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Abstract

This paper re-examines the problem of estimating risk premia in unconditional linear factor pricing models.

Typically, the data used in the empirical literature are characterized by weakness of some pricing factors,

strong cross-sectional dependence in the errors, and (moderately) high cross-sectional dimensionality. Using

an asymptotic framework where the number of assets/portfolios grows with the time span of the data while the

risk exposures of weak factors are local-to-zero, we show that the conventional two-pass estimation procedure

delivers inconsistent estimates of the risk premia. We propose a new estimation procedure based on sample-

splitting instrumental variables regression. The proposed estimator of risk premia is robust to weak included

factors and to the presence of strong unaccounted cross-sectional error dependence. We prove the consistency

of the new estimator, establish asymptotically valid inferences using Wald statistics, verify performance of the

new procedure in simulations, and revisit some empirical studies.
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1 Introduction

Since the introduction of the CAPM by Sharpe (1964) and Linner (1965), linear factor pricing models

have grown into a very popular sub-�eld in asset pricing. Harvey, Liu and Zhu (2016) list hundreds

of papers that propose, justify and estimate various factor pricing models. A typical paper in this

area proposes a small set of observed risk factors that price the assets, that is, the expected excess

return on an asset is equal to the quantity of risk taken (measured as a normalized covariance of the

returns with the risk factors, so called betas) times risk premia. The two most famous factor pricing

models are the market-factor CAPM and the three-factor Fama and French (1993) model. Other

pricing factors are the momentum factor (Jegadeesh and Titman, 1993), the consumption-to-wealth

ratio `cay' (Lettau and Ludvigson, 2001), the liquidity factor (Pástor and Stambaugh, 2003), and so

on. In recent years, there has been a burst in econometrics research that suggests how to correct the

baseline estimation and inference in the face of many factors (for example, Kozak, Nagel, and Santosh,

2018), or how to judiciously select factors from a big pool without jeopardizing correct inference (for

example, Feng, Giglio and Xiu, 2020).

Traditionally, one estimates the model using what is commonly known as the two-pass estimation

procedure (Fama and MacBeth, 1973; Shanken, 1992),1 where at the �rst pass one estimates risk

exposures (betas) for each asset, and then, at the second pass, those estimates are used as regressors

to estimate the risk premia. Asymptotic justi�cation of this procedure, however, relies on assumptions

that often do not hold up in realistic circumstances. Two types of violations of the idealistic setting

have been noted in previous literature.

The �rst problem is one of weak (but priced) observed factors. Recent papers by Kan and Zhang

(1999), Kleibergen (2009), Bryzgalova (2016), Burnside (2016), and Gospodinov, Kan and Robotti

(2017) all point out that risk exposures (or betas) to some observed factors tend to be small to such

an extent that their estimation errors are of the same order of magnitude as the betas themselves.

This observed phenomenon is very similar to the widely studied weak instrument problem.

The second violation is a strong cross-sectional dependence in error terms, which in many cases

can be modeled as a factor structure unaccounted for (`missing'). For example, recent literature

shows that mismeasurement of the true risk factors leads to weakness of the observed factors and

strong cross-sectional dependence in the errors (Kleibergen and Zhan, 2015), which may result in all

sorts of distortions in estimation and inference in theory and in their non-reliability in practice (Kan

and Zhang, 1999; Andrews, 2005; Kleibergen, 2009).

Along with the combination of the problems of missing factors and small betas, we also consider

one very important empirical feature of the typically employed datasets � the presence of a large

number of assets or portfolios often comparable to the number of periods over which returns are

observed. We consider an asymptotic framework where the number of assets/portfolios grows with

1Sometimes the two-pass procedure is referred to as the Fama-MacBeth procedure (Fama and MacBeth, 1973). See
Cochrane (2001, section 12.3) on their numerical equivalence when betas are time invariant. The method for obtaining
valid standard errors that account for the two step nature of the procedure is given in Shanken (1992).
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its time-series dimension. Such dimension asymptotics is likely to provide a more accurate asymptotic

approximation to the �nite sample properties of estimators and tests. The many-asset asymptotic

framework has been utilized previously by Gagliardini, Ossola and Scaillet (2016), Lettau and Pelger

(2020) and Feng, Giglio and Xiu (2020).

We show that within a dimension asymptotic framework the presence of small betas leads to a

failure of the classical two-pass procedure, while the additional presence of missing factors exacerbates

this problem. We propose econometric procedures that are robust to both these thorny issues with

factors � the weakness of observed factors and the presence of unobserved factors in the errors � and,

in contrast to the remedies proposed elsewhere, are easily implementable using standard regression

tools (in particular, instrumental variables regressions and two-stage least squares). The estimators

we propose are consistent; moreover, using the variance estimators (the construction of which we

describe), standard inference tools such as t- and Wald tests can be applied in a conventional way.

Our new estimation approach makes use of the idea of sample-splitting in order to create multiple

estimates for loadings βi and to correct for the �rst-step estimation error via an instrumental variables

regression. The presence of an unobserved (missing) factor structure in the error terms creates strong

cross-sectional dependence in the panel of returns, which is similar to the classical omitted-variables

problem in the second pass of the two-pass procedure. In order to correct for this missing factor

structure, we use sample splitting to create reasonable proxies for missing factors even in a setting

where one cannot consistently estimate the missing factor structure. The sample-splitting idea has

appeared in the econometrics literature before, in particular, in Angrist and Krueger (1992) and

Dufour and Jasiak (2001).

We explore the quality of the two-pass procedure and compare its performance with that of

sample-splitting based estimators and existing alternatives in simulations calibrated to match the

monthly returns of the 100 Fama-French sorted portfolios. We applied several existing procedures

to the estimation of the momentum risk premium using real data on Fama-French portfolios. The

important feature here is that the momentum is a tradable factor and hence there is an alternative

estimate of the risk premia � the sample average excess return on this factor. Thus, we have a

natural benchmark when comparing estimators. Lewellen, Nagel and Shanken (2010) showed that

�any (su�ciently large)2 set of assets perfectly explains the cross-section of expected returns so long

as the (tested)3 assets are not asked to price themselves (that is, ...the risk premia are not required

to equal their expected returns).� From that perspective, having an estimate of risk premia coming

from the pricing model, such as our split-sample estimator, is important even for tradable factors, as

it allows one to test the pricing model by comparing this estimate to the average excess return.

There is a growing number of alternative suggestions for how to correct statistical inferences for

either weak observed factors or a missing factor structure. Kleibergen (2009) proposes the use of

weak identi�cation robust inference procedures to account for weak observed factors, however, it can

2Our addition in brackets.
3Our addition in brackets.
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only be applied to a relatively small number of assets/portfolios. An extreme version of the weak

factors phenomenon, known as irrelevant factors and studied by Bryzgalova (2016), Burnside (2016)

and Gospodinov, Kan and Robotti (2017), occurs when some observed factors are assumed to have

zero loadings. The solutions to the irrelevant factors problem proposed in the literature usually

suggest dimension reduction techniques to detect the irrelevant factors with a proviso to eliminate

these detected irrelevant factors from further analysis. However, applying detection and elimination

methods to the weak observed factors would lead to invalid inferences and large biases in the estimates

of the risk premia for the remaining factors. Jegadeesh, Noh, Pukthuanthong, Roll and Wang (2019)

suggest, simultaneously and independently, the use of sample-splitting in factor models in order to �x

the errors-in-variables bias. Their proposed estimator works only when there are no missing factors.

Giglio and Xiu (2020) solve the problem of the missing factor structure by �rst running the

Principle Component Analysis (PCA) on excess returns, pricing principle components, and from

that deriving the risk premia of observed factors. The method of Giglio and Xiu (2020) successfully

eliminates strong missing factors, but assumes from the outset that all important pricing factors can be

uncovered by PCA. This assumption is critical for the validity of their procedure and contradicts the

empirical �ndings of Lettau and Pelger (2020), who demonstrate that the out-of-sample performance

using weak factors in addition to those uncovered by PCA is appreciably better than that of a model

that uses the PCA factors only. According to Lettau and Pelger (2020), �PCA-based factors often

miss low volatility components with high Sharpe ratios, which is a crucial aspect in asset pricing.�

The paper is organized as follows. Section 2 introduces notation, discusses the relevance of our

asymptotic approach, and argues for the presence of a signi�cant factor structure in the errors. It also

explains the asymptotic failure of the classical two-pass procedure and provides detailed intuition as to

why this occurs. We propose our `four-split' estimation method in Section 3, describe what motivates

it and explain why it works. In Section 4, we state a formal theorem on the consistency of the

newly proposed four-split estimator and establish the asymptotic validity of a properly constructed

Wald test using the four-split estimator. The comparison of the newly proposed estimator with the

existing alternatives is done in simulations and with an empirical example in Section 5. Appendix A

contains main proofs, while auxiliary proofs and additional results appear in a Supplemental Appendix

available on one of the authors' web-site.4

A word on notation: 0l,m stands for a zero matrix of size l×m, Im is an m×m identity matrix;

for an m × lA matrix A and an m × lB matrix B, (A,B) stands for the m × (lA + lB) matrix one

obtains by placing the initial matrices side-to-side. Given a square matrix A, we denote by dg(A) a

diagonal matrix of the same size with the same elements on the diagonal as matrix A, by tr(A) its

trace, and by min ev(A) and max ev(A) � its minimal and maximal eigenvalue.

4https://pages.nes.ru/sanatoly/Papers/ManyFM.htm
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2 Formulation of the problem

The research in factor asset pricing modeling typically proposes a small set of observed risk factors

described by a vector Ft of (usually) small dimension kF . An asset or portfolio of assets i with

excess return rit has exposure to several risk factors, which is quanti�ed by the asset's betas βi =

var(Ft)
−1cov(Ft, rit). A typical claim put forth in the linear factor-pricing theory is that exposure

to risk (betas) fully determines the assets' expected excess returns. Particularly, there exists a kF -

dimensional vector of risk premia λ such that Erit = λ′βi.

From an econometric perspective, a correctly-speci�ed linear factor-pricing model is equivalent to

the following formulation:

rit = λ′βi + (Ft − EFt)
′βi + εit, (1)

where unobserved random error terms εit have mean zero and are uncorrelated with Ft. Here the

statement Eεit = 0 is equivalent to Erit = λ′βi, while uncorrelatedness between εit and Ft results

from the de�nition of βi. We treat λ and βi as unknown parameters, while rit, Ft, and εit are random

variables.

Two-pass procedure. The estimation and inferences on risk prices, λ, are traditionally accom-

plished by a procedure known as the two-pass procedure (Fama and MacBeth, 1973; Shanken, 1992),

applied to a data set consisting of a panel of asset excess returns {rit, i = 1, ..., N, t = 1, ..., T}
and observations of realized factors {Ft, t = 1, ..., T}. In the �rst step, one estimates βi by running

a time series OLS regression of rit on a constant and Ft for each i = 1, ..., N . The second step

produces an estimate of λ (denote it λ̂TP ) by regressing the time-average excess return 1
T

∑T
t=1 rit

on the �rst-step estimates, β̂i. Under suitable conditions, λ̂TP is proved to be both consistent and

asymptotically Gaussian. Discussions of the statistical properties of the two-pass procedure appear

in Fama and MacBeth (1973), Shanken (1992), and Chapter 12 of Cochrane (2001).

This paper deviates from the classical Fama-MacBeth setting in three respects, which we label as

(i) weak observed factors, (ii) many assets and (iii) missing factor structure.

Weak observed factors. Recent work by several prominent researchers raises the concern that

the two-pass procedure may provide misleading estimates of risk premia; see, for example, Kan and

Zhang (1999), Kleibergen (2009), Bryzgalova (2016), Burnside (2016), Gospodinov, Kan and Robotti

(2017). The reason for these erroneous inferences is related to the empirical observation that either

some column of β = (β1, ..., βN )′ is close to zero, or, more generally, the N×kF matrix β appears close

to one of reduced rank (less than kF ) for many well-known linear factor pricing models. According

to Lettau and Pelger (2020), weak factors are empirically important for good performance of pricing

models. They constructed factors that are impossible to uncover by PCA (i.e. weak factors) with the

Sharpe ratio twice as high as those uncovered by PCA, and the out-of-sample pricing errors from a

model that uses these weak factors are sizably smaller than those from a model that uses only strong

factors.

