standard properties because γ̂j(α) is stochastically unbounded when α0 = 1 and α 6= 1. Thus the

moment gj,NQD(α) explodes at α 6= α0 when α0 is unity or in the neighborhood of one. To resolve

this problem, suppose γ0 is known and define

gj,FQD(α) = gj,NQD(α)− g0,NQD(α)

=

(
γ̂j(α)− γ̂0(α)

)
−
(
γj(α)− γ0

)
, (5)

α̂K,FQD = argmin
α

gFQD(α)′WT gFQD(α).

Obviously, gj,FQD(α0) obeys a central limit theorem. More important is that normalizing γ̂j(α) by

γ̂0(α) and γj(α) by γ0 yield

gj,FQD(α) =
1

T

T∑
t=j+1

et
(
et−j − et

)
+ γ0.

As shown in Lemma A-2 of the Appendix, γ̂j(α)− γ̂0(α) is bounded in probability in the limit even

when α0 = 1 and α 6= α0. Because gj,FQD(α) is uniformly bounded in probability for all values

over which α is optimized and α0 ∈ (1− δ, 1], the FQD has very different properties from the NQD

in the local-to-unity framework.

To gain insight about the importance of normalization, we let WT be an identity matrix as it

does not affect uniformity arguments and this simplifying assumption makes it possible to obtain

useful closed form expressions.

Proposition 1 Let yt be generated as in equation (2) with error terms satisfying Assumption A.

Assume that WT is a K ×K identity matrix.

i. Let n ∈ {1, 2} be the number of local minima in the optimization problem minα
∑K

k=1 g
2
k,NQD(α).

In the local-to-unity framework in which α0 = 1+c/T with c ≤ 0, α̂K,NQD is super-consistent
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and (
I{n = 2} · T 3/2(α̂K,NQD − α0)2

I{n = 1} · T (α̂K,NQD − α0)

)
⇒

 −ξ∫ 1
0 J

2
c (s)ds

I{ξ < 0}
1+2

∫ 1
0 Jc(s)dW (s)

2
∫ 1
0 J

2
c (s)ds

I{ξ > 0}

 , (6)

where Jc is an Ornstein-Uhlenbeck process generated by the Brownian motion W that is in-

dependent of ξ ∼ N(0, 1/K).

ii. Let γ0 be the true value of σ2. For any fixed K > 1, the estimator α̂K,FQD is consistent.

Furthermore, uniformly over −1 + δ < α0 ≤ 1:

√
T (α̂K,FQD−α0)⇒ N(0, σ2

K,FQD), where σ2
K,FQD =

(∑K
k=1(α0)(k−1)

)2
µ4
σ4 +

∑K
k=1(α0)2(k−1)(∑K

k=1(α0)2(k−1)
)2 .

The NQD estimator is the basis of the estimators we subsequently investigate. It is consistent

and has a data dependent convergence rate. Since the objective function is a polynomial of the

fourth order, there are multiple solutions. If the realization of data is such that there is a unique

minimum to the optimization problem, the convergence rate is T . If there are two minima, a slower

convergence rate of T 3/4 is obtained. In either case, the distribution of α̂K,NQD is not asymptoti-

cally normal because gNQD(α) is not well behaved for all values of α0. However, the problematic

term that frustrates a quadratic expansion of γ̂j(α) around α0 is asymptotically collinear with the

corresponding term in γ̂0(α) in the local-to-unity framework. Normalizing each γ̂j(α) by γ̂0(α) and

γj(α) by γ0 results in an FQD estimator whose asymptotic distribution is normal uniformly over

α0 ∈ (−1+δ, 1]. When K > 1, the FQD objective function has only one minimum asymptotically.3

The properties for α̂K,FQD are stated assuming the true value of σ2 is known. The reason why

γ0 = σ2 is not freely estimated along with α is that doing so would yield multiple solutions. The

objective function is zero not only at the true solution α = α0, σ2 = γ0, but also at α = 1/α0, σ2 =

γ0/(α
0)2. Without additional information, the FQD cannot uniquely identify α and σ2.

In practice, the true value of σ2 is not known, and the FQD estimator is infeasible. This can

be overcome by finding another moment that can identify σ2. Let θ = (α, σ2) and consider

gQD(θ) =


s2 − σ2

γ̂1(α)− γ̂0(α)− (γ1(α)− s2)
...

γ̂K(α)− γ̂0(α)− (γK(α)− s2)

 . (7)

where s2 = 1
T y
′My, and M = IT − z(z′z)−1z′ is the matrix that projects onto the space orthogonal

to z with zt = yt−1. Observe that the first component of gQD(θ) is s2−σ2 or equivalently s2−γ0(α),

3When the NQD has two local minima, it does not matter which one is chosen as they are asymptotically symmetric
around the true value. This was why we state our result as T 3/2(α̂K,NQD − α0)2 rather than T 3/4(α̂K,NQD − α0). If
K = 1, the FQD objective function has 2 minima, only one of which is consistent for α0.
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but not s2 − γ̂0(α). Thus, gQD(θ) is not a linear transformation of gNQD(θ). Using s2 − γ̂0(α) in

the first entry would result in an estimator with the same non-standard properties like α̂NQD.

Let

θ̂K,QD = (α̂K,QD, σ̂
2
K,QD) = argmin

θ
gQD(θ)′WT gQD(θ)

Proposition 2 Let WT be a (K+1)× (K+1) identity matrix. For any fixed K > 1, the estimator

α̂K,QD is consistent, and the following convergence holds uniformly over −1 + δ < α0 ≤ 1:

√
T (α̂K,QD − α0)⇒ N(0, σ2

K,QD), where σ2
K,QD =

∑K
k=1(α0)2(k−1)(∑K
k=1(α0)2(k−1)

)2 .

Estimator α̂K,QD can also be implemented as a two-step estimator in which s2 is first obtained,

and its value would then be used as γ0 in the moment function gFQD(α) = (g1,FQD(α), . . . , gK,FQD(α))′.

The asymptotic variance of α̂K,QD takes into account the sampling uncertainty of s2. The

surprising aspect of Proposition 2 is that α̂K,QD does not have an inflated variance as is typical

of two-step estimators. Instead, the estimator is more efficient than α̂K,FQD that has a known σ2.

Pierce (1982) showed in a framework for stationary data that using estimated values of nuisance

parameters can yield statistics with smaller variance than if the nuisance parameters were known.

This somewhat paradoxical result was also reported by Prokhorov and Schmidt (2009) and Han

and Kim (2011) for GMM estimators. Our results suggest that this feature may also arise in the

local-to-unity framework.

The closed form expression for the asymptotic variance of α̂K,QD in Proposition 2 was obtained

under the assumption that WT is an identity matrix. For an arbitrary positive-definite weighting

matrix, the asymptotic variance of α̂K,QD is the (1,1)-th element of asymptotic variance matrix

Avar(θ̂K,QD) = (G0′WG0)−1G0′WS0WG0(G0′WG0)−1 (8)

where W,G0 and S0 are the probability limits of WT , the derivative of gQD(θ) with respect to θ

evaluated at θ0, and the asymptotic variance of gQD(θ0), respectively. The asymptotic variance

can thus be estimated as though the GMM estimator were developed in the stationary framework

under regularity conditions such as those given in Newey and McFadden (1994). In theory, more

efficient estimates can be obtained if WT is an optimal weighting matrix. However, it has been

documented in Abowd and Card (1989) and Altonji and Segal (1996) that an optimal weighting

matrix may not be desirable for covariance structure estimation for empirically relevant sample

sizes.

The key to the classical properties of α̂K,QD is the ability to exploit the autocovariance properties

of the quasi-differenced data in an appropriate way. Quasi-differencing has a long tradition in
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econometrics and underlies GLS estimation, see Phillips and Xiao (1998). Canjels and Watson

(1997) and Phillips and Lee (1996) found that quasi-differencing gives more precise estimates of

trend parameters when the errors are highly persistent. Pesavento and Rossi (2006) suggest that

for such data, quasi-differencing can improve the coverage of impulse response functions. In both

studies, the data are quasi-differenced at α = α which is fixed at the value suggested by the local-

to-unity framework. In contrast, the FQD and QD simultaneously estimate this parameter and

use the normalized autocovariances of the quasi-differenced data for estimation. Notably, both the

FQD and the QD have classical properties that hold even in the presence of deterministic terms.

Consider data generated as

yt = dt + xt, (9a)

xt = α0xt−1 + εt. (9b)

The deterministic terms are captured by dt =
∑r

j=0 ψjt
j where r is the order of the deterministic

trend function. In the intercept-only case, dt = ψ0, and in the linear trend case, dt = ψ0 + ψ1 t.

Once the parameters of the trend function are consistently estimated, QD estimation proceeds by

replacing yt with demeaned or de-trended data, x̂t = yt − d̂t. Let êt = x̂t − αx̂t−k. The sample

autocovariances can be constructed as

γ̂k(α) =
1

T

T∑
t=k+1

êtêt−k.

Demeaning and de-trending do not affect the asymptotic distribution of the QD.4

The practical appeal of QD estimation is that asymptotic normality permits standard inference.

