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Abstract

Evolutionary models in which N players are repeatedly matched to play a game have “fast convergence” 
to a set A if the models both reach A quickly and leave A slowly, where “quickly” and “slowly” refer to 
whether the expected hitting and exit times remain bounded when N tends to infinity. We provide simple 
and general Lyapunov criteria which are sufficient for reaching quickly and leaving slowly. We use these 
criteria to determine aspects of learning models that promote fast convergence.
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1. Introduction

The study of stochastic stability in evolutionary models focuses on the long-run outcomes 
of various sorts of adjustment processes that combine best response or learning dynamics with 
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mutations, errors, or other sorts of random fluctuations. Because the stochastic terms make these 
systems ergodic, they have a unique invariant distribution which corresponds to their long-run 
outcome, and since these outcomes typically single out a single equilibrium they provide a way 
to do equilibrium selection, as in Kandori et al. (1993) and Young (1993). However, the long-run 
outcome is only relevant if it is reached in a reasonable amount of time in populations of the 
relevant size, and this is not the case if agents intend to play a best response to the current state 
and the stochastic term arises from a constant probability of error, as here the expected time for 
the population to shift to the risk-dominant equilibrium is exponentially large in the population 
(Ellison, 1993).

For this reason, there has been considerable interest in understanding when the long run out-
come is reached “quickly” in the sense that the expected number of time periods to reach a 
neighborhood of the selected outcome is bounded above, independent of the population size. 
Past work in economics has used one of two methods for showing that this occurs: either an 
argument using coupled Markov processes as in Ellison (1993), or a two-step approach of first 
showing that the associated deterministic, continuous time, mean field has a global attractor, and 
then showing that the discrete-time stochastic system behaves approximately the same way when 
N is large, as in Kreindler and Young (2013, 2014). We say more about these papers below.1

This paper provides a simple Lyapunov condition for quickness that covers this past work. We 
also provide a complementary Lyapunov condition under which the process leaves the target set 
“slowly,” in the sense that the probability of getting more than ε away from the set in any fixed 
time goes to zero as the population size increases. As this latter property seems necessary for 
convergence to the target set to be interesting, we only say that there is “fast convergence” when 
both conditions hold. By providing a unified approach to proving fast convergence, we highlight 
the connection between them; this may provide intuition about other settings where the same 
result will apply. Our conditions are also relatively tractable and portable, which lets us prove 
that there is fast convergence in a number of new cases that are more complicated than those 
already in the literature. As one example of this, Section 2 presents a model of local interaction 
with a small-world element, where players interact both with their neighbors and with randomly 
drawn members of the whole population; here neither of the past techniques can be applied.

Section 3 presents the general model, which is based on a collection of time-homogeneous 
Markov chains SN = {SN(t) : t = 0, 1

N
, 2

N
, . . .} with finite state spaces �N , where N indexes 

the number of players in the population. These Markov chains may track for example the play 
of each player at each location of a network. We then define functions φN on �N that map to 
a space X of fixed dimension, and consider the processes given by XN(t) = φN(SN(t)). For 
example, these processes can describe the share of agents using each of a finite number of pure 
strategies in a game.

Section 4 presents a pair of general results that use a Lyapunov function V to provide suffi-
cient conditions for “reaching quickly” and “leaving slowly.” Proposition 1 says roughly that the 
system reaches a subset A of X quickly if the expectation of V (XN(t)) decreases by at least a 
fixed rate c > 0 whenever the state is outside of A, that is,

E
[
V

(
XN

(
t + 1

N

))
− V

(
XN(t)

) ∣∣∣SN(t)
]

≤ − c

N
when XN(t) /∈ A.

1 In mathematical biology hitting times for evolutionary processes have been characterized by diffusion approximations 
as in Ethier and Kurtz (1986) and Ewens (2004) and have been explicitly calculated for birth-death processes as in 
Nakajima and Masuda (2015).
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Intuitively, if XN(t) is deterministic and V is nonnegative, this condition implies that XN(t) will 
reach A from initial state x in V (x)/c periods; Proposition 1 extends this to a probabilistic state-
ment. Proposition 2 provides a closely related condition for leaving A slowly: If the maximum 
rate at which the state can move is bounded and V (XN(t)) is decreasing in expectation at rate c
whenever XN(t) is outside A, then the system will leave A slowly. Intuitively, this is because get-
ting more than ε away from A would take large number of steps against the drift. Propositions 3
and 4 extend the analysis to the case where the expected decrease of the Lyapunov function de-
creases as the target set is approached, and to the case where a set is reached quickly through a 
multi-step process that need not monotonically approach the set.

Sections 5 and 6 use our general results to examine whether convergence is fast in various 
evolutionary game dynamics. In Section 5 we study models where the population shares using 
each strategy provide an adequate state space, as when the noisy-sampling model of Sandholm
(2001) is extended to include random errors, or when agents play a stochastic best response 
to the current state, with more costly errors occurring less often, as in Kreindler and Young 
(2013, 2014).2 Our examples further explore each of these mechanisms. Here, there will be 
fast convergence to a neighborhood of the state in which all agents use one particular strategy 
whenever the popularity of that strategy is increasing in expectation when the state is outside the 
neighborhood, and conversely there will not be fast convergence to such a neighborhood if the 
popularity is decreasing in expectation whenever the popularity is sufficiently low. Section 5.2
examines models with stochastic choice, and Section 5.3 considers models where agents receive 
noisy signals of the current state. In most of the examples we show that if there is enough noise, 
there is fast convergence to the set where the majority of agents use the risk-dominant action in 
a coordination game, because the share of agents playing the risk-dominant action increases in 
expectation whenever it is less than one-half. Intuitively, pure noise will increase the share of any 
strategy when it is near zero, and at intermediate states risk-dominance pushes in one direction; 
the last part of the argument is that in both sorts of examples the dynamics have a convexity that 
generates a reinforcing interaction between noise and risk dominance.

Section 6 analyzes two examples that require larger and more complex state spaces: a two-
neighbor local interaction model like Ellison (1993), where the state must track the actions taken 
at each location in the network; and a model of learning with recency, where the state must track 
past observations. In these more complex models, it is very helpful that our Lyapunov results can 
be applied directly, without first establishing that the model converges in an appropriate sense 
to some deterministic limit dynamic as N → ∞, because the relevant approximation theorems 
assume that the dimension of the state space is fixed and finite independent of N .

To help clarify the difference between our approach and past work, we will review simplified 
versions of the Ellison (1993) and Kreindler and Young (2013) results in a bit more detail to ex-
plain their proof techniques and how our Lyapunov-function approach applies to them. Suppose 
then that a single population of agents plays a symmetric 2 ×2 coordination game with two strict 
Nash equilibria, one of which is both risk-dominant and Pareto-dominant, and one agent adjusts 
their play per time step.

In Kreindler and Young (2013), agents observe the population fractions that are currently 
using each action, and choose a logit best response to it. Here the state of the system is simply 
these fractions, and their result shows that the state moves quickly to a neighborhood of the risk 

2 Sandholm analyzed a continuum population model, but the approximation results of Benaïm and Weibull (2003) can 
be used to show that there is fast convergence in finite populations if errors are added to Sandholm’s model. (If the only 
source of noise is sampling, then the population can stay at the dominated equilibrium.)
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dominant equilibrium when there is enough noise, i.e. that the agent puts sufficient probability 
on the suboptimal choice. To prove this, they first showed that when there is “enough noise” (as 
parameterized in their paper by the logit parameter) the logit best reply curves have a unique 
intersection,3 so the associated deterministic, continuous time mean field has a unique steady 
state; because the system is one-dimensional this means that the share of agents playing the 
risk-dominant action increases monotonically whenever it is below the steady-state level. They 
then used the results of Benaïm and Weibull (2003) to show that the discrete-time stochastic 
system behaves approximately the same way when N is large, and specifically that the limit of 
the expected waiting time to the neighborhood of the attractor is the same.

In the two-neighbor local interaction model of Ellison (1993), agents are arranged on a circle. 
With probability 1 − ε the adjusting agent chooses a best reply to the play of his neighbors, while 
with probability ε the agent chooses the other strategy. Here the intuitive reason for fast conver-
gence is that a small pocket of agents playing the risk-dominant action is very robust to noise 
or mutations, while a cluster of agents using the other action is not. Ellison’s formal argument 
uses a coupling of Markov processes. It starts by showing that there is a T such that even in the 
worst case where no players outside a small fixed neighborhood ever use the risk-dominant ac-
tion, the neighborhood will with high probability have all players using the risk dominant action 
after T periods. The original model can be seen as a coupling together of a collection of these 
neighborhood-specific processes and the linkages can only further speed convergence to the risk 
dominant action.4

Our approach to these and other examples is to use the intuition for fast convergence to iden-
tify a suitable Lyapunov function. In the case where agents play a stochastic best response to 
the aggregate population fractions, as in Kreindler and Young (2013), we use the share of agents 
playing the risk dominant action. Here the properties of the response function imply that the ex-
pected value of this share is strictly increasing whenever it is no greater than 1

2 , which implies 
fast convergence to the complement of that set. As we will show in Section 5, the argument for 
more general payoffs and for games with more than 2 actions is similar: it requires that there be 
“enough noise” that the risk dominated equilibria disappear- which depends on the extent of risk 
dominance- and it also requires that the noise be sufficiently small that the intersection of the 
response curves gives probability more than 1

2 to the risk-dominant action. Unlike the determin-
istic approximation results, our result applies directly to the discrete-time stochastic process and 
does not require the technical conditions needed for the approximation theorem to apply.