Bryzgalova (2016), Burnside (2016), and Gospodinov, Kan and Robotti (2017) all recently devel-
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oped improved inference procedures when some factors are completely irrelevant for pricing, that is,

when true βi are exactly zeros. Unfortunately, these procedures fail when the βi are not zeros, but are

small. A more empirically relevant case, which is in line with Lettau and Pelger (2020), resembles the

widely studied weak instrument problem (Staiger and Stock, 1998): if some of the observed factors

Ft are only weakly correlated with all the returns in the data set, then the noise that arises in the

�rst-pass estimates of the corresponding components of βi will dominate the signal, and the second-

pass estimate of the risk premia λ will be oversensitive to small perturbations in the sample. In order

to model the observed phenomenon, Kleibergen (2009) considered a drifting-parameter framework

in which some component of βi is modeled to be of order O( 1√
T
) assuming that the number of time

periods, T , increases to in�nity, while the number of assets, N , stays �xed. In such a setting the

�rst-pass estimation error is of order of magnitude Op(
1√
T
), which is comparable to the size of the

coe�cients themselves. This framework implies inconsistency of the two-pass estimates for the risk

premium on small components, poor coverage of regular con�dence sets even for the risk premium of

strong factors, and asymptotic invalidity of classical speci�cation tests and tests about risk premia.

Following this tradition, we also make use of drifting-parameter modeling. We assume that the

kF × 1 vector of factors Ft can be divided into two subvectors: a k1 × 1 dimensional vector Ft,1 and

a k2 × 1 vector F2,t (here kF = k1 + k2) such that the risk exposure βi,1 to factor Ft,1 is strong, while

the risk exposure coe�cients β2,i to factor F2,t jointly drift to zero at the rate
√
T . We make these

order assumptions for risk exposures more accurate in the next section. A more general treatment

of the near-degenerate rank condition considers some k2-dimensional linear combination of factors

(unknown to the researcher) to have a local-to-zero (of order O( 1√
T
)) exposure coe�cient, while

the exposure to risk formed by the orthogonal k1-dimensional linear combination remains �xed. All

our results are easily generalizable to this setting, as we do not assume that the researcher knows

which factors (or combination of factors) bear small coe�cients of exposure. However, to simplify

the exposition we stick to the division of factors into two sub-vectors.

One may argue that non-zero pricing on weak factors contradicts the Arbitrage Pricing Theory of

Chamberlain and Rothschild (1983) that suggests that only strong factors are non-diversi�able and

carry risk premia. In the face of empirical evidence showing that weak factors do carry risk premia

and are important for factor pricing (e.g, Lettau and Pelger (2020) discussed above), the way to

reconcile empirical evidence with the theory is to interpret weak factor modeling as an econometric

device helpful in producing better �nite-sample approximations. This device allows one to properly

account for the uncertainty in the �rst step estimation rather than hide it under the rug of �rst step

consistency. It is also worth pointing out that whether an observed factor is weak or strong depends,

at least partially, on the data set at hand, its size and representativeness.

Many assets. In theoretical justi�cations of the two-step procedure (Shanken, 1992; Cochrane,

2001) it is common to assume that the number of assets, N , is �xed, while the number of periods T

grows to in�nity. We notice that in many common data sets that researchers use, the number of assets

is large when compared to the number of time periods. The celebrated Fama-French data set provides
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returns on N = 25 sorted portfolios for about T = 200 periods. The often-used Jagannathan-Wang

data set (Jagannathan and Wang, 1996) contains observations onN = 100 portfolios observed for T =

330 periods. Lettau and Ludvigson (2001) use Fama-French N = 25 portfolios, the returns for which

are observed over T = 141 quarters. Gagliardini, Ossola and Scaillet (2016) use N = 44 industry

portfolios observed during T = 546 months. In these cases it is hard to believe that the asymptotic

results derived under the assumption that N is �xed would provide an accurate approximation of

�nite-sample distributions. Indeed, among other things, Kleibergen (2009) discovers that the bias of

the two-pass estimate of risk premia is strongly and positively related to the number of assets if the

total factor strength is kept constant.

In this paper we consider asymptotics when both N and T increase to in�nity without restricting

the relative speed. Recent papers by Kim and Skoulakis (2018) and Raponi, Robotti and Za�aroni

(2020) consider a factor pricing model in an asymptotic setting with N → ∞ while T remains �xed

and show inconsistency of the two-pass procedures. We can show that the procedures we propose

are consistent in the setting with N → ∞, �xed T for ex-post risk premia if we impose slightly

stronger assumptions on the cross-sectional dependence of the error terms than the ones introduced

in Assumption ERRORS below.

Missing factor structure. This paper deviates from the existing literature in the explicit

acknowledgment of high cross-sectional dependence among the error terms εit in model (1). We

assume that there exists, unknown and unobserved to the researcher, a factor vt and loadings µi such

that

εit = v′tµi + eit,

where the `clean' errors eit are only weakly cross-sectionally dependent to the extent that asymptot-

ically we may ignore that dependence (the exact formulation of this assumption appears later). The

assumptions on loadings µi guarantee that the factor structure is strong enough to be both detected

empirically and asymptotically important for inferences. An insightful discussion of a weak versus

strong factor structure and cross-sectional dependence can be found in Onatski (2012).

Kleibergen and Zhan (2015) provide numerous pieces of empirical evidence that residuals from

many well-known estimated linear factor-pricing models have non-trivial factor structures. For ex-

ample, they point out that the �rst three principle components of the residuals from di�erent pricing-

model speci�cations used in the seminal paper by Lettau and Ludvigson (2001) explain from 82%

to 95% of all residual variation. The largest eigenvalue of the covariance matrix of residuals in all

these examples is very large and strongly separated from the other eigenvalues. Combining this ev-

idence with the theoretical results on the limiting distribution of eigenvalues from Onatski (2012),

one would suspect there is at least one strong factor present in the residuals. At least �ve other

prominent factor-pricing studies cited in Kleibergen and Zhan (2015) demonstrate similar evidence

of strong factor structures not accounted for in the residuals.

Relation between factor structure and correct speci�cation. One may wonder whether
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the fact that the errors εit in model (1) have a factor structure implies that the pricing model is

misspeci�ed. The answer is �no�; the linear factor pricing model describes the expectations of excess

returns, while the factor structure in the errors is related to their covariances or co-movements. It

is easy to see that if the risk exposure and risk premia on the variables Ft price the assets, then

the variables Ft co-move the assets' returns and produce factor-structure dependence in the returns.

However, not all co-movements of returns must carry non-zero risk premia; those co-movements

can be placed in the error term without causing misspeci�cation of the pricing model. The correct

speci�cation of a pricing model requires keeping those pricing factors Ft,2 that carry small coe�cients

of exposure β2,t and produce only a weak factor structure in the returns. Dropping such observed

factors from the speci�cation leads to asymptotically misleading inferences for the two-pass procedure.

Tradable factors. The literature on factor pricing distinguishes cases of tradable and non-

tradable factors. If a speci�c factor Ft is a tradable portfolio and is supposed to be priced by the

same pricing model, then λ = EFt, and one can get an estimate of risk premia as the sample average

of excess returns. We do not make this assumption and allow λ to di�er from EFt. However, even for

tradable factors there is a value from having an alternative estimator based on the pricing equation

(1). Lewellen, Nagel and Shanken (2010) showed that it is relatively easy to price the market with

high cross-sectional R2 by any set of portfolios as long as their number is large enough, but only if

one does not enforce that the risk premia be equal to the average return. The cross-sectional R2 of

the pricing model is much smaller if one enforces such a restriction. Thus, having an estimator of the

risk premia that does not use the λ = EFt condition and comparing it to the average excess return

for tradable factors is a valuable test of the pricing model.

2.1 Assumptions on factor structure

We consider the problem of estimation and inference on the risk premia λ based on observations of

returns {rit, i = 1, ..., N, t = 1, ..., T} and factors {Ft, t = 1, ..., T} obeying a correctly-speci�ed

factor-pricing model:

rit = λ′βi + (Ft − EFt)
′βi + v′tµi + eit, (2)

where the random unobserved factor vt has zero mean and is uncorrelated with Ft. The idiosyncratic

error terms eit also have zero mean and are uncorrelated with Ft and vt. Let γ′i =
(
β′
1i,

√
Tβ′

2i, µ
′
i

)
and Γ′

N = (γ1, ..., γN ) be the k ×N matrix, where k = kF + kv. Technically, γi,N,T is more accurate

indexing, as parameters γi may change with the sample size as do all other features of the data

generating process, but we drop N,T to reduce clutter.

Assumption FACTORS. The kF × 1 vector of observed factors Ft is stationary with �nite fourth
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moments and a full-rank covariance matrix ΣF . The kv × 1 latent factors vt satis�es the following:
1√
T

∑T
t=1(Ft − EFt)

ηT = 1√
T

∑T
t=1Σ

−1
F F̃tv

′
t

ηv,T = 1√
T

∑T
t=1 vt

⇒


N(0,ΩF )

η

ηv

 ,

where vec(η) ∼ N (0kF kv ,1,ΩvF ), ηv ∼ N(0kv ,1, Ikv) and F̃t = Ft − 1
T

∑T
s=1 Fs.

Assumption LOADINGS. As both N and T increase to in�nity, we have N−1Γ′
NΓN → Γ, where

Γ is a positive de�nite k × k matrix. Also assume that maxN,T
1
N

∑N
i=1 ∥γi∥4 < ∞.

Additional assumptions are placed on the error term eit in Section 4. Most of our results can

be understood if one imagines eit as independent both cross-sectionally and in the time series di-

rection, and also independent from all factors. However, our results hold under much more general

assumptions, an extensive discussion of which we postpone to Section 4.

In this paper we treat the loadings βi and µi as unknown non-random vectors, the true values of

which may change with the sample sizes N and T . Assumption LOADINGS characterizes the size

of the loadings as the sample size increases. Notice that the loadings on the factors Ft,1 and vt are

treated di�erently than the loadings on Ft,2. Following Onatski (2012), we will refer to the former

as �strong factors� and the latter as �weak factors.� The cross-sectional average of squared loadings

is closely connected to the explanatory power the factors exhibit in cross-sectional variation. The

assumptions we make on the loadings βi,1 and µi guarantee that the explanatory power of the factors

Ft,1 and vt dominates the noise from the idiosyncratic error terms.

The loadings βi,2 are asymptotically of the same order of magnitude as βi,1 divided by
√
T .

Assumption LOADINGS enforces that the standard deviation of the �rst-step estimate β̂i,2 be of the

same order of magnitude as βi,2 itself. The modeling assumption that makes βi,2 drift to zero at the

rate
√
T is similar to assumptions made in Kleibergen (2009). When N and T grow proportionally,

our assumption may be re-written in terms of statements that
∑N

i=1 βi,2β
′
i,2 converges to a constant

matrix, which are common in the weak factor model literature. Our results, however, do not need

to restrict the relative rate of increase in N and T . It is also important that the assumptions on

loadings µi are such that the unobserved factor vt in the error terms is strong. This is consistent with

the empirical observations in Kleibergen and Zhan (2015). This also guarantees that the presence of

the factor structure plays an important role in the asymptotics of two-pass estimation.

2.2 Challenges of the two-pass procedure

As we formally show in Theorem 1 in Section 4, the two-pass procedure fails in the setting described

above. Speci�cally, the two-pass estimate λ̂TP,2 of the risk premia on weak factors Ft,2 is inconsistent

and converges in probability to an incorrect value. The two-pass estimate λ̂TP,1 of risk premia on

strong factors Ft,1 is
√
T -consistent, but has a bias of order 1√

T
, the same order of magnitude as the
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standard deviation of its asymptotic distribution. This leads to invalid inferences on the risk premia.

The failure of the two-pass estimator can be explained by an interplay of two biases that can be

labeled as attenuation and omitted variable biases.