The usual critical values of ±1.96 and ±1.64 can be used for two-tailed tests at the 5 and 10 percent

significance levels, respectively. We will see in simulations that the size of tests and the coverage

of the confidence sets based on the asymptotic normality of α̂K,QD are stable over the parameter

set α0 ∈ (−1 + δ, 1]. The cost of imposing the stronger assumption of conditional homoscedasticity

seems well justified.

To recapitulate, the proposed QD estimation of the AR(1) model is based on two simple

premises: first, that for all j ≥ 1, E(εtεt−j) = 0 and its sample analog obeys a central limit

theorem, and, second, that the objective function is uniformly bounded in probability for all val-

ues of α and α0. The idea can be used whenever the variables can be quasi-differenced to form

suitably normalized moment conditions that satisfy these two properties. The next two sections

4De-trending does not affect the asymptotic distribution of FQD, but the Jc in the distribution of the NQD
estimator will depend on dt. In the intercept only case, one should use the de-meaned Ornstein-Uhlenbeck process
Jc(r) = Jc(r) −

∫ 1

0
Jc(s)ds. In the linear trend case, the de-trended process is J̃c(r) = Jc(r) −

∫ 1

0
(4 − 6s)Jc(s)ds −

r
∫ 1

0
(12− 6s)J(s)ds.
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consider the AR(p) model and predictive regressions, respectively. We then show that the quasi-

differenced variables can be serially correlated and that the QD framework can be used in non-linear

estimations.

3 AR(p) Models

Consider the data generating process

yt = α0yt−1 +

p−1∑
j=1

b0j∆yt−j + εt. (10)

Let β = (α, b1, . . . , bp−1) be a p × 1 parameter vector of interest. The true parameter vector is

denoted β0, and the correct lag length is denoted p. Let |λ1| ≤ |λ2| . . . ≤ |λp| be defined implicitly

by the identity

1− αL−
p−1∑
j=1

bjL
j(1− L) = (1− λ1L) . . . (1− λpL).

We restrict the parameter set in such a way that the p−1 smallest roots do not exceed δ in absolute

value for some fixed 0 < δ < 1. If the largest root exceeds δ in absolute value, then it is positive

and not larger than 1.

Definition 2 The parameter set Rδ consists of all β such that the corresponding roots satisfy the

following two conditions: (i) |λp−1| < δ, (ii) if λp ∈ R, then −δ ≤ λp ≤ 1.5

Define the quasi-differenced series et by

et = yt − αyt−1 −
p−1∑
j=1

bj∆yt−j .

Obviously, et = εt is white noise when β = β0, but et is in general serially correlated. Thus, as in

the AR(1) model, the model-implied autocovariances satisfy

γj(β) = Eβ (etet−j) = 0, j ≥ 1 ∀β ∈ Rδ

with γ0(β) = σ2. The sample autocovariances of et are

γ̂j(β) =
1

T

T∑
t=j+p+1

etet−j .

5The optimization in equation (1) is done over a bounded set that includes a neighborhood of Rδ in order to avoid
the boundary problem.
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Let s2 = 1
T y
′My where M projects onto the space orthogonal to the one spanned by Xt =

(yt−1,∆yt−1, . . . ,∆yt−p+1)′, t = 1, . . . , T . Let γ0 be the true value of σ2. Define

β̂K,FQD = argmin
β

gFQD(β)′WT gFQD(β),

where

gFQD(β) =

g1,FQD(β)
...

gK,FQD(β)

 =

 γ̂1(β)− γ̂0(β)− (γ1(β)− γ0)
...

γ̂K(β)− γ̂0(β)− (γK(β)− γ0)

 .

Define

(β̂K,QD, σ̂
2
K,QD) = argmin

β,σ2

gQD(β, σ2)′WT gQD(β, σ2),

where

gQD(β, σ2) =


g0,QD(β)

g1,QD(β)
...

gK,QD(β)

 =


s2 − σ2

γ̂1(β)− γ̂0(β)− (γ1(β)− s2)
...

γ̂K(β)− γ̂0(β)− (γK(β)− s2)

 .

Proposition 3 Let yt be generated as in equation (10) with error terms satisfying Assumption

A. Let ak = E[(Xt+k +Xt−k − 2Xt) εt] and G =
(∑K

k=1 aka
′
k

)−1
. For any fixed K > p > 1,

the estimators β̂K,QD and β̂K,FQD are consistent. Furthermore, when WT is an identity weighting

matrix, the following results hold uniformly over β0 ∈ Rδ:

(i)
√
T (β̂K,FQD − β0)⇒ N(0,ΣK,FQD), where ΣK,FQD = σ4G+ µ4G

(∑K
k=1 ak

)(∑K
k=1 ak

)′
G;

(ii)
√
T (β̂K,QD − β0)⇒ N(0,ΣK,QD), where ΣK,QD = σ4G.

The proof is a generalization of Propositions 1 and 2. A sketch of the arguments is as follows.

From the definition that et(β) = εt + (β0 − β)′Xt, we have

γ̂j(β) =
1

T

T∑
t=j+p+1

εtεt−j + (β0 − β)′
1

T

T∑
t=j+p+1

(
Xtεt−j +Xt−jεt

)
+ (β0 − β)′

1

T

T∑
t=j+p+1

XtX
′
t−j(β

0 − β).

The moment function can be rewritten as

gj,FQD(β) = Aj,FQD + (β0 − β)′Bj,FQD + (β0 − β)′Cj,FQD(β0 − β).
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The thrust of the proof is to show that for each 1 ≤ j ≤ K uniformly over Rδ,

Aj,FQD =

 1

T

T∑
t=j+p+1

εtεt−j − γj(β)

−
 1

T

T∑
t=p+1

ε2
t − γ0(β0)

 = Op(T
−1/2), (11)

Bj,FQD =
1

T

T∑
t=j+p+1

(
Xtεt−j +Xt−jεt − 2Xtεt

)
→p aj , (12)

Cj,FQD =
1

2T

T∑
t=j+p+1

(
XtX

′
t−j +Xt−jX

′
t − 2XtX

′
t

)
= Op(1). (13)

Equations (11)-(13) imply that the function gj,FQD(β) is bounded in probability uniformly for all

β in the optimization set and β0 ∈ Rδ. It also follows from equations (11)-(13) that

∂gj,FQD
∂β

(β̂K,FQD)→p aj ,

and

√
Tgk,FQD(β̂K,FQD) =

√
TAk,FQD + a′k

√
T (β̂K,FQD − β0) + op(1).

The first order condition for the optimization problem implies:

√
T (β̂K,FQD − β0) = G−1

K∑
j=1

√
TAj,FQDaj + op(1)

In view of equation (4),
√
TAj,FQD =

√
Tgj,FQD(β0) ⇒ ξj − ξ0 uniformly over Rδ, part (i) of

the proposition follows. Part (ii) uses a similar argument with one exception: Aj,QD = Aj,FQD +

s2 − σ2 = 1
T

∑T
t=j+1 εtεt−j . As in the AR(1) case, β̂K,QD has a smaller variance than β̂K,FQD.

Furthermore, one can use other weighting matrices in the estimation. The asymptotic variance of

β̂K,QD can be computed from the expression given in equation (8).

4 Predictive Regressions

Consider the predictive regression with scalar predictor xt−1:

yt = β0xt−1 + εyt (14a)

xt = α0xt−1 + εxt. (14b)

If α0 = 1, then (1;−β0) is a co-integrating vector, and ordinary least squares provide super-

consistent estimates but inference is non-standard. Unfortunately, the finite sample distribution of

β̂OLS is not well approximated by the normal distribution if xt is highly persistent. The challenge is
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how to conduct inference robust to the dynamic properties of xt. Let εt =
(
εyt, εxt

)′
be a martingale-

difference sequence with E(εtε
′
t|Ft−1) = Ω0 =

(
σyy σyx
σyx σxx

)
. Consider quasi-differencing the data

at θ = (β, α) to obtain

eyt = yt − βxt−1,

ext = xt − αxt−1.

Now Yt = θ0xt−1 + εt where Yt =

(
yt
xt

)
and θ0 = (β0, α0)′. Let et =

(
eyt
ext

)
. Then

et = (θ0 − θ)xt−1 + εt.

Let Γj(θ) = Eθ(ete
′
t−j) where Eθ is the expectation taken under the assumption that θ is the

true value. The model implies

Γj(θ) = 0, j 6= 0,

Γ0(θ) = Ω.

The sample autocovariance at lag j is

Γ̂j(θ) =
1

T

T∑
t=j+1

ete
′
t−j .

A central limit theorem applies to
√
T Γ̂j(θ

0). Evaluating Γ0 at the true value of Ω and letting

S = 1
T Y
′MY , M = IT − z(z′z)−1z′, zt = xt−1, we can define, for j = 1, . . . ,K:

gj,FQD(θ) = vec
(
Γ̂j(θ)− Γ̂0(θ)− (Γj(θ)− Γ0)

)
.

Let gFQD(θ) = (g1,FQD(θ)′, . . . , gK,FQD(θ)′)′. The FQD estimator is

θ̂K,FQD = arg min
θ
gFQD(θ)′WT gFQD(θ).

Analogously, let gQD(θ,Ω) = (g0,QD(θ,Ω)′, . . . , gK,QD(θ,Ω)′)′ where

gj,QD(θ,Ω) = vec
(
Γ̂j(θ)− Γ̂0(θ)− (Γj(θ)− S)

)
, j ≥ 1

g0,QD(θ,Ω) = vech(S − Ω).

