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Abstract

Prohibitions on using race in affirmative action have spurred a number of admissions systems to adopt
race-neutral alternatives that encourage diversity without appearing to explicitly advantage any particular
group. The new affirmative action system for Chicago’s exam schools reserves seats for students based on
their neighborhood and leaves the rest to be assigned via merit. Neighborhoods are divided into four tiers
based on an index of socioeconomic disadvantage. At each school, an equal fraction of seats are reserved
for each tier. We show that the order in which seats are processed at schools provides an additional lever
to explicitly target disadvantaged applicants. We then characterize tier-blind processing rules that do not
explicitly discriminate between tiers. Even under these rules, it is possible to favor certain applicants by
exploiting the score distribution across tiers, a phenomenon we call statistical targeting. When disadvan-
taged applicants systematically have lower scores than other applicants, the optimal tier-blind processing
order first assigns merit seats and then the tier seats. Our analysis shows that Chicago has been providing
an additional boost to applicants from disadvantaged tiers beyond their reserved slots, a benefit comparable
to what they received from the 2012 increase in reserve size.
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“The way to stop discrimination on the basis of race is to stop discriminating on the basis of
race.”

— U.S. Supreme Court Justice John Roberts, 2007
1. Introduction

Affirmative action policies are often controversial because favoring one group inevitably in-
volves disadvantaging another. This sentiment was behind the U.S. Supreme Court’s decision to
prohibit racial quotas in K-12 public school admissions in 2007, and is part of a broader move-
ment to expand the definition of diversity in admissions. Against this backdrop, Chicago Public
Schools has embarked on one of the nation’s most significant experiments in race-neutral affir-
mative action at the K-12 level, after abandoning their old system of racial quotas in 2009. In
the new system, Chicago’s neighborhoods are divided into one of four tiers based on an index
of socioeconomic disadvantage. At each school, 60% of seats are reserved to be assigned based
on an applicant’s neighborhood tier, and the remaining seats are assigned solely based on merit.'
Applicants can be admitted to both types of seats.”

Since the reservation size for the most and least advantaged neighborhoods is identical at each
school, the new Chicago system appears to be impartial because it does not favor one group of
applicants over another. However, we show that equal size reservations are not sufficient to avoid
explicitly benefitting a particular tier due to the order in which school seats are processed, known
as the precedence order. Our first result characterizes the precedence order which maximizes
representation of a given tier. Given the reserve size, the precedence order provides a lever for
explicit targeting of certain applicants. It is possible to tweak the competition for merit seats
in favor of applicants from a given tier by assigning seats reserved for all other tiers before the
merit seats. This precedence order handicaps applicants from other tiers in the competition for
merit seats.

It is clear that the Chicago’s identical reserve sizes were intended to give the impression of
impartiality under their race-neutral policy. Had the goal been to only admit the most disad-
vantaged, the district could have simply reserved all of the seats for applicants from the lowest
tier neighborhoods. While that policy would encourage diversity, it would not reflect a major
rationale for exam schools: to group together and provide a curriculum tailored to high-ability

! The size of reservation has increased to 70% in 2012.

2 The fact that there are multiple categories of applicants who quality for affirmative action and these applicants
can qualify for multiple types of seats is a widespread feature of affirmative action systems. For example, affirma-
tive action policies in India are implemented through a reservation system that is protected under the Constitution,
and this system earmarks up to 50 percent of government jobs and seats at publicly funded educational institu-
tions to members of historically discriminated groups officially referred as Scheduled Castes (SC), Scheduled Tribes
(ST), and Other Backward Classes (OBC) (Bertrand et al., 2010; Bagde et al., 2016; Sénmez and Yenmez, 2019a;
Sonmez and Yenmez, 2019b). Finland has gender quotas which mandate at least 40% of each gender for public boards,
committees, and councils (Strauss, 2012). There have been similar proposals with 40% male, 40% female, and 20% open
on government boards in Australia (Fox, 2015). The European Parliament (2008) details electoral gender quota systems
used throughout Europe.
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students.” The tradeoff between these two competing objectives — grouping together the highest
achievers and diversity — is reflected in systematic reviews of the policy. For example, a report
from a Blue Ribbon Commission (BRC) appointed to review Chicago’s policy states:

The BJ[lue] R[ibbon] C[ommission] believes the district should strike a balance
between these two extremes [100% merit and 100% tier]. The BRC wants
these programs to maintain their academic strength and excellent record of
achievement, but also believes that diversity is an important part of the histor-
ical success of these programs. (page 2, BRC (2011))

To precisely describe an impartial system, we propose a definition of tier-blindness. A tier-
blind policy is one where the outcome does not depend on the labeling of tiers. We show that
tier-blind precedence rules are balanced: the same number of seats from each tier are processed
between any two merit seats, before the initial merit seat, and after the last merit seat. Tier-
blindness therefore implies that reserve sizes must be equal. It imposes an even more stringent
requirement since it rules out policies where the number of seats from each tier processed af-
ter the merit seats differs by tier. In particular, it rules out the precedence that explicitly targets
applicants from a given tier.

Within the set of tier-blind policies, however, it is still possible to target applicants from par-
ticular tiers by exploiting systematic differences in admissions scores, a phenomenon we call
statistical targeting. When applicants from the most disadvantaged tier have systematically
lower scores than those from other tiers, our main result characterizes the tier-blind precedence
rule that ensures greatest representation of the most disadvantaged applicants. Our result implies
that Chicago’s current tier-blind rule has been providing an additional boost to applicants from
the most disadvantaged tier beyond the reserve set-aside.

In 2012, in an effort to target more disadvantaged applicants, Chicago increased the tier set-
aside to 70% and added a sixth factor to the socioeconomic index. This change was symmetric:
each tier reservation increased by 2.5% of seats. Our last result shows that this increases the as-
signment of applicants from the most disadvantaged neighborhoods under Chicago’s affirmative
action implementation.

We then turn to data from Chicago for two purposes. Since all of our theoretical results are for
a single school’s choice function, we examine the extent to which our results apply to a system
using deferred acceptance. This also provides a window to examine the practical relevance of
key assumptions about oversubscription and score distributions underlying our analysis. Second,
we examine the magnitude of explicit and statistical targeting. Our most important result is that
the change in assignment from the most disadvantaged tier due to the smaller merit fraction in
2012 is comparable to the change in assignment from switching the processing order, holding
fixed the merit fraction. Therefore, the bias in favor of the most disadvantaged due to statistical
targeting is similar to that from the more explicit change in reserve size.

Chicago is a compelling setting for studying affirmative action in school admissions for sev-
eral reasons. Given the schools’ high visibility and frequent appearance on lists of the best public
U.S. high schools, it is not surprising that Chicago’s reforms are seen as a model for other cities.
For instance, Kahlenberg (2014) argues that Chicago’s place-based affirmative action system

3 To more explicitly consider the policy objective, Ellison and Pathak (2016) develop a model of exam schools where
a policy maker values both curriculum matching and diversity, and use it to measure whether race-neutral affirmative
action systems can be an effective substitute for racial quotas.
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is a template for cities like New York, where there are concerns about students at flagship exam
schools not reflecting underlying district demographics.* Moreover, the adoption of schemes like
Chicago’s seem to be a likely consequence of the 2007 U.S. Supreme Court ruling in Parents In-
volved in Community Schools vs. Seattle School District No. 1, which prohibited explicit racial
criteria in K-12 admissions. Indeed, the U.S. Departments of Justice and Education have held up
race-neutral criteria based on geographic factors, as seen in Chicago, as a model for other dis-
tricts (OCR, 2011).° Finally, Chicago’s assignment scheme is a variant of the student-proposing
deferred acceptance algorithm, which is strategy-proof for participants.® This feature allows for
the straightforward computation of counterfactual affirmative action policies without needing to
model how applicants would submit preferences under these alternatives.

The consequences of allowing applicants to be admitted to different types of seats has been
studied in Dur et al. (2018). That paper examines comparative statics when there is only one
reserve group, motivated by neighborhood priority in Boston’s school choice system. The issues
are more involved when there is more than one reserve group. Moreover, Dur et al. do not charac-
terize optimal policies, which is our focus. Chicago also uses scores in admissions which allows
us to study statistical targeting, and there is no comparable phenomenon with lottery based tie-
breaking. Our analysis presents the first optimality results for precedence policies in the context
of the framework of matching with slot-specific priorities (Kominers and Sénmez, 2016).”

While our paper does not provide a complete welfare analysis of Chicago’s affirmative action
system, it does characterize the effects of an important policy lever relevant for any admissions
system that combines open and reserve seats. Given an underlying objective function and legal
constraints, we show how precedence orders can deliver distributional objectives beyond simply
setting reserve sizes. Ellison and Pathak (2016)’s study of the efficiency of race-neutral admis-
sions policies, for instance, makes use of the results here when simulating alternative reserve
policies.

Other related studies of affirmative action include Ehlers et al. (2014), Erdil and Kumano
(2012), Hafalir et al. (2013), Kamada and Kojima (2014), and Kojima (2012).% The model we
study is based on a continuum model version of the matching with slot-specific priorities model
introduced by Kominers and Sénmez (2016). We study a continuum model because it is easier
analytically work with applicant score distributions. Like Echenique and Yenmez (2015), we
characterize optimal choice rules focusing on a given school. However, we take the affirmative
action system as given and consider variations in implementation, while Echenique and Yenmez
(2015) derive affirmative action systems from primitive axioms for diversity without considering

4 The NAACP Legal Defense Fund filed an Office for Civil Rights complaint with the U.S. Department of Education
in September 2012, asserting that the admissions process at NYC’s exam schools violates the Civil Rights Act of 1964
because it uses a single admissions test. Pending New York State legislation (Senate Bill S7738) proposes to broaden the
criteria for admissions.

5 Kahlenberg (2008) reports that more than 60 public school districts use socioeconomic status as an admissions factor.

6 The mechanism design approach to student assignment was initiated by Balinski and Sonmez (1999) and
Abdulkadiroglu and S6nmez (2003). Both papers advocate the adoption of deferred acceptance (DA) in the con-
text of priority-based student assignment. Many urban school districts including Boston and New York utilize DA
(Abdulkadiroglu et al., 2005a; Abdulkadiroglu et al., 2005b; Pathak and Sonmez, 2008; Abdulkadiroglu et al., 2009;
Pathak and S6nmez, 2013; Pathak, 2017).

7 Chicago’s system motivated the model in an earlier version of that paper, Kominers and Sénmez (2013), although
they do not provide any analytical results for the application at Chicago Public Schools (CPS).

8 A theoretical literature examines other aspects of affirmative action policies, including Coate and Loury (1993),
Sau-Chung (2000), Chan and Eyster (2003), Fryer et al. (2008), and Ray and Sethi (2010).
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the issues we examine here. Continuum models, like ours, are also used in a number of other
recent papers including Abdulkadiroglu et al. (2015), Azevedo and Leshno (2016), and Che et
al. (2019).

The next section develops the model. Section 3 examines explicit targeting and characterizes
the best tier-sighted choice function for a given tier. Section 4 characterizes choice functions that
are tier-blind and characterizes the best and worst choice function under this constraint. Section 5
reports on data from Chicago Public Schools. The last section concludes. Proofs are given in the
appendix.

2. Model
2.1. Setup

We work with a continuum model to simplify the analysis. There is a mass n of students.
Let I denote the set of students. Throughout the analysis, we fix /. Each student belongs to
a socioeconomic category or tier t € T = {1, 2, .., t}. In Chicago, a student’s tier depends on
the attributes of her census tract. When a student applies to an exam school, she must take a
competitive admissions exam. The district then takes an equally-weighted combination of the
admissions test score, the applicant’s 7th grade GPA, and a standardized test score to generate a
composite score, which we denote by k € K = [k, k], where K is the continuum interval of the
possible scores. For a given student i, her tier is given by ¢ (i) and her composite score is given
by k(i). A tier ¢ has mass n; of students, where ZZGT n; = n. For any subset of students J C I,
we denote the set and mass of tier t € T students with J; and nlj , respectively. For given tier ¢,
we denote the composite score density function of students in I; with f; : K — R™ and assume
that the density function has no atom. For a given subset of students J C Iy, let flJ K - RT
be the atomless density function of tier ¢ students in J. We represent the mass of tier ¢ students

with scores between £ and £’ < £ with f;}, fi(k)dk.

We are interested in understanding the properties of a school’s choice function. In the case of
a decentralized assignment system, our analysis captures considerations relevant for a particular
school. A centralized matching system based on the deferred acceptance algorithm can be in-
terpreted as an iterated implementation of choice functions across all schools, where in the first
iteration students apply to their top choices and in each subsequent iteration, students rejected in
earlier iterations apply to their next choices.” In Section 5, we examine the extent to which our
analysis of a single school’s choice function captures insights relevant for Chicago’s affirmative
action system, which employs the deferred acceptance algorithm to assign seats at ten schools.

In our continuum model, school capacity is modeled as a set of unit capacity intervals, which
we refer to as slots. Let S denote the finite set of slots each with a unit mass of seats to fill. Then,
the school has a mass | S| of seats to fill. There are 7 + 1 types of slots: tier 1 slots, tier 2 slots, ....,
tier 7 slots, and merit slots. Function 7 : S — T U {m} specifies the type of each slot. We denote
the set of tier ¢ slots as S; and the set of merit slots as S,,,. Observe that S; = {s € S| t(s) =} and
Snm ={s € S| t(s) =m}. For each tier ¢, each slot s € S; prioritizes all students in its tier I, over

9 In centralized assignment systems, a change in one school’s choice function in the deferred acceptance algorithm
may generate a sequence of rejections and proposals, which might result in ambiguous overall effects across schools.
Kominers and Sonmez (2016) and Dur et al. (2018) present examples of this phenomenon. When a matching model
includes a large number of participants, there are empirical and theoretical arguments (e.g., Roth and Peranson (1999)
and Kojima and Pathak (2009)), suggesting that such sequences of rejections and proposals are rare.
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all other students. For each s € §;, students in tier ¢ are ordered by composite score. Students
outside tier 7 are ordered by composite score, but each comes after students in tier ¢. Priority for
each merit slot s € S, on the other hand, is solely based on composite scores.

