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Abstract

We study stochastic game dynamics in finite populations. To this end we extend the classical Moran process to incorporate frequency-

dependent selection and mutation. For 2� 2 games, we give a complete analysis of the long-run behavior when mutation rates are small.

For 3� 3 coordination games, we provide a simple rule to determine which strategy will be selected in large populations. The expected

motion in our model resembles the standard replicator dynamics when the population is large, but is qualitatively different when the

population is small. Our analysis shows that even in large finite populations the behavior of a replicator-like system can be different from

that of the standard replicator dynamics. As an application, we consider selective language dynamics. We determine which language will

be spoken in finite large populations. The results have an intuitive interpretation but would not be expected from an analysis of the

replicator dynamics.
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1. Introduction

Evolutionary processes describing frequencies of pheno-
types in biological populations are generally driven by
selection and mutation. Mutations give rise to variety and
selection favors some phenotypes over others. Game theory
provides a means to study frequency-dependent selection,
where the fitness of a phenotype depends on the composi-
tion of the population. In evolutionary biology, game
dynamics are typically modelled by deterministic differ-
ential equations that describe the evolution of infinite
populations. A widely used system that focuses on the
effects of frequency-dependent selection is the replicator
dynamics by Taylor and Jonker (1978) and Hofbauer et al.

(1979). See Fudenberg and Levine (1998), Hofbauer and
Sigmund (1998, 2003) and Nowak and Sigmund (2004) for
surveys of related results. Foster and Young (1990, 1997)
and Fudenberg and Harris (1992) have introduced evolu-
tionary models for infinite populations with stochastic
shocks. In the model of Fudenberg and Harris, the payoffs
are subject to aggregate stochastic shocks, but they argue
that, in infinite populations, mutations are best modelled
deterministically. They give a complete analysis for 2� 2
games; and stochastic replicator dynamics for games with
more than two pure strategies have been examined by
Cabrales (2000) and Imhof (2005).
It is natural to investigate game dynamics in finite

populations. In the present paper, we analyze a model of
stochastic evolution in finite populations which incorpo-
rates frequency-dependent selection and weak mutation.
The members of the population are programmed to a pure
strategy of a symmetric two-player game. They are
randomly matched to play the game and the expected
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payoff is interpreted as fitness. The composition of the
population evolves as follows. At each time step, one
individual is chosen for reproduction with probability
proportional to its fitness. With probability close to 1, the
offspring inherits the strategy of its parent, but we assume
that there is a positive probability that the offspring is a
mutant playing another strategy. After reproduction, one
randomly chosen individual dies and is replaced by the
offspring. Thus, both selection and mutation are stochas-
tic. Our model is a generalization of the Moran process
(Moran, 1962, Ewens, 2004) to frequency-dependent
fitness. The classic Moran process corresponds to the
special case where selection is constant and mutations are
not allowed. The assumption that in our model the
mutation rates are positive ensures that the process is
ergodic and so has a unique stationary distribution. In the
present paper we study the limit distribution, that is,
the limit of the stationary distribution obtained by letting
the mutation rates go to zero. We show that this limit
distribution is always concentrated on the pure states
where all agents use the same strategy.

Most of this paper analyzes the case of symmetric 2� 2
games. After obtaining the formula for the limit distribu-
tion in terms of the parameters of the payoff matrix, we
then classify games according to which strategy is favored,
where a strategy is said to be favored if the limit
distribution assigns probability greater than 1

2
to the

corresponding pure state. In some cases, one strategy is
favored for any population size, N, and the strategy is
selected in the sense that the probability assigned to the
corresponding pure state converges to 1 as N !1. In
other cases, the favored strategy depends on the population
size. This is true in particular for the case where B is the
dominant strategy, but the payoff of playing A against B

exceeds the payoff of playing B against A. Here because of
‘‘spite’’ effects, a dominated strategy can be favored in
small populations. The possibility of a spite effect in finite
populations was pointed out by Hamilton (1971), and led
Schaffer (1988) to propose an alternative definition of
evolutionary stability for finite populations. In our model,
the favored equilibrium can also depend on the population
size in games with two pure-strategy equilibria, and in the
limit of large populations, the selected equilibrium may
differ from the equilibrium selected by many other
stochastic finite-population models. This stems from the
fact that our process is stochastic even without mutations.
We discuss the topic in detail in the last section, where we
also relate our process to the deterministic and stochastic
replicator dynamics.

In addition to our classification of the limit distribution
in all 2� 2 games, we analyze the limit distribution in 3� 3
coordination games with large populations. In the spirit of
the literature on large deviations we relate the long-run
behavior of the process with mutations to that of the
simpler process where mutations are absent. The classic
reference for large deviations is Freidlin and Wentzell
(1984), though they focus on the continuous time case;

Kifer (1990) gives a general result for discrete time.
For any fixed population size, the limit distribution will
not be concentrated on a single point, so it cannot be
determined by the standard ‘‘mutation-counting’’ argu-
ments in the style of Kandori et al. (1993) and Young
(1993). Our analysis relies on a general of result of
Fudenberg and Imhof (2005), which yields, for every finite
population size, an expression of the limit distribution in
terms of certain absorption probabilities of the no-
mutation process. The present paper takes advantage of
the special structure of the Moran process to provide a
characterization of the asymptotic behavior of the absorp-
tion probabilities as the population size goes to infinity. We
use this characterization to show that for generic payoffs
the limit distribution converges to a point mass on one of
the three pure states, and we obtain a simple criterion to
determine the selected strategy. We apply our results for
3� 3 games to study selective language dynamics in finite
populations (Nowak et al., 2001, Komarova and Nowak,
2003).
Frequency-dependent Moran processes have also been

investigated by Taylor et al. (2004) and Nowak et al.
(2004). Taylor et al. (2004) present analytic results for the
case of fixed finite populations. They look at the process
without mutations, and compare the probability that the
process starting at the state where a single agent plays A

(with the others playing B) is absorbed at the state ‘‘all A’’
to the corresponding fixation probability in the neutral case
where A gives the same payoff as B at each state. This
neutral selection probability is 1=N. Nowak et al. (2004)
apply these results on the no-mutation process to the
comparison of the strategies ‘‘Always defect’’ and ‘‘Tit for
Tat’’ in the finitely repeated prisoner’s dilemma game. They
also define evolutionary stability in finite populations and
prove the ‘‘1/3 law’’, which holds in the limit of weak
selection for sufficiently large populations. The present
paper differs in its assumption of recurrent mutations, and
also in the nature of its conclusion: we provide a simple
sufficient condition on the payoff matrix for the limit
distribution to assign probability greater than 1

2
to all

agents playing A, and for it to assign probability 1 to this
state when the population is large. A common assumption
in the above models is that reproduction is asynchronous:
at any time step, a single individual is chosen to reproduce.
A related model of frequency-dependent selection in finite
populations where all individuals reproduce at the same
time but without mutations has been studied by Imhof and
Nowak (2006).