Define the QD estimator as

(θ̂K,QD, Ω̂K,QD) = arg min
θ,Ω

gQD(θ,Ω)′WT gQD(θ,Ω).

11



Proposition 4 Suppose that the data are generated according to formulas (14a) and (14b). Sup-

pose also that error terms are stationary martingale-difference sequence with E(εtε
′
t|Ft−1) = Ω0

and finite four moments. Define aj = E[xt−1(εt−j − εt)]. Then for any fixed K > 1, the estima-

tors θ̂K,FQD and θ̂K,QD are consistent. Furthermore, when WT is an identity matrix, the following

asymptotic results hold uniformly over all possible values of β, and uniformly over all possible values

of α ∈ (−1 + δ, 1]:

(i) Let Γ0 = Ω0. Then
√
T (θ̂K,FQD − θ0)⇒ N(0,ΣK,FQD), where

ΣK,FQD =

(
1∑K

k=1 a
′
kak

)2 K∑
k=1

(a′kΩ
0ak)Ω

0 +

(
1∑K

k=1 a
′
kak

)2

E

[
(ε′t

K∑
k=1

aj)
2εtε

′
t

]
;

(ii)
√
T (θ̂K,QD − θ0)⇒ N(0,ΣK,QD) where

ΣK,QD =

(
1∑K

k=1 a
′
kak

)2 K∑
k=1

(a′kΩ
0ak)Ω

0.

As in the case of autoregressions, the FQD moments alone cannot globally identify both θ and Ω.

Thus, the properties of θ̂K,FQD are stated by evaluating Ω at the true value of Ω0. Proposition 4

shows that θ̂K,QD has classical properties both in the stationary and the local-to-unity framework

and is more efficient than the estimator θ̂K,FQD that uses the known Ω. The QD can be implemented

as a sequential estimator in which the covariance matrix is computed for shocks obtained from two

least squares regressions: one by regressing yt on xt to get êyt, and another autoregression in xt to

obtain êxt.

Proposition 4 has useful implications for applied work because there does not exist an estimator

that is robust to the persistent properties of the predictors. The approach of Jansson and Moreira

(2006) relies on model-specific conditional critical values and, in any event, their inference procedure

does not yield an estimator per se. In contrast, the QD estimator is simple and robust.

The predictive regression can be generalized to accommodate stationary and pre-determined

regressors, zt. Suppose the data generating process is

yt = xt−1β
0 + ztγ

0 + εyt

xt = α0xt−1 + εxt, (εyt, εxt)
′ ∼ (0,Ω), Ω =

(
σ2
y σyx

σxy σ2
x.

)
.

Let θ = (β, α) and as before, Γj = Eθ(εtε
′
t−j) = 0 for all j 6= 0 with Γ0 = Ω0. Let γ̂OLS be obtained

from least squares regression of yt on xt−1 and zt, and let Ω̂OLS be the estimated covariance matrix

of the errors. Since zt is stationary, the estimator γ̂OLS is
√
T consistent and asymptotically normal

12



uniformly over α ∈ (−1 + δ, 1]. Define the quasi-differenced sequence

eyt = yt − xt−1β − ztγ̂OLS , ext = xt − αxt−1, et =

(
eyt
ext

)
.

Let Γ̂j(θ) = 1
T

∑T
t=j+1 ete

′
t−j and define gj,QD(θ,Ω) as in the absence of zt. Using arguments

analogous to Proposition 4, it can be shown that θ̂K,QD is still
√
T consistent and asymptotically

normal. Proposition 4 assumes that the regression error εyt is white noise. This is not restrictive

as lags of ∆yt and ∆xt can be added to zt to control for residual serial correlation.

5 Non-Linear Models and Minimum Distance Estimation

So far, the QD framework has been used to estimate linear models, where the model autocovariances

are such that γj(θ) = 0 for all θ assumed to be the true value and j ≥ 1. The analysis also holds if

γj(θ) equals a constant vector other than zero provided that the constant vector is known or can be

computed numerically. For example, if xt is an ARMA(1,1) instead of an AR(1), γj(θ) will depend

on the parameters of the model. Another example is DSGE models which we now consider.

To fix ideas, consider the simple one sector stochastic growth model presented in Uhlig (1999).

Let Qt, Ct,Kt, It be output, consumption, capital stock, and investment, respectively. The problem

facing the central planner is to maximize expected utility Et−1
∑∞

t=0(1 + ρ)−t logCt subject to the

constraints Qt = Kψ
t−1Z

1−ψ
t = Ct + It and Kt = (1− δ)Kt−1 + It where ut = logZt evolves as

ut = αut−1 + εt, εt ∼ (0, σ2).

Denote the deviation of a variable from its mean by lower case letters. Let Yt = (y1t, . . . , yNt)
′ be

the collection of endogenous variables in the model (such as consumption, output, etc.). As shown

in Uhlig (1999), this simple model has an analytic solution:

kt = vkkkt−1 + vkzut

where vkk < 1 does not depend on α, but vkz depends on α. For each ynt ∈ Yt,

(1− vkkL)(1− αL)ynt = ut + ϑnut−1

is an ARMA(2,1) with a moving-average parameter ϑn that is a function of the structural pa-

rameters. Note that all series in Yt have the same autoregressive dynamics as kt. The param-

eters of the linearized solution are β = (vkk, vkz, ϑ1, . . . , ϑN ). The parameters of the model are

θ = (ψ, α, σ2, ρ, δ). Let Θ be a compact set containing possible values of θ.

In analysis of DSGE models, whether the shocks have permanent or transitory effects matter

for how a model is to be linearized. For this reasons, researchers typically need to decide whether
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to difference the data ahead of estimation even though it is understood that the assumption affects

the estimates and policy analysis. To date, there does not exist an estimator of DSGE models that

has classical properties for all values of α within the likelihood framework because the likelihood

function is not well defined when the data are non-stationary.6

We propose to estimate the parameters of the model without making a priori assumptions

about the degree of persistence of the shocks. We use the fact that the features of covariance sta-

tionary processes are completely summarized by their second moments. Conveniently, the software

DYNARE automatically calculates the covariance structure of the data. Even though the analysis

is not likelihood based, priors can still be incorporated using the approach of Chernozhukov and

Hong (2003).7 The key is to construct the moments g(θ) appropriately.

Two variations of the QD framework are considered. The first method proceeds as follows.

For given θ, let et = Yt − αYt−1 with Γj(θ) = E(ete
′
t). Define the moment ωj(θ) = (Γj(θ) −

Γ0(θ)) whose sample analog is ω̂j(θ) = (Γ̂j(θ) − Γ̂0(θ)). Note that since et(θ) can be serially

correlated, Γj(θ) need not be a null matrix as in the applications considered thus far. Let gQD(θ) =

(g1,QD(θ)′, . . . , gK,QD(θ)′)′ where gj,QD(θ) = vec(ω̂j(θ) − ωj(θ)). The QD estimator considered in

Gorodnichenko and Ng (2010) is defined as8

θ̂K,QD = argmin
θ∈Θ

gQD(θ)′gQD(θ). (15)

As written, θ̂K,QD is an equally weighted estimator. An optimal weighting matrix can be used

subject to constraints imposed by stochastic singularity. In the one-shock stochastic growth model

considered, the autocovariance at lag one of both output and consumption can both be used to

construct an efficient θ̂K,QD, but additional autocovariances will not add independent information.

In contrast, the use of data for both output and consumption in likelihood estimation would not

even be possible.

Another QD-based estimator can be obtained if we entertain the possibility of a reduced form

model. Consider a finite order AR(p) model:

yt = a0yt−1 +

p−1∑
j=1

b0j∆yt−j + εtp (16)

where β0 = (a0, b01, .., b
0
p−1) = β(θ0) are the true ‘reduced-form’ parameters that can be computed

analytically or numerically. We also need the following:

6Likelihood estimation is also problematic when there are more variables than shocks, a problem known as stochas-
tic singularity.

7For an example of this implementation, see Coibion and Gorodnichenko (2011).
8Identification requires rank

∂gj,QD(θ)

∂θ
= dimθ. Now gj(θ) depends on θ through the parameters in the solution

to expectation equations. Formal identification conditions are given in Komunjer and Ng (2011).
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Assumptions B. (Identification) (i) there is a unique θ0 such that β(θ0) = β0; (ii) the function

β(θ) is twice continuously differentiable; (iii) B(θ0) = ∇β(θ0) has full rank k = dim(θ) ≤ p.

The method proceeds as follows. For ynt ∈ Yt, define ent(β) = ynt−aynt−1−
∑p−1

j=1 bjynt−j where

β = (a, b1, . . . , bp−1). Note that Yt is now quasi-differenced using the ‘reduced-form’ parameter

β instead of the structural parameter α as in method 1. Once the data are quasi-differenced,

estimation proceeds by defining ωj(θ; p) = (Γj(θ; p)−Γ0(θ; p)) with gj,QD(θ; p) = ω̂j(θ; p)−ωj(θ; p)
and sample analog as in (15). Let gQD(θ; p) = (g1,QD(θ; p)′, . . . , gK,QD(θ; p)′)′. The estimator is

θ̂K,QD = argmin
θ∈Θ

gQD(θ; p)′gQD(θ; p). (17)

Because β is p-dimensional, this second estimator also depends on the choice of p. Since ent is

not necessarily exactly white noise, Γj(θ) will not be zero. However, its autocovariances can be

computed for any given θ.