When a merit slot s, considers a set of applicants J, it admits the highest-scoring unit mass
subset of its applicants. Similarly, when a tier slot s; considers a set of applicants J, it admits the
highest-scoring unit mass of its applicants from tier z. The cutoff scores for both types of slots
are determined by this process. Observe that for a merit slot s,,, the cutoff score k‘}’” for J is
given by

-k

t
Z/f/(k)dk:l, )
t:lkjm

and for a tier slot s;, the cutoff score k}’ for J is given by

k
/ £ ydk=1. )
K}
If J is such the expression (1) or (2) does not equal 1, we set the corresponding cutoff to k.
To simplify the analysis, we rely on the following assumption throughout the paper.

Assumption 1 (Oversubscription). Foreacht € T,

ne = [Se| 4 [Sml.

This assumption states that for each tier 7, the mass of tier ¢ students is at least as great as the
mass of slots they are competing for.

2.2. Choice function

A choice function formally specifies the set of selected students from any given set of appli-
cants at a given schools. To define the choice function, it is necessary to specify how slots are
processed. The slots in S are processed according to a linear order > on §, that we refer to as a
precedence. Given two slots s, s” € S, the expression s > s” means that slot s is to be filled before
slot s” whenever possible. We say that s precedes s’ or s is processed before s’. The precedence
rank of a slot is the number of slots that precede it plus one. We say s is the £th (merit) slot
if the number of (merit) slots preceding it is £ — 1. We say a pair of merit slots s, s’ € S, are
subsequent if there does not exist another merit slot § € Sy, such that s > § > s'. Similarly, we say
a pair of tier slots s, s € S\ S,, are subsequent if there does not exist another tier slot § € S\ S,
such that s > § > 5'.

The choice function depends on the set of slots, the types of these slots, and their precedence.
Therefore, when describing a choice function, there are three inputs: the set of slots S, the t
function that specifies the types of these slots, and the linear order > that specifies the precedence
of these slots. For a given triple (S, t,r), the choice from a set of students J is denoted by
C(S, t,>, J). Throughout the analysis, the set of slots S is fixed. Moreover, with the exception
of Section 3.2, the function t is fixed. Therefore, we drop S and 7 as arguments of the choice
function, referring to choice as C (>, J), except in Section 3.2.
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Construction of C (>, J): For a given triple (S, 7, >) and set of students J, the choice C (>, J)
will be constructed as follows: Each slot will be filled in order of precedence > given the criteria
described above. That is, when it is the turn of a merit slot, it will be filled with the highest-scoring
unit mass subset of applicants that are so far unchosen. When it is the turn of a tier ¢ slot, it will be
filled with the highest-scoring unit mass subset of applicants from tier ¢ that are so far unchosen.

Under Assumption 1, for any tier ¢, there are more tier ¢ applicants than the mass of slots they
are competing for. Therefore, all tier  slots will be filled by tier # candidates.

3. Explicit targeting
3.1. The best and worst precedence for a given tier

Affirmative action schemes are designed to favor applicants from particular tiers. To have the
greatest representation from a particular tier, it is of course possible to only admit applicants
from that tier. However, as discussed in the introduction, this policy conflicts with the competing
goals of exam school admissions of both grouping together the highest achievers and having
diversity. Moreover, a policy that only admits applicants from one tier is not tier-blind, as we
more formally describe below. We therefore hold the fraction of reserved seats from each tier
fixed at equal sizes and characterize the precedence policies that explicitly target the greatest
and lowest representation for a given tier.

A preliminary structural result provides a convenient simplification for describing precedence
orders. To determine the outcome of a given choice function, we will show that it is sufficient to
specify the number of slots from each tier between any two subsequent merit slots and not their
exact location relative to one another. To express this formally, we first define what it means for
two precedences to be equivalent.

Definition 1. For a given set of slots S and their types t, the precedence > is equivalent to

precedence & if precedence & can be obtained from precedence > by a sequence of swaps of the

precedence ranks of any pair of tier slots s, s” € S\S,,, where there is no merit slot s,, such that
!/

S Sy>s

Equivalence of two precedences simply means that
1. they have the same number of merit slots with identical precedence ranks, and
2. for any given tier ¢, the number of tier ¢ slots between any two subsequent merit slots is
identical under both precedences, as is the number of tier ¢ slots before the first merit slot
and the number of tier ¢ slots after the last merit slot.

The next lemma justifies this equivalence terminology.

Lemma 1. Fix the set of slots S and their types t. Let > and & be two equivalent precedences.
Under Assumption 1,

C,H=CEG,I).

The proofs of this and all other results are contained in the appendix.
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The maximal tier ¢ assignment is when the mass of assignment which is (weakly) greater than
the mass of all possible tier ¢ assignments. The minimal tier ¢ assignment is when the mass of
assignment which is (weakly) smaller than the mass of all possible tier ¢ assignments. Our first
main result characterizes the precedence orders that attain the maximal and minimal mass of
assignments for applicants of a given tier.'” The statement of this result is simplified, thanks to
Lemma I.

Proposition 1. Fix the set of slots S, their types t, and tier t* € T.

e Let > be a precedence order where each slot of each tier t # t* precedes each merit slot and
each merit slot precedes each slot of tier t*.

e Let > be a precedence order where each slot of each tier t* precedes each merit slot and
each merit slot precedes each slot of any tier t # t*.

Then under Assumption 1, among all precedence orders,

(i) the maximal tier t* assignment is attained under >,
(ii) the minimal tier t* assignment is attained under .

While this statement sounds intuitive, its proof requires understanding the implications of
a carefully constructed sequence of swaps in the precedence order between merit slots, tier ¢*
slots, and tier ¢ # t* slots. In the proof, we take an arbitrary precedence and apply this sequence
of swaps to arrive at the desired conclusion for part (i). The spirit of the argument for part (ii) is
similar, even though the sequence of swaps is not. The figures in the proof shown in the appendix
provide an illustration for the case of four tiers.

An important issue with the precedence order > which maximizes representation of tier ¢*
applicants is that it tweaks the competition for merit seats to the benefit of applicants from tier
t* by dropping the best applicants from other tiers from competition. In contrast, the precedence
order 1> is the other extreme that tweaks the competition for merit slots to the detriment of tier ¢*
applicants. Hence, this proposition raises the question of whether either of these two precedences
can be considered “equitable,” despite the identical number of tier slots.

3.2. Eliminating explicit targeting

For a given set of equally-sized reserve slots, Proposition | characterizes the precedence pol-
icy that has the greatest and lowest representation for a particular tier. That tier either receives
favorable or unfavorable treatment for the competition at merit slots under these two policy ex-
tremes. In our view, the biased competition for merit slots due to these precedences is akin to the
more visible bias associated with uneven tier reserve sizes. As such, we would like to eliminate
uneven treatment of different tiers due to either visible or subtle design parameters. We therefore
focus on the class of rules that do not explicitly target applicants by differentiating across tiers.

Explicit targeting across tiers will be eliminated only when the label of tiers play no role
in the choice function. This idea motivates the following definition of tier-blindness. A merit-

10 In the appendix, we show a somewhat stronger result that the set of tier * students chosen by the choice function
induced by 5 includes the set of tier 1* students chosen under any other precedence >, and the set of tier * students
chosen under any other precedence > includes the set of tier 7* students chosen by the choice function induced by ».
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preserving bijection v : 7 U {m} — T U{m} is a one-to-one and onto function where 7 (m) = m.
This bijection simply relabels the tiers.

Definition 2. A precedence = is tier-blind if and only if for any set of slots S, for any type
function t, for any merit-preserving bijection 7, and for any group of students J,

C(S, 1,0, J)=C(S,n(x),>, J).

This definition simply states that relabeling tiers does not change the outcome.

Tier-blindness is an anonymity condition across tiers, and it restricts the structure of prece-
dence orders. We next identify the mechanical structure implied by tier-blindness.

Definition 3. Precedence 1> is balanced if for any two tiers ¢,¢' € T:

i) there is an equal number of tier slots for tiers ¢ and ¢’ between any two subsequent merit
slots,
ii) there is an equal number of tier slots for tiers ¢ and ¢’ before the first merit slot, and
iii) there is an equal number of tier slots for tiers 7 and ¢’ after the last merit slot.

Due to Lemma 1, the relative position of tier slots between any pair of subsequent merit slots is
immaterial.

Precedence orders characterized in Proposition 1 are clearly not balanced. To give some ex-
amples of balanced precedence orders, let us suppose that there are two tiers and denote generic
slots for tier 1 as s1 and generic slots for tier 2 as s3. In this environment, the following three
precedences are all balanced:

1) s1>85>85>8>Sm>Sm,
S——
# tier 1=#tier 2
2) Sm>Sm>Sm > S| > S| > S| >5 >8>S,

# tier 1=#tier 2
3) SI>SH>SID>SI>Sm >SS >SS >S>S)> S| >S2> Sm > Sm > Sm > 52 > §2 > S5 > S
— —_—

# tier 1=#tier 2 # tier 1=#tier 2 # tier 1=t#tier 2

Our next result shows that tier-blindness and balancedness are equivalent.

Proposition 2. Fix the set of slots S and their types t. Under Assumption 1, a precedence order
is tier-blind if and only if it is balanced.

This proposition implies that under tier-blindness, there must be the same number of slots for
each tier. Given an equal fraction of reserved seats for each tier, there are still many precedence
orders that are tier-blind, but they may differ in how they distribute access to students from
different tiers. How these tier-blind admission policies distribute access is a consequence of the
statistical properties of score distributions across tiers, an issue we examine next.
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4. Statistical targeting
4.1. The best and worst tier-blind precedence

In the last section, we showed that there are many possible tier-blind admissions policies,
which by definition do not explicit target a given tier. Within this class, however, policies may
lead to substantially different access across tiers due to the distribution of scores across tiers.
Statistical targeting, one of the central concepts we formulate in our paper, involves choosing a
policy among tier-blind precedence policies with the potential objective of optimizing the number
of seats assigned to students of a specific tier, utilizing the differences between the distribution
of scores across tiers.

Unlike explicit targeting, which is easier-to-understand, the implications of statistical target-
ing are not as straightforward. The effects of this aspect of affirmative action policies may be as
large as other more explicit policy levers. It is, therefore, important to understand statistical tar-
geting to avoid unintentionally favoring certain groups. Some policymakers may find this more
subtle policy lever easier to navigate since reaching desired outcomes might not create a visible
wedge between different groups. We caution that policies critically relying on statistical targeting
may be prone to abuse without the benefit of full transparency.

Without additional structure on the problem, it is not possible to differentiate between ap-
plicants of different tiers under a tier-blind precedence by the very nature of this concept. The
following empirically-motivated condition on the distribution on scores allows us to characterize
the best tier-blind precedence for the lowest socioeconomic tier.

Assumption 2. f;(k) > fi(k),Vke K and VreT.

Assumption 2 states that for any given score, tier 1 students have the lowest representation
compared to all other tiers. For notational convenience, we state this assumption for all scores
in K, but it only needs to hold for all “sufficiently high” scores within the relevant range where
applicants may be admitted. While this assumption appears strong, we will show in Section 5
that the score disadvantage of tier 1 students holds for applicants at the majority of schools in
Chicago.!! We are now ready to state our main result:

Theorem 1. Fix the set of slots S and their types t. Under Assumptions 1 and 2, among tier-blind
precedence orders,

i) the maximal tier 1 assignment is attained when all merit slots precede all tier slots, and
ii) the minimal tier 1 assignment is attained when all tier slots precede all merit slots.

Under Assumption 2, at any given score, there is lower representation of tier 1 applicants
compared to other tiers. When an even share of reserve slots across tiers are filled before merit
slots, the gap at the upper tail of the score distribution widens between tiers. As such, the larger
the share of reserve slots that are processed prior to merit seats, the lower is the access for tier

1 Appendix A.7, we show that a weaker assumption of the first-order stochastic domination of cumulative score
distribution is not sufficient for Theorem 1 and Proposition 3.
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1 applicants for merit slots. Hence, maximal access is attained when all merit slots precede tier
slots, just as minimal access is attained when all tier slots precede merit slots.

How do applicants from the highest tier fare under these admissions policies? To answer this
question, it is necessary to specify how scores from highest tier compares with those of other
tiers. The following assumption is the mirror image of Assumption 2.

Assumption 3. f;(k) > f;(k),Vke K and VreT.

Assumption 3 states that for any given score, there is higher representation of tier 7 students
compared to all other tiers. As with Assumption 2, we state this assumption for all scores K, but
it only needs to hold for all scores within the relevant range where applicants may be admitted,
and return to discuss this assumption in Section 5.

Our next result shows that under Assumption 3, there is a clear conflict of interest between
the highest and lowest tier under our specified precedence policies.

Proposition 3. Fix the set of slots S and their types t. Under Assumptions | and 3, among
tier-blind precedence orders,

i) the maximal tier t assignment is attained when all tier slots precede all merit slots, and
ii) the minimal tier t assignment is attained when all merit slots precede all tier slots.

This result is the symmetric counterpart to Theorem 1, but for the highest socioeconomic tier.
Theorem | and Proposition 3 show that the tier-blind policy that maximizes representation of the
lowest tier minimizes representation of the highest tier, and vice versa. In Section 5, we report
the difference in access across tiers between the best and worst tier-blind precedence for each
school. We show that the difference between the best and worst precedence policies even among
tier-blind policies can be substantial.