2. The model

2.1. A frequency-dependent Moran process

Consider a population of N individuals playing a
symmetric 2-player game with strategies A and B and
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payoff matrix

where a; b; c and d are positive. If i individuals play A and
N � i play B, then the fitness of individuals using A is

f i ¼
aði � 1Þ þ bðN � iÞ

N � 1

and the fitness of those using B is

gi ¼
ci þ dðN � 1� iÞ

N � 1
.

At every time step, one individual is chosen to reproduce.
The chance of being chosen is proportional to fitness. That
is, the probability that an individual using A is chosen is
given by i f i=½i f i þ ðN � iÞgi�. We assume that with
probability mAB40, an A-offspring is a mutant which plays
B instead of A, and with probability mBA40, a B-offspring
plays A. After reproduction, the offspring replaces a
randomly chosen member of the population, so that the
population size is constant. The process that describes the
number of individuals that use A is a Markov process with
state space f0; . . . ;Ng and transition matrix ðpijÞ, where

pij ¼ 0 if ji � jj41; p01 ¼ mBA ¼ 1� p00,

pN ;N�1 ¼ mAB ¼ 1� pNN ,

and for i ¼ 1; . . . ;N � 1,

pi;iþ1 ¼
i f ið1� mABÞ þ ðN � iÞgimBA

i f i þ ðN � iÞgi

N � i

N
,

pi;i�1 ¼
i f imAB þ ðN � iÞgið1� mBAÞ

i f i þ ðN � iÞgi

i

N
,

pi;i ¼ 1� pi;i�1 � pi;iþ1.

Because of the presence of mutations, this process is
ergodic, with a unique invariant distribution that we
denote by pðkÞ ¼ pðk; mAB;mBAÞ, k ¼ 0; . . . ;N.

We are interested in the small mutation limit of the
invariant distribution:

p�ðkÞ ¼ lim
mAB;mBA!0

pðk; mAB; mBAÞ; k ¼ 0; . . . ;N.

Throughout, the ratio of the mutation rates is kept fixed as
they tend to zero. That is, for fixed numbers
m�AB;m

�
BA 2 ð0; 1Þ, the limits are calculated as mAB;mBA ! 0

subject to

mAB

mBA

¼
m�AB

m�BA

.

p� describes the long-run behavior of the Moran process
when mutations are rare. As the Moran process is a
birth–death process, the invariant distribution can easily
be written down explicitly, see e.g. Ewens (2004, p. 91).

For k ¼ 0; . . . ;N,

pðkÞ ¼
lðkÞ

lð0Þ þ � � � þ lðNÞ
; lðkÞ ¼

Yk�1
i¼0

pi;iþ1

piþ1;i

.

The empty product is defined to be 1. Denoting the
transition probabilities of the Moran process without
mutations by p̂ij, we have p̂00 ¼ p̂NN ¼ 1 and for
i ¼ 1; . . . ;N � 1,

p̂i;iþ1 ¼
i f i

i f i þ ðN � iÞgi

N � i

N
,

p̂i;i�1 ¼
ðN � iÞgi

i f i þ ðN � iÞgi

i

N
,

p̂ii ¼ 1� p̂i;i�1 � p̂i;iþ1.

For k ¼ 1; . . . ;N � 1,

lim
mAB ;mBA!0

lðkÞ
mBA

¼ lim
mAB ;mBA!0

Qk�1
i¼1 pi;iþ1Qk�1
i¼0 piþ1;i

¼

Qk�1
i¼1 p̂i;iþ1Qk�1
i¼0 p̂iþ1;i

o1,

and so lðkÞ ! 0 as mAB; mBA ! 0. Since lð0Þ ¼ 1,
pðkÞplðkÞ. It follows that pðkÞ ! 0 for k ¼ 1; . . . ;N � 1.
Thus, for very small mutation rates, the Moran process
spends nearly all the time at one of the states 0 and N. It
remains to determine

p�A ¼ p�ðNÞ and p�B ¼ p�ð0Þ,

the limits of the fractions of time that the Moran process
spends at the states ‘‘all A’’ and ‘‘all B’’, respectively. We
have

lim
mAB ;mBA!0

lðNÞ ¼ lim
mAB ;mBA!0

mBA

mAB

QN�1
i¼1 pi;iþ1QN�2
i¼0 piþ1;i

¼
m�BA

m�AB

YN�1

i¼1

p̂i;iþ1

p̂i;i�1

.

Observing that p̂i;iþ1=p̂i;i�1 ¼ f i=gi, we obtain

lim
mAB;mBA!0

lðNÞ ¼
m�BA

m�AB

g,

where

g ¼
YN�1
i¼1

f i

gi

.

It follows that

lim
mAB ;mBA!0

lð0Þ þ � � � þ lðNÞ

¼ lim
mAB ;mBA!0

lð0Þ þ lðNÞ ¼ 1þ
m�BA

m�AB

g,

and, therefore,

p�A ¼
m�BAg

m�BAgþ m�AB

; p�B ¼
m�AB

m�BAgþ m�AB

. (1)
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The following assertions on the limit distribution and its
connection with g are now obvious. To emphasize the
dependence on the population size, write p�AðNÞ ¼ p�A,
p�BðNÞ ¼ p�B, and gðNÞ ¼ g.