We have presented two uses of the QD framework that can yield estimators that are robust to

non-stationary exogenous variables in DSGE models. The data-dependent transformations allow

us to construct moments that are uniformly bounded. Applying the central limit theorem to the

sample moments yields estimators with classical properties.

6 Simulations

We consider the finite sample properties of OLS, FQD with γ0 fixed at the true σ2
0, and QD. Even

though the FQD estimator is infeasible in practice, it is a useful benchmark. The simulations are

based on 2,000 replications. We use the standard Newey-West plug-in estimator for the variance

of the moments. As starting values, we use 0.9 times the true values of the parameters. The QD

estimator requires evaluation of the model implied autocovariances Γj(θ). This is straightforward

once a model is cast in a state space. For example, the system[
yt
xt

]
=

[
0 β
0 α

] [
yt−1

xt−1

]
+

[
1 0
0 1

] [
εyt
εxt

]
in quasi-differenced form is[

eyt(θ)
ext(θ)

]
=

[
0 0
0 0

] [
eyt−1(θ)
ext−1(θ)

]
+

[
1 0
0 1

] [
εyt
εxt

]
.

More generally, every ARMA model has a state-space representation from which a state-space

model for the quasi-differenced data can be expressed as

wt = D0wt−1 +D1εt
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where wt includes et(θ) (and possibly its lags), and εt is the set of exogenous white noise shocks with

variance Ωε. The variance matrix Ωw(0) = E(wtw
′
t) can be computed by iterating the equation

Ω(i)
w (0) = D0Ω(i−1)

w (0)D′0 +D1ΩεD
′
1 (18)

until convergence. The autocovariance matrices can then be computed as Ωw(j) = Dj
0Ωw(0). Now

Γj(θ) are submatrices of Ωw(j). If we are only interested in computing the moments wdt ⊂ wt, we

iterate equation (18) until the block that corresponds to wdt converges, i.e. ‖Ω(i)

wd
(0)−Ω

(i−1)

wd
(0)‖ < c.

Data are generated from the AR(2) model:

(1− λ0
1L)(1− λ0

2L)yt = εt, εt ∼ N(0, 1).

The process can be written as

yt = α0yt−1 + b0∆yt−1 + εt.

The parameter of interest is α0 = λ0
1 + λ0

2 − λ0
1λ

0
2 with b0 = λ0

1λ
0
2. The OLS estimate of α has a

non-standard distribution when the roots are unity, in which case α0 = 1.

We estimate an AR(2) model when λ0
2 = 0 (Table 1). Demeaned data are used to compute the

sample autocovariances in the intercept case, and linearly de-trended data are used in the linear

trend case. We report the mean of the QD, FQD, and OLS estimates when T = 200 and 500,

the J test for over-identifying restrictions, along with the finite sample power for one-sided t tests

evaluated at α = α0 − 0.05.

Table 1 shows that all three estimators are precise when α0 ≤ 0.8. The t-statistic for the null

hypothesis that α = α0 for all three estimators has rejection rates close to the nominal size of 0.05

when α0 ≤ 0.8. The picture is, however, very different at larger values of α0. The FQD has slightly

smaller bias but is much less efficient. While OLS has the largest bias, its root-mean-squared error

(RMSE) is much smaller than the FQD. The QD is neither the most accurate nor the most efficient,

but has RMSE closer to OLS and much smaller than the FQD, in support of Proposition 2.

Efficiency of OLS comes at the cost of size distortion, however. At T = 200, the OLS-based

t-statistic has a rejection rate of 0.473 when α0 = 1 and 0.15 when α0 = 0.95, much larger than

the nominal size of 0.05. Even at T = 500, the rejection rates are 0.462 and 0.127, well above the

nominal rate of 5%. The rejection rates for the FQD and QD are 0.107 and 0.08 when T = 200,

and are 0.066 and 0.076 when T = 500, much closer to the nominal size of 0.05. The QD has

accurate rejection rates that are always around 0.05 for all values of α0, but it has less power than

OLS. Figure 1 plots the distribution of t-statistics for QD at T=200 and T=500. The normal

approximation to the finite sample distribution is good.

We also consider over-parameterized AR(p) models, models, predictive regressions. The general

result is that the QD estimates are precise and the t statistic is well approximated by the normal
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distribution for all values of the persistent parameter. To conserve space, these results are available

on request.

Next, data are generated from the stochastic growth model presented in Section 5. We fix the

true value of capital intensity ψ to 0.25 and σ2 to 1 and consider five values of α: 1, 0.98, 0.95, 0.9,

0.8. We use data on consumption to estimate ψ, α and σ2 using the second method discussed in

Section 5. This consists of solving for ψ, α and σ from the six autocovariances of et(β), where β are

the parameters of an AR(3) model. For the sake of comparison, we also use the Kalman filter to

obtain the maximum likelihood estimates. The results are reported in Table 2. Evidently, the QD

estimates of ψ are close to the true value of 0.25, and the size of the t-test is close to the nominal

value for all values of α. In contrast, the MLE estimates are biased when α is close to one, and the

t test for the null hypothesis that ψ = 0.25 is severely distorted.

7 Relation to other
√
T -Consistent Linear Estimators

As discussed in Section 2, one of the problems with the OLS estimator when a unit root is present

is that the moment condition at the true value
√
Tg(α0) = 1√

T

∑T
t=1 yt−1εt does not satisfy a

central limit theorem. Although yt−1 is orthogonal to εt, the persistence of yt−1 requires a stronger

normalization and standard distribution theory cannot be used. The thrust of QD estimator is

to use moment conditions that satisfy a central limit theorem uniformly over values of α0. The

approach can be used to estimate a broad range of models. However, for the simple AR(1) model,

the ideas underlying the QD estimation can be used to construct a two-step linear estimator. We

now show how this can be done and then relate this approximate QD estimator to other known

linear estimators of the AR(1) model with classical properties in the local-to-unity framework.

For the AR(1) model, the QD moment condition (3) replaces yt−1 with εt−j . As seen from

equation (4), the central limit theorem holds whether or not there is a unit root present. But the

moment condition can be understood in an instrumental variable setup because εt−j is uncorrelated

with εt and is hence a valid instrument. The only problem is that εt−j is not observed. But α̂OLS

is consistent for all |α0| ≤ 1. Thus, let ẽt−1 = yt− α̂OLSyt−1, noting that generated instruments do

not require a correction for the standard errors like generated regressors do. We can now define a

(hybrid differencing) HD estimator using the following moment condition:9

gHD(α̂HD) =
1

T

T∑
t=k+1

ẽt−k(yt − α̂HDyt−1) = 0.

9Laroque and Salanie (1997) used two OLS regressions in stationary variables to obtain a
√
T -consistent estimate

of the co-integrating vector.
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This leads to the estimator

α̂HD =

∑T
t=k ytẽt−k∑T
t=k yt−1ẽt−k

= α0 +

∑T
t=k etẽt−k∑T

t=k yt−1ẽt−k
.

We refer to α̂HD as a hybrid estimator because it is based on the covariance between the quasi-

difference of yt and a stationary random variable. Notice that the HD and QD use the same moment

condition. What distinguishes the HD from the QD is that the objective function of the HD is now

linear in α. Consistency of α̂HD follows from the fact that 1
T

∑T
t=1 et(α

0)ẽt−k
p−→Eεtεt−k = 0. It is

straightforward to show that in the local-to-unity framework,

√
T (α̂HD − α0)⇒ 2(1 + Jc(1)2)−1N(0, 1).

Once the HD is understood as an instrumental estimator, other possibilities arise. Instead of

ẽt−1, we can use any stationary series uncorrelated with the error term.10 For example, using

∆yt−1 would by-pass the need for a preliminary least squares estimation. The first differencing

(FD) estimator is:

α̂FD =

∑T
t=2 ∆yt−1yt∑T
t=2 ∆yt−1yt−1

.

The FD is a special case of estimators analyzed in So and Shin (1999). These authors used the sign

of yt−1 as instrument xt to construct

α̂SS =

∑T
t=2 xtyt∑T
t=1 xtyt−1

.

Another estimator with classical properties in the local-to-unity framework is that of Phillips

and Han (2008). The PH estimator, defined as

α̂PH =

∑T
t=2 ∆yt−1(2∆yt + ∆yt−1)∑T

t=2(∆yt−1)2
,

has the property that
√
T (α̂PH − α0) ⇒ N(0, 2(1 + α0)) for all α0 ∈ (−1, 1]. As shown in the

Appendix, the FD estimator is asymptotically equivalent to the PH estimator in the stationary

case when α0 is far from unit circle. That is, for the AR(1) model, α̂PH = α̂FD + Op(1/T ) under

stationary classical asymptotics. However, these two estimators differ in the local-to-unity setting.

While
√
T (α̂FD − α0) ⇒ 2(1 + W (1)2)−1N(0, 1) when α0 = 1,

√
T (α̂PH − α0) ⇒ N(0, 4). The

FD is thus more efficient at α0 = 1. Simulations presented in the web appendix show that the

QD dominates the FD and PH, but is comparable to the HD. The simulations also support the

theoretical predictions that the FD, HD, and QD are all asymptotically normal and
√
T consistent.