When Chicago Public Schools launched the tier-based affirmative action system in 2009, the
system adopted a precedence where all merit slots precede all tier slots. We denote this as the
CPS precedence. Given a reservation size and tier-blindness, Theorem 1 and Proposition 3 imply
that the CPS precedence is the best policy for tier 1 applicants and the worst policy for tier 4
applicants. That is, given Chicago’s tier reserves, our results show that Chicago’s policy is biased
in favor of applicants from the most disadvantaged neighborhoods at the expense of applicants
from the most advantaged neighborhoods, even though it is tier-blind.

4.2. Increasing the size of reservations

In the 2011-12 school year, Chicago Public Schools increased the size of tier reservations
from 60% to 70%. That is, the share of tier slots increased from 15% to 17.5% for each tier. This
change was made at the urging of a Blue Ribbon Commission (BRC, 2011), which examined the
racial makeup of schools under the 60% reservation compared to the old Chicago’s old system
of racial quotas. They advocated for the increase in tier reservations on the basis it would be

“improving the chances for students in neighborhoods with low performing schools, increasing
diversity, and complementing the other variables.”
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Our next result shows that under the CPS precedence, increasing the size of reservations
results in greater access for the lowest tier students, but diminishes access for the highest tier
students.

Proposition 4. Under the CPS precedence, and Assumptions 1-3, an equal sized increase in the
number of tier slots,

i) weakly increases the mass of tier 1 assignment and
ii) weakly decreases the mass of tier t assignment.

The intuition for Proposition 4 is simple. Under Assumption 2, higher tier students on average
have higher scores than tier 1 students. Therefore, tier 1 students have less to lose from a reduc-
tion in the share of merit seats compared to other tiers. In contrast, under Assumption 3, tier 7
students have on average higher scores than other tiers, and as such, they have more to lose from
a reduction in the share of merit seats.

Proposition 4 together with Theorem 1 imply that the best tier-blind rule for tier 1 students is
equal-size reserves with no merit seats. That is, in the case of Chicago with four tiers, the best
tier-blind precedence policy is a 25% reservation for each tier and, thus, no merit slots. Indeed,
in the policy discussion about modifying the plan, some advocated for the complete elimination
of merit seats and equal-sized shares for each tier (see, e.g., BRC (2011)).

4.3. Comparing two extreme precedence orders

The tier-blind precedence orders that maximize either tier 1 or tier 7 assignment are extremal:
under Assumptions 2 and 3, either all merit slots precede all tier slots or all tier slots precede
merit slots.

The two extreme precedence orders also play an important role in Indian affirmative action
systems used for government positions and seats at public schools. The precedence where all
merit slots precede all reserve (i.e. tier) slots is known as a vertical reservation. Vertical reser-
vations are considered a higher-level reservation and are exclusively intended for historically
discriminated classes of people such as Scheduled Clans, Scheduled Tribes, and Other Backward
Classes. The precedence where all reserve slots precede all merit slots is known as a horizontal
reservation. Horizontal reservations are considered lower-level reservations and are intended for
other groups of disadvantaged citizens such as women or the disabled (S6nmez and Yenmez,
2019a; S6nmez and Yenmez, 2019b).

In this subsection, we investigate the performance of these two extreme precedence orders
when we relax Assumptions 2 and 3. We first state the weaker form of Assumption 2.

Assumption 4. For all k € K,
1 r
— 2 fitk) = fith).
1=2

Assumption 4 states that for each score k € K, the average representation of all other tier stu-
dents is weakly more than the representation of tier 1 students. It is easy to verify Assumption 2
implies this assumption, but not vice versa. Our next result compares extreme precedence orders
under this assumption.
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Proposition 5. Fix the set of slots S and their types t. Let » and ' be tier-blind precedence
orders in which merit slots precede tier slots and tier slots precede merit slots, respectively.
Under Assumptions | and 4, Cle,HoC'¢/, 1.

Proposition 5 states that, under Assumptions | and 4, when all merit slots precede all tier
slots, there is higher tier 1 assignment compared to the one when all tier slots precede all merit
slots. Appendix A.7 shows that we do not obtain a version of Proposition 5 for tier 7 under the
counterpart of Assumption 4 for tier f.

5. Evidence from affirmative action in Chicago
5.1. Modeling assumptions

In this section, we investigate the extent to which our theoretical results provide insights about
Chicago’s affirmative action system and quantify how the precedence affects the allocation of
students from different tiers to particular schools. Our data consists of application files from
Chicago Public Schools for the 2012-2013 school year, and contain student rankings, tier, and
composite scores. Students submit their rankings after knowing their composite score. A total of
16,818 applicants ranked schools, with 3,876 from tier 1, 4,292 from tier 2, 4,648 from tier 3,
and 4,002 from tier 4. There are ten schools with a total of 4,025 seats.

In 2012-13, CPS used six factors to place neighborhoods into tiers: (1) median family income,
(2) percentage of single-parent households, (3) percentage of households where English is not the
first language, (4) percentage of homes occupied by the homeowner, (5) level of adult education
attainment, and (6) average ISAT scores for attendance area schools. Based on these factors, each
census tract was given a score, scores were ranked, and then census tracts were divided into four
groups, each with approximately the same number of school-age children. Tier 1 tracts have the
lowest socioeconomic index, while tier 4 tracts have the highest socioeconomic index. At each
school, for 30% of the seats, the admissions criteria was merit-based using composite scores.
The remaining 70% of the seats were divided into four equally-sized reserves, one for each tier.
At each 17.5% reserve for a given tier, the admissions criteria was merit-based within that tier.
Students could rank up to six choices, and applications were processed via the student-proposing
deferred acceptance (DA) algorithm using the CPS precedence.

Chicago’s affirmative action system differs from our model in one important way. We’ve fo-
cused on the properties of one school’s choice function, but CPS uses DA to assign ten schools.
This fact raises the question of how best to interpret our modeling assumptions using data from a
centralized match. As we mentioned before, DA can be interpreted as the iterated application of
choice functions across all schools, where in the first iteration students apply to their top choices
and in each subsequent iteration, students rejected in earlier iterations apply to their next choices.
Under DA, it is sufficient to look at the cumulative set of proposals to a school during the algo-
rithm to determine who is assigned to that school. Indeed, this property motivated Hatfield and
Milgrom (2005) to define DA as the “cumulative offer” algorithm. Consequently, we investi-
gate our three assumptions by considering the set of applicants who are subject to each school’s
choice function — that is, those who apply to that school during CPS’s DA implementation. >

There is strong support for Assumption 1, which states that there are more tier ¢ students than
the number of tier # and merit slots at a school for any ¢. For each of the ten schools, the number

12 This set of application is identical to the “sharp sample” defined in Abdulkadiroglu et al. (2014).
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of applicants from each tier is greater than the number of merit slots and slots reserved for that
tier. In most cases, the number of applicants is far greater than the number of slots. For instance
at Payton, the most competitive school, there are 2,091 applicants from tier 4 competing for 106
seats and the ratio of applicants to seats is similar for the other three tiers. Tier 4 applicants are
less interested in schools with lower admissions cutoffs. At King, the number of tier 4 applicants
is only about double the number of seats for which they compete. Moreover, at less competitive
schools, the composition of applicants includes a larger share from lower tiers than higher tiers.
At both King and South Shore, there are nearly three times as many applicants from tier 1 than
tier 4.3

There is also strong support for Assumption 2, which states that tier 1 students have lower
scores compared to all other tiers at each point over a relevant range. For each tier, Fig. 1 plots
a smoothed estimate of the score distribution for each school ordered by merit cutoff.'* The tier
1 line is below the corresponding lines for each other tier at nine schools, when we define the
relevant range as scores above the cutoff for merit seats. Since this cutoff will likely be high when
merit slots are processed first, it is also worth examining a more conservative definition of the
relative range as scores greater than the minimum score needed to qualify for a tier seat. This is
a conservative assumption because under the CPS precedence, the lowest scoring applicant from
a given tier may have a score well below what is needed to obtain a merit seat. In such a case,
applicants with scores near this threshold are unlikely to influence the competition for merit seats
under different precedence orders. For the more conservative definition, the tier 1 line is below
the other lines for the six most competitive schools. For these six schools, we therefore expect
a close match between the best and worst tier-blind precedence computed in Theorem | and the
Chicago data. For the other four schools, tier 1 applicants score systematically lower than appli-
cants from other tiers, even though Assumption 2 is not exactly satisfied. Since Assumption 2 is
sufficient, but not necessary, it is still possible that the optimal tier-blind precedences calculated
in Theorem 1 account for empirical patterns at these schools. It’s worth noting that the weaker
Assumption 4 is satisfied at two of these four schools using the conservative definition of the
relevant range (see Fig. A.19).

For the most competitive schools, there is strong support for Assumption 3, which states that
tier 4 students have higher scores compared to the other tiers. If the relevant range starts from the
minimum score needed to qualify, the tier 4 line is above the lines from other tiers for the five
most competitive schools. If the relevant range starts from the minimum score needed to qualify
for a merit seat, the tier 4 line is also above all the other lines at Westinghouse. Proposition 3 is,
therefore, likely most relevant for these schools.

5.2. Comparing alternative affirmative action policies

The best and worst precedence for tier 1 under 30% merit

Fig. 2 reports the fraction of seats assigned to tier 1 students under the best and worst policy and
the best and worst tier-blind policy for tier 1 applicants, when 30% of seats are reserved for merit.
We compute these policies by re-running DA for the different precedence orderings holding the

13 South Shore is a new school that opened in 2012-13 and therefore may have experienced unusually low demand in
its initial year.

14 Since scores are discrete, we report a local linear smoother with bin size of 1 using STATA’s lowess command. Scores
range from 0 to 900, but we plot the range above 600 since no applicants below that score are admitted.
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submitted ranking fixed.!> The figure tabulates the fraction of seats assigned to tier 1 students
across all schools and then reports a breakdown by school, where schools are ordered from left to
right by selectivity. At Payton, for instance, the cutoff for tier 1 seats is 801, while the cutoff for
tier 4 seats is 892. Since merit seats precede tier seats under the CPS precedence, the merit cutoff
is even higher at 898. At Northside and Young, there is also a roughly 100 point gap between the
score of the last admitted tier 4 and tier 1 applicant at their respective tier seats. To obtain a merit
seat at either school, an applicant must have nearly a perfect score (897 and 886, respectively).
South Shore and King are the least competitive schools, both with tier 1 cutoffs of 650 and merit
cutoffs of 704 and 714, respectively.

Across all schools, an additional 124 tier 1 students are assigned under the best tier 1 prece-
dence compared to the best tier-blind precedence for tier 1. This comparison can be seen by
comparing columns 1 and 2 of Fig. 2 and recalling that a total of 4,025 students are assigned.
It’s worth noting that for a single school’s choice function, Lemma 1 implies that it is not nec-
essary to specify the ordering of the tier seats that precede the merit seats. We therefore report
the allocation generated by precedence Tier2-Tier3-Tier4-Merit-Tier 1 in the first column. Under
the best policy for tier 1 applicants, a total of 875 tier 1 applicants are assigned to any school,
so the reduction in the number of tier 1 students assigned due to tier-blindness, the “cost of
tier-blindness,” of 124 students is substantial.

For particular schools, the cost of tier-blindness depends on school selectivity. At the most
competitive schools, the reduction in how many tier 1 applicants are assigned in the best tier-
blind policy is small. At Payton, one fewer tier 1 student is assigned in the best tier-blind policy.
At Northside, four fewer tier 1 students are assigned in the best tier-blind policy. There is a sub-
stantial difference, however, at somewhat less competitive schools. At Westinghouse, 33 fewer
students are assigned under the best tier-blind policy for tier 1. Fig. 1 shows that there are more
high-scoring applicants from higher tiers at score ranges needed to qualify for the most com-
petitive schools. The difference in scores across tiers narrows at score ranges needed to qualify
for less competitive schools. At the most competitive schools, almost all of the merit seats are
allocated to students from tiers other than tier 1, leaving little room for precedence to influence
the applicant pool at merit seats. At less competitive schools, the impact of precedence is larger
because the competition for merit seats across tiers is more even.

The range of outcomes from the best and worst tier-blind policy shows the potential scope for
statistical targeting. This range can be seen by comparing the second and third columns of Fig. 2,
which are the best and worst tier-blind precedence for tier 1. A total of 39 fewer tier 1 students are
assigned in worst tier-blind policy compared to the best tier-blind policy for tier 1. For particular
schools, statistical targeting allows for a smaller range of outcomes at more selective schools.
At Payton, there is no difference for tier 1 applicants. At Northside, the tier-blind range is 3
students, and at Young, it is 1 student. At the other extreme, the largest range is at Westinghouse
and Lindblom, where 8 more tier 1 students could be assigned to each school in the best tier-blind
policy for tier 1 compared to the worst one.

While there is a substantial gap between the best policy for tier 1 and the best tier-blind policy,
there is almost no difference between the worst policy for tier and the worst tier-blind policy. This
fact can be seen by comparing the third and fourth columns of Fig. 2. Only three fewer students
are assigned in the worst policy for tier 1 compared to the worst tier-blind policy for tier 1. The

15 Since applicants are allowed to rank at most six choices in the CPS mechanisms, their implementation of DA is
not strategy-proof. However, we think treating the stated preferences as fixed across these simulations is a reasonable
assumption.
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outcome is the same at 17.5% for all schools, except South Shore and King. This means that tier
1 students are essentially shut out entirely from merit seats under these two worst precedence
policies.