In the case of local interaction, the state of the system must encode what each agent is do-
ing, so it corresponds to a vector in {A, B}N . For this reason it would be difficult to prove fast 
convergence here using approximation by a deterministic mean field, as the dimension of the 
state of the system changes with N . To use our approach, we must identify some quantity that is 
increasing in expectation until most agents play A. The most obvious function to try, the share 
of agents playing A, is increasing in expectation when fewer than half of the players play A, but 
decreasing (albeit at less than an ε rate) in states like (A, A, A, . . . , A, B, B, . . . , B) where more 
than half of the players are already using strategy A. In these problem states, the expected num-
ber of agents who have A as a best response is strictly increasing. That function also does not 
work as a Lyapunov function because it has an expected change of zero at some other states like 

3 This intersection is what Fudenberg and Kreps (1993) called a Nash distribution and McKelvey and Palfrey (1995)
subsequently called a quantal response equilibrium. The uniqueness of the intersection relies on the convexity alluded to 
earlier, as shown in Example 2.

4 Young (2011) uses a similar argument.
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(B, A, B, B, A, B, . . . , B, A, B.). However, adding the two functions with appropriate weights 
does provide a valid Lyapunov function, and so implies that there is fast convergence to a set 
where most players have A as their best response. One of our general results also lets us show 
further that the system quickly reaches the set where most agents play A.

2. Local interaction in a small world

In this section we present an example that readers can keep in mind as they read our more 
abstract model and results.

Consider the following local interaction model with a “small-world” element: N players are 
arranged around circle and are randomly matched to play a 2 × 2 coordination game. One player 
chosen at random considers updating his strategy in each period. With probability 1 − ε > 1/2
the updating player plays a best response to the average of the play in the previous period of 
four players: his two immediate neighbors and two players selected uniformly at random5; with 
probability ε the updating player chooses the opposite strategy. This combination of local and 
global interaction seems a reasonable description of many social games. We focus on the case 
where strategy 1 is risk-dominant, but not 1

4 -dominant: an updating player has strategy 1 as the 
best response if at least two of the four players in his sample are using it, but strategy 2 is the 
best response if at least 3 players in the sample are using strategy 2. An example is the familiar 
coordination game where players get 2 if they coordinate on strategy 1, 1 if they coordinate on 
strategy 2, and 0 if they miscoordinate.

In the noiseless (ε = 0) version of this model, strategy 1 will not spread contagiously as it does 
in the two-neighbor local interaction model. Instead, in states with just a few isolated clusters of 
players using strategy 1, the clusters will tend to shrink from the edges and disappear. However, 
the model does have both some local interaction and some sampling-based beliefs, both of which 
can promote fast evolution, so it is plausible that evolution may be fast.

Neither of the two standard proof techniques can be readily applied: The dimension of the 
state space increases with the number of players, which rules out using the Benaïm and Weibull
(2003) analysis of deterministic approximations of large-population models, and the model does 
not have the sort of purely local stable “clusters” that underlie Ellison’s coupling argument.

An application of our Lyapunov condition shows that the model has fast convergence to the 
risk dominant equilibrium if the noise level is above a critical threshold. Let x1 denote the fraction 
of the agents using strategy 1. Intuitively, when x1 is very small the state tends to increase because 
of the ε noise. When x1 is larger there are additional adoptions from players who have neighbors 
playing strategy 1 and/or see it in their random sample. This force dominates until most players 
are playing the risk dominant action.

Example 1. Consider the model above. Suppose that strategy 1 is risk dominant. Then, for ε >

0.065 the model has fast convergence to {x|x1 > 1 − 1.5ε}.

The proof is in Appendix A. In outline, we use as Lyapunov function the share x1 of agents 
using strategy 1. Then at any state s in which a fraction x1 of the players play strategy 1, the 
expected change in the share of players using strategy 1 will be 1

N
(y(1 − ε) + (1 − y)ε − x1), 

5 To simplify the algebra we assume that the random samples are independent draws from the full population (including 
the player himself and the immediate neighbors).
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where y is the probability that the updating player has strategy 1 as a best response in state s. 
We show that this is bounded below by a positive constant whenever x1 ∈ [0, 1 − 1.5ε]. The 
probability y is not a function of x1, but we can put a lower bound on y for each x1 by partitioning 
[0, 1 − 1.5ε] into three subintervals. When x1 is small the worst case is to have the players using 
strategy 1 be completely isolated. In such states players adopt strategy 1 both due to ε mutations 
(which by themselves make strategy 1 grow in popularity whenever x1 < ε) and when they 
randomly get two observations of strategy 1 in their sample. When x1 is large the worst case 
becomes having all of the players using strategy 1 in a single cluster. Here, the ε mutations tend 
to decrease x1, but this is outweighed by adoptions from players who randomly sample multiple 
players from the cluster unless almost all players are already in the cluster.

3. Model and definitions

Suppose that for each integer N = 1, 2, . . . we are given a discrete time homogeneous Markov 
chain SN = {SN(t) : t = 0, 1

N
, 2

N
, . . . } with finite state space �N .6 Let X be a compact subset 

of Rm for some m. Given some function φN : �N → X , let XN be the stochastic process on X
determined by XN(t) = φN(SN(t)). In most of our applications to models of populations playing 
a game with m actions, we take X to be the (m − 1)-dimensional unit simplex � = {x ∈ [0, 1]m :
x1 + · · · + xm = 1} and a point x ∈ � gives the fraction of players using each of the m strategies. 
We denote the conditional probability and the conditional expectation given SN(0) = s by Ps

and Es . For every A ⊂X let Ā denote its closure.
To discuss the speed with which the process XN reaches the set A ⊂X we write

τN
A = inf{t ≥ 0 : XN(t) ∈ A}

for the random variable giving the time at which A is first reached and define

WN(A, s) = Es(τ
N
A )

to be the expected wait to reach A conditional on the process SN starting at state s. Our first main 
definition is

Definition 1. The family {XN } reaches A quickly if

lim sup
N→∞

sup
s∈�N

WN(A, s) < ∞. (1)

Note that as in Kreindler and Young (2013) this is an asymptotic property meaning that the 
expected waiting time remains bounded (uniformly over all starting points) in the N → ∞ limit. 
We think that this is a natural definition of “quickly” for many applications. For example, our 
model could capture a situation in which a large number of players are asyncronously randomly 
matched to play some game with each player being matched on average once per unit of calen-
dar time. Here, the 1

N
period length would correspond to the interval between encounters, and 

quickly would mean that the calendar time required for some behavior to arise was bounded 

6 We believe that the assumption that SN has a finite state space is not critical; we use it as a convenient way to avoid 
technical difficulties.
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independently of the population size.7 In other applications, one could want other definitions of 
fast convergence.8

Our second main definition is

Definition 2. The family {XN } leaves A slowly if for any finite T and for every open set U
containing Ā

lim
N→∞ max

s∈φ−1
N (A)

Ps(τ
N
X \U ≤ T ) = 0. (2)

Note that the requirement in the definition is stronger than requiring that

lim
N→∞ min

s∈φ−1
N (A)

WN(X \ U, s) = ∞.

We made the definition more demanding in this dimension so that we will not count a model as 
leaving a set slowly just because there is some probability of being trapped within A for a very 
long time. Instead, it must be the case that even for very large T , the probability of escaping 
within T periods vanishes in the N → ∞ limit.9

Finally, we define “fast convergence” as the combination of these two properties.

Definition 3. The family {XN } has fast convergence to A if {XN } reaches A quickly and leaves 
A slowly.

4. Lyapunov criteria

This section contains several sufficient conditions for “reaching quickly” and “leaving slowly.”

4.1. Main results

We first present results relating the two components of fast convergence to the existence of 
Lyapunov functions satisfying certain properties. Proposition 1 contains a Lyapunov condition 
for {XN } to reach a given set quickly. Where applicable, it also provides an explicit upper bound 
for the expected hitting time.

To provide some intuition for the result, suppose that the Markov processes are deterministic 
and there is a nonnegative function V for which V (XN(t)) decreases by at least c/N in the next 
1/N -length time interval whenever XN(t) is outside A. Clearly, when such a process starts at x

7 If for every N , SN is irreducible and φ−1
N

(A) 	= ∅, or, more generally, if for every N , φ−1
N

(A) is accessible from its 
complement, then (1) is equivalent to the existence of a constant M < ∞ such that WN(A, s) < M for all s ∈ �N and 
all N . This stronger condition holds in all the examples in the present paper where we show that a set is reached quickly. 
We have made the definition less demanding to include the possibility that a set is reached quickly even if it is so small 
that, for finitely many N , it contains none of the states of XN .

8 For example, in a model of learning from others it might be reasonable to assume that each individual got more 
information per unit time in a larger population, e.g. each might get αN pieces of information per unit time by observing 
a fraction α of the others. If one modeled every instance of one player getting one piece of information as a period, then 
it would be natural to also regard evolution as fast if waiting times increased linearly in N .