10As suggested by a referee, E(et(et−j − et−k)) = 0, 1 ≤ j < k is also a valid moment condition.
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No estimator is perfect and QD estimation has its drawbacks. As mentioned in the introduction,

the price we pay for asymptotic normality is that α̂QD converges at a rate of
√
T instead of T when

there is a unit root. Han et al. (2011) aggregate L stationary moment conditions and showed that

by suitable choice of L, uniform asymptotic normality can be achieved at a rate faster than
√
T .

Extension of their result outside of the AR(p) model is, however, not straightforward. In contrast,

the QD framework is broadly applicable.

8 Concluding Comments

In this paper, we use a quasi-differencing framework to obtain estimators with classical properties

even when the underlying data are highly persistent. Quasi-differencing can render non-stationary

processes stationary so that classical limit theorems can be applied. However, the QD estimator

is
√
T consistent rather than super-consistent in the local-to-unity framework. In exchange for

this slower convergence is generality, as QD estimation can be used in a broad range of linear and

non-linear models. However, there are several issues that remain to be solved. The first is allowing

J to be data dependent and increase with the sample size. The second is to allow for conditional

heteroscedasticity. Third, simulations suggest that the QD works well even when forcing process

is mildly explosive. Relaxing the assumption that the largest autoregressive root is inside the unit

disk may well be useful for practitioners. These issues are left for future investigation.
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Appendix A Proofs

The proofs proceed with the assumption that the weighting matrix WT is an identity matrix.

Proof of Proposition 1 (i): First, consider the problem of matching the j−th autocovariance.

That is, Qj(α) = (γ̂j(α)− γj(α))2, and α̂j = arg minαQj(α). Under the assumption that α is the

true value, γ0(α) = σ2, and γj(α) = 0 for all j > 0. Note that

γ̂j(α)−γj(α) =
1

T

T∑
t=j+1

εtεt−j−γj(α)−α− α
0

T

T∑
t=j+1

[εtyt−j−1 + εt−jyt−1]+
(α− α0)2

T

T∑
t=j+1

yt−1yt−j−1.

As a result, the NQD objective function is the fourth-order polynomial:

Qj(α) = Q
(0)
j + (α− α0)Q

(1)
j + (α− α0)2Q

(2)
j + (α− α0)3Q

(3)
j + (α− α0)4Q

(4)
j . (A.1)

In the local-to-unity framework with α0 = 1 + c/T , the following results hold as T →∞:

1

T

∑
εt−jyt−1 ⇒ σ2 + σ2

∫ 1

0
Jc(s)dW (s), (A.2)

1

T

∑
εtyt−1−j ⇒ σ2

∫ 1

0
Jc(s)dW (s), (A.3)

1

T 2

∑
yt−1yt−j−1 ⇒ σ2

∫ 1

0
J2
c (s)ds. (A.4)

It follows from equations (4) and (A.2) - (A.4) that

T 1/2Q
(1)
j = −2

√
T

 1

T

T∑
t=j+1

εtεt−j − γj(α)

 1

T

T∑
t=j+1

[εtyt−j−1 + εt−jyt−1]

⇒ −2ξj

(
σ2 + 2σ2

∫ 1

0
Jc(s)dW (s)

)
;

T−1/2Q
(2)
j = 2

√
T

 1

T

T∑
t=j+1

εtεt−j − γj(α)

 1

T 2

T∑
t=j+1

yt−1yt−j−1


+

1√
T

 1

T

T∑
t=j+1

[εtyt−j−1 + εt−jyt−1]

2

⇒ 2ξjσ
2

∫ 1

0
J2
c (s)ds;

T−1Q
(3)
j = −2

 1

T 2

T∑
t=j+1

yt−1yt−j−1

 1

T

T∑
t=j+1

[εtyt−j−1 + εt−jyt−1]


⇒ −2σ2

∫ 1

0
J2
c (s)ds

(
σ2 + 2σ2

∫ 1

0
Jc(s)dW (s)

)
;
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T−2Q
(4)
j =

(
1

T 2

T∑
1

yt−1yt−2

)2

⇒
(
σ2

∫ 1

0
J2
c (s)ds

)2

> 0,

where
√
T ( 1

T

∑
εtεt−j − γj)⇒ ξj = N(0, σ4). To summarize:

Q
(1)
j = Op(T

−1/2), Q
(2)
j = Op(T

1/2), Q
(3)
j = Op(T

1), Q
(4)
j = Op(T

2). (A.5)

It follows that
Qj(α)−Q(0)

j

T 2
⇒
(
σ2

∫ 1

0
J2
c (s)ds

)2

(α− α0)4

uniformly over a bounded parameter space for α. As a result, α̂j is a consistent estimate of α0.

To study the large sample properties of α̂j , consider the first order condition:

Q
(1)
j + 2(α̂j − α0)Q

(2)
j + 3(α̂j − α0)2Q

(3)
j + 4(α̂j − α0)3Q

(4)
j = 0. (A.6)

This is a cubic equation of the form ax3 + bx2 + cx+ d = 0, where x stands for (α̂j − α0) with the

obvious correspondence between the coefficients. The cubic equation may have one or three real

roots depending on the sign of the determinant:

∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2.

Given the orders established in (A.5), it can be shown that

T−7/2∆⇒ −32σ10

(∫ 1

0
J2
c (s)ds

)5

ξ3
j .

The sign of the determinant ∆ is asymptotically defined by the sign of ξj . When the sign of ∆

is negative, there is a unique real root to equation (A.6); otherwise, there are three real roots.

However, in the case of three real roots, the middle one corresponds to the local maxima, while the

other two roots are the local minima of (A.1).

The next step is to work out the formulas for the roots and to check their rates of convergence

toward zero. For example, when there is only one real root, the formula is:

x1 = − 1

3a

(
b+

3

√
b3 − 9

2
abc+

27

2
a2d+

1

2

√
−27a2∆ +

3

√
b3 − 9

2
abc+

27

2
a2d− 1

2

√
−27a2∆

)
.

Using the asymptotic orders of the terms in (A.5) and after tedious algebra, we can deduce that

Tx1 = Op(1) (that is T (α̂j −α0) = Op(1)). Similarly, using the explicit formula for cubic roots and

denoting the two non-central roots by x2 and x3, we can deduce that when ∆ > 0, T 3/4x2 = Op(1)

and T 3/4x3 = Op(1) (that is, T 3/4(α̂j − α0) = Op(1) in this case).
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To find the asymptotic distribution of these roots, we start with the case of one root. Be-

cause T (α̂j − α0) = Op(1), some terms in equation (A.6) are asymptotically negligible. Thus,

asymptotically we have Q
(1)
j + 2(α̂j − α0)Q

(2)
j = 0. Equivalently,

T (α̂j − α0) = −T
Q

(1)
j

2Q
(2)
j

+ op(1)⇒
σ2 + 2σ2

∫ 1
0 Jc(s)dw(s)

2σ2
∫ 1

0 J
2
c (s)ds

.

Similarly, for the case of two local maxima T 3/4(α̂j − α0) = Op(1) and asymptotically 2(α̂j −
α0)Q

(2)
j + 4(α̂j − α0)3Q

(4)
j = 0. Equivalently,

T 3/2(α̂j − α0)2 = −T 3/2
Q

(2)
j

2Q
(4)
j

⇒ −ξj
σ2
∫ 1

0 J
2
c (s)ds

.

The equation has a solution only when ξj < 0. As shown above, this is the condition for the

cubic equation to have three roots. Thus, we proved that equation (6) holds for α̂j with K = 1.

Analogous arguments hold in the general case α̂K,NQD = arg minα
∑K

j=1Qj(α) with ξj replaced

by
∑K

j=1 ξj/K ∼ N(0, σ4/K). This also shows that in AR(1) case, matching more than one auto-

covariance leads to increase in efficiency. 2

Proposition 1 (ii) and Proposition 2 are special cases of Proposition 3. Observe that

gj,FQD(β) = Aj,FQD + (β0 − β)′Bj,FQD + (β0 − β)′Cj,FQD(β0 − β),

where Aj,FQD, Bj,FQD and Cj,FQD are defined in equations (11)-(13). The following three lemmas

will be used to prove Proposition 3.

Lemma A-1 (Uniform Law of Large Numbers) Let εt = (εt,1, εt,2)′ be martingale-difference

sequence with Ω = E(εtε
′
t|Ft−1) and finite fourth moments, Ω = (σi,j) and ηt,i =

∑∞
j=0 c

i
jεt−j,i for

i = 1, 2. Uniformly over the set of all sequences cij satisfying
∑∞

j=0 |cij | < C for some constant C,

1

T

T∑
t=1

ηt,1ηt,2 →p E[ηt,1ηt,2].