Lemma 1. For every population size N,

0op�AðNÞo1; 0op�BðNÞo1.

Moreover,

p�AðNÞ4
1

2
if and only if gðNÞ4

m�AB

m�BA

.

As N tends to 1, p�AðNÞ converges to 1 or 0 according as

gðNÞ converges to 1 or 0, respectively.

These results provide the basis for our main conclusions
in Section 3.

In deriving representation (1) of the limit distribution we
made use of the simple explicit formula for the invariant
distribution p. If the underlying game has more than two
pure strategies, the invariant distribution cannot be
expressed in a similarly simple form, and a different
approach is required to determine the limit distribution.
We now give an alternative heuristic derivation of (1),
which is perhaps more intuitive than the direct calculation
and extends easily to games with any number of pure
strategies. The approach is based on a limit theorem of
Fudenberg and Imhof (2005) and will be used in Section 4
to solve equilibrium selection problems for 3� 3 games.

Under the Moran process without mutations, the states 0
and N are absorbing and the other states are transient. Let
rAB denote the probability of absorption at state 0, if the
process is initially at state N � 1. Thus, rAB is the
probability that a single individual that plays B takes over
a population where everyone else plays A. Define rBA

analogously. Since, for small mutation rates, the Moran
process spends nearly all the time at one of the states 0 and
N, we consider the Markov chain obtained from the Moran
process with mutations by ignoring all periods where it is in
a state other that 0 or N. For this embedded chain
the probability of a transition from 0 to N is given by the
probability that a mutation from B to A occurs times the
probability that a single A-player takes over the whole
population. For small mutation rates, the second prob-
ability is close to the corresponding fixation probability of
the no-mutation process, rBA. This suggests that the limit
of the ergodic distribution of the embedded chain, i.e.
ðp�A; p

�
BÞ, is given by the ergodic distribution of a Markov

chain with transition matrix

1� m�BArBA m�BArBA

m�ABrAB 1� m�ABrAB

 !
.

Hence

p�A ¼
m�BArBA

m�BArBA þ m�ABrAB

,

p�B ¼
m�ABrAB

m�BArBA þ m�ABrAB

. ð2Þ

That these formulas are indeed correct follows from
Theorem 1 of Fudenberg and Imhof (2005). Note that their
Assumptions 1–4 are obvious from the definition of the
transition probabilities at hand, and their Assumption 5
follows from the fact that rAB;rBA;m

�
AB and m�BA

are positive. Since the Moran process is a birth–death
process, the fixation probabilities have a simple explicit
expression, see e.g. Ewens (2004, p. 90), and using that
p̂j;j�1=p̂j;jþ1 ¼ gj=f j, we obtain

rBA ¼
1

1þ
PN�1

i¼1

Qi
j¼1ðgj=f jÞ

,

rAB ¼

QN�1
j¼1 ðgj=f jÞ

1þ
PN�1

i¼1

Qi
j¼1ðgj=f jÞ

. ð3Þ

Thus, rBA=rAB ¼ g, and inserting this relation into (2)
gives representation (1). The reason that this approach can
also be applied to games with more than two pure
strategies is that it requires only the fixation probabilities
of the restriction of the no-mutation process to the edges of
the state space where at most two pure strategies are
present.

2.2. A closely related process

Here is another model that gives rise to the same long-
run outcome: each period, a single agent is randomly
chosen from the population, and matched (without
replacement) with a single second agent to play the
underlying game. The first agent reproduces with prob-
ability equal to its realized payoff divided by a scale factor
z that is larger than maxfa; b; c; dg. If the agent reproduces,
it replaces a randomly chosen member of the entire
population. Thus, for example the probability of an
increase in the number of A-players is the probability an
A is chosen times the expected payoff of an A times the
probability a B is replaced divided by z, so that

p0i;iþ1 ¼
i

N

ði � 1Þaþ ðN � iÞb

N � 1

N � i

N

1

z
,

and

p0i;iþ1
p0i;i�1

¼
f i

gi

¼
pi;iþ1

pi;i�1

,

so the new process differs from the original one only in its
speed.

3. Favored and selected strategies

We now study how the limit distribution ðp�AðNÞ; p
�
BðNÞÞ

depends on the size of the population and on the payoff
matrix. We will say that strategy i is favored by the Moran
process if p�i ðNÞ4

1
2
, and that strategy i is selected if

limN!1 p�i ðNÞ ¼ 1. To determine favored and selected
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strategies by means of Lemma 1, we substitute the values of
the payoff functions at each state into the equation for g:

gðNÞ ¼
½ðN � 1Þb�½ðN � 2Þbþ a� . . . ½2bþ ðN � 3Þa�½bþ ðN � 2Þa�

½cþ ðN � 2Þd�½2cþ ðN � 3Þd� . . . ½ðN � 2Þcþ d�½ðN � 1Þc�

¼
½bþ ðN � 2Þa�½2bþ ðN � 3Þa� . . . ½ðN � 2Þbþ a�½ðN � 1Þb�

½cþ ðN � 2Þd�½2cþ ðN � 3Þd� . . . ½ðN � 2Þcþ d�½ðN � 1Þc�
.

ð4Þ

As a preliminary step, note that when N ¼ 2,
gðNÞ ¼ b=c, so that strategy A is favored when b4c and
both sorts of mutations are equally likely. Intuitively, every
time there is a mutation, the system moves to the state with
one A and one B, and at this state, the relative payoffs of
the two strategies are determined by their payoffs when
playing each other. Our results will follow from a more
detailed analysis of the ratio in (4). Note that multiplying
all of the payoffs by the same constant has no effect on
gðNÞ, and so has no effect on the limit of the ergodic
distributions. However, gðNÞ may change when a constant
is added to all of the payoff functions.

To cut down on cases, we assume now that b4c. This
can be done by re-labeling the strategies except for the
knife-edge case where b ¼ c. We first deal with favored
strategies and focus on the case where both sorts of
mutations are equally likely. We return to the general case
of possibly different mutation rates when considering the
large population limit in Theorem 2.

Theorem 1. Suppose that m�AB ¼ m�BA.