The best and worst precedence for tier I under 40% merit
Our theoretical analysis studied how precedence policies influence the competition for merit
seats. When the share of merit seats increases to 40%, precedence has a larger effect on the al-
location of tier 1 applicants. This can be seen in Fig. 3, where we tabulate the outcome of the
four precedence policies in Fig. 2, but for 40% merit. As described above, the initial CPS affir-
mative action system was launched with 40% merit, but it switched to 30% in 2010-2011. The
figure shows that for all schools, the gap between the best and worst policy for tier 1 applicants
is at least as large when 40% of seats are assigned via merit compared to 30%. This fact can be
seen by comparing the first and fourth columns of Figs. 2 and 3. At most schools, the scope for
statistical targeting is also larger with more merit seats. This fact can be seen by comparing the
second and third columns of Fig. 3 with the corresponding columns of Fig. 2.

Fig. 3 shows that King does not follow the pattern predicted by our theoretical results when
40% of seats are assigned via merit. Fewer tier 1 students are assigned to King compared to
the worst tier-blind policy for tier 1. This discrepancy is not inconsistent with our theoretical
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results given that Assumption 2 fails in a significant part of the potentially relevant score range
at King.

Are the differences between precedence policies quantitatively large or small? Recall that a
Blue Ribbon Commission reviewing Chicago’s policy made the controversial recommendation
to decrease the merit percentage from 40% to 30%. Under the CPS precedence, 63 more tier 1
students are assigned to an exam school when the merit percentage is 30%. Had CPS not de-
creased the merit percentage, 118 more students would be assigned in the best tier 1 precedence
compared to the CPS precedence. Therefore, it would have been possible to hold the merit frac-
tion fixed and increase access for tier 1 applicants simply by changing the precedence order. This
comparison involves explicit preferential treat for tier 1 applicants. When 40% of seats are merit,
34 more tier 1 students are assigned under the CPS precedence compared to the worst tier-blind
policy for tier 1.'° Even relative to the more salient tool of decreasing merit seats, the scope for
statistical targeting is more than half the effect of changing the merit fraction. Given the policy
review and debate leading to the adoption of the 30% merit reservation, these magnitudes suggest
that precedence is far from a trivial consideration.

6. Conclusion

Chicago Public Schools has adopted a landmark placed-based affirmative action system for
assignment to its highly sought-after exam schools. The key feature of that system that we study
is that an applicant can be assigned to more than one type of seat. Though we have focused on
Chicago, many other affirmative action systems provide affirmative action to multiple categories
of applicants, and allow these applicants to be assigned to multiple types of seats. This aspect of
admissions motivated our investigation of how applicant processing affects the implementation
of affirmative action.

We have shown that it is not sufficient to specify that reserves are equally sized to eliminate
explicit targeting. Moreover, even in systems without explicit targeting, there are many possible
implementations of affirmative action driven by statistical differences in scores by applicant tier,
due to statistical targeting. For applicants from a given tier, our formal results characterize the
precedence policy that maximizes and minimizes access for a given reserve size. After formu-
lating a notion of tier-blindness, we also characterize tier-blind precedence that maximizes and
minimizes access for the most disadvantaged applicants. Our results imply that CPS’s current
policy has been favoring the most disadvantaged applicants. We also show that the bias in favor
of applicants from the most disadvantaged tier is comparable to the outright increase in the size
of tier reservations in 2012.

This paper contributes to a new focus in the analysis of priority-based resource allocation
problems like student assignment. A large portion of that literature has taken the social objectives
embodied in the priorities as given and then examined the properties of different market-clearing
mechanisms. This paper, like Echenique and Yenmez (2015), focuses on how various social
objectives are captured by a school’s choice function. Though we have focused much of our
discussion on Chicago, our optimality results provide a new instrument to implement diversity
goals in other hybrid situations with open and reserve competition with multiple reserve groups.

16 The range between the best and worst tier-blind precedence for tier 1 with 40% merit is smaller than the range with
30% merit, where it is 39 students, because of King. Ignoring assignments at King, the range is larger when the merit
share is 40%. Excluding King, 51 more tier 1 applicants are assigned under the best tier-blind precedence for tier 1
compared to the worst tier-blind policy for tier 1 under 40% merit, and the comparable range is 35 under 30% merit.
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If the goal is to maximize representation from particular groups in a neutral way subject to legal
and political constraints, our results can be used to justify particular precedence policies. The
results also open the door to favoring certain reserve groups, even when constraints mandate that
reserve group sizes are identical.

Appendix A

We begin by introducing some additional notation. We fix the set of slots S and type function
7. We denote the set of students chosen for slot s € S by choice function C(-) from set J under
precedence order > with Cy (>, J). Similarly, we denote the set of tier 7 students in C (>, J) with
C!(>, J) and the set of tier ¢ students in Cs(>, J) as C‘ﬁ (>, J). We denote of the mass of chosen
set X with | X]|.

For our analysis below, it is convenient to define tier and merit slot groups:

Definition 4. Given S, t and >, a subset of tier slots G C S \ S, is called a tier slot group if it
consists of either

i) all tier slots that have higher precedence than the highest precedence merit slot, or
ii) all tier slots that have lower precedence than the lowest precedence merit slot, or
iii) all tier slots between any subsequent merit slots.

Definition 5. Given S, T and >, a subset of merit slots H C S, is called an merit slot group if it
consists of either

i) all merit slots that have higher precedence than the highest precedence tier slot, or
ii) all merit slots that have lower precedence than the lowest precedence tier slot, or
iii) all merit slots between any subsequent tier slots.

We begin with a preliminary Lemma that shows that comparing the set of chosen students by
two choice functions is equivalent to comparing the size of the two chosen sets.

Lemma 2. Fix the set of slots S and their types t. Let > and ' be two precedence orders. Then,
foranyteT,

IC', DI <IC'¢, DI &= C' (>, ) S C' ¢, D).

Proof. Fix atiert € T. Observe that for any precedence order, if any student i of tier ¢ is chosen
under the choice function C(-) then all students of tier + with higher composite scores than
student i are chosen under the choice function C(-). This observation immediately implies the
desired result. O

Next, we state a lemma that is used in the proofs of Theorem | and Propositions 1 and 3.

Lemma 3. Fix the set of slots S and their types t. Partition S into three sets S', S, and 3 such
that there are no merit slots in S°. Let > be a precedence order such that

sle s 5° foralls' € S', s> € S%, and s> € $3.

Let ' be another precedence order that differs from > only in the precedence rankings of slots in
S2. Under Assumption I, forallt € T,
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C'e.HcC'e.n < |Jcaencl e n.

ses? ses?

Proof. Eachslotin S! not only has the same precedence ranking in > and &/, but is also processed
before slots in S U S3. Therefore, forall 7 € T,

U cie.n=cie n.
ses! ses!
This equality directly implies that,
U Cle. 1)‘ :‘ U ¢, 1)‘.
seS! seS!
Moreover, since there are no merit slots in $3, forall 7 € T,
Uce n|=|Uce n|=1sns
ses? ses3
by Assumption 1. Therefore forallz € T,
Uce.n|z|Uce.n|<=|Ucaen|=|Uce. |
ses

ses se8? se8?

Hence Lemma 2 implies, forall r € T,

C'e.HeC'E. D« |Jcenel e n. o

ses? ses?
A.l. Proof of Lemma |
We use the following result to prove Lemma | in the main text.

Lemma 4. Fix the set of slots S and their types t. Let > be a precedence order in which a tier
slot § immediately precedes another tier slot s'. Let ' be a precedence order obtained from > by
swapping the precedence ranks of § and s’ and leaving the precedence ranks of all other slots
unchanged. Under Assumption 1, C(>, 1) = C(@/, I).

Proof. Let § be the Ath slot under 5. Consider the outcome of choice function C(-) under
problems (5, 1) and (', I). Since the first (h — 1) slots are the same under both & and »’,
Ci(5, 1) =Cs(/,I) for all s € S with s 5§ (and, therefore s ' s’). Hence, the same subset
of students, denoted by I’, is available to be selected for the Ath slot by choice function C(-) in
both problems (5, I) and (', I). If §, s’ € S, for some ¢ € T, then the highest-scoring two unit
masses of tier ¢ applicants in I” are selected both for § and s’ by C(-) under both & and »'. If
§ € S;and s’ € S, where 7 # ', then, in both problems C (-) selects the highest-scoring unit mass
of tier 7 applicants in I’ and the highest-scoring unit mass of tier ¢ applicants in I’ for § and s,
respectively. Hence, in both cases

G, DHUCy (1) =C;(>', DUCy (', 1),

and the same subset of students is available to be selected for the (% + 2)th slot by C(-) under both
& and . Since the last (|§| — & — 1) slots are the same under both & and >/, C; (5, I) = C; (>, I)
for all s € S with s’ 5 s (and, therefore § > s). Hence,
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Ueae.n={Jce n. o

seS seS

Proof of Lemma 1. Since any equivalent precedence order of  can be obtained from consecu-
tive swapping the ranks of the adjacent tier slots, Lemma 4 implies the desired result. O

A.2. Proof of Proposition |

We use the following remark and Lemmata to prove Proposition 1. We skip the proof of the
following remark for brevity.

Remark 1. Fix the set of slots S and their types t. Let > and " be precedence orders over S
such that the Ath slots under > and >’ have the same type for all 4 € {1, 2, ..., |S|}. Then, for any
subset of students J € I, C(>, J) =C(@/, J).

Lemma 5. Fix the set of slots S, their types t, and tier t* € T such that S includes only merit
and tier t* slots under t. Let > be the precedence order over S such that merit slots precede all
tier t* slots and & be the precedence order over S such that all tier t* slots precede all merit
slots.'” Then, for any given J C I with ntj* > | S| + |Sex| = 1S,

(i) C" (B, 1) CC” (>, J),
(ii) C'(>,J) C C'(5, J) forallt € T\ {t*}.

Proof. With slight abuse of notation, let C,, (>, J) and C,, (>, J) be the set of students selected
for the merit slots from J by C(-) under > and &, respectively. Since ntj* > |S], all slots are filled
and tier r € T \ {t*} students are only selected for merit slots by C(-) under > and &. Hence, it
suffices to show that C!, (>, J) € CL (5, J) forallt € T \ {r*}.

We denote the infimum scores of students in Cy, (>, J) and C, (5, J) with £,, and £,,,, respec-
tively. Since the merit slots are filled first under > and the tier slots are filled first under &, we
have

f k 7 k
> / £l dk = |Sul =" / £ (k)dk. 3)

=12 =1
€m Em

Equation (3) implies that £,, > £,,. For each t € T \ {t*}, if i € C!,(>, J), then k(i) > £, > £,
and hence i € C!, (5, J). Thatis, C! (>, J) C CL (5, J) forall t € T \ {¢*}, and therefore

ch@E,J)CCh, ).
Since all tier ¢* slots are filled with tier #* students,
cre.nCChe.)) = CTE.J)SC e )).
Similarly, for any r € T \ {¢*},
Ccl.HSC,EJ) = C'.J)SC'E.J). O

17 See Fig. A.1 for examples of > and 5.
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> | m| m| m| t| Dt | m| m| m

Fig. A.1. Illustration of precedence orders > and 5.

il m| mEY| | Y] m| om

Dl m| mECEY| m| m| ¢t

DrEVEY| m| m| m| m| ||t

Fig. A.2. Illustration of precedence orders &, &, and 5.

Lemma 6. Fix the set of slots S, their types T, and tier t' € T such that S includes at least two
merit slots under t. Let S,, be partitioned into two non-empty subsets, Sn11 and S,Z,l. Let > be
a precedence order over S such that merit slots in S,L precede all tier slots and all tier slots
precede the merit slots in Si. Let & be a precedence order over S such that all tier t € T \ {t'}
slots precede the merit slots and merit slots precede the tier t' slots. Then, for any J C I with
n! > Syl + 18| forallt €T,

c'e,Hcc'E, ).

Proof. We first consider precedence order . When we move tier ¢’ slots within the tier slot
group such that they are preceded by all other tier slots, by Lemma | the mass of tier ¢’ students
selected from J by choice function C(-) does not change. Then, when we move tier ¢’ slots after
the merit slot group S2, by Lemma 5.(i) the mass of tier #’ students selected from J by choice
function C(-) weakly increases.'® Let & denote the precedence order obtained from > by these
moves.'” Then, C"' (>, J) C C'' (2, J). It therefore suffices to show that C*' (2, J) € C''E, J).

Under both 5 and 5, tier ¢’ slots have the lowest precedence and are filled with tier ¢’ students.
Hence, it is sufficient to compare the mass of tier ¢’ students chosen for the merit slots by C(-)
under & and .

Denote the infimum score of tier € T \ {¢} students assigned to tier ¢ slots by C(-) under &
and & with &, and k;, respectively. Since some merit slots precede the tier slots under & whereas
no merit slot precedes any tier slot for tier ¢ # ¢’ under 5, we have

k k
/ £l ydk > |8, = f fltydk  forallr e T\ {r'}. 4)
ke ke
Equation (4) implies that ki >k, forallt e T \{r'}. Let £, and ¢, be the infimum score of the tier
t € T \ {t'} students chosen by C(-) under & and &, respectively. First note that, tier t € T \ {¢'}
students will not be selected for tier ¢” slots by C(-) under either & or 5. We consider two possible
cases.

18 Notice that, we can treat all ' slots and the merit slot group S,zn as a school independent from the preceding slots.
19 We illustrate examples of precedence orders >, &, and & in Fig. A.2.
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Case 1 ( é, > Z, Jor some t € T \ {t'}): Since /E, > IQ,, there exist some students with score lower
than é, who are chosen for merit slots by C(-) under &, but not &. In other words, the infimum
score of students chosen for the merit slots by C(-) under & is less than C(-) under 5. Since the
merit slots precede tier ¢’ slots under both & and &, all tier ¢’ students chosen for the merit slots
by C(-) under & are also chosen by merit slots by 5. Hence, c’ &, J)C C’/(S, J).

Case 2 (£, < U, for each t € T \ {t'}): Under this case, C'(5, J) € C'(5, J). Since all slots
are filled, each tier ¢’ students selected by C(-) under & is also selected by C(-) under 5, i.e.,
ct@,Jyccr@¢,J). O

Remark 2. Lemma 6 holds even if S does not include any tier 7’ slots.