Proof of Lemma A-1 Notice first that

γi1,i2j = cov(ηt,i1 , ηt+j,i2) = σi1,i2

∞∑
n=0

ci1n+jc
i2
n

and for any i1 and i2,
∑∞

j=0 |γ
i1,i2
j | < ‖Ω‖C2. Furthermore,

E[ηt,1ηt,2η,t+j,1ηt+j,2] = (γ1,2
0 )2 + γ1,2

j γ2,1
j + γ1,1

j γ2,2
j + E(ε2

1,tε
2
2,t)

∞∑
n=0

c1
nc

1
n+jc

2
nc

2
n+j .
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As a result,

cov(ηt,1ηt,2, ηt+j,1ηt+j,2) = γ1,2
j γ2,1

j + γ1,1
j γ2,2

j + E(ε2
1,tε

2
2,t)

∞∑
n=0

c1
nc

1
n+jc

2
nc

2
n+j

and

∞∑
j=1

cov((ηt,1ηt,2), (ηt+j,1ηt+j,2)) ≤ 2‖Ω‖2C4 + E(ε2
t,1ε

2
t,2)

( ∞∑
n=0

|c1
nc

2
n|

)2

≤
(
2‖Ω‖2 + E(ε2

t,1ε
2
t,2)
)
C4

Chebyshev’s inequality implies the statement of the Lemma. 2

Lemma A-2 The following three statements hold asymptotically uniformly over Rδ and uniformly

over 1 ≤ j ≤ K

(a)
√
T (A1,FQD, ..., AK,FQD)′ ⇒ (ξ1 − ξ0, ..., ξK − ξ0), where (ξ0, ξ1, ..., ξK)′ is a normally dis-

tributed random vector with mean zero and diagonal covariance matrix, Eξ2
0 = µ4, Eξ2

j = σ4

for all 1 ≤ j ≤ K;

(b) Bj,FQD →p aj = E [(Xt+j +Xt−j − 2Xt)εt];

(c) Cj,FQD = Op(1).

Proof of Lemma A-2: Part (a) follows from applying the Central Limit Theorem (4) to the

sums of ε2
t − σ2 and εtεt−j for 1 ≤ j ≤ K. For (b) we need to show that the Uniform Law of Large

Numbers holds for

Bj,FQD =
1

T

T∑
t=p+j+1

(
Xtεt−j +Xt−jεt − 2Xtεt

)
=

1

T

T−j∑
t=p+j+1

(
Xt+j +Xt−j − 2Xt

)
εt +Op(1/

√
T ),

where the Op(1/
√
T ) term appears due to the change of limits of summation by a finite number

of summands. To apply Lemma A-1, we need to show that the process Xt+j + Xt−j − 2Xt has

absolutely summable MA coefficients. From Lemma S8 in the web Appendix of Mikusheva (2007b),

the process Zt = Xt −Xt−1 has absolutely summable MA coefficients uniformly over Rδ. Now

Xt+j +Xt−j − 2Xt =

j∑
k=1

Zt+k −
j−1∑
k=0

Zt−k.

Our process of interest is the sum of a finite number of processes each with summable MA coefficients

and thus its MA coefficients are absolutely summable. Lemma A-1 implies that uniformly over Rδ

Bj,FQD →p E

[(
Xt+j +Xt−j − 2Xt

)
εt

]
= aj .
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Turning to (c), the object of interest is the p× p matrix:

Cj,FQD =
1

2T

T∑
t=j+p+1

(
XtX

′
t−j +Xt−jX

′
t − 2XtX

′
t

)
, (A.7)

where all elements except possibly the top-left element satisfy the uniform Law of Large Numbers,

and thus are of order Op(1). Now the last p−1 elements of Xt are ∆yt−1, ...,∆yt−p+1. From Lemma

S8 in Mikusheva (2007b), they have absolutely summable MA coefficients uniformly over Rδ. Thus,

the elements of the right-bottom (p−1)× (p−1) sub-matrix satisfy conditions of Lemma A-1. The

elements in the first row and the first column (except the top-left element) are of the form

1

2T

T∑
t=j+p+1

(yt−1zt−j + yt−1−jzt − 2yt−1zt) =
1

2T

T∑
t=j+1

(yt−1+j + yt−1−j − 2yt−1) zt +Op(1/
√
T ),

where zt is one of ∆yt−1, ...,∆yt−p+1. From the proof of (b), the series yt−1+j + yt−1−j − 2yt−1 also

has absolutely summable MA coefficients. Thus, the conditions of Lemma A-1 are satisfied.

It remains to consider the top-left element of the matrix Cj,FQD which is given by

(Cj,FQD)11 =
1

T

T∑
t=j+p+1

[yt−1yt−j−1 − y2
t−1].

If the largest (in absolute value) root λp is not real, then by definition of Rδ, it is less than

δ < 1 in absolute value, and the process yt is uniformly stationary. Thus (Cj,FQD)11 satisfies

the conditions of Lemma A-1. Assume now that the largest root λp is a real number. We have

1− αL−
∑p−1

j=1 bjL
j(1− L) = (1− λp)B(L), where all inverse roots of B(L) are strictly inside the

circle of radius δ.

Let ut = yt − λpyt−1 and thus B(L)ut = εt. Now ut has absolutely summable MA coefficients

uniformly over Rδ.

1

T

T∑
t=j+1

yt−1yt−j−1 =
1

T

T∑
t=j+1

yt−j−1(λjpyt−j−1 +

j−1∑
k=0

λkput−k−1) =

= λjp
1

T

T−j∑
t=1

y2
t−1 +

j−1∑
k=0

λkp
1

T

T∑
t=j+1

yt−j−1ut−k−1.

As a result,

(Cj,FQD)11 = −(1− λjp)
1

T

T∑
t=1

y2
t−1 +

j−1∑
k=1

λk−1
p

1

T

T∑
t=j+1

yt−j−1ut−k−1 +Op(T
−1/2),
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again the Op term appears due to change of summation bounds. First, observe that

V ar

(
1

T

T−j∑
t=1

ytut+k

)
= V ar

(
1

T

T−j∑
t=1

t∑
s=0

λsput−sut+k

)
=

=
1

T 2

T−j∑
t=1

t∑
s=0

λspcov(ut+k, ut−s) < V ar(ut) < const(δ).

The variance of ut is uniformly bounded because all roots of this process are uniformly separated

from the unit circle. That is, 1
T

∑T−j
t=1 ytut+k = Op(1) uniformly over β0 ∈ Rδ and for all 1 ≤ k ≤

j ≤ K.

Next, consider the term (1 − λjp)
1
T

∑T
t=1 y

2
t−1. From Theorem 1 in Mikusheva (2011), (1 −

λp)
1
T

∑T
t=1 y

2
t−1 is uniformly approximated by σ2

g(c)

∫ 1
0 J

2
c (t)dt, where g(c) = E

∫ 1
0 J

2
c (t)dt, where

Jc(t) is the Ornstein-Uhlenbeck process, and c = T log(|λp|). It follows from Lemma 4(h) and

Lemma 10 in Mikusheva (2007a) that 1
g(c)

∫ 1
0 J

2
c (t)dt is uniformly bounded in probability over c.

Summing up, Cj,FQD is asymptotically uniformly Op(1) over Rδ and the proof of Lemma A-2 is

complete. 2

Lemma A-3 Under assumptions of Proposition 3 the estimator β̂K,FQD is consistent for any

K > p.

Proof of Lemma A-3 Let f(x) = (f1(x), ..., fp+1(x)), where fj(x) = x′Bj,FQD + x′Cj,FQDx

and Q(x) =
∑K

j=1 f
2
j (x). Any K ≥ p + 1 suffices for consistency of β̂K,FQD, though additional

moments may improve efficiency. For any bounded set C in the parameter space, and by Lemma

A-2, it holds that:

sup
β∈C

∣∣∣∣∣∣Q(β0 − β)−
K∑
j=1

(
gj,FQD(β)

)2∣∣∣∣∣∣ = op(1).

Since Q(0) = 0, for consistency of β̂K,FQD, it is enough to show that for any ς > 0, there is ε > 0

such that

lim
T→∞

P ( inf
|x|>ς

Q(x) > ε) = 1, (A.8)

where x = β0 − β. Since β0 ∈ Rδ and β belongs to bounded neighborhood of Rδ, x is bounded.

There are two cases to consider: |λp| < δ1 < 1, and λp ≥ δ1.

Case (i) |λp| < δ1: We will show that for any fixed 0 < δ1 < 1 statement (A.8) holds uniformly

over β0 ∈ Rδ ∩ {|λp| < δ1}.
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SinceK > p, Q(x) ≥ f(x)′f(x). For any orthonormal transformationA, Q(x) ≥ (Af(x))′(Af(x)) ≥
(Af(x))2

1, where (Af)1 is the first component of vector Af(x). Consider a linear transformation,

the first component of which is

(Af(x))1 = (fp+1 − α0fp −
p−1∑
j=1

b0j (fp+1−j − fp−j))
1

a

where a =
√

1 + (α0 + b01)2 + (b02 − b01)2 + ... is a (non-zero) multiplier that normalizes the linear

transformation. Let A(L) = 1 − α0L −
∑p−1

j=1 b
0
jL

j(1 − L) be a lag operator. Given the definition

of fj and linearity of the transformation,

(Af(x))1 =
1

a
A(L)fp+1 =

1

a

(
x′(A(L)Bp+1,FQD) + x′(A(L)Cp+1,FQD)x

)
. (A.9)

From (b) of Lemma A-2, Bj,FQD →p aj = E[Xt+jεt]. From (10) and the definition of Xt,

A(L)Xt+p+1 = [εt+p+1,∆εt+p+1, ...,∆εt+2]′ = ẽt+p+1. (A.10)

Since Eẽt+p+1εs = 0 for any s ≤ t,

A(L)Bp+1,FQD →p A(L)E[Xt+jεt] = E[A(L)Xt+jεt] = E[ẽt+p+1εt] = 0.