9 It would have been more accurate to say {XN } “is likely to remain close to A for a long time” rather than “leaves A
slowly,” but we prefer the simpler wording. For example, for m = 2 a deterministic system which immediately transitions 
from (0, 1) to ( 1 , 1 − 1 ), but then immediately returns to (0, 1) is defined to leave {(0, 1)} slowly.
N N
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it must reach A within V (x)/c units of time. The proposition extends this simple argument to the 
case when the Markov process is not deterministic, but V (XN(t)) still decreases in expectation 
at rate c.

Proposition 1. Let A ⊂X , c ∈ (0, ∞), and let V : X → [0, ∞) be a bounded function. If

Es

[
V

(
XN (1/N)

)
− V

(
XN (0)

)]
≤ − c

N
for all s ∈ φ−1

N (X \ A), (3)

then WN(A, s) ≤ V (φN(s))/c for every s ∈ �N . In particular, if (3) holds for all N sufficiently 
large, then {XN } reaches A quickly.

Remark. Note that the implication in the sentence containing (3) holds for every single N . Thus, 
if one can show, for example, that there is a constant c0 > 0 so that for all N ,

Es

[
V

(
XN (1/N)

)
− V

(
XN (0)

)]
≤ − c0

N2
for all s ∈ φ−1

N (X \ A),

one can conclude that maxs∈�N
WN(A, s) grows at most linearly in N .

Proof of Proposition 1. Fix N ≥ 1, define Y(t) = XN(t ∧ τN
A ), and let Z(t) be 0 or 1 according 

as Y(t) ∈ A or Y(t) /∈ A. By (3), for t = 0, 1
N

, 2
N

, . . . , we have

E
[
V (Y (t + 1/N)) − V (Y (t))|Y(t) = y,SN(t) = st

]
≤ − c

N
,

for any (y, st ) with y /∈ A that occurs with positive probability. The LHS of the above inequality 
is identically zero if y ∈ A. So we can combine these two observations and write

E
[
V (Y (t + 1/N)) − V (Y (t))|Y(t), SN(t)

]
≤ − c

N
Z(t).

The expected change in the value function conditional on the state s at t = 0 can be computed by 
iterated expectations as

Es

[
V (Y (t + 1/N)) − V (Y (t))

] = Es

[
E

[
V (Y (t + 1/N)) − V (Y (t))|Y(t), SN(t)

]]
.

This gives

Es

[
V (Y (t + 1/N)) − V (Y (t))

] ≤ − c

N
Es [Z(t)] ,

which is equivalent to

1

N
Es [Z(t)] ≤ 1

c

(
Es [V (Y (t))] − Es

[
V (Y (t + 1/N))

])
.

The expected time to reach A is given by 1
N

Es[∑∞
k=0 Z( k

N
)]. The partial sums are bounded 

above:

1

N

m−1∑
k=0

EsZ

(
k

N

)
≤ 1

c

m−1∑
k=0

(
Es

[
V (Y (k/N))

] − Es

[
V (Y ((k + 1)/N))

])

= 1

c

(
Es [V (Y (0))] − Es

[
V (Y (m/N))

])
≤ 1

c
Es [V (Y (0))] = 1

c
V (φN(s)).

Hence, by monotone convergence, WN(A, s) ≤ V (φN(s))/c. �
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Remark. The proof resembles that of Foster’s theorem (e.g. Brémaud, 1999). Like that proof, 
the one here has the flavor of martingale arguments although it does not appeal to martingale 
results.

Our second proposition provides a criterion for {XN } to leave a set A slowly. It requires 
that the Lyapunov function decrease in expectation whenever XN(t) is slightly outside A. This 
suffices because we also assume that there is an upper bound on the rate at which the process 
can move.10 As a result, whenever the process does jump out of A it first reaches a point slightly 
outside A. The Lyapunov condition then ensures that for large N the system is unlikely to escape 
the neighborhood before being drawn back into A.

Proposition 2. Suppose there is a constant K < ∞ such that Ps(‖XN( 1
N

) − XN(0)‖ ≤ K
N

) = 1
for all N and all s ∈ �N , where ‖ · ‖ is the Euclidean norm on Rm. Let A ⊂ X be a set with 
φ−1

N (A) 	= ∅ for all N ≥ N0 for some N0. Let c ∈ (0, ∞) and let V : X → R be a Lipschitz 
continuous function such that

V (x) < V (y) for all x ∈ Ā, y ∈ X \ Ā. (4)

Suppose there is an open set U0 ⊂X that contains Ā and

Es

[
V

(
XN (1/N)

)
− V

(
XN(0)

)]
≤ − c

N
(5)

whenever s ∈ φ−1
N (U0 \ Ā) and N ≥ N0. Then {XN } leaves A slowly.

Remark. In Appendix A we prove the stronger result that there is a constant γ such that for 
N large the exit time τN

X \U first order stochastically dominates an exponential random variable 

with mean eγN . The argument writes the exit time as the sum over all instances that the process 
reaches Ā of the transit times to either reach X \ U or to return to Ā. Each such transit takes at 
least one unit of time, so it suffices to show that the number of transits is large enough. The key 
step is to show that the probability of reaching X \ U before returning to Ā when starting in Ā is 
small (and declines exponentially in N ). Intuitively, this is true because the bound on the speed 
with which the process can move implies that any initial step out of Ā reaches a point that is 
bounded away from X \U , and because the drift is toward Ā and many steps against the drift are 
needed to reach X \ U , it becomes increasingly unlikely that a transit will lead to X \ U rather 
than to Ā when N is large.

The technical argument focuses on the random variable YN(t) ≡ eδ0NV (XN(t)). Using the hy-
potheses that XN(t) moves in bounded steps and V is Lipschitz continuous, we can approximate 
the exponential in the definition of YN using a Taylor expansion and show that for an appropri-
ately small value of δ0, the random variable YN(t) is a positive supermartingale whenever XN(t)

is between Ā and X \ U . This allows us to apply general results on positive supermartingales to 
conclude that the probability of reaching X \ U before returning to Ā is at most e−γN for some 
constant γ .

The hypotheses of Propositions 1 and 2 are similar. One difference is that Proposition 2 is 
more demanding in that it has added a bound on the speed with which the process can move. 
Another is that Proposition 1 requires that the Lyapunov condition holds on a larger set (whenever 

10 For example, this would hold if at most K players change their strategies in each 1/N -length time interval.
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XN(t) is outside A versus just when XN(t) is in some neighborhood of Ā). When the more 
restrictive version of each hypothesis holds the process will both reach A quickly and leave A
slowly. Hence, we have fast convergence to A.

Corollary 2.1. Suppose the hypotheses of Proposition 2 are satisfied and that condition (5) holds 
also for all s ∈ φ−1

N (X \ A) when N ≥ N0. Then {XN } has fast convergence to A.

Proof. Any Lipschitz continuous function on X is bounded, and replacing V (x) by V (x) −
miny∈X V (y) if necessary, one may assume that V is nonnegative. Hence, the hypotheses of 
Propositions 1 and 2 are satisfied. �
4.2. Extensions: systems that slow at the limit and multistep arguments

Some models will not satisfy the hypotheses of the results above because the expected de-
crease in the Lyapunov function decreases to 0 as the state approaches the target set A. In the 
case of Proposition 1, one will often be able to slightly weaken the desired conclusion and argue 
that for any open neighborhood U of A, the model reaches U quickly. This will follow if there is 
a positive lower bound on the rate at which the Lyapunov function decreases when x ∈X \U . In 
the case of Proposition 2 we can do even better because a drift that vanishes at A is not a prob-
lem. To describe this formally, for A ⊂ X , let U(A, ε) denote the ε-neighborhood of A in X , 
U(A, ε) = {x ∈X : infy∈A ‖x − y‖ < ε}.

Proposition 3. The conclusion of Proposition 2 that {XN } leaves A slowly remains true if the 
Lyapunov hypothesis is replaced with “Suppose there is an open set U0 ⊂X that contains Ā and 
for every ε > 0 there are numbers cε > 0 and Nε ≥ N0 such that

Es

[
V

(
XN

( 1

N

))
− V

(
X(N)(0)

)]
≤ −cε

N

for all s ∈ φ−1
N

(
U0 \ U(Ā, ε)

)
and N ≥ Nε .”

Proof. Let U be an open set containing Ā. Let v1 := maxx∈Ā V (x) and choose v2 > v1 so small 
that Ã := {x ∈ X : V (x) ≤ v2} ⊂ U ∩ U0. Then choose ε > 0 so that U(Ā, ε) ⊂ Ã. Now apply 
Proposition 2 with A, c, N0 replaced by Ã, cε and Nε . This yields that {XN } leaves Ã slowly. 
Thus, as A ⊂ Ã ⊂ U ,

lim
N→∞ max

s∈φ−1
N (A)

Ps(τ
N
X \U ≤ T ) ≤ lim

N→∞ max
s∈φ−1

N (Ã)

Ps(τ
N
X \U ≤ T ) = 0

for all T ∈ [0, ∞). This proves that {XN } leaves A slowly. �
In some cases models have fast convergence even though they do not always “drift” toward 

the selected set. For example, in a model where N agents are arranged on a circle to play a 2 × 2
coordination game and play a best response to the average play of their 2k closest neighbors 
unless a mutation occurs, the number of players playing the risk-dominant action is not mono-
tonically increasing – it can decrease in expectation if there is not a sufficiently large cluster 
of players playing the risk-dominant action. Ellison (1993) nonetheless shows that play reaches 
a neighborhood of the state where everyone plays the risk-dominant equilibrium quickly. Intu-
itively, this occurs because evolution can proceed in a two-step manner: Each period there is a 
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nonzero chance that a cluster of players using the risk-dominant action will form, and whenever 
such a cluster exists, the model drifts toward everyone playing the risk-dominant equilibrium.