(a) If b4c and a4d, then p�AðNÞ4
1
2

for all N.
(b) If b4c and aod, then whether p�AðNÞ4

1
2

may depend on

the population size. A sufficient condition for p�AðNÞ4
1
2

is

b� c4ðN � 2Þðd � aÞ.

Proof. In case (a), the first term in the product in the
numerator of the final ratio in (4) exceeds the correspond-
ing term in the denominator, as does the second, etc., so
that gðNÞ41, and Lemma 1 implies that p�AðNÞ4

1
2
.

In case (b), if bþ ðN � 2Þa4cþ ðN � 2Þd, the pairwise
comparison of terms again shows that gðNÞ41, and bþ

ðN � 2Þa4cþ ðN � 2Þd is equivalent to b� c4ðN � 2Þ
ðd � aÞ. &

Theorem 1 gives results for any N, but here both
strategies have positive weights, and the ratio of the
weights depends on the ratio of the mutation probabilities.
However, the effects of the payoff matrix overwhelm the
effect of the ratio of the mutation probabilities when the
population is sufficiently large, which is one reason for our
interest in the case of population sizes tending to infinity. A
second reason for studying this case is to see how well it is
captured by the replicator dynamic, which corresponds to
the behavior of the system in a continuum population.
That is, the replicator is the mean field of this system.

Recall that in a 2� 2 game, a strategy is risk dominant if
it is the unique best response to the distribution ð1

2
A; 1

2
BÞ.

Thus, strategy A is risk dominant if aþ b4cþ d, and B is

risk dominant if the reverse inequality holds. Strategy A is
Pareto-dominant if a4d, and B is Pareto-dominant if
d4a.

Theorem 2. (a) If b4c and a4d, then limN!1p�AðNÞ ¼ 1.

(b.1) If b4d4a4c, then limN!1 p�AðNÞ ¼ 1.

(b.2) If d4b4c4a, then limN!1 p�AðNÞ ¼ 0.

(b.3) If d4b4a4c, d4a4b4c, then there are two

pure-strategy Nash equilibria, and limN!1 p�AðNÞ is either

1 or 0 asZ 1

0

ln½bþ ða� bÞx� dx

is greater or less thanZ 1

0

ln½d þ ðc� dÞx� dx.

The risk-dominant equilibrium need not be selected, even if it

is also Pareto-dominant.

(b.4) If b4c4d4a or b4d4c4a, then limN!1 p�AðNÞ is

either 1 or 0 and which case obtains depends on the same

integral condition as in (b.3).

Proof. In case (a), the ratio of each pair of terms in gðNÞ is
bounded away from 1, so gðNÞ ! 1 as N !1. Thus,
Lemma 1 implies that limN!1 p�AðNÞ ¼ 1. In subcases (b.1)
and (b.2), we examine the expression in the first line of (4):
in subcase (b.1), every term in the numerator exceeds the
corresponding term in the denominator, and in (b.2) the
reverse is true provided that N � 24ðb� cÞ=ðd � bÞ and
N � 24ðb� cÞ=ðc� aÞ. The argument for large N in
subcases (b.3) and (b.4) involves approximating gðNÞ by
the ratio of two integrals, using

YN�1
j¼0

a
j

N � 1
þ b 1�

j

N � 1

� �� �

¼ exp N

Z 1

0

ln½aþ ðb� aÞx� dx

� �
þOð1Þ;

the details are in the Appendix. &

The class of games in case (a) is composed of games
where A is strictly dominant (a4b4c4d, a4b4d4c,
b4a4d4c, and b4a4c4d), coordination games where
A is both a Pareto-dominant equilibrium and risk-
dominant (a4d4b4c), and ‘‘hawk–dove games’’ with
two asymmetric equilibria and an equilibrium in mixed
strategies (b4c4a4d). When A is strictly dominant, it is
selected by the deterministic replicator dynamic from any
initial position, and it is not surprising that the same thing
happens here as N goes to infinity. It is similarly
unsurprising that A is selected when it is both risk- and
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Pareto-dominant: although both of the Nash equilibria are
asymptotically stable in the deterministic replicator dy-
namic, past work on stochastic evolutionary models has
always selected any strategy that is both risk- and Pareto-
dominant.

In case (b), b4c, so we expect that A will be favored for
small N. In subcase (b.1), A is the dominant strategy, so
this tendency is reinforced for large N. In subcase (b.2), B is
dominant, and is selected for large N, but A is favored for
small N; this is the ‘‘spite’’ effect. Subcase (b.3), where A

and B are both pure-strategy equilibria, is more complex.
Past work has concluded that the long-run distribution is
concentrated on the risk-dominant equilibrium. However,
in the present setting the long-run distribution need not be
concentrated on the risk-dominant equilibrium. This is
easiest to see by considering a game where d4b4a4c, so
B is payoff dominant, and aþ b ¼ cþ d so that neither
strategy is risk dominant. Then the two integrals are the
expectations of the logarithm of two random variables with
the same mean. Because the log is a concave function, the
expected value of the log is reduced by a mean-preserving
spread, and so A is selected because b� aod � c.
Intuitively, the condition aþ b ¼ cþ d implies that the
two strategies are equally fit at the point i ¼ N=2, but
the support of the long-run distribution depends on the
transition probabilities at every state, and these are not
determined by the value of the payoff functions at the
midpoint.

Both case (a) and case (b) include subcases that
correspond to ‘‘hawk–dove games,’’ that is symmetric
games with two asymmetric pure-strategy equilibria. Since
we are working in a one-population model, the asymmetric
equilibria in the hawk–dove case cannot arise. The
conclusion that the process spends almost all of its time
in homomorphous states is a consequence of our focus on
the limits of the ergodic distribution for the case of
vanishingly small mutation rates. The results of Benaı̈m
and Weibull (2003a) suggest that for any fixed small
mutation rate, the large population limit of the invariant
distribution is concentrated near the mixed equilibrium.

We summarize the above discussion of our results for
large populations by regrouping cases according to more
traditional game-theoretic criteria.