Thus, uniformly over all x in a bounded set,

(Af(x))1 =
1

a

(
x′(A(L)Cp+1,FQD)x

)
+ op(1). (A.11)

It follows from (13) and (A.10) that

A(L)Cp+1,FQD =
1

2T

T∑
t=p+1

(
ẽt+p+1X

′
t +Xtẽ

′
t+p+1

)
−A(1)

1

T

T∑
t=p+1

XtX
′
t + op(1), (A.12)

where op(1) appears from change in the bounds of summation. Since |λp| < δ1 by assump-

tion, the process is stationary. Thus 1
2T

∑T
t=p+1 ẽt+p+1X

′
t →p 0 uniformly over |λp| < δ1 and

A(1) 1
T

∑T
t=p+1XtX

′
t is uniformly positive definite. This gives us the needed bound in (A.8) for

processes with |λp| < δ1.

Case (ii) |λp| ≥ δ1: To show that for δ1 < 1 close enough to the unity, (A.8) holds uniformly

over β0 ∈ Rδ ∩ {|λp| ≥ δ1}, we divide the area |x| > ς from (A.8) into two regions: I1 = {x : |x| >
ς, |x1| > ς1} and I2 = {x : |x| > ς, |x1| ≤ ς1}, where 0 < ς1 < ς.

Consider x ∈ I1. We will prove that for any fixed ς1 > 0, one can choose δ1 close enough to the

unity such that uniformly over β0 ∈ Rδ∩{|λp| > δ1}, an analog of (A.8) holds where the infinimum

is taken over x ∈ I1.
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Applying the arguments and transformation as in (A.9), it can be shown that equations (A.11)

and (A.12) hold. Since A(1) converges to zero as δ1 converges to 1, one can choose δ1 close enough

to 1 to make all terms except the (1,1)-th element of A(1) 1
T

∑T
t=p+1XtX

′
t sufficiently small, and

all but the (1,1)-th element of 1
T

∑T
t=p+1 ẽt+p+1X

′
t converge in probability to its expected value of

zero. In consequence, the following holds uniformly over β0 ∈ Rδ ∩ {|λp| > δ1} and x ∈ I1:

x′A(L)Cp+1,FQDx = x2
1

 1

T

T∑
t=p+1

εt+p+1yt−1 −A(1)
1

T

T∑
t=p+1

y2
t−1

+ op(1) + op(1− δ1).

It remains to show that 1
T

∑T
t=p+1 (εt+p+1 −A(1)yt−1) yt−1 satisfies the uniform Law of Large

Numbers, and thus converges uniformly to a non-zero constant. To do so, we use the decomposition

as in Phillips and Solo (1992)) that εt+p+1−A(1)yt−1 = ut−ut−1, where ut is a series with absolutely

summable MA coefficients. Since 1
T (ut − ut−1)yt−1 = − 1

T (yt − yt−1)ut + Op(1/
√
T ), Lemma A-1

applies, and 1
T

∑T
t=p+1 (εt+p+1 −A(1)yt−1) yt−1 converges in probability to its expectation. Since

A(1)
T E

∑T
t=p+1 y

2
t−1 is uniformly different from zero, this implies that for any fixed ς1 > 0 there

exists δ1 < 1 such that uniformly over |λp| > δ1 an analog of (A.8) holds where the infinimum is

taken over x ∈ I1.

Consider now x ∈ I2. One can choose ς1 small enough and δ1 close enough to the unity such

that uniformly over β0 ∈ Rδ ∩ {|λp| > δ1}, an analog of (A.8) holds, where the infinimum is taken

over x ∈ I2. Given that Bj,FQD and Cj,FQD are uniformly bounded,

fj(x) = x′−1Bj,−1 + x′−1Cj,−1x−1 + op(ς1).

where x−1 = (x2, ..., xp) is (p− 1)× 1 sub-vector of x, and Bj,−1 and Cj,−1 are the (p− 1)× 1 and

(p − 1) × (p − 1) sub-matrixes of Bj,FQD and Cj,FQD corresponding to the last p − 1 components

of β.

Let Zt = (∆yt−1, ...,∆yt−p+1) and Z̃t = (yt−1 − λpyt−2, ..., yt−p+1 − λpyt−p)′ be two (p− 1)× 1

uniformly stationary vector-processes. Note that the matrices Bj,−1 and Cj,−1 satisfy equations

analogous to (12) and (13) with Zt in place of Xt. Similarly, B̃j and C̃j are defined as in (12) and

(13) with Z̃t in place of Xt. Observe that Z ′t = Z̃ ′t − (1− λp)(yt−2, ..., yt−p). It is easy to see that

fj(x) = x′−1B̃j + x′−1C̃jx−1 + op(1− δ1) + op(ς1).

The function f̃j = x′−1B̃j + x′−1C̃jx−1 corresponds to that of the uniformly stationary process

yt−λpyt−1 with all roots smaller than δ in absolute value. The rest of the proof follows arguments

as in Case i. 2
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Proof of Proposition 3 (i): To establish the asymptotic distribution of β̂K,FQD, consider first

order condition:
K∑
j=1

gj,FQD(β̂K,FQD)
∂gj,FQD
∂β

(β̂K,FQD) = 0.

From Lemma A-2 and consistency of β̂K,FQD,

∂gj,FQD
∂β

(β̂K,FQD) = −Bj,FQD + op(1)→p aj ,

and uniformly over Rδ:

√
Tgj,FQD(β̂K,FQD) =

√
TAj,FQD + a′j

√
T (β̂K,FQD − β0) + op(1).

As a result, the following holds uniformly:

√
T (β̂K,FQD − β0)⇒

 K∑
j=1

aja
′
j

−1 K∑
j=1

aj(ξj − ξ0)

 = N(0,ΣK,FQD),

where G =
(∑K

j=1 aja
′
j

)−1
, and ΣK,FQD = σ4G+ µ4G

(∑K
j=1 aj

)(∑K
j=1 aj

)′
G.

Proof of Proposition 3 (ii): The proof proceeds by treating QD as a two-step estimator. First,

note that

s2 − 1

T

T∑
t=p+1

ε2
t = − 1

T
(
∑
t

Xtεt)
′(
∑
t

XtX
′
t)
−1(
∑
t

Xtεt)

Theorem 1 in Mikusheva (2011) shows that the statistic (
∑

tXtεt)
′(
∑

tXtX
′
t)
−1(
∑

tXtεt) is uni-

formly approximated by the distribution (tc+N(0, p−1))2, where tc =
∫
Jc(t)dw(t)√∫
J2
c (t)dt

is a local-to-unity

limit of a t-statistic, and c = T log(|λp|) . Given that tc is uniformly bounded in probability over

all possible values of c ≤ 0, the following holds uniformly over Rδ:

s2 =
1

T

∑
t

ε2
t +Op(1/T ). (A.13)

Since gj,QD(β) = gj,FQD(β)− γ0 + s2,

gj,QD(β) = Aj,QD + (β0 − β)′Bj,QD + (β0 − β)′Cj,QD(β0 − β),

where Aj,QD = Aj,FQD + s2 − σ2, Bj,QD = Bj,FQD and Cj,QD = Cj,FQD. A result analogous

of Lemma A-2 holds for Aj,QD, Bj,QD and Cj,QD with one correction:
√
T (A1,QD, ..., AK,QD) ⇒

(ξ1, ..., ξK). This gives us consistency and asymptotic normality of β̂K,QD with asymptotic covari-

ance matrix ΣK,QD = σ4G. 2

The following lemma will be used to prove Proposition 4.
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Lemma A-4 Uniformly over all possible values of θ,

(a)
√
T (Aj + Ω0)⇒ ξj − ξ0;

(b)
√
T (Aj + S)⇒ ξj ;

(c) Bj,1 →p E[εt(xt−j−1 − xt−1)] = 0;

(d) Bj,2 →p E[xt−1(εt−j − εt)′] = aj;

(e) Cj = Op(1).

where 1√
T

∑T
t=j+1 εtε

′
t−j ⇒ ξj and ξj is a 2× 2 matrix with normally distributed components such

that for any non-random vector a the vector ξja is normally distributed with variance-covariance

matrix Ω0a′Ω0a. We also have 1√
T

∑T
t=j+1 εtε

′
t ⇒ ξ0 where ξ0 is a 2 × 2 matrix with normally

distributed components such that for any non-random vector a, the vector ξ0a is normally distributed

with variance-covariance matrix E
[
(ε′ta)2εtε

′
t

]
. The variables ξj are independent for any j ≥ 0.

Proof of Lemma A-4 Result (a) follows from Central Limit Theorem. To prove (b), note that

S =
1

T

T∑
t=1

εtε
′
t −

1

T

1∑
s x

2
s−1

(
(
∑

s εxsxs−1)2 (
∑

s εxsxs−1)(
∑

s εysxs−1)
(
∑

s εysxs−1)(
∑

s εxsxs−1) (
∑

s εysxs−1)2

)

Now
∑T
s=1 εxsxs−1√∑T

s=1 x
2
s−1

⇒ tc uniformly over α0 ∈ (−1+δ, 1], and the family tc is uniformly bounded. The

sum
∑T
s=1 εysxs−1√∑T
s=1 Ex

2
s−1

has a bounded second moment since εysxs−1 is martingale-difference sequence,

and thus it is uniformly bounded by Chebyshev’s inequality. Lastly,
∑T
s=1 x

2
s−1∑T

s=1 Ex
2
s−1

is uniformly sep-

arated from zero, a result that follows from Lemma 4(h) and Lemma 10 in Mikusheva (2007a).