Our results can be extended so that they apply to some models of this variety. Specifically, the 
proposition below shows that {XN } reaches a set A quickly when three conditions hold: (1) {XN }
reaches a superset B of A quickly; (2) {XN } does not stay too long in B \A, that is, {XN } reaches 
A ∪ Bc quickly; and (3) the probability that {XN} reaches A before Bc when starting anywhere 
in B \ A is bounded away from zero. The proof uses an argument related to Wald’s equation for 
the expectation of a random sum of i.i.d. random variables. A transition from Bc to A consists 
of a random number of transitions from Bc to B \ A and back to Bc with a final transition to A. 
The assumptions ensure that the expected lengths of the individual transitions are bounded and 
that the number of these transitions has a finite expectation as well.

Proposition 4. Let A ⊂ B ⊂X . Suppose {XN } reaches B quickly, {XN } reaches A ∪Bc quickly, 
and there exist c > 0 and N0 ∈ N such that for all N ≥ N0,

Ps(X
N(τN

A∪Bc) ∈ A) ≥ c for all s ∈ φ−1
N (B \ A). (6)

Then {XN } reaches A quickly.

The proof is contained in Appendix A. We will use this result in the proof of Proposition 7 in 
the following applications section.

Condition (6) can be hard to verify. The following variant of Proposition 4 does not con-
tain this condition, but the assumption that {XN} reaches B quickly is replaced by the stronger 
assumption that {XN } has fast convergence to a suitable subset of intB , the interior of B .

Proposition 5. Let A ⊂ B ⊂ X . Suppose {XN } has fast convergence to a set C with C̄ ⊂ intB
and {XN } reaches A ∪ Bc quickly. Then {XN } reaches A quickly.

The proof is in Appendix A. We apply this result when we return to the two-neighbor local 
interaction model in Section 6. Another potential application for Propositions 4 and 5 that we do 
not pursue here is to develop results about the selection of iterated p-dominant equilibria. We 
believe that this would lead to results like those in Oyama et al. (2015).

5. Dynamics based on population shares

This section analyzes models where the evolution of the system depends only on the number 
of agents using each strategy, so that the state space �N can simply be these numbers. We connect 
fast convergence here with whether the popularity of some strategy is increasing in expectation, 
and derive several results about particular models as corollaries.

5.1. A general result

Suppose that N players are choosing strategies for a game with m pure strategies at t = 0,
1
N

, 2
N

, . . . . Throughout this section we assume that in each time period a single agent is chosen at 
random to revise his strategy. (With a time renormalization this could describe a model in which 
revision opportunities arrive in continuous time according to independent Poisson processes.) Let 
XN

i (t) denote the share of agents that play strategy i at time t . If the current state of the population 
is x, suppose the revising agent chooses strategy i with probability fi(x), regardless of the agent’s 
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own current action.11 For now, we let f1, . . . , fm : � → [0, 1] be arbitrary functions with f1(x) +
· · · + fm(x) = 1 for all x.

Part (a) of our general result shows that if the probability of choosing some strategy i exceeds 
its current share whenever that share is below some threshold a, then there is fast convergence to 
the states where the share of i exceeds a. Part (b) gives a partial converse.

Proposition 6. Consider a dynamic {XN } with choice rules f1(x), . . . , fm(x). Let a, c ∈ (0, 1)

and i ∈ {1, . . . , m}.

(a) If

fi(x) − xi ≥ c whenever xi ≤ a,

then {XN } has fast convergence to {x : xi > a} and WN({x : xi > a}, XN(0)) ≤ 1
c
.

(b) If fi is continuous and

fi(x) < a whenever xi = a,

then {XN } leaves {x : xi < a} slowly.
(c) If fi is continuous and

fi(x) > a whenever xi = a,

then {XN } leaves {x : xi > a} slowly.

Remark. We use (b) and (c) to show that fast convergence fails in Example 4. They can also be 
used to show that a sequential-move version of the KMR model will not have fast convergence 
in a 2 × 2 coordination game unless there is so much noise (or large enough payoff differences) 
that one strategy is ε-dominant.

Proof. Here φN(x) = x, SN = XN , and �N = {x ∈ � : Nx ∈ N
m
0 }.

(a) Let V (x) = 1 − xi . Fast convergence to {x : xi > a} then follows from Corollary 2.1 since 
for every x ∈ �N with xi ≤ a,

Ex

[
V

(
XN

( 1

N

))
− V

(
XN(0)

)]
= −Ex

[
XN

i

( 1

N

)
− XN

i (0)
]

= − 1

N
(1 − xi)fi(x) + 1

N
xi[1 − fi(x)] = − 1

N
[fi(x) − xi] ≤ − c

N
.

The uniform bound on the convergence time follows from Proposition 1.
(b) Set c′ = − 1

2 sup{fi(x) −xi : x ∈ �, xi = a}. The set of x with xi = a is compact so c′ > 0. 
The uniform continuity of fi implies that we can choose an ε > 0 so that fi(x) − xi ≤ −c′
whenever xi ∈ [a, a + ε]. The assertion follows from Proposition 2 with V (x) = xi .

(c) An argument similar to that in (b) shows that the present condition on fi implies that there 
exist c′ > 0 and ε > 0 so that fi(x) − xi ≥ c′ whenever xi ∈ [a − ε, a]. The assertion follows 
again from Proposition 2 with V (x) = 1 − xi . �
11 The assumption that the fi do not depend on the current action rules out models in which agents respond to the 
current play of all others not including themselves, but since the effect of any one agent’s strategy on the overall state is 
of order 1 , we do not expect it to matter for large N except perhaps in knife-edge cases.
N
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Remark. The continuity of fi is used in part (b) only to show that fi(x) − xi is negative and 
bounded away from 0 when xi is in an interval around a. It would suffice to instead assume that 
there exists a c > 0 and an a′ > a such that fi(x) − xi ≤ −c whenever xi ∈ (a, a′). In view of 
Proposition 3 it is also sufficient to assume that fi is upper semicontinuous with fi(x) − xi < 0
whenever xi ∈ (a, a′). A similar remark applies to part (c).

The rest of this section presents several examples that use this result in coordination games 
under different dynamics. The first subsection looks at the case where fast convergence arises 
due to the noise caused by stochastic choice; the second subsection considers the case where 
players receive noisy signals of the current state. In each case we assume that strategy 1 is risk 
dominant.

5.2. Stochastic choice

Our first example here generalizes Kreindler and Young (2013)’s analysis of logit responses 
in 2 × 2 games. We show that the key property of the logit responses they analyzed is 
that they can be generated by maximizing a perturbed utility function of the form U(p) =∑2

i=1 piπi(x) − c(pi)/β , where πi(x) is the expected payoff of strategy i against distribution x
and c : (0, 1] → R is continuously differentiable, strictly convex, and satisfies the Inada condition 
that limp→0 c′(p) = −∞. Here 1/β is a measure of the amount of noise in the system: as β → 0
choice becomes uniform and as β → ∞ choice becomes almost deterministic.12 Fudenberg et 
al. (forthcoming) show that this form of stochastic choice corresponds to the behavior of an 
agent who is uncertain about his payoff function and so randomizes to guard against moves by a 
malevolent Nature; logit responses correspond to c(p) = p logp.

Example 2. In the model of Section 5.1 suppose that f (x) = argmaxpU(p) with c having the 
properties mentioned above, then there is fast convergence to the set {x ∈ � : x1 > 1

2 }, provided 
β is sufficiently small.

Each of the results in this and the next subsection can be proven as an application of Propo-
sition 6 with the share of a strategy as the Lyapunov function. We provide sketches here and 
leave the details to Appendix A.13 In this example we can see that f1(x) − x1 > 0 for all x with 
x1 ∈ [0, 12 ] using two cases. Let x∗ be the strictly mixed Nash equilibrium of the unperturbed 
game. For x1 ∈ (x∗

1 , 12 ], the fact that strategy 1 is the unperturbed best response implies that 
f1(x) > 1

2 which implies that f1(x) − x1 > 0. For x1 ∈ [0, x∗
1 ], note that the strict convexity of 

c implies that f1(x) converges uniformly to 1
2 when β → 0, so if we choose β small enough 

(enough noise), we will have f1(x) − x1 > 0 for all x with x1 ≤ x∗
1 as well.