Corollary. If the game has a strictly dominant strategy, the

probability assigned to this strategy by the limit distribution

converges to 1 as N goes to infinity. If the game has two strict

Nash equilibria, then except for knife-edge cases there is an

equilibrium to which the limit distribution assigns probability

converging to 1 as N goes to infinity, but the risk-dominant

equilibrium need not be selected. Which equilibrium is

selected depends on the conditions specified in Theorem 2.

4. 3� 3 coordination games

Now consider a 3� 3 symmetric game with pure
strategies 1; 2; 3, and strictly positive payoff matrix

ðaijÞ
3
i;j¼1, where aij is the payoff for strategy i playing

strategy j. As before, there is a population of N agents; the
state x ¼ ðx1;x2;x3Þ of the system consists of the numbers
of agents using each strategy. We denote the payoff of
strategies 1, 2, and 3 by f x, gx, and hx, respectively, where
for example

f x ¼
ðx1 � 1Þa11 þ x2a12 þ x3a13

N � 1
.

The no-mutation process is again constructed by assuming
that each agent playing strategy i has a number of off-
spring equal to its payoff, with one offspring chosen at
random to replace a random member of the current
population, so that e.g. the probability that a 1-user
replaces a 2-user is

x1 f x

x1 f x þ x2gx þ x3hx

x2

N
,

and the ratio of this probability to that of a move in the
other direction is f x=gx, just as it was in the two-strategy
case. Let rjiðNÞ be the probability that the no-mutation
process is absorbed at the homogeneous state where all
agents play i, starting from the state where only one agent
plays i and all the rest play j. Since the no-mutation process
never introduces an extinct strategy, rjiðNÞ is the same as if
the game only had these two strategies.
We add mutations to the system by supposing that there

is common probability m that the offspring of an i-strategist
is a j-strategist, jai. Again, the process has a unique
ergodic distribution for every m40. We let p�ðNÞ ¼
ðp�1ðNÞ;p

�
2ðNÞ; p

�
3ðNÞÞ denote the limit of the ergodic

distributions as m! 0. As before we represent this as a
probability distribution over the homogeneous states
instead of as a distribution over the entire state space, so
that p�i ðNÞ is the probability that the limit distribution gives
to the state ‘‘all i.’’
The procedure for calculating the limit distribution

based on the embedded Markov chain on the pure states,
as outlined in Section 2, can also be applied in the present
3� 3 case. This yields the following expression for the limit
distribution:

p�i ðNÞ ¼
ðrjiðNÞrkiðNÞ þ rjiðNÞrkjðNÞ þ rkiðNÞrjkðNÞÞiajakP3

r¼1ðrjrðNÞrkrðNÞ þ rjrðNÞrkjðNÞ þ rkrðNÞrjkðNÞÞrajak

,

(5)

see Example 2 of Fudenberg and Imhof (2005). Note that
the formula given is that for the invariant distribution of a
Markov chain on the three states 1,2,3, whose off-diagonal
transition probabilities are given by the r0s. To find the
selected strategy, we have to analyze the asymptotic
behavior of the rijðNÞ as N !1.
We now specialize to the coordination-game case, where

each of the pure strategies corresponds to a symmetric
Nash equilibrium, so that aii4aji for all i and jai. From
the 2� 2 case, we know that the rijðNÞ will all be positive,
so (5) implies that the limit distribution will give positive
probability to each strategy in a population of fixed size.
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Our goal is to determine the behavior of the limit
distribution as the population size N goes to infinity. To
this end let

z�ji ¼
ajj � aij

ajj � aij þ aii � aji

¼ 1� z�ij ;

this is the weight given to strategy i in the mixed
equilibrium in the 2� 2 subgame corresponding to
strategies i and j, and is strictly between 0 and 1 because
we have specialized to coordination games. Define

fjiðzÞ ¼ ln
ajizþ ajjð1� zÞ

aiizþ aijð1� zÞ

� �
;

this is the logarithm of the ratio of the expected payoffs of j

and i in an infinite population where fraction z plays i and
all the rest play j. Finally define

bji ¼

Z z�ji

0

fjiðzÞ dz;

note that this is strictly positive. The following result
characterizes the selected strategy in terms of the integrals
bji, where only knife-edge cases are disregarded.

Theorem 3. For i ¼ 1; 2; 3 let ai ¼ minfbji þ bki;minjðbjiþ

bkjÞgiajak. Suppose i is the strategy for which aio
minðajÞjai. Then limN!1 p�i ðNÞ ¼ 1.

The proof of Theorem 3 is in the Appendix. An
important step is to characterize the limit on N of the
rijðNÞ in terms of integrals of logarithms of the relative
payoff of strategies i and j, using an argument that is
similar in spirit but more complex than that in the proof of
Theorem 2, case (b.3).

We now apply our results to study selective language
dynamics. Consider a 3� 3 language game: strategies 1, 2,
3 correspond to three different languages, and aij is
the payoff for someone who speaks language i commu-
nicating with someone who speaks language j. Thus,
the payoffs measure how successful communication
is, and we assume the received payoffs contribute to
biological fitness (Nowak et al., 2001). Children learn
the language of their parents, possibly with mistakes.
The mutation probability m is the probability that the
child switches to a language that is different from its
parents’ language. Alternatively, one may assume that
successful communication results in cultural fitness, so that
individuals that have to choose a language are more likely
to ‘‘imitate’’ speakers of a language with high current
payoff. The interpretation of the Moran process as an
imitation process will be discussed in detail in the next
section.