Summing up, we have S = 1
T

∑T
t=1 εtε

′
t+Op(

1
T ). As a result,

√
T (Aj+S) = 1√

T

∑T
t=j+1 εtε

′
t−j ⇒ ξj .

The proof of part (c) follows from Lemma A-1, since we show in the proof of Proposition 3 that

xt−j−1 − xt−1 has absolutely summable MA coefficients uniformly over α.

To prove (d), re-write

Bj,2 =
1

T

T∑
t=j+1

xt−1(εt−j − εt)′ =
1

T

T∑
t=j+1

(xt+j−1 − xt−1)ε′t +
1

T

2j∑
t=j+1

xt−1εt−j −
1

T

T+j∑
t=T+1

xt−1εt−j .

The terms 1
T

∑2j
t=j+1 xt−1εt−j and 1

T

∑T+j
t=T+1 xt−1εt−j both have j summands each of which are of

order Op(
√
T ). This means that for any j ≤ K where K is fixed, the following holds uniformly:

Bj,2 =
1

T

T∑
t=j+1

(xt+j−1 − xt−1)ε′t +Op(
1√
T

).

The rest of the proof is the same as for part (c). Part (e) follows from Proposition 3.(c).2
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Proof of Proposition 4: Note first that

Γ̂j(θ)− Γ̂0(θ) =
1

T

T∑
t=j+1

et(θ)(et−j(θ)− et(θ))′

=
1

T

T∑
t=j+1

((θ0 − θ)xt−1 + εt)((θ
0 − θ)(xt−j−1 − xt−1) + εt−j − εt)′

= Aj +Bj,1(θ0 − θ)′ + (θ0 − θ)Bj,2 + (θ0 − θ)Cj(θ0 − θ)′,

where

Aj =
1

T

T∑
t=j+1

εt(εt−j − εt)′;Bj,1 =
1

T

T∑
t=j+1

εt(xt−j−1 − xt−1);

Bj,2 =
1

T

T∑
t=j+1

xt−1(εt−j − εt)′;Cj =
1

T

T∑
t=j+1

xt−1(xt−j−1 − xt−1).

Lemma A-4 showed that uniformly over α:

‖Γ̂j(θ)− Γ̂0(θ) + Ω0‖22 = ‖(θ0 − θ)Bj,2 + Cj(θ
0 − θ)(θ0 − θ)′‖22 + op(1),

and

‖Γ̂j(θ)− Γ̂0(θ) + S‖22 = ‖(θ0 − θ)Bj,2 + Cj(θ
0 − θ)(θ0 − θ)′‖22 + op(1).

We minimize the sum of such functions for j = 1, ...,K. Obviously, the minimized function is non-

negative and one of its minimal value of zero is achieved at θ = θ0. The question is whether there

are any other minima. For this, there should exist θ such that ‖(θ0−θ)Bj,2 +Cj(θ
0−θ)(θ0−θ)′‖2 is

zero for all j. For a given j, the only non-trivial null of function ‖(θ0−θ)Bj,2 +Cj(θ
0−θ)(θ0−θ)′‖2

implies θj = θ0 + 1
Cj
Bj,2 which is asymptotically different for different j. This implies that for

K ≥ 2 no other asymptotic null of the objective function other than θ = θ0 exists, and thus θ̂K,FQD

and θ̂K,QD are consistent.

To derive the limit distribution of θ̂K,FQD, we use the fact that the first order condition must

be satisfied at θ = θ̂K,FQD. Now the first order condition is

∇θ‖Γ̂j(θ))− Γ̂0(θ) + Ω0‖22
=− 2

(
Aj + Σ0 +Bj,1(θ0 − θ)′ + (θ0 − θ)Bj,2 + Cj(θ

0 − θ)(θ0 − θ)′
) (
B′j,1 +Bj,2 + 2Cj(θ

0 − θ)′
)′
.

Since we proved that θ̂K,FQD is uniformly consistent, and given statements (d) and (e),

Bj,2 + 2Cj(θ
0 − θ̂K,FQD)′ →p aj .
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Furthermore,

√
T
(
Aj + Ω0 +Bj,1(θ0 − θ̂K,FQD) + (θ0 − θ̂K,FQD)Bj,2 + Cj(θ

0 − θ̂K,FQD)(θ0 − θ̂K,FQD)′
)

=
√
T (Aj + Ω0) +

√
T (θ0 − θ̂K,FQD)aj + op(1).

As a result,

√
T (θ̂K,FQD − θ0)⇒ 1∑K

j=1 aja
′
j

K∑
j=1

(ξj − ξ0)aj

uniformly over α. Similarly,

√
T (θ̂K,QD − θ0)⇒ 1∑K

j=1 aja
′
j

K∑
j=1

ξjaj .

The last two formulas lead to the conclusion of Lemma 4.

Relation between PH and FD: Observe that

T∑
t=2

(∆yt−1)2 =

T∑
t=2

∆yt−1yt−1 −
T∑
t=2

(yt−1 − yt−2)yt−2

=

T∑
t=2

∆yt−1yt−1 +

T∑
t=2

yt−1(yt−1 − yt−2)− y2
T−1 + y2

0 = 2

T∑
t=2

∆yt−1yt−1 − y2
T−1 + y2

0.

Thus if |α0| < 1 is fixed and T →∞,

1

T

T∑
t=2

(∆yt−1)2 = 2
1

T

T∑
t=2

∆yt−1yt−1 +Op(1/T ).

Similarly,

T∑
t=2

∆yt−1(2∆yt + ∆yt−1) =2

T∑
t=2

∆yt−1yt − 2

T∑
t=2

∆yt−1yt−1 +

T∑
t=2

(∆yt−1)2 =

=2

T∑
t=2

∆yt−1yt − y2
T−1 + y2

0

and

1

T

T∑
t=2

∆yt−1(2∆yt + ∆yt−1) = 2
1

T

T∑
t=2

∆yt−1yt +Op(1/T ).

This leads us to the result that α̂PH = α̂FD +Op(T
−1) under stationary asymptotics.
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Table 2. DSGE model, capital intensity ψ.

QD MLE
T α mean rmse t-test J-test mean rmse t-test

size power size size power
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Intercept model
200 1.00 0.255 0.122 0.077 0.245 0.088 0.181 0.117 0.309 0.577
200 0.98 0.255 0.120 0.098 0.259 0.085 0.220 0.094 0.142 0.409
200 0.95 0.268 0.133 0.076 0.238 0.095 0.246 0.094 0.076 0.294
200 0.90 0.284 0.147 0.066 0.201 0.094 0.266 0.114 0.065 0.235
200 0.80 0.289 0.144 0.046 0.148 0.079 0.285 0.131 0.065 0.184

500 1.00 0.260 0.072 0.050 0.304 0.049 0.173 0.110 0.517 0.830
500 0.98 0.261 0.071 0.059 0.322 0.053 0.231 0.058 0.151 0.626
500 0.95 0.262 0.073 0.066 0.331 0.049 0.245 0.054 0.076 0.522
500 0.90 0.266 0.082 0.052 0.306 0.043 0.253 0.062 0.053 0.428
500 0.80 0.281 0.110 0.035 0.197 0.035 0.270 0.096 0.062 0.315

Panel B: Linear trend model
200 1.00 0.255 0.123 0.088 0.264 0.093 0.223 0.094 0.153 0.399
200 0.98 0.267 0.128 0.075 0.222 0.090 0.243 0.091 0.102 0.315
200 0.95 0.272 0.138 0.085 0.233 0.090 0.257 0.097 0.065 0.249
200 0.90 0.282 0.145 0.066 0.204 0.083 0.273 0.113 0.057 0.205
200 0.80 0.298 0.146 0.053 0.130 0.081 0.296 0.135 0.057 0.150

500 1.00 0.259 0.071 0.050 0.308 0.041 0.209 0.079 0.324 0.730
500 0.98 0.262 0.072 0.057 0.309 0.040 0.237 0.059 0.139 0.593
500 0.95 0.263 0.073 0.058 0.315 0.039 0.250 0.056 0.069 0.477
500 0.90 0.268 0.082 0.042 0.280 0.034 0.259 0.064 0.042 0.387
500 0.80 0.284 0.108 0.024 0.162 0.028 0.277 0.097 0.053 0.295

Note: The true value of capital intensity is ψ = 0.25. The observed series is consumption. QD uses OLS
estimate of the standard deviation of innovations consumption for QD estimation. MLE corresponds to
the maximum likelihood estimation (Kalman filter) of the structural parameters. Three autocorrelation
coefficients (i.e, the fitted model is AR(3)) and six autocovariances are used in QD estimation. T-test and
J-test sizes are for 5 percent level. Power of the t-test is computed for the null of H0 : ψ = ψ0 − 0.1.
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Figure 1: Distribution of the t-statistic for the largest autoregressive root in the intercept-only
model with α0 = 1. See Table 1 and the text for more details.
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