No missing factors case. The classical error-in-variables (attenuation) bias arises even when

there is no missing factor structure as long as some factors are weak (k2 ≥ 1). For this paragraph

only assume that there are no missing factors (kv = 0). The �rst-pass estimate β̂i of the risk exposure

coe�cients βi contains estimation errors that are stochastically of order Op(1/
√
T ):

β̂i =

(
T∑
t=1

F̃tF̃
′
t

)−1 T∑
t=1

F̃trit = (βi + ui)
(
1 + op(1)

)
,

where ui =
1
T

∑T
t=1Σ

−1
F F̃teit, and the op(1) term is related to the di�erence between ΣF = E

[
(Ft −

EFt)(Ft − EFt)
′] and T−1

∑
t F̃tF̃

′
t . As a result, the second-pass regression encounters an error-in-

variables problem. In the case of exposure to a strong observed factor, the estimation error in β̂i,1

is asymptotically negligible compared to the size of the coe�cient βi,1 itself, and so this estimation

error does not jeopardize consistency. However, the estimation error in β̂i,2 is asymptotically of the

same order of magnitude as the coe�cient itself. The �rst-pass estimation errors in β̂i,2 behave like

a classical measurement error as the estimation errors ui,2 for di�erent assets are asymptotically

uncorrelated. This leads to a classical attenuation bias.

General case. In the presence of a strong factor structure in the errors (kv > 0), the �rst-pass

estimates have the following form:

β̂i =

(
T∑
t=1

F̃tF̃
′
t

)−1 T∑
t=1

F̃trit =

(
βi +

ηTµi√
T

+ ui

)(
1 + op(1)

)
, (3)

where ηT = 1√
T

∑T
t=1Σ

−1
F F̃tv

′
t ⇒ η. Again, the estimation error in β̂i,1 turns out to be asymptotically

negligible when compared to the sizes of risk exposures βi,1 themselves, while the estimation errors

in β̂i,2 � which are now equal to ηTµi/
√
T + ui � are of the size Op(1/

√
T ), which is the same order

of magnitude as the βi,2's themselves. The estimation errors of β̂i,2 distort the asymptotics and

invalidate classical inferences. However, this time (when kv > 0) the estimation errors do not behave

like classical measurement errors in two respects. First, the estimation errors for di�erent assets are

correlated due to the presence of the common component ηT . Second, unless µi is cross-sectionally

uncorrelated with βi, the estimation error will be correlated with its own regressor βi.

There is an additional issue classically known as an omitted variable bias. Let us look at the

second pass (normalized) `ideal' regression, which one can obtain by time-averaging equation (2):

√
Tri =

√
T λ̃′βi + η′v,Tµi +

√
Tei, (4)

where ηv,T = 1√
T

∑T
t=1 vt ⇒ ηv ∼ N(0kv ,1, Ikv). Here we introduced normalization

√
T to make
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regression (4) more compatible with the classical OLS setup. The regression error terms
√
Tei all

have orders of magnitude of Op(1), zero means and �nite variances. Imagine for a moment that we

know βi and µi for all assets. Then, regression (4) will take the form of a classic OLS regression, with

regressors
√
Tβi,2 and µi being of order of magnitude O(1), in the sense expressed in Assumption

LOADINGS, that in the classical regression setting would lead to a
√
N -consistent and asymptotically

Gaussian OLS estimator of the coe�cients on them. The regressor
√
Tβi,1 is, in contrast, of order

O(
√
T ) and carries a lot of information which, in the classical regression setting, leads to an OLS

estimator of the coe�cient λ1 on this regressor that is both super-consistent and asymptotically

centered Gaussian. However, because µi is unobserved, it becomes a part of the error term in the

second-pass regression. If Γβµ ̸= 0kF ,kv , then even if there were no �rst-pass estimation error and we

knew βi, running an OLS in a regression of
√
Tri on

√
Tβi would produce invalid results due to the

omission of µi.

3 Sample-split estimator of the risk premia

3.1 Idea of the proposed solution

The case of no factor structure in the error terms. We begin by solving the easier case when

no unobserved factor structure is present in the errors, while some observed factors are weak. In such

a case we have a classical measurement error-in-variables problem, and we solve it by constructing a

proper instrument with the help of a sample-splitting technique.

Let us divide the set of time indexes t = 1, ..., T into two non-intersecting equal subsets T1 and

T2. A natural choice is to make T1 the �rst half of the sample, and T2 its second half. Let us run the

�rst-step regression twice � separately on each sub-sample:

β̂
(j)
i =

∑
t∈Tj

F̃
(j)
t F̃

(j)′
t

−1 ∑
t∈Tj

F̃
(j)
t rit = (βi + u

(j)
i )
(
1 + op(1)

)

for j = 1, 2, where F̃
(j)
t = Ft − 1

|Tj |
∑

t∈Tj
Ft, u

(j)
i = 1

|Tj |
∑

t∈Tj
Σ−1
F F̃

(j)
t eit, and the op(1) term is

related to the di�erence between ΣF and 1
|Tj |
∑

t∈Tj
F̃

(j)
t F̃

(j)′
t .

We impose assumptions on the errors eit which guarantee that the two sets of mistakes, {u(1)i ,

i = 1, ..., N} and {u(2)i , i = 1, ..., N}, are conditionally independent. One may use an estimate of βi

from one sub-sample (for example, β̂
(1)
i ) as a regressor while the other (in this example, β̂

(2)
i ) as an

instrument. This leads to a valid IV regression. Indeed, the second-step regression we run is

ri = λ̃′β̂
(1)
i +

(
ei − λ̃′u

(1)
i

)
.

In this regression the regressor and the instrument are correlated since they both contain βi, hence

the relevance condition holds.
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Similar ideas, such as sample splitting and jackknife-type estimators, have been previously em-

ployed in the many instruments literature (e.g., Hansen, Hausman and Newey, 2008). There, the

number of instruments grows to in�nity with the sample size, and the authors introduce a modeling

assumption that makes the estimation error of the reduced-form coe�cients be of the same order of

magnitude as the coe�cients themselves. This is parallel to the dimension asymptotics for a number

of portfolios and the local-to-zero asymptotics for risk exposures of weak factors in our setup. In the

many instrument setting, the regular TSLS estimator has a signi�cant bias, and classical inferences

are asymptotically invalid. Some proposed solutions employ the second-stage instrumental variables

regression where, for each observation, the regressor is obtained from a �rst-stage regression run on

a sub-sample that does not include that observation, and the original instrument is still used as an

instrument (see Angrist, Imbens and Krueger (1999) and Dufour and Jasiak (2001)). This forces the

�rst-stage error in the projection to be uncorrelated with the instrument for this speci�c observation.

Sample-splitting or leave-one-out type procedures restore consistency and classical inferences. One

can re-write the two pass-procedure as a GMM moment condition, then the two-pass corresponds to

an IV estimator with many instruments in the framework of Newey and Windmeijer (2009). How-

ever, the problem of missing factor structure does not fall within the Newey and Windmeijer (2009)

framework. The main departure is that Newey and Windmeijer (2009) consider i.i.d. sampling, while

the observations in our model (indexed by both i and t) are highly dependent.

Raponi, Robotti and Za�aroni (2017) and Kim and Skoulakis (2018) consider a similar phe-

nomenon by assuming that N → ∞ while T is �xed. These papers suggest correcting attenuation

bias by directly estimating it. However, these estimation techniques would fail in the presence of

missing factors in the error term.

The case of factor structure in the error terms. The model with an unobserved factor struc-

ture has an additional problem � the presence of omitted (and unobserved) variable µi in regression

(4). Formula (3) suggests that we can obtain a noisy proxy for µi by taking the di�erence between

two estimates for the same βi obtained from di�erent sub-samples. Consider two non-intersecting

subsets of time indexes, T1 and T2, and assume they have the same number, say τ, of time indexes.

Then

β̂
(1)
i − β̂

(2)
i =

η
(1)
τ − η

(2)
τ√

τ
µi +

(
u
(1)
i − u

(2)
i

)
.

Notice that both the coe�cient on µi and the noise term u
(1)
i −u

(2)
i are of the same order of magnitude

Op(1/
√
τ). This means that neither the signal dominates the noise � and thus we need a correction

to account for the noise, � nor the noise dominates the signal, and thus the proxy is not useless.

Assume that kv ≤ kF , which implies that we have a larger number of proxies than needed,

and we have a choice among them. Now we assume that we have a �xed and full-rank kv × kF

matrix A, and use A
(
β̂
(1)
i − β̂

(2)
i

)
as the proxy. The idea is to regress the average return ri on β̂

(1)
i

and A
(
β̂
(1)
i − β̂

(2)
i

)
instead of on unobserved βi and µi. This solves the omitted-variables part of

the problem, but the error-in-variables issue still remains. That problem we solve via instrumental
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variables upon additional sample splitting. The ultimate idea goes as follows: split the sample into

four equal sub-samples along the time dimension; calculate the �rst-pass estimates of risk exposures

for all four sub-samples; run an instrumental variables regression using β̂
(1)
i and A

(
β̂
(1)
i − β̂

(2)
i

)
as

regressors and β̂
(3)
i and

(
β̂
(3)
i − β̂

(4)
i

)
as instruments. We may repeat the procedure by circulating

sub-sample indexes to improve e�ciency.

3.2 Algorithm for constructing four-split estimator

Divide the set of time indexes into four equal non-intersecting subsets Tj , j = 1, ..., 4.

(1) For each asset i and each subset j run a time-series regression to estimate the coe�cients of

risk exposure:

β̂
(j)
i =

∑
t∈Tj

F̃
(j)
t F̃

(j)′
t

−1 ∑
t∈Tj

F̃
(j)
t rit.

(2) Run an IV regression of ri = 1
T

∑T
t=1 rit on regressors x

(1)
i =

(
β̂
(1)′
i , (β̂

(1)
i − β̂

(2)
i )′A′

1

)′
with

instruments z
(1)
i =

(
β̂
(3)′
i , (β̂

(3)
i − β̂

(4)
i )′

)′
, where A1 is a non-random kv × kF matrix of rank kv.

Let λ̂(1) be the TSLS estimate of the coe�cient on regressor β̂
(1)
i .

(3) Repeat step (2) three more times exchanging indexes 1 to 4 circularly; that is, the 2nd regression

is an IV regression of ri on regressors x
(2)
i =

(
β̂
(2)′
i , (β̂

(2)
i − β̂

(3)
i )′A′

2

)′
with instruments z

(2)
i =(

β̂
(4)′
i , (β̂

(4)
i − β̂

(1)
i )′

)′
; denote the estimate as λ̂(2), etc.

(4) Obtain the four-split estimate as λ̂4S = 1
4

∑4
j=1 λ̂

(j).

(5) In order to compute an estimate of the covariance matrix for λ̂4S , denote by X(j) the N × k

matrix of stacked regressors used in the jth IV regression, and by Z(j) the N × kz matrix of

instruments from this regression (here kz = 2kF and k = kF + kv). Let PZ = Z (Z ′Z)−1 Z ′,

calculate the following matrices:

Σ̂0 =
1

N

N∑
i=1


z̃
(1)
i ϵ̂

(1)
i

...

z̃
(4)
i ϵ̂

(4)
i




z̃
(1)
i ϵ̂

(1)
i

...

z̃
(4)
i ϵ̂

(4)
i


′

, G =


G1 0k,k 0k,k 0k,k

0k,k G2 0k,k 0k,k

0k,k 0k,k G3 0k,k

0k,k 0k,k 0k,k G4

 ,

where ϵ̂
(j)
i is ith residual from the (j)th IV regression, z̃

(j)
i = X(j)′Z(j)(Z(j)′Z(j))−1z

(j)
i , and

Gj =
1
NX(j)′PZ(j)X(j). Denote R = (1, 1, 1, 1)′ ⊗

(
1
4IkF 0kF ,kv

)′
, a 4k × kF matrix. Then,

Σ̂4S =
1

N
R′G−1Σ̂0G

−1R+
1

T
Ω̂F ,

where Ω̂F is a consistent estimator of the long-run variance of Ft.
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3.3 Comparison with existing approaches

Kleibergen (2009) introduced weak observed factors, showed their impact on the estimation of the risk

premia and proposed robust procedures inspired by weak IV robust tests. An important prerequisite

for the robust tests is consistent estimation of the N × N cross-sectional covariance matrix of the

pricing errors. Kleibergen (2009) assumes that N is �xed, as consistent estimation of the covariance

matrix becomes problematic with a growing number of assets. A recent paper by Kleibergen, Kong

and Zhan (2020) demonstrates the problems arising from large N . The authors propose �nite-sample

inferences for large N and limited T that di�er dramatically from asymptotic inferences valid for

�xed N and T → ∞. The �nite-sample approach of Kleibergen, Kong and Zhan (2020) allows for an

arbitrary covariance matrix but requires Gaussianity of the pricing errors. The four-split approach we

propose has an asymptotic justi�cation and does not place distributional assumptions on the errors.