Applying Theorem 3, we can determine which language
will be spoken in a large population when mistakes are
rare. We consider three examples, where the payoff

matrices are given by

(i) A1 ¼

10 1 1

1 9 1

1 1 8

0
BB@

1
CCA; (ii) A2 ¼

10 1 1

1 9 7

1 8 8

0
BB@

1
CCA,

(iii) A3 ¼

10 1 1

1 9 1

2:5 2:5 8

0
BB@

1
CCA,

respectively. In the first case, communication between
individuals using different languages is equally inefficient,
and for individuals using the same language, coherence is
best if language 1 is used. The ai from Theorem 3 are
a1 ¼ 0:7997, a2 ¼ 0:8862, and a3 ¼ 0:9816, so that lan-
guage 1 will be spoken, as was to expected.
In the second case, users of language 2 communicate

efficiently with users of language 3 and vice versa, but
communication between speakers of language 1 and
speakers of one of the other two languages is still
inefficient. Now a1 ¼ 0:4041, a2 ¼ 0:5448, and a3 ¼
0:5422, so that again language 1 will be selected.
In the third case, speakers of language 3 receive a

somewhat higher payoff when communicating with speak-
ers of language 1 than they did in the first case. Now
a1 ¼ 0:7005, a2 ¼ 0:7870, and a3 ¼ 0:6508, so that lan-
guage 3 will be selected, even though coherence would be
higher if language 1 were chosen.
To compare the Moran process with the standard

replicator dynamics note first that under the replicator
dynamics, each homogeneous state is asymptotically stable.
Which language is selected, that is, to which vertex the
trajectory converges, depends on the initial state.
For payoff matrix A1, language 1 has, of course, the
largest basin of attraction. The basins of language 1, 2
and 3 cover, respectively, 39%, 33% and 28% of the area
of the whole state space. For payoff matrix A2, the
proportions are 31%, 35% and 34%. Note that the
behavior of the replicator dynamics is determined by
the vector field on the interior of the state space. Selection
takes place as the population moves through states
where each language is spoken. Thus, the fact that
language 2 has the largest basin corresponds to the
fact that users of this language communicate efficiently
with users of the other languages, whereas users of
language 1 communicate efficiently only with users of
the same language. On the other hand, the behavior
of the stochastic process is determined by the transition
probabilities of moving from one pure state to another
after a single mutation, where during a transition, only
two languages are spoken. Here language 1 is selected
as it profits from its high payoff in a population where
only this language is used, resulting in a small probability
of moving away from this state. If the payoffs are given by
A3, the proportions of the basins of attraction under the
replicator dynamics are 35:2%, 29:9% and 34:9%. Again,
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the language that is selected by the Moran process,
language 3, does not have the largest basin.

5. Related models

In this section we show that our frequency-dependent
Moran process can also be viewed as an imitation process,
and we compare our model with related economic
imitation models. The interpretation as an imitation
process is particularly natural in the context of language
dynamics as discussed in Section 4. Rhode and Stegeman
(2001) discuss the relevance of imitation from an economic
perspective.

Consider again a population of N agents playing the
2� 2 game of Section 2. Every agent is matched with every
opponent from the population, so that when i agents play
A, the average payoff of individuals using A is f i ¼

½ði � 1Þaþ bðN � iÞ�=ðN � 1Þ and the average payoff to
individuals using B is gi ¼ ½ci þ dðN � 1� iÞ�=ðN � 1Þ.
Note that, as in Kandori et al. (1993) and many subsequent
papers in this field, the two types of agent face a slightly
different distribution of opponents’ play. This is what
underlies the difference between maximizing relative payoff
and maximizing absolute payoff and generates ‘‘spite’’
effects. Rhode and Stegeman (1996) analyze the effect of
spite in the ‘‘Darwinian’’ model of Kandori et al. (1993),
which supposes that the unperturbed dynamic is determi-
nistic; they show that even allowing for spite the risk-
dominant equilibrium is selected in large populations.
Schaffer (1988) suggests an alternative concept of evolu-
tionary stability in finite populations that takes the
possibility of spite effects into account. See Schaffer
(1989), Crawford (1991) and Alós-Ferrer et al. (2000) for
discussion of the spite effect in economic models, and
Vega-Redondo (1997) for the connection to Walrasian
behavior. Recent papers in this direction include Possa-
jennikov (2003), Alós-Ferrer and Ania (2005), and
Leininger (2005).

By the law of large numbers, f i and gi can be regarded as
average payoffs when the agents are infinitely often
randomly paired. Robson and Vega-Redondo (1996)
analyze a model where at each period, agents are randomly
matched in pairs for a finite number of rounds, and
evolution is governed by the realized payoffs of the
strategies, which depend on the outcome of the matching
process. In their model, the limit as the number of rounds
goes to infinity of the limit distributions (i.e. of the limit of
the ergodic distributions as the mutation rate vanishes) can
be different than the limit distribution with an infinite
number of rounds, but that is not the case here.

Suppose the distribution of strategies in the population
evolves as follows. Agents decide whose strategy to imitate
based on the prevailing payoffs and also on the relative
popularity of each strategy. The decision is described by a
random variable whose distribution is given by an
‘‘updating function’’ that depends only on the current
state, that is, the numbers of agents using each choice. The

updating function we study has two parts, the ‘‘base rate’’
updating rule and a lower-frequency probability of
‘‘mutation.’’ In the base-rate or ‘‘unperturbed’’ process,
each period, one randomly chosen individual re-evaluates
its choice, with the probability of choosing a given strategy
equal to the total payoff of players using that strategy
divided by the total payoff in the population, so that the
choice depends on both the payoff of each strategy and on
the strategy’s popularity, and there is non-zero probability
of moving to the strategy with the lowest current payoff.
However, there is a probability mAB that an agent who
intends to play A plays B instead of A, and a probability
mBA that an agent who intends to play B plays A. This
derivation gives rise to the same Moran process as the one
we defined in Section 2.
Giving weight to popularity as well as current payoffs is

a rule of thumb that allows current choices to in effect
depend on past states of the system. Ellison and Fudenberg
(1993, 1995) show that such rules can be socially beneficial
because popularity incorporates information about long-
run performance. Even if such rules do not perform well in
the stark setting of this model, boundedly rational agents
might still use them because they perform well in general.
Binmore and Samuelson (1997) consider a model in which
agents adopt a new strategy according to the current
popularities. In the process they consider, as in ours, one
agent is chosen at random to re-evaluate its choice. The
agent first decides whether it is ‘‘dissatisfied,’’ where the
probability of dissatisfaction depends on the state. When
an agent is dissatisfied, it adopts the strategy of a randomly
chosen member of the population (including themselves in
the population for this purpose). As in our model, there is a
positive probability that the agent switches to a strategy
that gives a lower payoff. They give a general characteriza-
tion of the limit distribution as a function of the
‘‘dissatisfaction functions,’’ and then specialize to a
particular ‘‘aspiration and imitation model’’ to relate the
limit distribution in large populations to the payoff matrix
of the game. Unlike us, they do not relate the payoff matrix
to the limit distribution for finite populations. They
determine the limit distribution by substituting into the
detailed balance equation, but they note that it will require
other methods to handle the 3� 3 case. Our alternate
derivation may be more revealing and also has the
advantage of extending to the case of more than two
strategies.