If Assumption 1 holds for a given population, then, under any precedence order, Assumption |
continues to hold when we consider the remaining sets of students and slots after each slot is
filled. Hence, we can use Lemma 5 and 6 to prove Proposition 1.

Proof of Proposition 1.(i). Consider an arbitrary precedence »'. Without loss of generality, by
Remark 1, we assume the relative precedence order of merit slots are the same under both > and
', If there are no merit slots (i.e., if S,,, = @), then C(>’, I) = C (>, I) by Lemma 1. We have two
cases to consider.

Case 1 (There is one merit slot group under ~'): Here is our proof strategy for Case 1. We will
construct a sequence of precedences where the first element is >, = ' and the last element is &.
We will show that t* assignment weakly increases under choice function C(-) as we move from
one element of the sequence to the next one.

Let > =’ be the first element of the sequence. Construct >} from >, by moving each slot
of type t* to the end of their tier slot group so that each tier slot of type ¢* has lower precedence
than each tier slot of any other type ¢ within their tier slot group. See construction of precedence
| from > in Fig. A.3. (This and subsequent figure illustrate the four tier case without loss of
generality.)

Claim 1. C"" (o, I) = C*" (&), I).

Proof of Claim 1. : Since >6 and >’1 are equivalent, the desired result immediately follows from
Lemmal. <

There is potentially a tier slot of type t* immediately before the only merit slot group under
. If such a slot does not, then >}, = . Otherwise, construct ) from | by moving all the
adjacent tier ¢* slots from immediately before the unique merit slot group to immediately after
it. See construction of precedence ), from ) in Fig. A.3.

Claim 2. C"" (5%, 1) 2 C*" (5, I).

Proof of Claim 2. Let S’ be the set of merit slots (in the unique merit slot group) together with
all of the adjacent type ¢* slots that are immediately before the merit slot group for the case of
| and immediately after it for the case of /. By Lemma 5.(i), we have
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Lemma 5.(i) invoked here
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Lemma 5.(ii) invoked here
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Lemma 5.(ii) invoked here
m| m| | ¢*| ¢
Fig. A.3. Illustration of Case 1 of Proposition 1.(i).
Ucieh.na el e n.
ses’
Equation (5) together with Lemma 3 complete the proof of Claim 2. <

By Lemma 1
t* assignment
doesn't change

By Lemma 5.(i)
t* assignment
weakly increases

By Lemma 1
t* assignment
doesn't change

By Lemma 5.(it)
t* assignment
weakly increases

By Lemma 5.(it)
t* assignment
weakly increases

25

(&)

Next we consider the set of tier slots after the unique merit slot group under 5. Construct >
from &/, by reorganizing tier slots in this set so that

1) slots of the same type are processed subsequently as a group, and
2) slots of type ¢* have the lowest precedence and thus are processed at the end.

See construction of precedence > from o in Fig. A.3.

Claim 3. C*" (&, ) = C"" (o), 1.

Proof of Claim 3. Since ), and > are equivalent, the desired result immediately follows from

Lemmal. <

The argument for the remaining steps will be identical, and hence we only state it once.
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[ ti| m| m| t* ts | m| to t* t3 | m t* t9

By Lemma 6

t* assignment

Lemma 6 invoked here weakly increases

>/ - ti| m| m t* ta| to| I3 m| m t* t* to

By Lemma 6

t* assignment

Lemma 6 invoked here weakly increases

ot [t ta | ta| m| m| m| m| t| t| t¥| ta

Fig. A.4. Tllustration of Case 2 of Proposition 1.(i).

Let ' be the tier that is processed after the unique merit slot group 5. If ' = ¢*, then &y =
> and we are done. Otherwise, construct > from 4 by moving all the adjacent tier ¢* slots
from immediately after the unique merit slot group to immediately before it. See construction of
precedence &) from o in Fig. A.3.

Claim 4. C"" (5, ) 2 C"" (54, I).

Proof of Claim 4. Let S’ be the set of merit slots (in the unique merit slot group) together with all
of the adjacent type #" immediately after the merit slot group for the case of >} and immediately
before it for the case of 1>21. By Lemma 5.(ii), we have

Uclehna el e n. (6)

ses’ ses’

Equation (6) together with Lemma 3 complete the proof of Claim 4. <

Repeated application of the last step of the construction for each ¢ # t* gives us the desired
result.”’

Case 2 (There is more than one merit slot group under »'): Here is our proof strategy for Case
2. Given >’ with at least two merit slot groups, we will construct a precedence " which has
one less merit slot group than under »’, and that weakly increases ¢* assignment under choice
function C(-). Repeated application of this construction will eventually transform Case 2 to Case
1 where we have already obtained the desired result.

Construct > from ' by moving all tier t* slots between the last two merit slot groups im-
mediately after the last merit slot group, and moving all other tier slots immediately before the
penultimate merit slot group. Observe that under the new precedence ", there is one less merit
slot group than under »'. See construction of precedence »” from » in Fig. A 4.

Claim 5. C”" (", 1) 2 C"" (', I).

20 Fig. A.3 the last step is applied twice: first when |>£t is constructed from >’3, and second when |>/5 is constructed
from o).
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Proof of Claim 5. Let Sf* and S¢ .+ denote tier #* slots and other tier slots between the last two
merit slot groups under »". Let S’ be the last two merit slot groups together with the tier slot
group between them for the case of >’ or equivalently the last merit slot group together with the

tier slots in Sf* and ¢ .+ for the case of >”. By Lemma 6, we have

Uce".nalJcl e n. (7)
ses’ ses’

Equation (7) together with Lemma 3 complete the proof of Claim 5. <

Repeated application of this construction decreases the number of merit slot groups, and even-
tually gives us a precedence order with one merit slot group. Hence, application of the steps in
Case 1 to this precedence order gives us the desired result.”! O

Proof of Proposition 1.(ii). Consider an arbitrary precedence ". Without loss of generality, by
Remark 1, we assume the relative precedence order of merit slots are the same under both > and
', If there are no merit slots (i.e., if S,,, = @), then C(>’, I) = C(>, I) by Lemma 1. We have two
cases to consider.

Case 1 (There is one merit slot group under '): In this case, the construction of the sequence
of the precedences as well as the proof itself are completely analogous to that in Case 1 of the
proof of Proposition 1.(i) with a reverse construction. Instead of repeating the entire argument,
we illustrate the modified construction with Fig. A.5.

Case 2 (There is more than one merit slot group under »’'): Here is our proof strategy for Case
2. We will construct a sequence of precedences where the first element is > = " and the last
element is >. We will show that * assignment weakly decreases under choice function C(-) as
we move from one element of the sequence to the next one.

Let >, = o' be the first element of the sequence. We consider the tier slot groups under .
Construct >} from >, by reorganizing tier slots in each tier slot group so that

1) slots of the same type are processed subsequently as a group, and
2) slots of type t* have the highest precedence and thus are processed at the beginning.

See construction of precedence > from >, in Fig. A.6.
Claim 6. C"" (>}, 1) = C"" (>0, I).

Proof of Claim 6. Since >, and | are equivalent, the desired result immediately follows from
Lemma l. <

There is potentially a tier slot of type ¢’ # t* immediately before the last merit slot group
under >} . If such a slot does not exist, then ), = /. Otherwise, construct >, from >} by moving
all of the adjacent tier " slots from immediately before the last merit slot group to immediately
after it. See construction of precedence &/ from > in Fig. A.6.

21 InFig. A 4, this construction is applied twice: first when &” is constructed from ', and second when " is constructed
from .
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o | 0[] t t*.m m| ty t*. T £
By Lemma 1

t* assignment
doesn't change
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By Lemma 5.(i)

t* assignment
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Lemma 5.(i) invoked here

oy {4 [lal 4 t*'t* ] m| m tg. t2
o [ ET t*. t] t1] t | m| m t2. >

Lemma 5.(ii) invoked here

o [ T t*ltg m| m] [ 4 t2. 2
By Lemma 5.(i1)

Lemma 5.(ii) invoked here t* assignment
weakly decreases
oL [ ¢ ¢ m| m[ | 6] t t2. ts

Lemma 5.(ii) invoked here

i [ ] ] ¢ m[ m h t| t tg. to

Fig. A.5. Illustration of Case 1 of Proposition 1.(ii).

By Lemma 1
t* assignment
doesn't change

By Lemma 5.(it)
t* assignment
weakly decreases

By Lemma 5.(i1)
t* assignment
weakly decreases

Claim 7. C"" (o}, I) € C*" (), ).

Proof of Claim 7. Let S’ be the last merit slot group together with all of the adjacent type ¢’
slots immediately before the merit slot group for the case of >} and immediately after it for the
case of ). By Lemma 5.(ii), we have

Ucreh.nelJerehn. ®)
ses’ ses’

Equation (8) together with Lemma 3 complete the proof of Claim 7. <

Repeated application of this step of the construction for each ¢ # r* gives us a precedence
order denoted with »”. If there exists unique merit slot group under ", then application of the
steps in Case 1 to >” gives us the desired result. Otherwise, under > there potentially exists a tier
slot of type * immediately after the penultimate merit slot group. If such a slot does not exist,
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t* m

By Lemma 1

t* assignment
doesn't change

By Lemma 5.(i1)
t* assignment

Lemma 5.(ii) invoked here weakly decreases

By Lemma 5.(ii)
t* assignment

Lemma 5.(ii) invoked here
weakly decreases

o | h

By Remark 2
t* assignment

Remark 2 invoked here

1 GLE
Lk

Lemma 5.(ii) invoked here
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By Lemma 1

t* assignment
doesn't change

S Y

By Lemma 5.(it)
t* assignment
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By Remark 2
t* assignment

K21
Remark 2 weakly decreases

ol sl L] el Lel [
=

Fig. A.6. Illustration of Case 2 of Proposition 1.(ii).

then > = ". Otherwise, construct >; from >" by moving all of the adjacent tier #* slots from
immediately after the penultimate merit slot group to immediately before it. See construction of
precedence > from " in Fig. A.6.

Claim 8. C"" (>, 1) € C" (=", ).

Proof of Claim 8. If > =" then the result is immediate. Let S’ be the last two merit slot groups
together with type r* slots between them for the case of >” and the last merit slot group together
with all of the adjacent type ¢* slots immediately before it for the case of ;. By Lemma 6, we
have

U Cl (s, 1) C U cre" . 9)

ses’ ses’
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Fig. A.7. Score distribution for Case 1 of Proposition 2.

Equation (9) together with Lemma 3 complete the proof of Claim 8. <>

Repeated application of these steps of the construction for last two merit slot groups decreases
the number of merit slot groups and eventually gives us a precedence order with a unique merit
slot group. Then application of the steps in Case 1 to this final precedence order gives us the
desired result. O

A.3. Proof of Proposition 2

It is immediate from Lemma 1 that balancedness implies tier-blindness. To prove tier-
blindness implies balancedness, we show that any unbalanced precedence order is not tier-blind.
For a given S and 7, let > be a precedence order which is not balanced. Let s;, denote the hth
slot under >. Let S; = {s € S|t(s) =t} foreach r € T. Let & be a merit-preserving bijection with
n(f) =1, n(f) =1, and w(t) =t for all t € T \ {,}. Note that s, is a tier slot under (z,>) if
and only if sy, is a tier slot under (7 (7),>) for each h € {1, 2, ..., |S|}. We show that there exists
a subset of students J C I such that C(S, t,>, J) # C(S, 7(t),>, J) and, therefore, > is not
tier-blind. There are two possible cases.

Case 1 (|S;| = |Sy| for all t,1' € T): Suppose under (t,>) the first b > 0 slots constitute a
balanced precedence order and for any b’ > b the first b’ slots fail to constitute a balanced prece-
dence order. Let b, be the number of merit slots in the balanced portion. We call the portion of
> with the lower precedence than slot s the unbalanced portion of . Note that the unbalanced
portion of > starts with a tier slot under both t and 7 (7), i.e., T(sp+1) # m and 7 (T (sp41)) F# m.

There exists at least one merit slot in the unbalanced portion of > under 7 (and, therefore
m(t)). Otherwise, > would be a balanced precedence order under t. Denote the merit slot with
the highest precedence under & in the unbalanced portion with 5. Let u#; be the number of tier
t € T slots between s;, and § under (7, ). Due to the unbalancedness, u; # u, forsomet,t' € T.
Without loss of generality, we take u; > u;.

Now consider a subset of students J with the following score distribution (see Fig. A.7):
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i) Zlefk’i f ydk =b,and f] (k)= f] (k) forall k € [k*,k] and ¢/, 1" € T,

1

i) [§ £/ ()dk =u;and [ £/ (kydk=0forallr € T\ (f),
iii) fk",f ffj (k)dk =S| and /k",,’ fl(dk =0forallt € T\ {f}.

From J, under both 7 and 7 (7), C(-) selects all students with score between [k*, k] to the
first b slots, i.e., the slots in the balanced portion. Moreover, a positive mass of tier 7 students
with score between [k’, k*) will be chosen for the merit slots in the unbalanced portion by C(-)
under 7. However, none of the tier 7 students will be selected for the merit slots in the unbalanced
portion by C(-) under 7 (7). Hence, the mass of tier f students in C(S, 1,>, J) is strictly more
than (b, /) + |S;| and the mass of tier 7 students in C(S, 7 (t),, J) is exactly (b, /1) + |S7].
Therefore,

C(S,t,5,J) £ C(S, 7 (x),>, J).