However, we restrict the complexity of the covariance matrix by imposing the assumption of a latent

kv-dimensional factor structure in the pricing errors. This allows us to create proxies for the missing

factor loadings and to account for the biases that arise from the cross-sectional correlation of the

pricing errors.

Giglio and Xiu (2020) propose a three-pass method to estimate the risk premium of an observed

factor. The procedure extracts factors from a set of assets returns using the PCA, calculates the risk

premia of the extracted factors and then linearly transforms the estimated risk premia to price the

observed factor. The three-pass method is robust both to missing strong factors as well as to weak

or even irrelevant observed factors. The important assumption behind the three-pass method is that

all priced risk factors are pervasive and can be uncovered by the PCA, the assumption we do not

require. From this perspective, we consider our method as complimentary to Giglio and Xiu (2020).

Recently, Lettau and Pelger (2020) questioned the abovementioned assumption and demonstrated

that the PCA often misses weak factors that are empirically important for pricing. Lettau and Pelger

(2020) propose an alternative to the PCA that �nds statistical factors explaining both the covariance

matrix and the expected returns of the assets, but, in contrast to the papers discussed above, it does

not consider the issue of inference on the risk premia.

4 Theoretical statements

4.1 Assumptions about idiosyncratic errors

Assumption ERRORS.

(i) The random vectors et = (e1t, ..., eNt)
′ are serially independent conditionally on F , and E(et|F) =

0, where F the sigma-algebra generated by variables (F1, ..., FT ) and (v1, ..., vT ).

(ii) Let ρ(t, s) = 1√
N

∑N
i=1 eiteis. Assume supt sups ̸=tE

[
(1 + ∥Ft∥4)(ρ(s, t)2 + 1)

]
< C.

(iii) Let St =
1
N

∑N
i=1 e

2
it. Assume

√
N
T

∑T
t=1 F̃tSt = op(1) and

1
T

∑T
t=1 F̃tF̃

′
tSt →p ΣSF 2 .

13



(iv) Let Wt =
1√
N

∑N
i=1 γieit. Assume E

[
(1 + ∥Ft∥2)∥Wt∥2

]
< ∞.

Assumption ERRORS are high-level assumptions introduced to establish our results formally. The

main goal is to allow for very �exible weak cross-sectional dependence among the idiosyncratic errors,

as well as �exible conditional heteroscedasticity and dependence in higher-order moments of errors

and factors. Serial independence of errors as stated in Assumption ERRORS(i) is consistent with the

e�cient market hypothesis and the unpredictability of asset returns, and is generally consistent with

empirical evidence and tradition in the literature. This assumption may be weakened, though we do

not pursue this in the current paper.

The random variables ρ(s, t) stand for a (normalized) empirical analog of the error autocorrela-

tion coe�cient, St is an empirical variance, and Wt is a (normalized) weighted average error. These

variables are normalized so that they are stochastically bounded when the errors are cross-sectionally

i.i.d. In order to clarify the content of Assumption ERRORS and to show that our assumptions are

more �exible than those typically made in the literature, �rst, we provide a set of more restrictive

primitive assumptions that are common in the literature and that guarantee the validity of Assump-

tion ERRORS. Second, we also provide an empirically relevant example not covered by the primitive

assumptions but which satis�es our more general Assumption ERRORS.

Assumption ERRORS∗

(i) The factors {Ft, t = 1, ..., T} are independent from the errors {eit, i = 1, ..., N, t = 1, ..., T}; the
error terms et = (e1t, ..., eNt)

′ are serially independent and identically distributed for di�erent

t with Eeit = 0 and supi,tEe4it < ∞.

(ii) Let EN,T = E [ete
′
t] be the N×N cross-sectional covariance matrix. For some positive constants

a, c and C, we have limN,T
1
N tr(EN,T ) = a and

c < lim inf
N,T→∞

min ev (EN,T ) < lim sup
N,T→∞

max ev (EN,T ) < C.

(iii) E
∣∣∣ 1√

N

∑N
i=1(e

2
it − Ee2it)

∣∣∣2 < C.

Lemma 1 Assumptions LOADINGS and ERRORS∗ imply Assumption ERRORS.

The primitive Assumption ERRORS∗ is very close to those standard in the literature. Numerous

papers that establish inferences in factor models commonly assume that the set of factors {Ft, t =

1, ..., T} is independent from the set {eit, i = 1, ..., N, t = 1, ..., T}, though cross-sectional dependence

of errors is allowed; see, for example, Assumption D in Bai and Ng (2006). Many papers allow for

both time-series and cross-sectional error dependence. We exclude time-series dependence, which is

justi�ed by the e�cient-market hypothesis in our application. Assumption ERRORS∗(ii) is intended

to impose only weak dependence cross-sectionally as expressed by the covariance matrix; similar

assumptions appear in Onatski (2012) and in Bai and Ng (2006).
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Our high-level Assumption ERRORS is more general than the more standard primitive Assump-

tion ERRORS∗. In particular, our assumptions allow for very �exible conditional heteroscedasticity

in the error terms and time-varying cross-sectional dependence, which seems relevant when we con-

sider observed factors that characterize market conditions like the momentum factor. Consider the

following example.

Example 1. Assume that errors eit have the following weak latent factor structure:

eit = π′
iwt + ηit,

where (wt, Ft) is stationary, wt is kw × 1, serially independent conditional on F , with E(wt|F) = 0

and E(wtw
′
t) = Ikw (normalization). Assume E

[
(∥Ft∥4 + 1)(∥wt∥4 + 1)

]
< ∞. We assume that the

loadings satisfy the condition
∑N

i=1 πiπ
′
i → Γπ (the factors wt are weak), and N−1/2

∑N
i=1 πiγ

′
i → Γπγ .

Assume that the random variables ηit are independent both cross-sectionally and across time, are

independent from wt and Ft, and have mean zero and �nite fourth moments and variances σ2
i that

are bounded above and are such that N−1
∑N

i=1 σ
2
i → σ2. As proven in the Supplemental Appendix,

this example satis�es Assumption ERRORS.

An interesting feature of this example is that it allows the errors to be weakly cross-sectionally

dependent to the extent that they may possess a weak factor structure. Moreover, this factor structure

may be closely related to the observed factors Ft, which causes the cross-sectional dependence among

the errors eit to change with the observed factors Ft and allows a very �exible form of conditional

heteroskedasicity. Indeed, the conditional cross-sectional covariance is

E(eitejt|F) = π′
iE(wtw

′
t|F)πj + I{i=j}σ

2
i .

Since we do not restrict E(wtw
′
t|F) beyond the proper moment conditions, the strength of any

cross-sectional dependence as well as error variances may change stochastically depending on the

realizations of the observed factors. This �exibility is extremely relevant for observed factors such

as the momentum. For example, one may consider wt = ςtg(Ft, Ft−1, ...), where ςt ∼ N(0, 1) is

independent from all other variables; then for a proper choice of the function g(·) one may observe

higher volatility and cross-sectional dependence of the idiosyncratic error for higher values of the

observed factor Ft.

4.2 Asymptotic properties of the two-pass procedure

Let us denote λ̃ = λ + 1
T

∑T
t=1 Ft − EFt, a random quantity known as ex-post risk premia. It was

introduced in Shanken (1992). Now let us introduce two asymptotically important terms. The �rst
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term we refer to as �attenuation bias� is

BA = −

(
N∑
i=1

β̂iβ̂
′
i

)−1 N∑
i=1

uiu
′
iλ̃,

while the second term we call the �omitted variable bias� is

BOV =

(
N∑
i=1

β̂iβ̂
′
i

)−1 N∑
i=1

β̂i
µ′
i√
T

(
ηv,T − η′T λ̃

)
.

These terms are not biases in an exact sense as they are random, but rather they are sample analogues

of the expressions that are classically known as attenuation and omitted variable biases. Notice that

both quantities are infeasible as they depend on unobserved errors eit, unobserved factors vt and

unknown parameters λ and µi. Both terms are kF × 1 vectors. Let BA
1 and BOV

1 denote k1 × 1

sub-vectors containing the �rst k1 components, while BA
2 and BOV

2 are k2 × 1 sub-vectors of the last

k2 components of BA and BOV , correspondingly. We also adopt the following notation: Γβ2µ is the

k2 × kµ sub-block of matrix Γ (de�ned in Assumption LOADINGS) corresponding to the limit of

N−1
∑N

i=1

√
Tβi,2µi. Other sub-matrices are denoted similarly.

Theorem 1 Assume that the samples {rit, i = 1, ..., N, t = 1, ..., T} and {Ft, t = 1, ..., T} come

from a data-generating process that satis�es factor-pricing model (2) and assumptions FACTORS,

LOADINGS and ERRORS. Let λ̂TP denote the estimate obtained via the conventional two-pass pro-

cedure. Let both N and T increase to in�nity without restrictions on relative rates. Then the following

asymptotic statements hold simultaneously:( √
TBOV

1

BOV
2

)
⇒
((

Ikβ ; η̃
)
Γ
(
Ikβ ; η̃

)′
+ Ik2ΣuIk2

)−1
(Γβµ + η̃Γµµ) (ηv − η′λ),

( √
TBA

1

BA
2

)
⇒ −

((
Ikβ ; η̃

)
Γ(Ikβ ; η̃)

′ + Ik2ΣuIk2
)−1 Ik2Σuλ,

√
T
(
λ̃− λ

)
⇒ N(0,ΩF ),

and ( √
NT

(
λ̂TP,1 − λ̃1 −BA

1 −BOV
1

)
√
N
(
λ̂TP,2 − λ̃2 −BA

2 −BOV
2

) )
= Op(1),

where Σu = Σ−1
F ΣSF 2Σ−1

F , Ik2 =

(
0k1,k1 0k1,k2

0k2,k1 Ik2

)
is a kF × kF matrix, and η̃ = Ik2η is a kF × kv

random matrix (with η as in Assumption FACTORS).

Theorem 1 states the rates of convergence for di�erent parts of the two-pass estimator. Notice

that the theorem does not impose a relative rate of increase between N and T . One observation is

that the two-pass procedure cannot estimate λ at a rate faster than
√
T despite the fact that the
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dataset has NT observations of portfolio excess returns, and one could expect the
√
NT rate. This

comes from the fact that the correct speci�cation (1) if averaged across time, gives

ri = λ̃βi + εi. (5)

Thus, even if βi were known, the `true' coe�cient λ̃ in the only ideal regression we have (that is,

regression of average return on βi) di�ers from the parameter λ we want to estimate, by the term
1
T

∑T
t=1 Ft − EFt, which, if multiplied by

√
T , is asymptotically zero mean Gaussian with variance

ΩF . Notice also that if the limits of the normalized BOV and BA are non-zero, then these terms

(together with λ̃1) asymptotically dominate estimation. The two-pass estimate λ̂TP,2 of the risk

premia on weak factors Ft,2 is inconsistent and, asymptotically, has a poorly-centered, non-standard

distribution. The two-pass estimate λ̂TP,1 of risk premia on strong factors Ft,1 is
√
T -consistent,

but this estimate has a bias of order 1√
T
and an asymptotically non-standard distribution as long

as some of observed factors are weak (k2 > 0). This makes standard inferences (based on the usual

t-statistics) invalid.

4.3 Consistency of the four-split estimator

Theorem 2 Assume that the samples {rit, i = 1, ..., N, t = 1, ...T} and {Ft, t = 1, ..., T} come

from a data-generating process that satis�es factor pricing model (2) and Assumptions FACTORS,

LOADINGS and ERRORS. Assume that kF ≥ kv. Let both N and T increase to in�nity, then

√
T (λ̂4S,1 − λ1) =

√
T (λ̃1 − λ1) +Op(1/

√
N) ⇒ N(0,ΩF ),

√
min{N,T}(λ̂4S,2 − λ2) = Op(1).

Theorem 2 establishes the consistency rate for the four-split estimator λ̂4S under exactly the

same assumptions we showed the failure of the two-pass procedure. The four-split estimator for

the risk premia on the strong observed factor is
√
T -consistent, asymptotically equivalent to λ̃1 and

asymptotically Gaussian, while the four-split estimate of the risk premia on the weak observed factor

is consistent, and the rate of convergence depends on the relative size of N and T . Theorem 2

shows that the four-split estimator has superior asymptotic properties in comparison to the classical

two-pass procedure.