6. Discussion

In our model, the risk-dominant equilibrium need not be
selected in a 2� 2 coordination game, even in the limit of
large populations. In contrast, the risk-dominant equili-
brium is selected even for finite populations in the work of
Kandori et al. (1993), Young (1993), Robson and Vega-
Redondo (1996), Sandholm (1998), Maruta (2002) and
Blume (2003). This is because those papers analyze
‘‘essentially deterministic’’ no-mutation processes, where
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the agent selected to move typically plays a best response to
the observed state, or copies the action with the highest
payoff. The processes return to the nearby equilibrium with
probability 1 after any ‘‘small’’ number of mutations. As a
consequence, these models predict that the limit distribu-
tion is a point mass, at least for sufficiently large (but finite)
N. In Kandori et al. (1993) and Young (1993), the
risk-dominant equilibrium is selected as the mutation rate
goes to 0.

In contrast, we analyze a stochastic no-mutation process.
Both the fact that 0orABðNÞo1 for finite N here, and the
fact that the ratio of the mutation probabilities has an
impact on the relative probability of the two states ‘‘all A’’
and ‘‘all B’’ even when this ratio is bounded away from
zero and infinity, is related to the fact that a single
mutation can lead to a transition from one absorbing state
of the no-mutation process to the other. Thus, the
equilibrium that is selected depends on the ‘‘expected
speed of the flow’’ at every point in the state space, and
two coordination games with the same mixed-
strategy equilibrium (and hence the same basins for
the best-response and replicator dynamic) can have
systematically different speeds at other states. By
replicator dynamic we mean the standard version with
linear payoff functions, which is due to Taylor and Jonker
(1978) and Hofbauer et al. (1979). Moreover, even a
strategy that is both a risk-dominant and a payoff-
dominant equilibrium need not be selected, in contrast to
the result of Binmore and Samuelson (1997). Both their
paper and Fudenberg and Harris (1992) discuss why
one should expect stochastic stability to depend on the
‘‘speed of the flow’’ as well as on the expected direction of
motion. The influence of spatial population structures on
the size of the basin of attraction of a risk-dominant
strategy in best-response models has been studied by Blume
(1993, 1995).

Since in our model, the risk-dominant equilibrium need
not be selected in the 2� 2 case, there is no reason to
expect a 1

2
-dominant equilibrium (Morris et al., 1995) to be

selected in a 3� 3 coordination game. Thus, the equili-
brium selection can be different than that of the models of
Kandori and Rob (1998) and of Kandori et al. (1993),
where in the 2� 2 case the risk-dominant equilibrium is
selected. The easiest examples are where strategy 3 risk-
dominates both strategy 1 and strategy 2 in pairwise
comparisons (so it is ‘‘pairwise risk dominant’’) but where
strategy 1 or 2 is selected over strategy 3 as N !1 in the
2� 2 games. This is the case for the following payoff
matrix:

16 5 8

1 16 8

1 1 24

0
B@

1
CA.

Here strategy 1 is selected, i.e. limN!1 p�1ðNÞ ¼ 1.
To place our findings about large populations into

perspective, it is helpful to note that the mean field of our

process (that is, expected motion) converges to that of the
standard replicator dynamic as the population becomes
infinite and time is rescaled appropriately. Thus, the results
of Benaı̈m and Weibull (2003a, b) show that for large N the
state of the process will, with high probability, remain close
to the path of the deterministic replicator dynamic for
some large time T. One can instead obtain a diffusion
approximation if the payoffs in each interaction are scaled
with the population size in the appropriate way, see e.g.
Binmore et al. (1995) and Ewens (2004). Note that in small
populations the mean field in our model can be very
different from that of the replicator due to the difference
between maximizing absolute and relative performance.
However, even for large N the asymptotics of the stochastic
system depend on the details of the stochastic structure,
and can differ from those of the deterministic replicator
dynamic. Moreover, our finding that the risk-dominant
equilibrium need not be selected in a 2� 2 game shows that
the asymptotic behavior of our system can differ from that
of the forms of the stochastic replicator dynamics studied
by Foster and Young (1990, 1997) and Fudenberg and
Harris (1992).
Fogel et al. (1998) and Ficici and Pollack (2000) report

some simulations of the ‘‘frequency-dependent roulette
wheel’’ selection dynamic, which is equivalent to the
generalized Moran process we analyze. Fogel et al.
emphasize that the finite population results can be very
different than the predictions of the replicator equation,
while Ficici and Pollack argue that the two models make
fairly similar predictions in the hawk–dove game.
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Appendix

Proof of Theorem 2, case (b.3). Our goal is to characterize
the behavior of gðNÞ as N !1, where

gðNÞ

¼
½ðN � 1Þb�½ðN � 2Þbþ a� . . . ½2bþ ðN � 3Þa�½bþ ðN � 2Þa�

½cþ ðN � 2Þd�½2cþ ðN � 3Þd� . . . ½ðN � 2Þcþ d�½ðN � 1Þc�

¼
d

a

ðN � 1Þa

ðN � 1Þd

½bþ ðN � 2Þa� . . . ½ðN � 2Þbþ a�½ðN � 1Þb�

½cþ ðN � 2Þd� . . . ½ðN � 2Þcþ d�½ðN � 1Þc�

¼
d

a

YN�1
j¼0

aj þ bðN � 1� jÞ

cj þ dðN � 1� jÞ

� �
.

We will approach this by comparing the numerator
of the expression to the denominator. We rewrite the
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numerator as

d
YN�1
j¼0

a
j

N � 1
þ b 1�

j

N � 1

� �� �

¼ d exp N
XN�1
j¼0

1

N
ln a

j

N � 1
þ b 1�

j

N � 1

� �� �( )
,

and the denominator as

a
YN�1
j¼0

c
j

N � 1
þ d 1�

j

N � 1

� �� �
.