Our next example generalizes Kreindler and Young in a different way, by considering games 
with more than 2 actions. Consider an m-action coordination game, m ≥ 2, whose payoff matrix 

12 Blume (1993) studied logit responses in a model of local interaction and noted the role of the noise level there. 
Fudenberg and Kreps (1993) introduced stochastic choice rules in the study of fictitious play; Fudenberg and Levine
(1995) show that stochastic choice generated by perturbed utility leads to “stochastic fictitious play,” and generates 
Hannan-consistent choice. Hofbauer and Sandholm (2002), Benaïm et al. (2009), and Fudenberg and Takahashi (2011)
use perturbed utility to construct Lyapunov functions for stochastic fictitious play, and study perturbed utility in an 
evolutionary model.
13 The proof of Example 2 in Appendix A follows an alternate approach applying Proposition 8.
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Fig. 1. Graph of φ when m = 3 and α2 = 1. According to Example 3, the logit dynamic has fast convergence if the point 
(β, α1) lies above this graph.

is a diagonal matrix with diagonal entries α1 > α2 ≥ · · · ≥ αm > 0. When an agent revises his 
action, he chooses action i with probability

fi(x) = eβαixi∑m
j=1 eβαj xj

,

where x = (x1, . . . , xm), xj is the fraction of agents currently using action j , and 1/β ∈ (0, ∞)

is a measure of noise.

Example 3. If

α1 >
2(m − 2 + eβα2)

eβ
, (7)

then the logit dynamic {XN } has fast convergence to {x ∈ � : x1 > 1
2 }.

The proof of Example 3 is a simple application of the fast convergence criterion in Propo-
sition 6(a). Because f is continuous, the hypothesis of Proposition 6(a) holds provided that 
f1(x) > x1 when x1 ≤ 1

2 , and a short calculation based on the Schur-convexity of 
∑m

i=2 eβα2xi

shows that the condition is implied by (7).
Condition (7) involves a relationship between α1 and β . To interpret the condition denote the 

right hand side of (7) by φ(β), keeping α2 > 0 fixed. The function φ is strictly convex on (0, ∞)

with limβ→0 φ(β) = limβ→∞ φ(β) = ∞, see Fig. 1. Condition (7) can only hold if α1 exceeds 
the minimum of φ, that is, if the degree of risk dominance is sufficiently large.14 If this is the case, 
then the set of β satisfying (7) is the nonempty level set {β : φ(β) < α1}, which is a bounded 
interval with a positive distance from 0, and the interval increases to (0, ∞) as α1 → ∞. Thus, 
Example 3 shows fast convergence if the degree of risk dominance is sufficiently large and there 
is enough but not too much noise.15

The following example is a partial converse to Example 3. It gives three conditions under each 
of which {XN } does not have fast convergence to {x : x1 > 1

2 }: (a) If there is too little noise, fast 

14 Note that ex−1 ≥ x implies that condition (7) cannot be satisfied unless α1 >
2(m−2)

eβ + 2α2. Hence, something 
beyond α1 > 2α2 will be necessary for the result to apply.
15 In the m = 2 case, even random choice will lead to half of the agents playing action 1, and as shown in Example 2 for 
more general dynamics, for every degree of risk dominance there will be fast convergence when there is enough noise. 
Kreindler and Young (2013) show that α1 > α2 suffices whenever β ≤ 2.
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convergence fails because play gets stuck at a dominated equilibrium. (b) Fast convergence fails 
if m ≥ 3 and there is too much noise. In this case choice is almost independent of payoffs, and the 
risk-dominant equilibrium will only be played by a 1/m fraction of agents. (c) Fast convergence 
fails for every level of noise if the payoffs αi are too close and m ≥ 3.

Example 4. (a) If

1

β
≤ α2

2 log(m − 1) + 2 log
(

4α1
α2

− 1
) , (8)

then the logit dynamic {XN } leaves {x : x2 > 1 − α2/(4α1)} slowly. In particular, {XN } does not 
reach {x : x1 > 1

2 } quickly.
(b) If

1

β
≥ (1 + 1

m
)(α1 − αm + 1

m
αm), (9)

then {XN } leaves {x : x1 < 1
m

+ 1
m2 } slowly. In particular, if m ≥ 3, then (9) implies that {XN }

does not reach {x : x1 > 1
2 } quickly.

(c) There is a constant γ > 1 so that if m ≥ 3 and

α1 < γαm, (10)

then there is no β > 0 so that {XN } reaches {x : x1 > 1
2 } quickly.

The proof is again an application of the Lyapunov criteria in Proposition 6 and consists mainly 
of showing that f2(x) > x2 or f1(x) < x1 on the boundaries of the specified sets.

5.3. Noisy signals

This subsection considers two examples where agents receive only a noisy signal of the state. 
In the first, players play an exact best response to a signal of the state which is noisy for two sep-
arate reasons: finite sampling and observation errors. At each time t = 1

N
, 2

N
, . . . , one randomly 

chosen agent i draws, with replacement, a sample of size r from the current population; with 
probability 1 − ε agent i correctly recognizes how j is playing, but with probability ε agent i
instead thinks j is playing another action, with all strategies other than the true one being equally 
likely, and observation errors are independent across all observations. (Note that if ε = 1 − 1

m
, 

then each observation is equally likely to be each pure strategy irrespective of actual play.) The 
revising agent i then adopts the best response to this set of observations.

Here, we consider general m × m games, but assume that strategy 1 is p-dominant for some 
p ≤ 1

2 .16 We find that there is fast convergence to the set of states where the popularity of strategy 
1 exceeds a threshold provided that the sample size r is sufficiently small relative to the level of 
p-dominance (but is at least two). Specifically, we require that r is small enough so having any 
observation of strategy 1 in his sample will lead agent i to choose strategy 1.

16 That is, strategy 1 is the unique best response to every mixed strategy that assigns at least probability p to strategy 1
(Morris et al., 1995).
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Example 5. In the model described above, if r ∈ [2, 1
p
], then {XN } has fast convergence to 

{x : x1 > 1 − (1 − 1
m

)r } for every ε ∈ (0, 1 − 1
m

).

We defer the calculations to Appendix A. The key once again is that the probability of choos-
ing the risk-dominant strategy 1 is above its current share as long as the share is below the 
threshold. This follows from the fact that the above probability is bounded below by a con-
cave function of that share, with the bound being above the share at x1 = 0 and equal to it at 
x1 = 1 − (1 − 1

m
)r .

As a final application of Proposition 6 we suppose that beliefs derive from correctly observing 
a random sample of play (eliminating the second source of observation noise in the previous 
example) and return to stochastic choice in 2 × 2 coordination games. Roughly, our results say 
that such noisy beliefs speed evolution in the sense that sampling enlarges the set of parameters 
for which evolution is fast. More precisely, we compare the Markov chain XN describing the 
dynamics where the revising agent chooses strategy 1 with probability g(x) if the current state 
of the population is x with the chains XN

r in which updating agents apply the same rule g to a 
random sample of size r .17 In the random sampling model the probability f (r)(x) that a revising 
agent chooses strategy 1 is

f (r)(x) =
r∑

k=0

g

(
k

r

)(
r

k

)
xk(1 − x)r−k, x ∈ [0,1].

We begin by considering when the implication

{XN } reaches ( 1
2 ,1] quickly ⇒ {XN

r } reaches ( 1
2 ,1] quickly (11)

is true.18 Proposition 7 provides a symmetry condition on g under which implication (11) holds 
for every r . This generalizes Kreindler and Young’s (2013) result beyond logit best responses 
and strengthens the results to show there is fast convergence in the model with sampling beliefs 
whenever there is fast convergence with full information (as opposed to when a sufficient con-
dition for reaching quickly holds). To understand the condition we place on g and why it is a 
generalization, note that when sup0<x< 1

2
g(x) < 1

2 , {XN } cannot reach ( 1
2 , 1] quickly. So, ignor-

ing a knife-edge case, we assume there exists x∗ ∈ (0, 12 ) with g(x∗) ≥ 1
2 . In two-action games 

with strategy 1 being risk dominant, the logit model satisfies a stronger version of the symmetry 
condition: g(x∗ + x) + g(x∗ − x) = 1 for all x ∈ [0, x∗] where x∗ is the mixed-strategy equilib-
rium. We loosen this to only require an inequality.19

Proposition 7. In the above model of learning in a 2 × 2 game let x∗ ∈ (0, 12 ). Suppose that 
g(x∗ + x) + g(x∗ − x) ≥ 1 for all x ∈ [0, x∗] and that g is strictly increasing. Suppose {XN }
reaches [x∗, 1] quickly. Then, there exists ξ > 1

2 such that {XN } and {XN
r } have fast convergence 

to (ξ, 1] for every r .

17 Here, the state is the fraction of agents using strategy 1.
18 In the analysis of the relation between {XN

r } and {XN } we take advantage of the fact that the functions f (r) are the 
Bernstein polynomials of g to exploit known results about properties of these polynomials.
19 We also have strengthened (11) in that we relax the assumption that {XN } reaches ( 1

2 , 1] quickly to the assumption 
that {XN } reaches [x∗, 1] quickly.



G. Ellison et al. / Journal of Economic Theory 161 (2016) 1–36 17
Our next result sharpens the message of the previous one by showing that there is a range of 
parameter values for which there is fast convergence with random sampling beliefs, but not when 
players observe the full state. Consider as above a family of decision rules g(x, β), where 1/β is 
a measure of the level of noise.

Proposition 8. Consider a 2-action game with affine payoff functions πi and let x∗ ∈ (0, 12 ) be 
such that sign(π1(x) − π2(x)) = sign(x − x∗). Suppose that the choice rule g can be written in 
the form g(x, β) = P [β(π1(x) − π2(x)) ≥ ε], where ε is a random variable with support R, ε
and −ε have the same distribution, and P [ε = 0] < 1 − 2x∗. Then there exist 0 < β∗ < β∗

r such 
that

(i) if β ∈ (0, β∗) then both models have fast convergence to the set ( 1
2, 1].