Case 2 (|S;| # |Sy| for some 1,1’ € T): Without loss of generality we take |S;| > |S;|. Then,

consider the following score distribution: fkk* ftf (k)dk = |S| and fkk* 1 (k)dk = 0 for all ¢ €
T \ {f}. Then, the mass of tier 7 students in C(S, 7,1, J) is |S;| + |S7| and the mass of tier 7
students in C(S, 7 (), >, J) is |S;u| + |S7|. Since |S7| > [S;],

CS,t,0, )#ECS,n(r),>,J). O
A.4. Proofs of Theorem I and Proposition 3
We use the following Lemmata to prove Theorem 1 and Proposition 3.

Lemma 7. Fix the set of slots S, type function t, and precedence order > such that > is a balanced
precedence. Let G = {G', G2, ..., G} be the set of all tier slot groups where all slots in G”
precede the ones in G'\. For any tiert € T, let £; and 57,’ denote the supremum score of tier t
students available to be admitted, i.e. the set of remaining students when all preceding slots are
processed, and the infimum score of tier t students admitted to the tier slot group G” from I by
C (), respectively. If f;(k) > fu (k) for all k € K, then for any r € {1,2, ..., h}

;> 0, and €, > 0},

Proof. For each r € {1,2, ..., h}, we denote the merit slot group between G"~! and G’ by H"
where G is the beginning. The proof is by induction. We start with tier slot group G'. There
exists £}, € K such that

-k
t
> [ todk=a'

t:l(}n

If H' = @, then all students are available to be selected for tier slot group G'. Otherwise, all
students with score at least E}n < k are selected for the merit slots preceding G!. In either case,
Ztl > Ztl, since f;(k) > fy (k) for all k € K. Moreover, balancedness implies
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Fig. A.8. Illustration of score distributions for f; and f;/, and the Infimum and Supremum scores.

2 1

G
/f,(k)dk = % forallr eT. (10)
571

Equation (10) and the facts that £! > £}, and f;(k) > f (k) for all k € K imply that Ztl >0l

Suppose the result holds for all the tier slot groups preceding tier slot group G" where 7 < h.
That is, Z:f] > E;fl and E;fl > Z:f‘. Then, there exists ¢/, € K such that

pr—1
_ Zt

t
> [ ftoak =
=1

That is, all tier r € T students with score at least min{Z;, E,F ~1Y are selected for slots preceding

G’ Since Z::_l > Zf,_], min{E,’_n, Z::_l} > min{Ef ZF_I}. Therefore, f;(k) > fy (k) forall k € K

m> >y
implies that Etf > E;,. Balancedness implies

¢ ,
|G
fi(k)dk = - forallr eT. an
&

- t/

Equation (11) and the facts that ¢7 > ¢/, and f;(k) > fy (k) forall k € K imply that Zti > {',. This
completes the proof.”” O

Lemma 8. Fix the set of slots S and their types t such that |S,,| > 1 and |S;| = |Sy| > 1 for all
t,t' € T. Let > be a precedence order over S in which all merit slots precede all tier slots and
& be a precedence order over S in which all tier slots precede all merit slots.”> Let J C I be a
subset of students such that n,’ > |Si| + |Sml forallt e T.

(i) Under Assumption 2, i.e., flj k) < f,] (k) forallt € T and k € K, the mass of tier I students
in C(>, J) is weakly greater than in C (>, J).

22 See Fig. A.8 for the illustration of the desired result.
B See Fig. A.9 for examples of > and 5.
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D> ti | ts| to| ta| E3| t1| m| m

Fig. A.9. Illustration of precedence orders > and 5.

(ii) Under Assumption 3, i.e., f,J k) < f[-J (k) forallt € T and k € K, the mass of tier t students
in C(5, J) is weakly greater than in C (>, J).

Proof. Let ¢,, and Zm denote the infimum of the scores of students selected for the merit slots
from J by C(-) under > and &, respectively. For each t € T, let £; and £, be the infimum of scores
of students selected for the tier ¢ slots from J by C(-) under > and &, respectively. Let g; and
g: denote the infimum of the scores of tier t € T students in C (>, J) and C (>, J), respectively.
Note that, g; = ¢; and g; < 57, for all r € T'. Since merit slots are processed first under >, we have

L
f fl(kydk=1S;| forallteT. (12)
o

Similarly, since tier slots are processed before the merit slots under &, we have

k
/f,’(k)dk=|St| forallz e T. (13)
&

Equations (12) and (13) imply that ¢, > ¢, for all r € T.>* Next, we prove Part (i) and then
Part (ii).

Part (i): Comparison of Tier 1 Assignment in C (>, J) and C (5, J)
By contradiction, suppose that the mass of tier 1 students in C (>, J) is greater than the mass
in C(>, J). That is,

3 k
f fi todk < / fi (odk. (14)
81 81

Equation (14) implies that g; > g;. The facts that 0 >0, 0 = g1, and g > g imply that
l 1 > £ > g1, and therefore, there exist tier 1 students with scores between [g1, £1) selected for
merit slots by C(-) under 5. Hence, under &, the infimum of tier 1 students selected for the merit
slots by C(-) is g;. Since f;(k) > fi(k) forallt € T and k € K, for all t € T the infimum score
of tier ¢ students in C (%, J) is at most g1. Then, we have

24 One can see this relation in Fig. A.10.
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Fig. A.10. Infimum scores under precedence orders > and &.

-k
t
Z/ﬂ@ﬁﬂﬂ (15)
=1z
81

Equation (14) and g > g imply that
ik ik
> [ 5 wa= 3 [ 5 wa. (16)
=13 =1
g1 81
Equations (15) and (16) imply that
;ok
NESS / £ (k)dk. (17)
=l

For all r € T, Equation (12) and the fact that f;(k) > fi(k) for all k € K imply that ¢, > £;.%
Since g; = ¢, forallt € T, £; > {1 implies that

Pk Pk
Z/ﬂ@MzZ/ﬂwﬁzm (18)
t:lg] t:lgt

Equations (17) and (18) imply that

-k
t
M>Z/ﬂ®ﬂa&
t=lg,

This is a contradiction.

25 Since fik) = fi(k) forallk € K and t € T, in Fig. A.10, tier 7 plays the role of tier 1, and tier 7 plays the role of tier
t. Hence, Fig. A.10 illustrates the relation between ¢; and ¢ .
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>: m| m| t1 [ &3 to| T2 | E3| t1| m| m

>: ti| &3] to| Lol E3| t1 | m| m| m| m

Fig. A.11. Illustration of precedence orders > and &.

Part (ii): Comparison of Tier 7 Assignment in C(>, J) and C(5, J)

We consider two possible cases. First, we consider the case in which for all t € T \ {z} the
mass of tier ¢ students in C (5, J) is weakly less than the one in C (>, J). Since all slots are filled
by C(-) under > and &, then the mass of 7 students in C (5, J) is weakly greater than the mass in
C(>, J). Now we consider the case in which there exists some tier ¢’ € T \ {f} such that the mass
of tier ¢’ students in C (5, J) is strictly is greater than the mass in C (>, J). Then,

7 i
/ £ todk < / £ (odk. (19)

8 gy

Equation (19) implies that g, > g,. by >0y, by = gy, and gy > gy imply that by >0, > g,
and therefore there exist tier ¢’ students with scores between [g,, £,/) assigned to merit slots by
C(-) under &. Since f;(k) > fy (k) for all k € K, the infimum score of tier 7 students assigned in
C (5, J) is at most gy. Equation (12) and the fact that t,J k) < f[-J (k) for all k € K imply that
€y < €;.%° Since ¢, = g, forall t € T, €, < {; implies g, < g;. Since & < g/, g < g7 and the
infimum score of tier 7 students assigned in C (5, J) is at most g/, the mass of tier 7 assignment
in C (&, J) is weakly is greater than the mass in C(>, J). O

Lemma 9. Fix the set of slots S and their types t such that |Sy,| > 1 and |S;| = |Sy| > 1 for all
t,t' € T under t. Let S,ln and S,%l be two nonempty disjoint subsets of Sy,. Let > be a precedence
order over S in which merit slots in S}, precede all tier slots and all tier slots precede the merit
slots in S2,, and & be a precedence order over S in which all tier slots precede the merit slots.”’
Let J C I be a subset of students such that n,J > |8+ ISl forallt € T andk € K.

(i) Under Assumption 2, i.e., flj (k) < f/ (k) forallt € T and k € K, the mass of tier I students
in C(>, J) is weakly greater than in C (>, J).

(ii) Under Assumption 3, i.e., ftj k) < ft-J (k) forallt € T and k € K, the mass of tier t students
in C(&, J) is weakly greater than in C (>, J).

Proof. Denote the infimum score of tier ¢ students in C(>, J) and C (5, J) with g; and g, re-
spectively. Let ¢, and ¢&; be the infimum score of tier # students assigned to first 7 x |S1| + |Sr1n|
slots by C(-) under > and &, respectively. Let ¢, and Zt denote the infimum score of tier ¢ students
assigned to tier ¢ slots by C(-) under > and &, respectively. Since all tier slots are processed first

26 Since f[{ (k) < ft-] (k) for all k € K, in Fig. A.10, tier 7 plays the role of tier ¢/, and tier ¢ plays the role of tier 7.
Hence, Fig. A.10 illustrates the relation between £,/ and ;.
27 See Fig. A.11 for the examples of > and 5.
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under > but some merit slots are processed first under =, Z, > {; for all t € T. Next, we prove
Part (i) and then Part (ii).
Part (i): Comparison of Tier 1 Assignment in C(>, /) and C(5, J)

By contradiction, suppose that the mass of tier 1 students in C (5, J) is greater than the mass
under C (>, J). That is,

k k
fﬁ@&</ﬂm%. (20)

81 81
Equation (20) implies that g; > g;. By Lemma 8, ¢; > ¢;. By our construction, e; > gj.
Then, we have 1 > e] > g1 > g1. Hence, there exist tier 1 students with score between [g1, g1)
assigned to the last merit slot group by C(-) under &, and therefore the infimum of tier 1 students
selected for the last merit slot group by C(-) under & is g;. Since f; (k) > f1(k) forall t € T and

k € K, then for all ¢ € T the infimum score of tier ¢ students in C (%, J) is at most g;. That is,

-k
t
Z/ﬂ@ﬂﬂ& @1

=lg,

By Lemma 7, ¢; > ¢ for all # € T. Since tier 1 students with score between [g1, g1) are not
assigned to the last merit slot group under > and ¢; > e; > g1 > g1 for all t € T, students with
score between [g1, g1) cannot be selected by C(-) under >. That is,

-k
t
E /ftj(k)dk > |S]. (22)
=12z
8

Equations (21) and (22) imply that

7ok ;oK
Z/ﬂ@ﬂ>m22/ﬂwﬂ
=g =g
This is a contradiction.
Part (ii): Comparison of Tier 7 Assignment in C(>, /) and C (5, J)

On the contrary, suppose that the mass of tier 7 students in C (>, J) is greater than the mass in
C(>, J). That is,

K k
/ﬂ@%>/ﬁ®&. (23)
8i &

Equation (23) implies that g; < g7. Since ftf (k) > f/ (k) forall t € T and k € K, the last slots
under both precedence order are merit slots, g7 and g; are the infimum scores of students assigned
to the merit slots under > and &, respectively. Then, the mass of tier t € T students in C (>, J) is

X k
mx/ﬂ@%/ﬂ@%. (24)
£

8t
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|>6: m| to| t1| t4| t3| m| m| ty ta| t3 til m

By Lemma 8.(1)

tierl assignment
weakly increases

Lemma 8.(i) invoked here

[>’1: m| to| t1| t4| 3| m| m| m| ty| t3 t

By Lemma 8.(i)
tierl assignment

Lemma 8.(i) invoked here weakly increases

[>’2: m| m| m| m| to| t1| t4| t3]| o ty| t3 t1

Fig. A.12. Maximal tier 1 assignment under balanced precedence orders.

Similarly, the mass of tier t € T students in C (5, J) is
k k
max / £ (kydk, / £ (oydk ¢ . (25)
& A

Since g; < g;, the first term of Equation (24) is (weakly) greater than the first term of Equation
(25). Similarly, since ¢; > ¢, the second term of Equation (24) is (weakly) greater than the second
term of Equation (25). Hence, forallt € T,

k k
7 k. [ g7 aoak . (26)

87 4

k k
max /f/(k)dk,ff/(k)dk > max
87 £

Equation (26) implies that the mass of each tier ¢ students in C(>, J) is weakly greater than
the mass in C (5, J). However, since the same number of slots are filled under > and & and the
mass of tier 7 students in C (>, J) is strictly greater than the mass in C (5, J), at least one tier’s
assignment needs to be smaller in C (>, J). This is a contradiction. O

Proof of Theorem 1. Fix a set of slots S and a type function 7 such that S,,, # @J. We first show
that among the balanced precedence orders the maximal tier 1 assignment is attained when all
merit slots precede the tier slots.

Maximal Tier 1 Assignment: Let > be a balanced precedence order such that all merit slots
precede the tier slots. Consider an arbitrary balanced precedence order ' such that at least one
merit slot is preceded by a tier slot. We will construct a sequence of precedences where the first
element is >( = > and the last element is . We will show that tier 1 assignment weakly increases
under choice function C(-) as we move from one element of the sequence to the next one.

Let >( =o' be the first element of the sequence. Let H and G denote the last merit slot group
and the tier slot group immediately before it under >, respectively. Construct &} from >, by
moving merit slot group H from immediately after the tier slot G group to immediately before
it. See construction of precedence & from >, in Fig. A.12.

Claim 9. C'(>}, 1) 2 C' (), ).
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|>6: m| to| t1| t4a| 3| m| m| i ty| i3 t1| m

By Lemma 9.(1)

Lemma 9.(i) invoked here tier 1 assignment
weakly decreases

[>’1: m| to| t1| t4| t3| o ta| t3 til m| m| m

By Lemma 9.(1)

Lemma 9.(i) invoked here tier 1 assignment
weakly decreases

|>’2: to| 1| ta| T3] to ty| t3 t1l m| m| m| m

Fig. A.13. Minimal tier 1 assignment under balanced precedence orders.