We then approximate the numerator by

d exp N

Z 1

0

ln½aþ ðb� aÞx� dx

� �
þOð1Þ

and the denominator by

a exp N

Z 1

0

ln½cþ ðd � cÞx� dx

� �
þOð1Þ.

For large N, this comparison is determined by the
comparison of the integrals, and gðNÞ converges to either
0 or infinity. SinceZ

ln½aþ ðb� aÞx� dx ¼ x ln½aþ ðb� aÞx�

� xþ
a

b� a
ln½aþ ðb� aÞx�,

Z 1

0

ln½aþ ðb� aÞx� dx ¼
b

b� a
ln b�

a

b� a
ln a� 1.

So the question becomes whether

b ln b� a ln b

b� a
4

d ln d � c ln c

d � c
: &

Claim. There are cases with aþ bocþ d but

b ln b� a ln a

b� a
4

d ln d � c ln c

d � c
.

Take c ¼ 1, b ¼ 8, a ¼ 16, d ¼ 24. Then the LHS
¼ 5 ln 2 � 3:465; the RHS ¼ ð24 ln 24Þ=23 � 3:307.

We now turn to the proof of Theorem 3. Let rij , fij , z�ij ,
and bij be as defined in Section 4. As a preparation, we
prove the following result which describes the asymptotic
behavior of the fixation probabilities rjiðNÞ for N !1 in
terms of the integrals bji.

Lemma 2. There are constants 0omoMo1 such that for

all NX2, and all pairs of distinct strategies i; j,
mpN1=2 expðNbjiÞrjiðNÞpM.

Proof. Fix a pair of distinct strategies i and j. From (3),

1

rijðNÞ
¼ 1þ

XN�1
n¼1

Yn
k¼1

kaij þ ðN � 1� kÞaii

ðk� 1Þajj þ ðN � kÞaji

¼ 1þ
XN�1
n¼1

najj þ ðN � 1� nÞaji

ðN � 1Þaji

�
Yn
k¼1

kaij þ ðN � 1� kÞaii

kajj þ ðN � 1� kÞaji

¼ 1þ
XN�1
n¼1

najj þ ðN � 1� nÞaji

ðN � 1Þaji

� exp
Xn
k¼1

fij

k
N � 1

� �( )
. ð6Þ

Set cðxÞ ¼
R x
0 fijðzÞ dz and K1 ¼ supfjf0ijðzÞj : 0pzp1g.

Since all payoffs are positive, K1o1. Thus, by the mean
value theorem,

fij

k
N � 1

� �
pðN � 1Þ

Z k=ðN�1Þ

ðk�1Þ=ðN�1Þ
fijðzÞ dz

þ
K1

N � 1
for k ¼ 1; . . . ;N � 1

and so, for n ¼ 1; . . . ;N � 1,

exp
Xn
k¼1

fij

k
N � 1

� �( )

p exp ðN � 1Þc
n

N � 1

� �
þ K1

n o
.

The positivity of the payoffs also implies that c is Lipschitz
continuous with Lipschitz constant K2 ¼ supfjfijðzÞj :
0pzp1g. Thus,

exp ðN � 1Þc
n

N � 1

� �n o

¼ ðN � 1Þ

Z n=ðN�1Þ

ðn�1Þ=ðN�1Þ
exp ðN � 1Þc

n
N � 1

� �n o
dx

peK2ðN � 1Þ

Z n=ðN�1Þ

ðn�1Þ=ðN�1Þ
expfðN � 1ÞcðxÞg dx

for n ¼ 1; . . . ;N � 1.
Note also that

najj þ ðN � 1� nÞaji

ðN � 1Þaji

pmax
ajj

aji

; 1

� �
for all n ¼ 1; 2; . . . ;N � 1.

Substituting into (6), it follows that

1

rijðNÞ
p1þmax

ajj

aji

; 1

� �
eK1þK2 ðN � 1Þ

�

Z 1

0

exp½ðN � 1ÞcðxÞ� dx.

ARTICLE IN PRESS
D. Fudenberg et al. / Theoretical Population Biology 70 (2006) 352–363 361



A similar argument shows that

1

rijðNÞ
X1þmin

aij

aii

; 1

� �
e�K1�K2ðN � 1Þ

�

Z 1

0

exp½ðN � 1ÞcðxÞ� dx.

To determine the asymptotic behavior of the integral note
that fijðzÞ40 for 0pzoz�ij and fijðzÞo0 for z�ijozp1.
Thus, cðxÞocðz�ijÞ ¼ bij for all xaz�ij . Moreover,
c00ðz�ijÞ ¼ f0ijðz

�
ijÞo0. Thus, the Laplace method for approx-

imating integrals of the form
R
exp½NhðxÞ� dx as N !1

(see e.g. de Bruijn, 1958, Chapter 4) yields that

lim
N!1

R 1
0 exp½NcðxÞ� dx

N�1=2 expðNbijÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2p
f0ijðz

�
ijÞ

s
.

It follows that there exist constants 0omijoMijo1 such
that mijpN1=2 expðNbijÞrijðNÞpMij for all NX2.
The assertion is obtained by considering all pairs of
distinct strategies and taking m ¼ miniajmij and M ¼

maxiajMij . &

Proof of Theorem 3. From (5),

p�i ðNÞ
p�l ðNÞ

¼
ðrjiðNÞrkiðNÞ þ rjiðNÞrkjðNÞ þ rkiðNÞrjkðNÞÞiajak

ðrjlðNÞrklðNÞ þ rjlðNÞrkjðNÞ þ rklðNÞrjkðNÞÞlajak

.

From Lemma 2, mpN1=2 expðNbjiÞrjiðNÞpM, so we can
bound each of the six terms in this ratio, for example

m2

N exp½Nðbji þ bkiÞ�
prjiðNÞrkiðNÞ

p
M2

N exp½Nðbji þ bkiÞ�
.

Since all six terms are positive, if aj4minfa1; a2; a3g,
limN!1 p�j ðNÞ ¼ 0. &
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