(ii) if β ∈ (β∗, β∗
r ) then the system with random sampling has fast convergence to ( 1

2 , 1] but the 
system with full information does not.

Intuitively, fast convergence requires a sufficient amount of noise, and random sampling pro-
vides an additional stochastic element without breaking the monotonicity needed to appeal to 
Proposition 6. The proof of Example 2 shows that the condition of Proposition 8 applies to 
choice rules generated by the perturbed utility functions considered there.20

6. More complex state spaces

In the examples of Section 5, the state space of the Markov process is naturally taken to be �, 
as the dynamics only depend on the population shares using each strategy. Many interesting 
models require a more complex state space. For example, the probability that a player adopts 
some strategy may depend on the player’s position in a network or with whom he has been 
matched previously in addition to the current population shares. An attractive feature of our 
Lyapunov approach is that it also applies to a variety of such models. In this section we discuss 
two applications: one involving learning from personal experience with recency weights, and a 
variant of Ellison’s (1993) two-neighbor circle model.

First, consider a finite-memory fictitious-play style learning model in which N agents are 
matched to play an m-action two-player game G at t = 0, 1

N
, 2

N
, . . . and learn only from play in 

their own interactions.21 Assume that strategy 1 is p-dominant for some p < 1
2 and that agents 

remember the outcomes of their k most recent matches. Within each period the players are ran-
domly matched and play the game using strategies they selected at the end of the previous period. 
One player is then randomly selected to update his or her strategy. The updating player does one 

20 Note also that the assumption that the support of ε is R implies that g(x, β) is always strictly between 0 and 1, i.e. 
choice is always stochastic. This is needed for the result: when c(p) = p2 as in Rosenthal (1989) and Voorneveld (2006)
the choice rule is deterministic at some states and as we show in Appendix A the conclusion of the proposition is false. 
In this case, there is a β∗ > 0 such that both models have fast convergence to ( 1

2 , 1] if 0 < β < β∗ and the state 0 is an 
absorbing state for both models if β ≥ β∗.
21 Ellison (1997) studied the finite-memory variant as well as the more traditional infinite-memory fictitious play model 
with the addition of a single rational player, and showed that the rational player could manipulate the play of a large 
population of opponents when one action was strongly risk-dominant. Most other studies of fictitious play assume that 
all agents in the same player role have the same beliefs. One exception is Fudenberg and Takahashi (2011), who allow 
each of N agents to have different beliefs; they focus on the asymptotics for a fixed N rather than the large-population 
limit.
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of two things. With probability 1 − ε he selects a strategy which is a best response to a weighted 
average w1a−i,t + w2a−i,t−1 + · · · + wka−i,t−(k−1) of the actions a−i,t , . . . , a−i,t−(k−1) that his 
opponents have used in the most recent k periods. With probability ε he selects a strategy uni-
formly at random. The selected strategy will be used until the player is next chosen to update.

Informally, a motivation for using recency weights is that agents would want to place more 
weight on more recent observations if they believed that their opponents’ play was changing 
over time. There is ample experimental evidence suggesting that beliefs are indeed more heavily 
influenced by recent observations both in decision problems and in games; see Cheung and Fried-
man (1997) for one of the first measures of recency bias in a game theory experiment, and Erev 
and Haruvy (forthcoming) for a survey of evidence for recency effects in experimental decision 
problems. Benaïm et al. (2009) and Fudenberg and Levine (2014) provide theoretical analyses 
of recency, but neither consider the large-population limit that is our focus here.

We show that this model has fast convergence to a p-dominant equilibrium if the weights 
place enough emphasis on recent actions. Note that this result does not require that noise levels 
be above some threshold, and that play converges to an arbitrarily small neighborhood of the 
selected equilibrium when the level of noise is sufficiently low. To state the result formally, note 
that the model defines a Markov process SN(t) on the state space �N = {1, 2, . . . , m}kN+N : the 
first kN components of the state vector record what each player saw in the periods t − 1

N
, t −

2
N

, . . . , t − k
N

; and the last N components record the action that each player has selected for use 
in period t . Given any state SN(t) we can define a random variable XN(t) ∈ � to be the fraction 
of players who have each pure strategy as their selected action in state SN(t).

Example 6. Consider the model above with k > 1. Suppose that strategy 1 is p-dominant in 
G and the recency weights satisfy w1 > p and w2 + w3 > p. Then, for any ε > 0 the model 
described above has fast convergence to {x ∈ �|x1 > 1 − 1.2ε}.

Remarks.

1. Even though the state space in this model grows with the number of players, we can use the 
share x1 of strategy 1 as the Lyapunov function here.

2. The result implies there can be fast convergence even with long memories and moderate 
levels of p-dominance provided that players place substantial weights on their most recent 

experiences. For example, if players place weight proportional to 
(

2
3

)n−1
on their nth most 

recent observation, then w1 > 1/ 
(

1 + 2
3 + 4

9 + · · ·
)

= 1
3 and w2 + w3 > 2

9 + 4
27 > 1

3 , so 

there is fast convergence to a neighborhood of strategy 1 if strategy 1 is 1
3-dominant.

3. Note moreover that the noise from sampling is sufficient for fast convergence, the ε error 
probability can be arbitrarily small provided it is bounded away from 0 uniformly in N : if 
there is any probability at all that the risk dominant action is played, the recency weighting 
will guarantee that its share grows.

4. Another form of recency weighting is to completely ignore all observations from more than 
k periods ago but weight all of the last k periods equally, so that wn = 1

k
for n = 1, 2, . . . , k. 

In this case the result implies there is fast convergence to a neighborhood of the state where 
everyone plays strategy 1 if strategy 1 is 1

k
-dominant. This implies that we always have 

convergence to a risk-dominant equilibrium if memories are short enough (but longer than 
one period).
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Proof of Example 6. Consider the two-period ahead dynamics of the model. By Propositions 1
and 2 it suffices to show that we can find c > 0 for which

inf
s∈φ−1

N (x)

E[(XN
1 (2/N) − XN

1 (0))|XN(0) = x,SN(t) = s] ≥ c

N

for all x with x1 ∈ [0, 1 − 1.2ε].
We can evaluate the change in the popularity of strategy 1 by counting every time a player 

playing strategy 1 is selected to update as a loss of 1 and every adoption by an updating player 
as a gain of 1. The expected losses are x1 from revisions at t = 0 and at most (x1 + 1

N
) from 

revisions at t = 1
N

. There will be a gain without a mutation from the period t revision if the 
player selected to update at t is matched with a player who uses strategy 1 in period t , or if he 
saw strategy 1 in both periods t − 2

N
and t − 1

N
. At t = 0 only the former is guaranteed to be 

possible for all s – the worst case state is that the matching was such that the sets of players who 
saw strategy 1 in periods t − 1

N
and t − 2

N
are disjoint– so all we can say is that the expected 

number of adoptions is at least x1(1 − ε). But the t = 1
N

revision will produce an adoption of the 
latter type if a player who saw strategy 1 in period t = − 1

N
is randomly matched with a player 

playing strategy 1 at t = 0 and is then randomly selected to update at t = 1
N

. So the expected 

number of non-mutation adoptions is at least 
(
(x1 − 1

N
) + (1 − x1 + 1

N
)x1(x1 − 1

N
)
)

(1 − ε). 

And there are ε2 adoptions in expectation due to mutations in each of the two periods.
Adding all of these changes together and ignoring all of the 1

N
terms, it suffices by Corol-

lary 2.1 to show that there is a c > 0 for which

φ(x1) := −2x1 + [2x1 + (1 − x1)x
2
1 ](1 − ε) + ε ≥ c for all x1 ∈ [0,1 − 1.2ε].

If x1 ∈ [0, 13 ], then φ(x1) ≥ −2x1 + 2x1(1 − ε) + ε = (1 − 2x1)ε > 0. In the interval [ 1
3 , 1], φ is 

concave with φ( 1
3 ) > 0, and a numerical calculation shows that φ(1 − 1.2ε) = 0.2ε − 1.68ε2 +

4.608ε3 −1.728ε4 > 0. Thus φ(x1) > 0 if x1 ∈ [ 1
3 , 1 −1.2ε]. Hence φ is positive in [0, 1 −1.2ε]

and the claim follows with c := min{φ(x1) : 0 ≤ x1 ≤ 1 − 1.2ε}. �
Remark. The result could be strengthened to show that there is fast convergence to a somewhat 
smaller set by considering k-period ahead transitions instead of the two-period ahead transitions 
considered in the proof.

Now consider a variant of the two-neighbor local interaction model of Ellison (1993).22

N players arranged around a circle are choosing strategies for a 2 × 2 coordination game. As-
sume that at each t = 0, 1

N
, 2

N
, . . . one player is chosen at random to consider revising his or 

her strategy. The selected player plays a best response to the average play of her two immediate 
neighbors with probability 1 − ε and plays the opposite strategy with probability ε.