Proof of Claim 9. First note that the score distributions of available students to be admitted by
C(-) to tier slot group G under >, and to merit slot group H under | satisfy Assumption 2. Let
S’= H UG. By Lemma 8.(i) we have

Uclel.na ke n. 27)

ses’ ses’

Equation (27) together with Lemma 3 complete the proof of Claim 9. <

Repeated application of this step of the construction for the last merit slot group preceded
by a tier slot group gives us a precedence order equivalent to >. Hence, this fact together with
Lemma 1 gives us the desired result.

Minimal Tier 1 Assignment: Let > be a balanced precedence order such that all tier slots precede
the merit slots. Consider an arbitrary balanced precedence order >’ such that at least one tier slot
is preceded by a merit slot. We will construct a sequence of precedences where the first element
is >, = and the last element is >. We will show that tier 1 assignment weakly decreases under
choice function C(-) as we move from one element of the sequence to the next one.

Let >, =’ be the first element of the sequence. Let G and H denote the last tier slot group
and the merit slot group immediately before it under >, respectively. Construct ) from > by
moving tier slot group G from immediately after the merit slot group H to immediately before
it. See construction of precedence > from >, in Fig. A.13.

Claim 10. C' (>}, 1) € C' (), D).

Proof of Claim 10. First note that the score distributions of available students to be admitted by
C(-) to merit slot group H under >, and to tier slot group G under >} satisfy Assumption 2. Let
S’ be the set of slots in H together with all slot groups after H for the case of >, and be the set of
slots in G together with all slot groups after G for the case of (. If S’ = H U G by Lemma 8.(i),
otherwise by Lemma 9.(i) we have

clel.nel e . (28)

ses’ ses’

Equation (28) together with Lemma 3 complete the proof of Claim 10. <
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>y o M lo| G| taf B3| m| m| ta| ta| 3| t1| Mm

By Lemma 8.(i1)
tier t assignment
weakly decreases

Lemma 8.(ii) invoked here

[>/1: m| to| t1| ta| 3| m| m| m| o ta| t3 t1

By Lemma 8.(ii)
tier t assignment
weakly increases

Lemma 8.(ii) invoked here

[>’2: m| m| m| m| to| t1| t4| €3] Lo ta| t3 t

Fig. A.14. Minimal tier 7 assignment under balanced precedence orders.

Repeated application of this step of the construction for the last tier slot group preceded by a
merit slot group gives us a precedence order equivalent to . Hence, invoking Lemma 1 to the
final precedence order obtained through this step gives us the desired result. O

Proof of Proposition 3. Fix a set of slots S and a type function t such that S, # @J. We first
show that among the balanced precedence orders the minimal tier 7 assignment is attained when
all merit slots precede the tier slots.

Minimal Tier 7 Assignment: Let & be a balanced precedence order such that all merit slots
precede the tier slots. Consider an arbitrary balanced precedence order >’ such that at least one
merit slot is preceded by a tier slot. We will construct a sequence of precedences where the first
element is >, = > and the last element is &. We will show that tier 7 assignment weakly decreases
under choice function C(-) as we move from one element of the sequence to the next one.

Let >, =o' be the first element of the sequence. Let H and G denote the last merit slot group
and the tier slot group immediately before it under >, respectively. Construct >} from > by
moving merit slot group H from immediately after the tier slot G group to immediately before
it. See construction of precedence | from >, in Fig. A.14.

Claim 11. C' (o, I) € CT (o)), I).

Proof of Claim 11. First note that the score distributions of available students to be admitted by
C (") to tier slot group G under >, and to merit slot group H under | satisfy Assumption 3. Let
S’= H UG. By Lemma 8.(ii) we have

U ciel.n e | cleh. D. (29)
ses’ ses’

Equation (29) together with Lemma 3 complete the proof of Claim 11. <

Repeated application of this step of the construction for any last merit slot group preceded by
a tier slot group gives us a precedence order equivalent to >. Hence, this fact and Lemma 1 gives
us the desired result.

Maximal Tier 7 Assignment: Let > be a balanced precedence order such that all tier slots pre-
cede the merit slots. Consider an arbitrary balanced precedence order " such that at least one
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[>6; m| to| t1| t4| 3| m| m| & ty| I3 tif m

By Lemma 9.(i1)

tier t assignment
weakly increases

Lemma 9.(ii) invoked here

[>’1: m| to| t1 | ta| t3| to ty| t3 til m| m| m

By Lemma 9.(ii)
tier t assignment

Lemma 9.(ii) invoked here ’
weakly increases

[>’2; to| t1| ta | 3] T2 ty| ts ti1l m| m| m| m

Fig. A.15. Maximal tier 7 assignment under balanced precedence orders.

tier slot is preceded by a merit slot. We will construct a sequence of precedences where the first
element is [>6 =’ and the last element is . We will show that tier 7 assignment weakly increases
under choice function C(-) as we move from one element of the sequence to the next one.

Let >, =’ be the first element of the sequence. Let G and H denote the last tier slot group
and the merit slot group immediately before it under =, respectively. Construct ) from > by
moving tier slot group G from immediately after the merit slot group H to immediately before
it. See construction of precedence | from >, in Fig. A.15.

Claim 12. C' (>, I) 2 C' (>}, D).

Proof of Claim 12. First note that the score distributions of available students to be admitted by
C(-) to merit slot group H under >, and to tier slot group G under | satisfy Assumption 3. Let
S’ be the set of slots in H together with all slot groups after H for the case of &, and be the set of
slots in G together with all slot groups after G for the case of >,. If S" = H U G by Lemma 8.(ii),
otherwise by Lemma 9.(ii) we have

U ciel.n2 | cieh D. (30)

ses’ ses’

Equation (30) together with Lemma 3 complete the proof of Claim 12. <

Repeated application of this step of the construction for any last tier slot group preceded by a
merit slot group gives us a precedence order equivalent to . Hence, this fact and Lemma 1 gives
us the desired result. O

A.5. Proof of Proposition 4

Fix the set of slots S and precedence order . Let /1, e € N such that 7 > e x 7. Let T and T be
two type functions such that

o The first & and 1 — (e x 1) slots under (z,>) and (7, >) are merit slots, respectively, and
o |{seS:t(s)=t}|+e=|{seS:T(s)=r}|forallzeT.
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Let S;={seS:t(s) =t} and 3’, ={s e S:7(s) =t} forall t € T. We denote theAinﬁmum
scores of students selected from I for the merit slots by C(-) under 7 and 7 with ¢ and ¢, respec-
tively. Then,

M-

1

-
Il

i -
/f,(k)dk:han Zf (k)dk =h — (e x 7). (31)
¢ =13

By Assumption 1, under both t and 7, tier ¢ slots are filled with only the tier # students. Hence,
for each ¢t € T, the mass of tier 7 students in C(S, >, 7, ) is

fik)ydk +18;]. (32)

&\M

Similarly, for each ¢ € T the mass of tier ¢ students in C(S,>, 7, I) is

fikydk +15;. (33)

N\?\“‘I

Equation (31) implies that £ < £. Hence, we can rewrite the first part of Equation (31) as

Pl
t

Z / filydk + " / i(k)dk =h, (34)
=17

tlA

and Equation (32) as

k
/f,(k)dk+ / fi(k)dk + |S;]. (35)

The second part of Equation (31) and Equation (34) imply that

/ﬁ(k)dk =eXxTf. (36)

t=17%

Assumption 2 and Equation (36) imply that the mass of tier 1 students selected from / for the
merit slots by C(-) under t is at most

k
/ fitk)dk +e. 37)

By Equations (35) and (37), the mass of tier 1 students in C(S, >, t, I) is at most

k
/fl(k)dk+e+ [S1l.
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s

93

92
fi g1

f2

k

]

Fig. A.16. Illustration of score distributions f and g.

Assumption 3 and Equation (36) imply that the mass of tier f students selected from I for the
merit slots by C(-) under 7 is at least

k
/ fitk)dk +e. (38)
0

By Equations (35) and (38), the mass of tier 7 students in C(S, >, T, I) is at least
k
f fitk)dk + e +|S7|.
i

By construction, |.§}| =|S¢| + e for all t € T. Hence, we can rewrite Equation (33) for tier 1,
i.e., the mass of tier 1 students in C(S,>, T, I), as

k
/fl(k)dk+e+ [S11,

14

which is equal to the maximal tier 1 assignment in C(S, >, t, I). Similarly, we can rewrite Equa-
tion (33) for tier 7, i.e., the mass of tier f students in C(S,>, 7, I), as

k
/ fitk)ydk + e + |S7l,
il

which is equal to the minimal tier 7 assignment in C(S, >, 7,1). O
A.6. Proof of Proposition 5

First notice that, since both > and " are tier-blind precedence orders, by Proposition 2, the
number of tier 7 slots is equal to the number of tier ¢’ slots for any 7, € T.

Let f be a score distribution satisfying Assumptions 1 and 4. Let I’ be student population with
score distribution g such that f1(k) = g1(k) < g2(k) <... < gr_1(k) < g7(k) and Z§=1 fi(k) =
Zi:l g:(k) for all k € K. Notice that, score distribution g satisfies Assumptions 1 and 2 (see
Fig. A.16). Hence, Theorem 1 implies that C' (>, I') 2 C1(/, I').

By our construction of score distribution g, the infimum scores of students assigned to merit
slots under C (>, I) and C (>, I') are the same. Since f](k) = g (k) for all k € K, the masses of
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tier 1 students assigned to merit slots under C (>, I) and C (>, I’) are the same. Moreover, since
we consider the same number of tier slots (each with unit mass capacity) under both C (>, /) and
C(>, 1), we have [C(>, )| = |C' (>, 1')].

Let ef and Zg be the infimum scores of tier ¢ students assigned to tier slots under C (>, I') and

C(>', I'), respectively. Since fi(k) = g1(k) < g (k) forallt € T and k € K, £ > {5 = zf for
allz € T. Let £/ and ¢8 be the infimum scores of students assigned to merit slots under C ([> 1)
and C(>', I), respectively. We use the following lemma in the rest of the proof.

Lemma 10. [f ¢/ > ¢/, then ¢] > ¢5.

Proof. On the contrary, we suppose that 2{ > ¢/ and Z{ < ¢8. First notice that, E{ >¢f implies
that

E:/MMM<WI (39)

t=1
ef

Moreover, 6{ = ¢§ < forallt € T and E‘lf < £ imply that

o
Z[g,(k)dk > |S]. (40)
=y

Since Z;zl g (k) = Zle f; (k) for all k € K, we can rewrite Equation (40) as

/f,(k)dk>|S| “n
t= léf

Equations (39) and (41) imply that

k

r
Z/ﬁ®M>W>Z/ﬁ®M

t=1 t=1
1 ef

This is a contradiction. O

We consider 3 cases which cover all possibilities.

Case 1 (Z{ <¢f ): Then, no tier 1 student is assigned to merit slots under C(>', I). By As-
sumption 1, all tier 1 slots are filled with tier 1 students under C (>, I). Hence, C(>', I) € C(>, I).
Case 2 (¢/ > ¢/ for all 1 € T): Then, Y'_, fff fi(k)dk = |S|. Lemma 10 implies that
Ef > (8. Therefore, £ > Ef >¢8 forallteT, Z, 1f(g g (k)dk = |S| and ¢/ = ¢8. Since

fi(k) = g1(k) for all k € K, we have fﬂf fik)dk = ICle’, D] = |C'¢', 1) = feg g1(k)dk
(see Fig. A.17).
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Fig. A.17. Illustration of Case 2 of Proposition 5.
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Fig. A.18. Illustration of Case 3 of Proposition 5.

Case 3 (¢] > ¢/ and ¢/ < ¢/ for some 7 # 1): Then Y/_, fff fi(k)dk < |S|. Lemma 10
implies that K{' > ({8, Therefore, Ef > E{' > {8 for _all teT, Zlejg’; g (k)dk = |S| and
08 < ¢/ Since fi(k) = g1 (k) for all k € K, we have fg",- fitkydk=|C ", D < |C'¢', I')| =
& g1(k)dk (see Fig. A.18).

Cases 1, 2, 3 and the relation between C!(>,I’) and C'(>/, I') imply that |C'(>, I)| =
|ICl(>, 1) = |C '/, I')| = |C'(/, I)|. Then, by Lemma 2, we have C!(>, 1) 2 C'(+/, I). O

A.7. Relaxing Assumptions 2 and 3

In this subsection, we relax Assumptions 2 and 3 and show that Theorem 1 and Proposition 3
do not hold under this relaxation. In particular, we consider an environment composed of two
tiers, tier 1 and tier 2, such that the cumulative score distribution of tier 2 first-order stochastically
dominates the cumulative score distribution of tier 1.

Consider the following problem. Let S| = {s1}, S> = {s2} and S,, = {s}. Each slot has a unit
capacity and n1 = np > 2. The score distributions are given as follows:

k ky
/ fr(k)dk =1 and / fr(k)dk =0,
ki ko

k ki
/ f1(k)dk =0 and / fitk)ydk =1,
ki ky
f1(k) = fa(k) for any k < k».

One can easily verify that, under this problem, the cumulative score distribution of tier 2 first-
order stochastically dominates the cumulative score distribution of tier 1. Let > be a precedence
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order in which the merit slot precedes the tier slots. Let >’ be a precedence order in which the
merit slot is preceded by the tier slots.

The mass of tier 1 students in C(>, I) and C(>', I) are 1 and 1.5, respectively. On the other
hand, the mass of tier 2 students in C (>, I) and C (>, I') are 2 and 1.5, respectively.

We also show that if we consider a counterpart of Assumption 4 for tier 7, we do not find a
counterpart of Proposition 5.