Theorem 2 can be generalized to allow local misspeci�cation of the pricing model. The statement

of the theorem remains true if the missing factors carry a risk premium of size up to 1/
√
T . One

way of expressing this is to assume that the expectation of vt is not zero but is of order no larger

than 1/
√
T . The presence of the risk premia on the missing factors does not change the �rst stage

estimation. The proof of Theorem 2 only uses that ηv,T = 1√
T

∑T
t=1 vt is asymptotically Op(1) but

not its mean-zero property.

If we consider an asymptotic setting where N → ∞ while T remains �xed, one can prove that
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under slightly stronger assumptions on the error term, the four-split estimate is consistent for the ex-

post risk premia λ̃, and the t-statistics are asymptotically Gaussian. The distinction between ex-post

and ex-ante risk premia is discussed in Shanken (1992) as well as in Raponi, Robotti and Za�aroni

(2017) and in Kim and Skoulakis (2018). We need to strengthen the cross-sectional dependence

assumptions on the error terms to the extent that the law of large numbers and cental limit theorems

hold when summation is done over the cross-sectional index only. The assumptions in Raponi, Robotti

and Za�aroni (2017) and Kim and Skoulakis (2018) are of this type.

One important assumption for the validity of our procedure is that we know the number of

missing factors kv. One may combine our estimator with a consistent selector of the number of

factors as Onatski (2009), Bai and Ng (2002) or Gagliardini, Ossola and Scaillet (2019) do. A

similar assumption/suggestion is used in Giglio and Xiu (2020) where properties of the estimator

crucially depend on the proper choice of the number of factors. Underestimation of the number of

missing factors leads to the omitted variable bias, while overestimation may produce weak instrument

distortion on step (2) of our algorithm and calls for weak IV robust inferences.

4.4 Inference procedures using four-split estimator

Theorem 2 shows that the new four-split estimator is consistent but does not provide a basis for

con�dence set construction or testing. Apparently, the stated assumptions are not strong enough

to obtain the asymptotic distribution of the four-split estimator. Below we formulate the needed

additional high-level assumptions and establish a result about statistical inferences using the four-split

estimator. We also provide primitive assumptions that will guarantee the validity of the additional

assumptions in examples.

For a set of vectors aj , we denote by (aj)
4
j=1 = (a′1, ..., a

′
4)

′ a long vector consisting of the four

vectors stacked upon each other; we denote by (ajj∗)j<j∗ the vectors ajj∗ stacked together.

Assumption GAUSSIANITY Assume that the following convergence holds:

1√
N

N∑
i=1


√
Tγiei

(
√
Tγiu

(j)
i )4j=1

(Teiu
(j)
i )4j=1

(Tu
(j)
i u

(j∗)
i )j<j∗

 =
1√
N

N∑
i=1

ξi ⇒ ξ =


ξγe

(ξγj)
4
j=1

(ξej)
4
j=1

(ξj,j∗)j<j∗

 ,

where ξ is a Gaussian vector with mean zero and covariance Σξ.

Assumption COVARIANCE Assume that 1
N

∑N
i=1 ξiξ

′
i →p Σξ, where ξi and Σξ are de�ned in

Assumption GAUSSIANITY.

The assumptions we maintained in the previous sections are enough to guarantee that 1√
N

∑N
i=1 ξi

is Op(1). Assumption GAUSSIANITY establishes the asymptotic distribution of that quantity, while

Assumption COVARIANCE allows one to construct valid standard errors. Below we provide su�cient
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conditions for the two new assumptions in the two leading examples discussed before: one where

the observed factors are independent from the errors and the example of factor-driven conditional

heteroskedasticity.

Lemma 2 Assume that Assumption ERRORS∗ holds, and additionally,

(i) E∥Ft∥8 < ∞; E
∥∥ 1
|Tj |
∑

t∈Tj
FtF

′
t − ΣF

∥∥→ 0;

(ii) maxi ∥γi∥ < C;

(iii) 1
N tr(E2

N,T ) → a2 and 1
N γ′EN,Tγ → Γσ, where Γσ is a full rank matrix;

(iv) 1
N2

∑N
i1=1

∑N
i2=1

∑N
i3=1

∑N
i4=1 |Eei1tei2tei3tei4t| < C;

then Assumption GAUSSIANITY holds. If in addition

∥EN,T − dg(EN,T )∥ → 0 as N,T → ∞,

then Assumption COVARIANCE holds as well.

Lemma 3 Assume we have a setting as in Example 1. Assume additionally that conditions (i) and

(ii) of Lemma 2 hold and the following is true:

(i) E
[
(∥Ft∥8 + 1)∥wt∥8

]
< ∞;

(ii) 1
N

∑N
i=1 σ

4
i → µ4 and 1

N

∑N
i=1 σ

2
i γiγ

′
i → Γσ, where Γσ is a full rank matrix.

Then Assumption GAUSSIANITY holds. If in addition Γπγ = 0, then Assumption COVARIANCE

holds as well.

Assumption GAUSSIANITY is a result of strengthening moment restrictions (condition (i) in

both Lemmas), guaranteeing that the asymptotic covariance matrix is well de�ned and full rank

(condition (iii) in Lemma 2 and condition (ii) in Lemma 3) and further restricting cross-sectional

dependence (condition (iv) in Lemma 2).

From a theoretical perspective, the derivation of a proper central limit theorem in a factor model

setting with a relatively free cross-sectional dependence structure is a major endeavor for two reasons.

The �rst di�culty here is that the quite unrestrictive structure of the cross-sectional dependence of

idiosyncratic error terms eit makes ξi cross-sectionally dependent, though the correlation between ξi

and ξi∗ for i ̸= i∗ converges to zero for large sample sizes. Without imposing further discipline on the

structure of dependence, it is hard to obtain a central limit theorem. Secondly, the components ξej

and ξj,j∗ are quadratic forms in the original errors. Here we use the asymptotic results established

for exactly this setting in a separate paper Anatolyev and Mikusheva (2021). There, we exploit

time-series conditional independence of errors to obtain a central limit theorem for cross-sectional

sums.
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Theorem 3 Assume that the samples {rit, i = 1, ..., N, t = 1, ...T} and {Ft, t = 1, ..., T} come

from a data-generating process that satis�es factor pricing model (2) and Assumptions FACTORS,

LOADINGS, ERRORS, GAUSSIANITY and COVARIANCE as both N and T increase to in�nity.

Assume kF ≥ kv. Then

Σ̂
−1/2
4S (λ̂4S − λ) ⇒ N(0, Ik).

Theorem 3 suggests the use of t- and Wald statistics for the construction of con�dence sets and

testing hypotheses about values of the risk premia. These inference procedures are standard and can

be implemented using standard econometrics software. From a theoretical perspective, however, the

asymptotics of the four-split estimator are not fully standard. Notice that the coe�cient ηv,T on the

omitted variable µi is random, even asymptotically. This implies that the amount of information

contained in the sample, which is used to correct for the omitted-variable problem, is random as well,

and thus results in the scale of uncertainty depends of the four-split estimator depends on random

variables ηv,T . Theorem 3 shows that a properly constructed proxy for the asymptotic variance

restores the asymptotic Gaussianity of the multivariate t-statistic. Another important aspect of

Theorem 3 is that inferences or construction of a proxy for the variance do not assume knowledge

of the number or identity of strong/weak factors. This is a desirable feature, as we do not have a

procedure that can credibly di�erentiate between weak and strong factors.

Theorem 3 is e�ective for any choice of instruments governed by a choice of matrices A1, ..., A4 in

the four-split algorithm. Intuitively, the informativeness of a proxy for µi constructed as a di�erence

in estimated betas is related to ΩvF , the covariance matrix introduced in Assumption FACTORS,

which is not easily estimable. The optimal choice of A1, ..., A4 is an interesting topic for future

research and is beyond the scope of the present paper.

Theorem 2 also states that the di�erence between λ̂4S and λ̃ is of order 1√
NT

. Typically, λ̃ is

infeasible. However, if all observed factors are portfolios themselves and are priced by the same

model, then we have λ = EFt. In such a case the literature suggests the use of an alternative feasible

estimator λ̂ = 1
T

∑T
t=1 Ft, which in this case is equal to λ̃. Thus, in this special case we have two

competing estimators for λ and can create a test for model speci�cation. In particular, the statistic

compares the di�erence between λ̂4S and λ̃ to zero. The proof of Theorem 3 shows that λ̂4S − λ̃

converges to zero at the rate
√
NT , and Σ̂IV is a proper proxy for the variance that delivers a χ2

asymptotic distribution to the corresponding Wald statistic.

5 Empirical Application

5.1 Simulations using arti�cial data

The goal of this section is to explore the size of potential de�ciency of the two-pass procedure and

performance of the four-split and competing estimators in a setting close to a real-life application.

We calibrate the data-generating process to match the data set of the monthly returns on N = 100
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Fama-French portfolios, sorted by size and book-to-market and asset returns' relation with the 3

Fama-French factors (market, SmB, HmL). The data are taken from Kenneth French's web-site. We

substitute missing values with zeros. The returns are monthly (not annualized), value-weighted,

the excess returns are calculated using one-month Treasury bills. The time span is from 01:1972 to

04:2020, resulting in T = 580.

First, we run PCA on the panel of excess returns, call the �rst three principle components Gt

with their loadings γi, and the fourth main principle component gt with loadings ϕi. We use the

normalization
∑T

t=1(G
′
t, gt)

′(G′
t, gt) = I4, making the variance of each factor 1/T . We compute

sample means of the loadings, µγ and µϕ, respectively, and their sample variances, Vγ and vϕ. We

calculate the sample variance σ2
ε of the residuals εit from a regression on the four main PCs. In

order to preserve the relation between PCs and Fama-French factors, we run a regression of Ft on

a constant and Gt, obtain intercepts η0,F , slopes ηF and residual variance matrix Σres. In order to

have a proper comparison consistent with our theoretical results, we measure the strength of a given

factor as the total variation in the data it produces; that is, its strength is measured as a sum of

squared loadings on that factor times the variance of the factor. The strengths of the four main PCs

and Fama-French factors are reported in Table 1. These numbers can serve as a reference for the

simulation results below.

Table 1: Fractions of variation explained and strengths of principle components and Fama-French factors in Fama-
French data set

1st PC 2nd PC 3rd PC 4th PC

Fraction of variation explained 73.6% 5.9% 3.0% 1.3%
Strength of principle components 2829 229 116 49

market SmB HmL

Strength of Fama-French factors 2263 482 230

Simulation design. We simulate the data by following three steps. In the �rst step, we strive

to match the relation of the principle components and Fama-French factors. We simulate Gt ∼
i.i.d.N(0, I3/T ) and γi ∼ i.i.d.N(µγ , Vγ), and then construct the simulated `observed factors' by

Ft = η0,F +ηFGt+wt, where wt ∼ i.i.d.N(0,Σres). In the second step, we introduce one more factor,

part of which represents a missing factor structure in the errors, by simulating gt ∼ i.i.d.N(0, 1/T )

and ϕi ∼ i.i.d. ϑϕ ·N(µϕ, vϕ). The parameter ϑϕ indexes the strength of the missing factor. Finally,

we introduce one more observed factor, which we label as mom because we want to imitate the

relation of the momentum factor to the PCs. We simulate momt = η0,mom+ηmomGt+ut+ vt, where

η0,mom and ηmom are coe�cients from a regression of the momentum factor on the PCs in the data.

The simulated error is composed of two parts: vt ∼ i.i.d.N(0, φσ2
mom) is uncorrelated with returns

or other factors, while ut ∼ i.i.d.N(0, (1 − φ)σ2
mom) is a part of excess returns and is the reason for

using mom in pricing the assets. Here, σ2
mom is the residual variance from the regression of mom on
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PCs. In all simulations, we set φ = 0.001. We generate loadings on ut according to δi =
αϕi/

√
T+ξi√

(1−φ)σ2
mom

,

where ξi ∼ N(0, σ2
ξ ), so that they are correlated with the loadings on gt. Now, by increasing α we

can increase the correlation, and by increasing σ2
ξ we can increase the strength of mom.

In the third step, we generate a cross-section of returns and impose a correct pricing model.

We generate the demeaned part of excess returns according to r∗it = Gtγi + gtϕi + utδi + ϵit, where

ϵit ∼ i.i.d.N(0, σ2
ε) is an idiosyncratic error. The implied true betas are

βi = var

(
Ft

momt

)−1

cov

((
Ft

momt

)
, r∗it

)
= var

(
Ft

momt

)−1( ηFγi/T

ηmomγi/T + (1− φ)σ2
momδi

)
.