The description above defines a Markov process SN(t) on the state space �N = {1, 2}N which 
consists of vectors describing whether each player uses strategy 1 or strategy 2. Given any state 
SN(t) we define XN(t) to be the two-vector with the first component XN

1 (t) giving the fraction 
of players who have strategy 1 as a best response to their neighbors’ actions in SN(t) and with 
second component XN

2 (t) giving the fraction of players using strategy 1.

22 The model differs from that of Ellison (1993) in that we consider a version where one randomly chosen player at a 
time considers revising, whereas Ellison (1993) assumes that all players revise simultaneously.
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In this example, the share using strategy 1 can be used as a Lyapunov function to show that 
there is fast convergence to the set of states where at least a 1

2 − δ share of the players use 
strategy 1. But it will not suffice for showing convergence to a smaller neighborhood of the risk 
dominant equilibrium, because in the state (1, 2, 1, 2, . . . , 1, 2) every player will switch to the 
opposite strategy with probability 1 − ε, so the expected share playing 1 is constant instead of 
increasing. The expected number of agents who have 1 as a best response is strictly increasing in 
that state. But that candidate Lyapunov function also does not suffice because it has zero expected 
change at some states including (2, 1, 2, 2, 1, 2, . . . , 2, 1, 2). Adding these two functions with the 
appropriate weights does provide a valid Lyapunov function. Part (a) of the result below exploits 
this to say that there is fast convergence to a set of states where most players have strategy 1 
as their best response. Part (b) provides an explicit bound on the convergence time that holds 
for any N .23 Part (c) notes further that the system quickly reaches a state where most players 
are using strategy 1. The intuition for this is that the system cannot remain long in the set of 
states where most players have strategy 1 as a best response without having most players adopt 
strategy 1. The proof uses our result on multistep convergence, Proposition 5.

Example 7. In the model above suppose that strategy 1 is risk dominant. Then,

(a) {XN } has fast convergence to {x ∈ [0, 1]2 : x1 + 3εx2 ≥ 1 − 4ε}.
(b) For every N > 2 and every initial state, the expected time until at least a 1 − 4ε fraction of 

the players have strategy 1 as a best response is at most 2ε−2.
(c) {XN

2 } reaches (1 − 8ε, 1] quickly.

Proof of Example 7. (a) Define V : [0, 1]2 →R by V (x) = −(x1 +3εx2). Let A = {x ∈ [0, 1]2 :
V (x) ≤ 4ε − 1}. Appendix A contains a proof of the lemma below which says that this is a valid 
Lyapunov function:

Lemma 1. If N > 2 and s is any state in which the fraction of players who have strategy 2 as a 
best response is at least 4ε then

Es

[
V

(
XN

(
1

N

))
− V

(
XN (0)

)]
≤ −ε2

N
.

Hence, Corollary 2.1 implies the system has fast convergence to A.
(b) The bound on the expected time until at least a 1 − 4ε fraction of the players have the 

risk-dominant action as a best response follows from Proposition 1 applied to the nonnegative 
Lyapunov function 2 + V (x).

(c) We apply Proposition 5 with X = [0, 1]2,

B = {x ∈ [0,1]2 : x1 + 3εx2 > 1 − 4ε − ε2},
A = {x ∈ B : x2 > 1 − 8ε},
C = {x ∈ [0,1]2 : x1 + 3εx2 ≥ 1 − 4ε}.

23 This result improves on the result in Ellison (1993) in providing an explicit bound on the convergence time and in 
providing a bound that applies for all ε, not just sufficiently small ε.
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By part (a), {XN } has fast convergence to C. We use Proposition 1 with V (x1, x2) = 1 − x2 to 
show that {XN } reaches A ∪ Bc quickly. The expectation of the increment XN

2 ( 1
N

) − XN
2 (0)

can be written as 1
N

times the probability that the selected player chooses action 1 minus the 
probability that the selected player had previously been using action 1. If s is a state with 
(x1, x2) ∈ Ac ∩ B , then x2 ≤ 1 − 8ε and x1 ≥ 1 − 7ε and it follows that

Es

[
XN

2

(
1

N

)
− XN

2 (0)

]
≥ 1

N
[(1 − ε)x1 − x2] ≥ 1

N
[(1 − ε)(1 − 7ε) − (1 − 8ε)] = 7ε2

N
.

Thus, {XN } reaches A ∪ Bc quickly. By Proposition 5, {XN } reaches A quickly. This implies 
that {XN

2 } reaches (1 − 8ε, 1] quickly. �
In addition to these examples, we conjecture that our results could be fruitfully applied to the 

network models of Kreindler and Young (2014), where the dimension of the state space is the 
size of the population.

7. Related literature

Ellison (1993) raises the issue of slow convergence; it shows that in the model of Kandori 
et al. (1993) the rate of convergence slows as the noise level converges to zero, and that the 
expected waiting time to reach the long-run equilibrium grows exponentially as the population 
size N increases. Blume (1993) provides conditions under which an infinite-population local 
interaction model is ergodic; evolution can be thought of as fast for large N if it still occurs when 
N = ∞. Möbius (2000) defines a model as “clustering” on a set of states A if the probability of 
A under the ergodic distribution converges to 1 as N → ∞, and analyzes the limit of the worst 
case expected wait to reach A. Kreindler and Young (2013) defines a concept of “fast selection” 
which is roughly equivalent to what we call “reaches A quickly.” Relative to this the novelty in 
our concept consists of adding the “leaves A slowly” requirement.

There is also a sizable literature on factors that promote fast evolution, including local in-
teraction (Ellison, 1993; Blume, 1993; Young, 2011), personal experience (Ellison, 1997), en-
dogenous location choice (Ely, 2002), homophily (Golub and Jackson, 2012), and population 
structure (Hauert et al., 2014). Samuelson (1994) and Ellison (2000) note that evolution is more 
rapid when it can proceed via a series of smaller steps. Kreindler and Young (2014) provides 
sufficient conditions on payoffs and noise for evolution to be fast on arbitrary networks.

The methodological parts of our paper are related to the literature on stochastic stability with 
constant step size, where the dimension of the Markov process is held fixed as the population 
grows.24 Benaïm and Weibull (2003) considers models where all agents have the same beliefs 
(which is why the state space doesn’t depend on the population size) and a random player from 
an N agent population is chosen to revise his play at t = 1

N
, 2

N
, 3

N
, . . . . The paper shows that 

the maximum deviation between the finite N model and its continuous limit over a T period 
horizon goes to zero as N → ∞, and also that the probability of exiting the basin of attraction 
of an attractor of the continuous model by time T goes to zero (exponentially fast) as the pop-
ulation size increases; this is related to our “leaving slowly” results. Roth and Sandholm (2013)

24 Kaniovski and Young (1995) and Benaïm and Hirsch (1999) provide results connecting discrete-time and continuous-
time limit dynamics in the context of fictitious-play style models, but the results themselves are not closely related 
because the approximation occurs in the t → ∞ limit with the population size held fixed.
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develops more general results along these lines, and provides conditions that imply that play in 
the discrete-time model remains within ε of the dynamics of the continuous-time model for at 
least T periods with probability that goes to one as N grows. The results can provide an alternate 
method for establishing some of our applied results in cases where the state space remains the 
same as the population grows.

8. Conclusion

We defined a notion of fast convergence for evolutionary models, which refines the previous 
literature by requiring that some set A is both reached quickly and left slowly. We then used 
Lyapunov functions to give sufficient conditions for fast convergence. One advantage of our 
approach is that it can apply to models with state spaces that do not have a finite-dimensional 
continuous time limit dynamic. At a conceptual level, our proofs provide a unified way of viewing 
examples that had previously been handled with a variety of specific techniques, and lead to 
proofs that directly highlight the reason for fast convergence. Our approach also separates the 
factors sufficient for fast convergence from technical conditions needed to assure a well-behaved 
approach to the mean field, and allow us to handle models with more complex state spaces where 
it is not clear how existing results on approximation by the mean field could be applied. We 
illustrated the use of our conditions in various examples without presenting quantitative results, 
but the simulations of e.g. Ellison (1993) and Kreindler and Young (2013) make us optimistic 
that when convergence is fast in our sense it will be fast enough to be of practical importance.

Appendix A

Proof of Example 1. Let s be any state in which a fraction x1 of the players play strategy 1. The 
expected change in the fraction of players using strategy 1 will be

E(X1(t + 1

N
) − x1|SN(t) = s) = 1

N

[
y(1 − ε) + (1 − y)ε − x1

]
,

where y is the expected fraction of players who have strategy 1 as a best response in state s. Note 
that the RHS can be reorganized as

y(1 − ε) + (1 − y)ε − x1 = y(1 − 2ε) + ε − x1

= (y − x1)(1 − 2ε) + ε(1 − 2x1).

Any state s with fraction x1 players playing strategy 1 will have fraction r players with two 
neighbors playing strategy 1, fraction 2(x1 −r) with one neighbor playing strategy 1, and fraction 
(1 − 2x1 + r) with no neighbor playing strategy 1 for some r ∈ [0, x1]. The value of y depends 
on the state s only through x1 and r . Because players with two neighbors playing strategy 1 will 
always have strategy 1 as their best response, those with one neighbor playing strategy 1 will 
have strategy 1 as their best response if at least one player they randomly sample uses strategy 1, 
and those with no neighbors playing strategy 1 must have both players in their sample using 
strategy 1, we have y = r + 2(x1 − r)(2x1 − x2

1) + (1 − 2x1 + r)x2
1 . Writing x1 = r + (x1 − r)

and collecting terms gives

y − x1 = (x1 − r)(−1 + 4x1 − 2x2
1) + ((1 − x1) − (x1 − r))x2

1

= (x1 − r)(−1 + 4x1 − 3x2
1) + (1 − x1)x

2
1 .
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Plugging back into the formula for the change in x1 gives

NE(X1(t + 1

N
) − x1|SN(t) = s)

=
(
(x1 − r)(−1 + 4x1 − 3x2

1) + (1 − x1)x
2
1

)
(1 − 2ε) + ε(1 − 2x1).