Assumption 5. For all k € K,

1 -1
— 2 i) = fik).

t=1

Assumption 5 states that for each score k € K, the average representation of all other tier
students is weakly less than the representation of tier ¢ students. Since Assumption 3 implies
Assumption 5, by Proposition 3, under Assumption 5 we can find an instance such that a higher
tier 7 assignment is achieved when all tier slots precede all merit slots compared to the one when
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all merit slots precede all tier slots. However, as shown in Example 1, this result does not hold
for all instances.

Example 1. Let 7 = {1, 2, 3,4} and k = 100. The score distributions are given as follows:

fi1(k) = fo(k) =0 for k € [90, 100];
Sf3(k) =1 for k € [90, 100];

fa(k) =1/3 for k € [90, 100];
fi(k)=1forallt € T and k < 90.

There are four merit slots and each tier has one (reserved) slot. Notice that, f satisfies Assump-
tions 1 and 5. Let > and ' be the precedence orders in which all merit slots precede tier slots and
all tier slots precede merit slots, respectively.

Under C (>, I) merit slots are filled with students with score at least 97 and each tier t € T
slot is filled with tier ¢ students. Hence, |C*(>, I)| = 2.

Under C(x', I) tier 3 slot is filled with tier 3 students with score at least 99 and tier 4 slot is
filled with tier 4 students with score at least 97. The merit slots are filled with remaining tier 3
and tier 4 students with score at least 95.5. Hence, |C*(>, I)| = 1.5.

References

Abdulkadiroglu, Atila, Che, Yeon-Koo, Yasuda, Yosuke, 2015. Expanding “Choice” in school choice. Am. Econ. J.
Microecon. 7 (1), 1-42.

Abdulkadiroglu, Atila, Sonmez, Tayfun, 2003. School choice: a mechanism design approach. Am. Econ. Rev. 93,
729-747.

Abdulkadiroglu, Atila, Angrist, Josh, Pathak, Parag, 2014. The elite illusion: achievement effects at Boston and New
York exam schools. Econometrica 82 (1), 137-196.

Abdulkadiroglu, Atila, Pathak, Parag A., Roth, Alvin E., Sénmez, Tayfun, 2005a. The Boston public school match. Am.
Econ. Rev. Pap. Proc. 95, 368-371.

Abdulkadiroglu, Atila, Pathak, Parag A., Roth, Alvin E., 2005b. The New York city high school match. Am. Econ. Rev.
Pap. Proc. 95, 364-367.

Abdulkadiroglu, Atila, Pathak, Parag A., Roth, Alvin E., 2009. Strategy-proofness versus efficiency in matching with
indifferences: redesigning the New York city high school match. Am. Econ. Rev. 99 (5), 1954-1978.

Azevedo, Eduardo, Leshno, Jacob, 2016. A supply and demand framework for two-sided matching markets. J. Polit.
Econ. 124 (5), 1235-1268.

Bagde, Surendrakumar, Epple, Dennis, Taylor, Lowell, 2016. Does affirmative action work? Caste, gender, college qual-
ity, and academic success in India. Am. Econ. Rev. 106 (6), 1495-1521.

Balinski, Michel, Sonmez, Tayfun, 1999. A tale of two mechanisms: student placement. J. Econ. Theory 84, 73-94.

Bertrand, Marianne, Hanna, Rema, Mullainathan, Sendhil, 2010. Affirmative action in education: evidence from engi-
neering college admissions in India. J. Public Econ. 94 (1-2), 16-29.

BRC, 2011. Blue Ribbon Commission Report on the 2011-2012 Magnet and Selective Enrollment Admissions Policy.
Chicago Public Schools. Last accessed: 11/18/2015.

Chan, Jimmy, Eyster, Erik, 2003. Does banning affirmative action lower college student quality? Am. Econ. Rev. 93 (2),
858-872.

Che, Yeon-Koo, Kim, Jinwoo, Kojima, Fuhito, 2019. Stable matching in large economies. Econometrica 87 (1), 65-110.

Coate, Stephen, Loury, Glenn, 1993. Will affirmative action policies eliminate negative stereotypes? Am. Econ. Rev. 83
(5), 1220-1240.

Dur, Umut, Kominers, Scott, Pathak, Parag, Sonmez, Tayfun, 2018. Reserve design: unintended consequences and the
demise of Boston’s walk zones. J. Polit. Econ. 126 (6), 2457-2479.

Echenique, Federico, Yenmez, Bumin, 2015. How to control controlled school choice? Am. Econ. Rev. 105 (8),
2679-2694.

Ehlers, Lars, Hafalir, Isa, Yenmez, M. Bumin, Yildirim, Muhammed A., 2014. School choice with controlled choice
constraints: hard bounds versus soft bounds. J. Econ. Theory 153, 648-683.


http://refhub.elsevier.com/S0022-0531(18)30280-1/bib616264756C6B616469726F676C752F6368652F7961737564613A3135s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib616264756C6B616469726F676C752F6368652F7961737564613A3135s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib616264756C6B616469726F676C752F736F6E6D657A3A3033s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib616264756C6B616469726F676C752F736F6E6D657A3A3033s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib616264756C6B616469726F676C752F616E67726973742F70617468616B3A3131s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib616264756C6B616469726F676C752F616E67726973742F70617468616B3A3131s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib617072733A3035s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib617072733A3035s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6170723A3035s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6170723A3035s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib616264756C6B616469726F676C752F70617468616B2F726F74683A3039s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib616264756C6B616469726F676C752F70617468616B2F726F74683A3039s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib617A657665646F2F6C6573686E6F3A3134s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib617A657665646F2F6C6573686E6F3A3134s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib62616764652F6570706C652F7461796C6F723A3135s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib62616764652F6570706C652F7461796C6F723A3135s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib62616C696E736B692F736F6E6D657A3A3939s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6265727472616E642F68616E6E612F6D756C6C61696E617468616E3A3130s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6265727472616E642F68616E6E612F6D756C6C61696E617468616E3A3130s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6272633A3131s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6272633A3131s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6368616E2F6579737465723A3033s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6368616E2F6579737465723A3033s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6368652F6B696D2F6B6F6A696D613A3135s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib636F6174652F6C6F7572793A3933s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib636F6174652F6C6F7572793A3933s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6475722F6B6F6D696E6572732F70617468616B2F736F6E6D657A3A3134s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6475722F6B6F6D696E6572732F70617468616B2F736F6E6D657A3A3134s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib656368656E697175652F79656E6D657A3A3134s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib656368656E697175652F79656E6D657A3A3134s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib65686C6572732F686166616C69722F79656E6D657A2F79696C646972696D3A3134s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib65686C6572732F686166616C69722F79656E6D657A2F79696C646972696D3A3134s1

48 U. Dur et al. / Journal of Economic Theory 187 (2020) 104996

Ellison, Glenn, Pathak, Parag, 2016. The Inefficiency of Race-Neutral Affirmative Action: Evidence from Chicago’s
Exam Schools. NBER working paper 22589.

Erdil, Aytek Kumano, Taro, 2012. Prioritizing Diversity in School Choice, Unpublished working paper. Cambridge Uni-
versity.

Fox, Catherine, 2015. Gender quotas on boards? Nick Xenopohon is on it. ABC Australia, July 14. Available at: http://
www.abc.net.au/news/2015-07- 15/fox- gender-quotas-on-boards-nick-xenophon-is-on-it/6621050.

Fryer, Roland, Loury, Glenn, Yuret, Tolga, 2008. An economic analysis of color-blind affirmative action. J. Law Econ.
Organ. 24, 319-355.

Hafalir, Isa, Yenmez, Bumin, Yildirim, Muhammed A., 2013. Effective affirmative action in school choice. Theor. Econ. 8
(2), 325-363.

Hatfield, John William, Milgrom, Paul, 2005. Matching with contracts. Am. Econ. Rev. 95, 913-935.

Kahlenberg, Richard, 2008. A report to the Chicago public schools on using student socioeconomic status as a factor
in student assignment. Available at: http://s3.documentcloud.org/documents/524908/kahlenberg.pdf. Last accessed:
November 2015.

Kahlenberg, Richard, 2014. Elite, Separate, and Unequal: New York City’s Top Public Schools Need Diversity. New
York Times. June 22.

Kamada, Yuchiro, Kojima, Fuhito, 2014. Efficient matching under distributional constraints: theory and applications.
Am. Econ. Rev. 105 (4), 67-99.

Kojima, Fuhito, 2012. School choice: impossibilities for affirmative action. Games Econ. Behav. 75 (2), 685-693.

Kojima, Fuhito, Pathak, Parag A., 2009. Incentives and stability in large two-sided matching markets. Am. Econ. Rev. 99,
608-627.

Kominers, Scott D., Sénmez, Tayfun, 2013. Designing for Diversity in Matching. Working paper. Boston College.

Kominers, Scott D., Sénmez, Tayfun, 2016. Matching with slot-specific priorities: theory. Theor. Econ. 11, 683-710.

OCR, 2011. Guidance on the Voluntary Use of Race to Achieve Diversity and Avoid Racial Isolation in Elementary and
Secondary Schools. Memorandum of U.S. Department of Justice and U.S. Department of Education. Office of Civil
Rights.

Parliament, European, 2008. Electoral Gender Quota Systems and Their Implementation in Europe. Policy Department
C, Citizens’ Rights and Constitutional Affairs. September PE 408.309.

Pathak, Parag A., 2017. What really matters in designing school choice mechanisms. In: Honoré, Bo, Pakes, Ariel,
Piazzesi, Monika, Samuelson, Larry (Eds.), Advances in Economics and Econometrics: 11th World Congress of the
Econometric Society. Cambridge Univ. Press, Cambridge, pp. 176-214.

Pathak, Parag A., Sonmez, Tayfun, 2008. Leveling the playing field: sincere and sophisticated players in the Boston
mechanism. Am. Econ. Rev. 98 (4), 1636-1652.

Pathak, Parag A., Sonmez, Tayfun, 2013. School admissions reform in Chicago and England: comparing mechanisms by
their vulnerability to manipulation. Am. Econ. Rev. 103 (1), 80-106.

Ray, Debraj, Sethi, Rajiv, 2010. A remark on color-blind affirmative action. J. Public Econ. Theory 12 (3), 399-406.

Roth, Alvin E., Peranson, Elliott, 1999. The redesign of the matching market for American physicians: some engineering
aspects of economic design. Am. Econ. Rev. 89, 748-780.

Sau-Chung, Kim, 2000. Role models and arguments for affirmative action. Am. Econ. Rev. 90 (3), 640-648.

Sonmez, Tayfun, Yenmez, Bumin, 2019a. Affirmative Action in India via Vertical and Horizontal Reservations. Working
paper.

Sonmez, Tayfun, Yenmez, Bumin, 2019b. Constitutional Implementation of Vertical and Horizontal Reservations in
India: A Unified Mechanism for Civil Service Allocation and College Admissions. Working paper.

Strauss, Valerie, 2012. How gender equality could help school reform. Washington Post. September 6.


http://refhub.elsevier.com/S0022-0531(18)30280-1/bib656C6C69736F6E2F70617468616B3A3135s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib656C6C69736F6E2F70617468616B3A3135s1
http://www.abc.net.au/news/2015-07-15/fox-gender-quotas-on-boards-nick-xenophon-is-on-it/6621050
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib66727965722F6C6F7572792F79757265743A3038s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib66727965722F6C6F7572792F79757265743A3038s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib686166616C69722F79656E6D657A2F79696C646972696D3A3132s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib686166616C69722F79656E6D657A2F79696C646972696D3A3132s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6861746669656C642F6D696C67726F6D3A3035s1
http://s3.documentcloud.org/documents/524908/kahlenberg.pdf
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6B61686C656E626572673A3134s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6B61686C656E626572673A3134s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6B616D6164612F6B6F6A696D613A3134s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6B616D6164612F6B6F6A696D613A3134s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6B6F6A696D613A3132s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6B6F6A696D612F70617468616B3A3039s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6B6F6A696D612F70617468616B3A3039s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6B6F6D696E6572732F736F6E6D657A3A3133s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6B6F6D696E6572732F736F6E6D657A3A3135s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib646F653A3131s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib646F653A3131s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib646F653A3131s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib70617468616B3A3136s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib70617468616B3A3136s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib70617468616B3A3136s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib70617468616B2F736F6E6D657A3A3038s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib70617468616B2F736F6E6D657A3A3038s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib70617468616B2F736F6E6D657A3A3133s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib70617468616B2F736F6E6D657A3A3133s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib7261792F73657468693A3130s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib726F74682F706572616E736F6E3A3939s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib726F74682F706572616E736F6E3A3939s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib6368756E673A3030s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib736F6E6D657A2F79656E6D657A3A313961s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib736F6E6D657A2F79656E6D657A3A313961s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib736F6E6D657A2F79656E6D657A3A313962s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib736F6E6D657A2F79656E6D657A3A313962s1
http://refhub.elsevier.com/S0022-0531(18)30280-1/bib737472617573733A3132s1
http://www.abc.net.au/news/2015-07-15/fox-gender-quotas-on-boards-nick-xenophon-is-on-it/6621050

	Explicit vs. statistical targeting in afﬁrmative action: Theory and evidence from Chicago's exam schools
	1 Introduction
	2 Model
	2.1 Setup
	2.2 Choice function

	3 Explicit targeting
	3.1 The best and worst precedence for a given tier
	3.2 Eliminating explicit targeting

	4 Statistical targeting
	4.1 The best and worst tier-blind precedence
	4.2 Increasing the size of reservations
	4.3 Comparing two extreme precedence orders

	5 Evidence from afﬁrmative action in Chicago
	5.1 Modeling assumptions
	5.2 Comparing alternative afﬁrmative action policies
	The best and worst precedence for tier 1 under 30% merit
	The best and worst precedence for tier 1 under 40% merit


	6 Conclusion
	References