The correctly priced excess returns are obtained by adding risk premia: rit = r∗it + λβi, where λ is

the sample means of the Fama-French and momentum factors.

Methods compared. We compare multiple estimators including the two-pass. The four-split

estimator uses A1 = ... = A4 = (1, 0, 0, 0)′. Giglio and Xiu's (2020) three-pass estimator depends

on the number p of the principle components selected; we run it for p = 4 and p = 5. Lettau

and Pelger (2020) do not address the question of estimation of risk premia but instead suggest an

alternative way to construct factor mimicking portfolios. Unlike the PCA, which extracts factors

based on covariances among returns, their method takes into account the expected returns and can

pick up a factor that has a high risk premium but is not strongly correlated with returns (i.e., a weak

factor). We combined the ideas in the two mentioned papers by implementing a three-pass estimator

that uses Lettau and Pelger's (2020) approach in place of PCA to extract factors in the �rst step.5

The theoretical statistical properties of this combined procedure are unknown; we computed the

standard errors for these estimates in the same way as for the procedure of Giglio and Xiu (2020). In

simulations, we used the value of regularization coe�cient γ = 20 and show the results for K = 4 and

K = 5 factors. We also implemented two-split IV estimation without creating a proxy for the missing

factor, which would work in the case of no missing factors, but, as expected, it is not competitive in

the current setting.6

In all simulation experiments, we read o� biases, `absolute' biases, and standard deviations of the

estimates for the momentum risk premium, as well as actual 95% coverage rates for the risk premium

on the momentum factor. An `absolute' bias is a characterization of the centrality of a distribution

keeping factors �xed. We calculate the bias averaged across R(i) = 100 draws of simulated cross

sections (such as γi, ϕi, etc.) keeping factors �xed, then take its absolute value and average across

each of R(t) = 100 draws of time-series processes (such as Gt, Ft, momt, etc.). Thus, the total number

of simulations is R(i,t) = R(i)R(t) = 10, 000.

Simulation results. In the �rst set of experiments, we explore the e�ect of a change in the

strength of the missing factor. We set α = 0.1 and σ2
ξ = 0.3, and then vary ϑϕ from 0 to 5, the value

5We are grateful to a referee for suggesting this idea.
6The results on the two-split estimation are available upon request, we do not report them here in order to remove

the clutter.
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Figure 1: Simulated statistics for estimates and coverage rates for momentum risk premium
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Notes: The strength of factor gt measured as the total variation explained is on the horizontal axis. The number of

simulations of the time series process is R(t) = 100. For each time series draw, we simulate R(i) = 100 cross-section

draws. The total number of simulations is 10, 000.

0 meaning no missing factors, the value 1 corresponding to the strength of the fourth PC. Figure 1

shows the performance measures for di�erent estimators, with the strength of the missing factor (as

measured by the total variation explained by the factor, 1
T

∑N
i=1 ϕ

2
i ) on the horizontal axis. One can

see that the absolute bias of the two-pass estimator grows fewfold larger than that of the four-split

estimator as the missing factor gt increases in importance. One can see that if the missing factor

is of the size of SmB (see Table 1), the two-pass can easily get coverage around 60% instead of the

declared 95%, while the four-split largely restores the inferences. The methods of Giglio-Xiu with

p = 4 and Lettau-Pelger with k = 4 factors produce nearly identical results because they extract

nearly identical factors (somewhat noisy versions of Gt and gt) that do not span momt. This leads

to an extremely biased (though with a low variance) estimator of the risk premium on mom and to
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nearly zero coverage of the corresponding con�dence sets. It is interesting that these two methods

drastically diverge if one extracts 5 factors. Adding the �fth factor to the three-pass with PCA

recovers only a small portion of mom and still leads to a large bias, but the Lettau-Pelger procedure

with 5 factors captures mom well due to its non-trivial risk premia. This illustrates the importance

of the major assumption underlying the idea of the three-pass procedure � the ability to uncover all

priced factors.

Figure 2: Simulated statistics for estimates and coverage rates for momentum risk premium
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Notes: The strength of the momentum factor mom is on the horizontal axis. The number of simulations of the time

series process is R(t) = 100. For each time-series draw, we simulate R(i) = 100 cross-section draws. The total number

of simulations is 10, 000.

In the second set of experiments, we set ϑϕ = 3 and α = 0.1, and then vary σ2
ξ from 0.1 to 0.9

with a step of 0.1, which makes the strength of the missing factor (as measured by 1
T

∑N
i=1 ϕ

2
i ) �xed

at 466, and the strength of the momentum factor (as measured by
∑N

i=1 β
2
i,4

1
T

∑T
t=1 (momt −mom)2)

increase from 12.7 to 124.0. Figure 2 shows the performance measures for di�erent estimators, with
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the strength of the momentum factor on the horizontal axis. As mom becomes stronger all methods

except both three-pass procedures with 4 factors start producing reliable estimate and inferences,

especially once the strength of mom exceeds 60. Both three-pass procedures with 4 factors fail to

uncover the pricing factors correlated with mom, although, as we can see, as mom become stronger

the performance of both methods somewhat improves. The Lettau-Pelger method extracts the factor

correlated with mom faster than the PCA as it has a non-trivial risk premium. This distinction

gets clear when we compare the three-pass procedures with 5 factors extracted by the PCA method

and with 5 factors extracted by the Lettau-Pelger procedure. When we compare the four-split with

three-pass using the Lettau-Pelger procedure with 5 factors, we notice that the four-split has a higher

average variance for all levels of factor strength as probably should be expected from an IV estimator.

What is puzzling and surprising of the Lettau-Pelger version of three-pass with 5 factors is that the

variance is not re�ective of the di�culty of estimation in that it stays nearly constant, which occurs

in a stark contrast to the bias which is very high when mom is weak. This leads to misleading

con�dence sets for this method when mom has strength lower than 20. The coverage of the four-

split also deteriorates for weak mom, to a much lesser degree though. In such situations, it may be

advisable to use weak IV robust tests at the IV step of four-split estimation.

5.2 Size of the e�ect in empirical application

In this subsection we run all the estimation procedures described above on two data sets, which

we describe further below. We estimate the risk premia on 3 Fama-French factors (market, SmB,

HmL) and the momentum factor. For estimation of the long-run variance of observed factors we use

the Newey-West estimator with 4 lags (the results are not sensitive to a lag choice). The four-split

estimator uses Ai = (1, 0, 0, 0)′, the Lettau and Pelger (2020) procedure uses γ = 20. Since all the

observed factors are tradable, we have an alternative (and the most e�cient) estimator of the risk

premia, λ̂ = 1
T

∑T
t=1 Ft, the average excess return. This allows us to discuss the quality of di�erent

estimates relative to this benchmark. Also, having two valid estimates with di�erent e�ciency allows

us to test for a correct speci�cation of the linear pricing model. The speci�cation test based on the

Wald statistic is equal to the squared di�erence between the (two-pass or four-split) estimate and the

average factor, weighted by an inverse of the di�erence in covariance matrices. The validity of such

a test comes from the proof of Theorem 3. We do not report the speci�cation test for the three-pass

estimates as we are not aware of one.

The �rst data set contains the monthly returns on N = 100 Fama-French portfolios sorted by size

and book-to-market; they are described in the previous subsection. The time span is from 01:1972

to 04:2020, resulting in T = 580. The results are reported in Table 2. The two-pass procedure

produces a very high value for the momentum risk premium, and also falsely overstates the accuracy

of that estimate to such an extent that the two-pass procedure strongly rejects the linear pricing

model with four factors, while the same speci�cation test does not reject the model with only 3
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Table 2: Estimates of monthly risk premia on Fama-French factors and momentum factor and tests of speci�cation,
using monthly returns on 100 portfolios sorted by size and book-to-market

↓ Procedure Market SMB HML MOM Wald p-value

average excess return → 0.556
0.192

0.128
0.124

0.263
0.145

0.656
0.185

Two-pass 0.612
0.194

0.099
0.131

0.311
0.152

1.905
0.365

22.96 0.000

Four-split 0.533
0.198

0.151
0.142

0.292
0.159

0.515
0.804

0.81 0.937

Giglio-Xiu (p = 4) 0.471
0.237

0.206
0.127

0.235
0.147

−0.155
0.105

Giglio-Xiu (p = 5) 0.471
0.243

0.207
0.128

0.235
0.147

−0.155
0.106

Lettau-Pelger (K = 4) 0.401
0.198

0.253
0.124

0.242
0.142

0.048
0.123

Lettau-Pelger (K = 5) 0.399
0.198

0.255
0.124

0.242
0.143

0.048
0.123

Notes: The sample size is T = 580. The standard errors are computed using the Newey-West estimator with 4 lags.

In the Giglio and Xiu (2020) three-pass PCA method, p is a maximum number of latent factors to use. In the Lettau

and Pelger (2020) RP-PCA procedure, K is a number of factors; the risk premium penalty γ is set to 20.

Fama-French factors. We attribute this to the momentum factor having only weak correlation with

returns. The four-split procedure, however, produces an estimate of the momentum risk premium

close to the average excess return and accepts the correctness of speci�cation. The four-split estimates

have much larger standard errors in comparison to the average excess returns, which is an implicit

con�rmation of the weakness of the momentum factor. All the variations of the three-pass produce

momentum risk premium estimates very far from the benchmark average return on the momentum.

This can be explained by the failure of both the PCA and Lettau�Pelger procedure to extract a risk

factor correlated with the momentum. The situation here is that the test assets cannot capture all

Table 3: Estimates of monthly risk premia on Fama-French factors and momentum factor and tests of speci�cation,
using monthly returns on 25 portfolios sorted by size and book-to-market and 25 portfolios sorted by size and momentum

↓ Procedure Market SMB HML MOM Wald p-value

average excess return → 0.654
0.166

0.199
0.100

0.331
0.119

0.658
0.140

Two-pass 0.673
0.167

0.167
0.115

0.410
0.136

0.740
0.148

5.67 0.225

Four-split 0.652
0.169

0.237
0.112

0.373
0.135

0.715
0.151

2.73 0.605

Giglio-Xiu (p = 4) 0.690
0.379

0.307
0.102

−0.033
0.093

0.427
0.172

Giglio-Xiu (p = 5) 0.652
0.249

0.202
0.094

0.364
0.120

0.661
0.149

Lettau-Pelger (K = 4) 0.608
0.182

0.230
0.095

0.218
0.092

0.595
0.150

Lettau-Pelger (K = 5) 0.592
0.174

0.178
0.091

0.358
0.113

0.646
0.140

Notes: The sample size is T = 1120. The standard errors are computed using the Newey-West estimator with 4 lags.

In the Giglio and Xiu (2020) three-pass PCA method, p is a maximum number of latent factors to use. In the Lettau

and Pelger (2020) RP-PCA procedure, K is a number of factors; the risk premium penalty γ is set to 20.
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the pricing information that is necessary to explain the momentum risk premium, but the four-split is

still able to uncover some information related to it, though the signal is very weak here as suggested

by very large four-split standard errors.

The second data set is intended to be more informative in capturing the momentum. It contains

25 size and book-to-market sorted portfolios and 25 size and momentum sorted portfolios taken from

Kenneth French's web-site, hence N = 50. The time span is from 01:1927 to 04:2020, leading to

T = 1120. The results are reported in Table 3. Here all the methods are in agreement. The best

results for the three-pass approach is achieved with 5 factors. Interestingly, the four-split exhibits

almost no loss of e�ciency in comparison to the benchmark and other estimators. Another fact worth

pointing out is that a small mistake in estimating a number of factors (like running the three-pass

with 4 PCA factors) can yield huge bias while it has almost no re�ection on the reported variance.
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Appendix A: proofs

Note that Lemma S1 often referred to is contained in the Supplemental Appendix.

Proof of Theorem 1. Assumption FACTORS guarantees that
√
T (λ̃−λ) ⇒ N(0,ΩF ). The �rst-

pass (time series) regression yields equation (3), where we use Assumption FACTORS, and op(1)

appears from the di�erence between ΣF and T−1
∑T

t=1 F̃tF̃
′
t .

Denote QT =

(
Ik1 0k1,k2

0k2,k1
√
TIk2

)
. Notice that QT /

√
T → Ik2 . Below we prove the following

statement: as N,T → ∞,

1

N

N∑
i=1

QT β̂iβ̂
′
iQT ⇒ (Ikβ ; η̃)Γ(Ikβ ; η̃)

′ + Ik2ΣuIk2 . (6)

Indeed,

1

N

N∑
i=1

QT β̂iβ̂
′
iQT =

1

N

N∑
i=1

(
QTβi +QT

ηT√
T
µi +QTui

)(
QTβi +QT

ηT√
T
µi +QTui

)′

=
1

N

N∑
i=1

((
Ikβ ; η̃T

)
γi +QTui

) ((
Ikβ ; η̃T

)
γi +QTui

)′
, (7)

where η̃T = QT ηT /
√
T ⇒ Ik2η = η̃ is kF × kv Gaussian random matrix. Let us show that

T

N

N∑
i=1

uiu
′
i → Σu. (8)

Indeed, due to statement (4) of Lemma S1 we have that 1
TN

∑N
i=1

∑T
t=1

∑T
s=1,s ̸=t F̃tF̃

′
seiteis = op(1).

Thus,

T

N

N∑
i=1

uiu
′
i = Σ−1

F

(
1

TN

N∑
i=1

T∑
t=1

T∑
s=1

F̃tF̃
′
seiteis

)
Σ−1
F

= Σ−1
F

(
1

TN

N∑
i=1

T∑
t=1

F̃tF̃
′
te

2
it

)
Σ−1
F + op(1) →p Σu,

where the last convergence comes from statement (3) of Lemma S1. Statement (5) of Lemma S1

implies √
T

N

N∑
i=1

γiu
′
i →p 0k,kF . (9)

Combination of equations (7)�(9) and Assumption LOADINGS implies (6).
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For the �attenuation bias,�

( √
TBA

1

BA
2

)
= Q−1

T

√
TBA = −

(
1

N
QT

N∑
i=1

β̂iβ̂
′
iQT

)−1
QT√
T

T

N

N∑
i=1

uiu
′
iλ̃.

Combining equations (6), (8), λ̃ →p λ and QT /
√
T → Ik2 , we arrive at( √

TBA
1

BA
2

)
⇒ −

((
Ikβ ; η̃

)
Γ
(
Ikβ ; η̃

)′
+ Ik2ΣuIk2

)−1
Ik2Σuλ.

For the �omitted variable bias,�

( √
TBOV

1

BOV
2

)
= Q−1

T

√
TBOV =

(
1

N

N∑
i=1

QT β̂iβ̂
′
iQT

)−1
1

N

N∑
i=1

QT β̂iµ
′
i

(
ηv,T − η′T λ̃

)
.

Let us consider the following expression:

1

N

N∑
i=1

QT β̂iµ
′
i =

1

N

N∑
i=1

(
QTβi +QT

ηTµi√
T

+QTui

)
µ′
i. (10)

By Assumption LOADINGS, 1
N

∑N
i=1QTβiµ

′
i → Γβµ and 1

N

∑N
i=1 µiµ

′
i → Γµµ, while QT ηT /

√
T ⇒ η̃.

The last term in equation (10) is oP (1) by statement (5) of Lemma S1. Thus,

1

N

N∑
i=1

QT β̂iµ
′
i ⇒ Γβµ + η̃Γµµ.

We also note that ηv,T − η′T λ̃ ⇒ ηv − η′λ. This implies validity of the asymptotic statement about

BOV contained in Theorem 1.

For the remaining part, by time averaging equation (2) we get ri = β′
iλ̃+ µ′

i
ηv,T√

T
+ ei. Combining

the last equation with equation (3), we obtain

ri = β̂′
iλ̃− u′iλ̃+

µ′
i√
T

(
ηv,T − η′T λ̃

)
+ ei.

Thus, we arrive at

λ̂TP − λ̃−BA −BOV =

(
N∑
i=1

β̂iβ̂
′
i

)−1(
−

N∑
i=1

(
β̂i − ui

)
u′iλ̃+

N∑
i=1

β̂iei

)

=

(
N∑
i=1

β̂iβ̂
′
i

)−1(
−

N∑
i=1

(
βi +

ηTµi√
T

+ op(1)
)
u′iλ̃+

N∑
i=1

β̂iei

)
,
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so

√
NTQ−1

T (λ̂TP − λ̃−BA −BOV )

=

(
1

N

N∑
i=1

QT β̂iβ̂
′
iQT

)−1√
T

N

(
−

N∑
i=1

QT (βi +
ηTµi√

T
)u′iλ̃+

N∑
i=1

QT β̂iei

)
.

Let us prove that the numerator is asymptotically Op(1):√
T

N

(
−

N∑
i=1

QT (βi +
ηTµi√

T
)u′iλ̃+

N∑
i=1

QT β̂iei

)

= (Ikβ ; η̃T )

√
T

N

N∑
i=1

γi(ei − u′iλ̃) +

√
T

N

N∑
i=1

QTuiei +Op(1). (11)

By statement (5) of Lemma S1, we have
√

T
N

1
N

∑N
i=1 γiei = Op(1) and

√
T
N

1
N

∑N
i=1 γiu

′
i = Op(1),

which makes the �rst summand in equation (11) Op(1). Consider the second term in equation (11)

and recall that QT /
√
T = O(1):

√
T

N

N∑
i=1

QTuiei =
QT√
T
Σ−1
F

1√
NT

N∑
i=1

T∑
t=1

T∑
s=1

F̃seiseit

=
QT√
T
Σ−1
F

1√
NT

N∑
i=1

T∑
t=1

∑
s̸=t

F̃seiseit +
QT√
T
Σ−1
F

√
N

T

T∑
t=1

F̃tSt.

The �rst term is Op(1) by statement (4) of Lemma S1, while the second term is Op(1) by Assumption

ERRORS(iii). This ends the proof of Theorem 1. �
Proof of Theorem 2. We �rst discuss the asymptotics of just one IV regression described on

step (2), then this argument will be repeated for the other three IV regressions from step (2) of the

algorithm. Denote τ = ⌊T4 ⌋ = |Tj |.
The time-series regression on a sub-sample j gives us that

β̂
(j)
i =

(
βi + u

(j)
i +

ηj,Tµi√
τ

)
(1 + op(1)),

where ηj,T = 1√
τ

∑
t∈Tj

Σ−1
F F̃

(j)
t v′t ⇒ ηj , ηj is random kF × kv matrix with the distribution vec(ηj) ∼

N(0kF kv ,1,ΩvF ), and the op(1) term is related to the di�erence between ΣF and 1
τ

∑
t∈Tj

F̃
(j)
t F̃

(j)′
t .

On step (2) we run an IV regression of yi =
1
T

∑T
t=1 rit on the regressor

x
(1)
i =

(
β̂
(1)
i

A1

(
β̂
(1)
i − β̂

(2)
i

) ) =

(
β̂
(1)
i

A1
η1,T−η2,T√

τ
µi +A1

(
u
(1)
i − u

(2)
i

) ) ,
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with the instruments

z
(1)
i =

(
β̂
(3)
i

β̂
(3)
i − β̂

(4)
i

)
=

(
β̂
(3)
i

η3,T−η4,T√
τ

µi + (u
(3)
i − u

(4)
i )

)
.

The main estimation equation can be written in the following way:

yi =
1

T

∑
t∈T

rit = λ̃′βi +
η′v,T√
T
µi + ei = λ̃′β̂

(1)
i +

(
η′v,T√
T

− λ̃′ η1,T√
τ

)
µi + ei − λ̃′u

(1)
i

= λ̃′β̂
(1)
i + a1,TA1

(
β̂
(1)
i − β̂

(2)
i

)
+ ei − λ̃′u

(1)
i − a1,TA1

(
u
(1)
i − u

(2)
i

)
.

Thus, we can write it as follows:

yi = (λ̃′, a1,T )x
(1)
i + ϵ

(1)
i . (12)

Here we use the following notation:

a1,T =

(
η′v,T√
T

− λ̃′ η1,T√
τ

)(
A1

η1,T − η2,T√
τ

)−1

⇒
(
η′v
2

− η1

)(
A1(η1 − η2)

)−1
,

and ϵ
(1)
i = ei − λ̃′u

(1)
i − a1,TA1

(
u
(1)
i − u

(2)
i

)
. Notice that a1,T is a random 1 × kv matrix that is well

de�ned with probability approaching 1 (as η1,T and η2,T weakly converge to two independent random

Gaussian matrices), and a1,T is asymptotically of order Op(1).

The estimator computed on the step (2) of the four-split algorithm is

λ̂(1) =
(
IkF , 0kF ,kv

) (
X(1)′Z(1)

(
Z(1)′Z(1)

)−1
Z(1)′X(1)

)−1
X(1)′Z(1)

(
Z(1)′Z(1)

)−1
Z(1)′Y.

Using equation (12) we obtain:

λ̂(1) − λ̃ =
(
IkF , 0kF ,kv

) (
X(1)′PZ(1)X(1)

)−1
X(1)′PZ(1)ϵ(1), (13)

where PZ is a projection matrix onto Z. Let us introduce two normalizing matrices:

Qx =

(
QT 0kF ,kv

0kv ,kF
√
TIkv

)
, Qz =

(
QT 0kF ,kF

0kF ,kF

√
TIkF

)
.

The dimensionality of Qx is k × k, where k = kF + kv is a number of regressors in the second stage

regression, while the dimensionality of Qz is 2kF × 2kF , where 2kF is the number of instruments.

The matrix QT was de�ned in the proof of Theorem 1. Now,

Qxx
(1)
i =

(
Ã1,Tγi +

(
QT 0kF ,kF√
TA1 −

√
TA1

)(
u
(1)
i

u
(2)
i

))
,
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where

Ã1,T =

(
IkF QT

η1,T√
τ

0kv ,kF 2A1(η1,T − η2,T )

)
⇒

(
IkF 2Ik2η1

0kv ,kF 2A1(η1 − η2)

)
= Ã1,

1√
T

(
QT 0kF ,kF√
TA1 −

√
TA1

)
→

(
Ik2 0kF ,kF

A1 −A1

)
.

Here Ik2 is a kF × kF matrix which was introduced in Theorem 1. We also have

Qzz
(1)
i =

(
A∗

1,Tγi +

(
QT /

√
T 0kF ,kF

IkF −IkF

)
√
T

(
u
(3)
i

u
(4)
i

))
,

where

A∗
1,T =

(
IkF QT

η3,T√
τ

0kF ,kF 2(η3,T − η4,T )

)
⇒

(
IkF 2Ik2η3

0kF ,kF 2(η3 − η4)

)
= A∗

1,(
QT /

√
T 0kF ,kF

IkF −IkF

)
→

(
Ik2 0kF ,kF

IkF −IkF

)
.

Statements (1) and (5) of Lemma S1 imply that

T√
N

N∑
i=1

u
(j)
i u

(j∗)′
i = Op(1) for j ̸= j∗, (14)

√
T

N

N∑
i=1

(γ′i, 1)
′u

(j∗)′
i = Op(1). (15)

This together with Assumption LOADINGS gives us that

1

N

N∑
i=1

Qxx
(1)
i z

(1)′
i Qz ⇒ Ã1ΓA

∗′
1 . (16)

By Assumption LOADINGS, Γ is full rank, while Ã1 and A∗′
1 are full rank with probability 1. State-

ments (3) and (4) of Lemma S1 imply that

τ

N

N∑
i=1

u
(j)
i u

(j)′
i →p Σu. (17)
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Thus, we obtain

1

N

N∑
i=1

Qzz
(1)
i z

(1)′
i Qz ⇒ A∗

1ΓA
∗′
1 + 4

(
Ik2 0kF ,kF

IkF −IkF

)(
Σu 0kF ,kF

0kF ,kF Σu

)(
Ik2 IkF

0kF ,kF −IkF

)

= A∗
1ΓA

∗′
1 + 4

(
Ik2ΣuIk2 Ik2Σu

ΣuIk2 2Σu

)
. (18)

Let us now show that √
T

N

N∑
i=1

Qzz
(1)
i ϵ

(1)
i = Op(1). (19)

We have ϵ
(1)
i = ei − λ̃′u

(1)
i − a1,TA1(u

(1)
i − u

(2)
i ). The sum in (19) contains summands of the form√

T
N

∑N
i=1 γi(ei, u

(j)
i ), T√

N

∑N
i=1 eiu

(j)
i and T√

N

∑N
i=1 u

(j∗)′
i u

(j)
i . All three types of summands are Op(1)

due to statements (5), (2) and (1) of Lemma S1, correspondingly. Putting equations (16) and (18)

together, we obtain

NQ−1
x ΘN,T,1Q

−1
z =

QxX
(1)′Z(1)Qz

N

(
QzZ

(1)′Z(1)Qz

N

)−1
QzZ

(1)′X(1)Qx

N

−1

· QxX
(1)′Z(1)Qz

N

(
QzZ

(1)′Z(1)Qz

N

)−1

= Op(1).

Putting everything together, we have:

√
NTQ−1

T (λ̂(1) − λ̃) = (IkF , 0kF ,kv)NQ−1
x ΘN,T,1Q

−1
z

√
T

N

N∑
i=1

Qzz
(1)
i ϵ

(1)
i = Op(1).

Because
√
NTQ−1

T =

( √
NTIk1 0k1,k2

0k2,k1
√
NIk2

)
, we obtain di�erent rates of estimation of the risk

premia λ1 and λ2 on the strong and weak observed factors. We have
√
NT

(
λ̂
(1)
1 − λ̃1

)
= Op(1), while√

N
(
λ̂
(1)
2 − λ̃2

)
= Op(1). Thus,

√
T
(
λ̂
(1)
1 − λ1

)
=

√
T
(
λ̃1 − λ1

)
+

√
T
(
λ̂
(1)
1 − λ̃1

)
=

√
T
(
λ̃1 − λ1

)
+Op

(
1/
√
N
)
⇒ N(0,ΩF ).

As for the estimator of the risk premia on the weak factors,

λ̂
(1)
2 − λ2 =

(
λ̃2 − λ2

)
+
(
λ̂
(1)
2 − λ̃2

)
= Op

(
1/
√
T
)
+Op

(
1/
√
N
)
= Op

(
1/
√
min{N,T}

)
.

We have proved the statement of Theorem 2 for an estimator obtained on step (2) of the algorithm,

but the same line of reasoning applies to λ̂(2), λ̂(3), λ̂(4) and their average. This �nishes the proof of

Theorem 2. �
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Proof of Theorem 3. Following the steps of the proof of Theorem 2 we get the following two

statements:

1

N

N∑
i=1

Qxx
(j)
i z

(j)′
i Qz ⇒ ÃjΓA

∗′
j , (20)

1

N

N∑
i=1

Qzz
(j)
i z

(j)′
i Qz ⇒A∗

jΓA
∗′
j + 4

(
Ik2ΣuIk2 Ik2Σu

ΣuIk2 2Σu

)
, (21)

where A∗
j and Ãj are random matrices that are deterministic functions of random vectors (η1, ..., η4).

Indeed, let us adopt the following notation. Let j1, ..., j4 be the circular indexes used for computing

λ̂(j). In particular, the estimate λ̂(j) is computed from the IV regression with the regressors x
(j)
i =(

β̂
(j1)′
i , (β̂

(j1)
i − β̂

(j2)
i )′A′

j

)′
and the instruments z

(j)
i =

(
β̂
(j3)′
i , (β̂

(j3)
i − β̂

(j4)
i )′

)′
. Then, similarly to the

proof of Theorem 2, we obtain:

A∗
j =

(
IkF 2Ik2ηj3

0kF ,kF 2(ηj3 − ηj4)

)
, Ãj =

(
IkF 2Ik2ηj1

0kv ,kF 2Aj(ηj1 − ηj2)

)
.

So,

NQ−1
x

(
X(j)′Z(j)

(
Z(j)′Z(j)

)−1
Z(j)′X(j)

)−1
X(j)′Z(j)

(
Z(j)′Z(j)

)−1
Q−1

z ⇒ Θj .

The limit Θj in the last expression is a known deterministic function of random vectors (η1, ..., η4),

which can be explicitly written in terms of A∗
j and Ãj .

We have the following expression for the estimates obtained on steps (2) and (3) of the four-split

algorithm:

√
NTQ−1

T

(
λ̂(j) − λ̃

)
=
(
IkF , 0kF ,kv

)
NQ−1

x ΘN,T,jQ
−1
z

√
T

N

N∑
i=1

Qzz
(j)
i ϵ

(j)
i ,

where ϵ
(j)
i = ei − λ̃′u

(j1)
i − aj,TAj

(
u
(j1)
i − u

(j2)
i

)
, and

Qzz
(j)
i =A∗

j,Tγi +

(
QT /

√
T 0kF ,kF

IkF −IkF

)
√
T

(
u
(j3)
i

u
(j4)
i

)
.
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The following term can be rewritten in terms of ξi from Assumption GAUSSIANITY:

√
T

N

N∑
i=1

Qzz
(j)
i ϵ

(j)
i = A∗

j,T


√

T

N

N∑
i=1

γi


ei

u
(j1)
i

u
(j2)
i


′


1

−λ̃−A′
ja

′
j,T

A′
ja

′
j,T



+

(
QT /

√
T 0kF ,kF

IkF −IkF

) T√
N

N∑
i=1

(
u
(j3)
i

u
(j4)
i

)
ei

u
(j1)
i

u
(j2)
i


′


1

−λ̃−A′
ja

′
j,T

A′
ja

′
j,T


= Aj,T

1√
N

N∑
i=1

ξi,

where Aj,T is a kz × kξ matrix which is a deterministic function of A∗
j,T , Aj , aj,T , λ̃. The exact

expression for Aj,T is obvious though too complicated to write down. We have discussed before the

convergence of all terms separately, which implies that Aj,T ⇒ Aj , where the limit is a deterministic

function of (η1, ..., η4).

Given Assumption GAUSSIANITY, we have
√

T
N

∑N
i=1Qzz

(j)
i ϵ

(j)
i ⇒ Ajξ. Following step (4) of

the four-split algorithm, we can put all pieces together:

√
NTQ−1

(
λ̂4S − λ̃

)
⇒
(
IkF , 0kF ,kv

)1

4

4∑
j=1

ΘjAj

 ξ. (22)

As we can see, the four-split estimator is asymptotically mixed Gaussian; that is, the limit distribution

conditionally on η1, ..., η4 (which is independent of ξ due to Assumption ERRORS) is Gaussian with

mean zero and the variance depending on η1, ..., η4.

Denote Σ̂IV = 1
NR′G−1Σ̂0G

−1R. We show below that Σ̂IV has the following asymptotic distri-

bution:

NTQ−1
T Σ̂IV Q

−1
T ⇒

(
IkF , 0kF ,kv

)1

4

4∑
j=1

ΘjAj

Σξ

1

4

4∑
j=1

ΘjAj

′ (
IkF , 0kF ,kv

)′
. (23)

Statement (23) implies the statement of Theorem 3. Indeed, equations (22) and (23) imply that

Σ̂
−1/2
IV

(
λ̂4S−λ̃

)
⇒ N(0, Ik), where the limiting Gaussian vector is independent of the limiting Gaussian

vector in the following convergence:

√
TΩ

−1/2
F

(
λ̃− λ

)
⇒ N(0, Ik).

The expression Σ̂
−1/2
4S

(
λ̂4S−λ

)
is the weighted sum of the expressions staying on the left-hand-side of

the last two convergence with weights asymptotically independent from both limiting N(0, Ik). This

leads to the validity of the statement of Theorem 3.
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To prove the validity of statement (23) we notice that
√
TQzz

(j)
i ϵ

(j)
i = Aj,T ξi. Thus,

T

N

N∑
i=1


Qz z̃

(1)
i ϵ

(1)
i

...

Qz z̃
(4)
i ϵ

(4)
i




Qz z̃
(1)
i ϵ

(1)
i

...

Qz z̃
(4)
i ϵ

(4)
i


′

=


A1,T

...

A4,T

 1

N

N∑
i=1

ξiξ
′
i


A1,T

...

A4,T


′

⇒


A1

...

A4

Σξ


A1

...

A4


′

. (24)

Let us consider an infeasible variance estimator Σ̃IV which is constructed in the same way as Σ̂IV

but uses ϵ
(j)
i in place of ϵ̂

(j)
i . That is, denote

Σ̃0 =
1

N

N∑
i=1


z̃
(1)
i ϵ

(1)
i

...

z̃
(4)
i ϵ

(4)
i




z̃
(1)
i ϵ

(1)
i

...

z̃
(4)
i ϵ

(4)
i


′

,

and consider Σ̃IV = 1
NR′G−1Σ̃0G

−1R. By putting together (20), (21) and (24) we obtain

NTQ−1
T Σ̃IV Q

−1
T ⇒

(
IkF , 0kF ,kv

)1

4

4∑
j=1

ΘjAj

Σξ

1

4

4∑
j=1

ΘjAj

′ (
IkF , 0kF ,kv

)′
.

The only thing left to show is that the di�erence between Σ̂IV and Σ̃IV is asymptotically negligible.

In particular, we will show for any j and j∗,

T

N

N∑
i=1

Qzz
(j)
i z

(j∗)′
i Qz

(
ϵ
(j)
i ϵ

(j∗)
i − ϵ̂

(j)
i ϵ̂

(j∗)
i

)
→p 0, (25)

where ϵ̂
(j)
i are the residuals from the (j)th IV regression. Indeed, this last statement implies that

Σ̂IV = Σ̃IV

(
1 + op(1)

)
, and usage of residuals in place of true errors does not have an asymptotic

e�ect on estimation of variance.

In order to prove (25) we write down an equation analogous to equation (12):

yi = (λ̃′, aj,T )x
(j)
i + ϵ

(j)
i = θ′jx

(j)
i + ϵ

(j)
i .

From the proof of Theorem 2 we have that
√
NTQ−1

x

(
θ̂j − θj

)
= Op(1), where θ̂j is the IV estimator

obtained on Steps (2) for j = 1 or on Step (3) for j = 2, 3 or 4. The residuals for this regression are

ϵ̂
(j)
i = yi − θ̂′jx

(j)
i = ϵ

(j)
i −

(
θ̂j − θj

)′
x
(j)
i = ϵ

(j)
i −

(
Q−1

x

(
θ̂j − θj

))′
Qxx

(j)
i .
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The left hand expression of (25) is equal to

T

N

N∑
i=1

Qzz
(j)
i z

(j∗)′
i Qz

(
ϵ
(j)
i

(
θ̂j∗ − θj∗

)′
x
(j∗)
i + ϵ

(j∗)
i

(
θ̂j − θj

)′
x
(j)
i −

(
θ̂j∗ − θj∗

)′
x
(j∗)
i

(
θ̂j − θj

)′
x
(j)
i

)
.

This expression contains three sums. We can show that each of them is asymptotically negligible.

For example, consider the �rst of the three sums:

1

N3/2

N∑
i=1

(√
TQzz

(j)
i ϵ

(j)
i

)(
Qzz

(j∗)
i

)′(
Qxx

(j∗)
i

)′√
NTQ−1

x

(
θ̂j∗ − θj∗

)
=

1

N3/2

N∑
i=1

Aj,T ξi
(
Qzz

(j∗)
i

)′(
Qxx

(j∗)
i

)′√
NTQ−1

x

(
θ̂j∗ − θj∗

)
.

Note that
√
NTQ−1

x

(
θ̂j∗ − θj∗

)
= Op(1). As before, Qzz

(j)
i = Op(1)γi +Op(1)

√
T
(
u
(j3)
i , u

(j4)
i

)′
, while

Qxx
(j)
i = Op(1)γi + Op(1)

√
T
(
u
(j1)
i , u

(j2)
i

)
, where all the mentioned Op(1) terms are not indexed by

i. Thus,

1

N3/2

N∑
i=1

Aj,T ξi
(
Qzz

(j∗)
i

)′(
Qxx

(j∗)
i

)′
= Op(1)

1

N3/2

N∑
i=1

ξiξ
′
i +Op(1)

1

N3/2

N∑
i=1

ξi ⊗ (γiγ
′
i).

By Assumption GAUSSIANITY, 1
N3/2

∑N
i=1 ξiξ

′
i →p 0 and thus

1

N3/2

∥∥∥∥∥
N∑
i=1

ξi ⊗ (γiγ
′
i)

∥∥∥∥∥ ≤ 1

N3/2

√√√√ N∑
i=1

∥ξi∥2

√√√√ N∑
i=1

∥γi∥4 →p 0.

This gives the asymptotic negligibility of the �rst sum; the negligibility of the other two sums is

proved in a similar manner. This ends the proof of Theorem 3. �
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