We show that the RHS can be bounded below by some positive constant c by considering three 
cases.

First, for x1 ∈ [0, 13 ] the quadratic (−1 + 4x1 − 3x2
1) = (3x1 − 1)(1 − x1) is negative. Hence, 

the RHS is minimized for r = 0 in which case it is equal to

(−x1 + 5x2
1 − 4x3

1)(1 − 2ε) + (1 − 2x1)ε = (−x1 + 5x2
1 − 4x3

1) + (1 − 10x2
1 + 8x3

1)ε.

The polynomial −x1 +5x2
1 −4x3

1 is only negative if x1 is additionally less than 1
4 and 1 −10x1 +

8x3
1 is positive in this case, so the RHS will be bounded away from zero for x1 ∈ [0, 13 ] if ε is 

chosen to be greater than

sup
x1≤ 1

4

x1 − 5x2
1 + 4x3

1

1 − 10x2
1 + 8x3

1

.

Evaluating this numerically shows that choosing ε > 0.065 suffices.
Second for x1 ∈ [ 1

3 , 12 ] the expected change in x1 is minimized for r = x1 in which case it is 
simply (1 −x1)x

2
1(1 −2ε) +ε(1 −2x1). This is obviously bounded away from zero for all ε < 1

2 .
Finally, for x1 ∈ [ 1

2 , 1 − �ε] the minimum again occurs for r = x1 and the value is again 
(1 − x1)x

2
1(1 − 2ε) + ε(1 − 2x1) which expands as x2

1 − x3
1 + (1 − 2x1 − 2x2

1 + 2x3
1)ε. The first 

term is positive and the second negative, so for each x1 the expression is minimized by choosing 
ε as large as possible given x1: ε = (1 − x1)/�. Factoring out the 1 − x1 we find that this holds 

for all x1 in the range if � is chosen to be greater than supx1>0.5
−2x3

1+2x2
1+2x1−1

x2
1

. The maximum 

is about 1.42. �
Proof of Proposition 2. To show that condition (2) holds for every open set U containing Ā, 
it suffices to show that this is true for every open U with Ā ⊂ U ⊂ U0 and U 	= X . Given 
this restriction, condition (5) always holds until the process has left U . Since V is Lipschitz 
continuous and the increments of XN are bounded by K

N
, there is a constant κ such that 

Ps(|V (XN( 1
N

)) − V (XN(0))| ≤ κ
N

) = 1 for all s ∈ �N and all N . Using this bound, Taylor’s 
formula implies that

Ese
δN [V (XN( 1

N
))−V (XN(0))] = 1 + δNEs

[
V

(
XN

( 1

N

))
− V (XN(0))

]
+ RN,s,

where |RN,s | ≤ 1
2δ2κ2eδκ . Pick δ0 > 0 so that δ0κ

2eδ0κ < c. Let YN(t) = exp(δ0NV (XN(t)))

and ZN(t) = YN(t ∧ τN

Ā
∧ τN

X \U). Suppose N ≥ N0. Then, by (5), for every s ∈ φ−1
N (U \ Ā),

EsY
N

( 1

N

)
= eδ0NV (φN(s))Ese

δ0N [V (XN( 1
N

))−V (XN(0))]

≤ EsY
N(0)

(
1 − δ0c + 1

2
δ2

0κ2eδ0κ
)

≤ EsY
N(0).

Thus, {ZN(t)} is a nonnegative supermartingale.
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Let v1 = maxx∈Ā V (x), v3 = minx∈X \U V (x). By (4), v1 < v3. Let v2 ∈ (v1, v3) and γ =
1
2δ0(v3 − v2). If s ∈ �N and V (φN(s)) ≤ v2, then, by the maximal inequality (see e.g. Shiryaev, 
1996, page 493),

Ps(τ
N
X \U < τN

Ā
) ≤ Ps

(
sup
t≥0

ZN(t) ≥ eδ0Nv3

)
≤ e−δ0Nv3EsZ

N(0)

= e−δ0Nv3eδ0NV (φN (s)) ≤ eδ0N(v2−v3) = e−2γN . (12)

Let σN
−1 = −1. Define stopping times σN

0 ≤ σN
1 ≤ · · · by

σN
k = inf

{
t ∈ 1

N
N0 : t > σN

k−1, XN(t) ∈ Ā ∪ (X \ U)

}
, k ∈ N0.

In view of (5), Ps(V (XN( 1
N

)) < V (XN(0))) > 0 for all s ∈ φ−1
N (U \ Ā). Thus, Ps(τ

N

Ā
< ∞) > 0

for all s ∈ φ−1
N (U \ Ā). This implies that Ps(τ

N

Ā
∧ τN

X \U < ∞) = 1 for all s ∈ �N , see Durrett

(1996), page 290. Hence Ps(σ
N
k < ∞ for all k) = 1.

Assume from now on that N ≥ N0 is so large that v1 + κ
N

≤ v2. Then for every s ∈ φ−1
N (Ā), 

Ps(V (XN( 1
N

)) ≤ v2) = 1 and so, by (12)

Ps(X
N(σN

1 ) ∈ Ā) =
∑

ξ∈�N :V (φN (ξ))≤v2

Pξ

(
XN(σN

0 ) ∈ Ā
)

Ps

(
SN

( 1

N

)
= ξ

)

≥ 1 − e−2γN .

Hence, for s ∈ φ−1
N (Ā) and k = 0, 1, . . . ,

Ps

(
NτN

X \U > k
)

≥ Ps

(
XN(σN

j ) ∈ Ā, 0 ≤ j ≤ k
)

≥
(

1 − e−2γN
)k

.

It follows that for all T ∈ [0, ∞),

Ps

(
τN
X \U > T

)
= Ps

(
NτN

X \U > �NT �
)

≥
(

1 − e−2γN
)NT ≥ exp

(
−T e−γN

)
,

provided that N is also so large that 2Ne−γN ≤ 1. Here �NT � denotes the largest integer ≤ NT . 
In the last step, it was used that 1 − u ≥ e−2u for u ∈ [0, 12 ]. �

The proofs of the results on multi-step evolution in Propositions 4 and 5 use the following 
lemma.

Lemma 2. Let A, B, C ⊂X with A ⊂ B . Let N ∈ N, K ∈ (0, ∞), and c ∈ (0, 1). Suppose that

Esτ
N
A∪Bc ≤ K and Esτ

N
A∪C ≤ K for all s ∈ �N (13)

and

Ps(τ
N
A < τN

Bc) ≥ c for all s ∈ φ−1
N (C). (14)

Then Esτ
N ≤ 2K/c for all s ∈ �N .
A
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Proof. Let σ0 = 0 and for j = 0, 1, . . . ,

σ2j+1 = inf{t ≥ σ2j : XN(t) ∈ A ∪ C},
σ2j+2 = inf{t ≥ σ2j+1 : XN(t) ∈ A ∪ Bc}.

Condition (13) implies that Ps(σj < ∞ for all j) = 1 for every s ∈ �N . Let J = inf{j ∈ N0 :
XN(σj ) ∈ A}. Then, by Fubini,

Esτ
N
A = Es

J∑
j=1

(σj − σj−1) =
∞∑

j=1

Es[(σj − σj−1)1{J≥j}].

Let Ft denote the σ -algebra generated by SN(0), . . . , SN(t), let F denote the σ -algebra gen-
erated by ∪tFt , and let Fσj

denote the σ -algebra up to time σj , that is, Fσj
= {F ∈ F : F ∩

{σj = t} ∈Ft for all t}. For every j ≥ 1,

{J ≥ j} = {XN(σ0) /∈ A, . . . ,XN(σj−1) /∈ A}
= {SN(σ0) /∈ φ−1

N (A), . . . , SN(σj−1) /∈ φ−1
N (A)},

so that {J ≥ j} ∈Fσj−1 . Hence,

Es[(σj − σj−1)1{J≥j}] = Es[E[(σj − σj−1)1{J≥j}|Fσj−1]]
= Es[1{J≥j}E[σj − σj−1|Fσj−1]].

By (13) and the strong Markov property,

E[σj − σj−1|Fσj−1] =
{

ESN(σj−1)
τN
A∪C ≤ K if j is odd,

ESN(σj−1)
τN
A∪Bc ≤ K if j is even.

Thus, Esτ
N
A ≤ K

∑∞
j=1 Ps(J ≥ j) ≤ 2K

∑∞
j=0 Ps(J ≥ 2j + 1). If Ps(J ≥ 2j + 1) > 0, then

Ps(J ≥ 2j + 1) = Ps(X
N(σk) /∈ A for k = 0, . . . ,2j)

=
2j∏

k=1

Ps(X
N(σk) /∈ A|XN(σκ) /∈ A for κ = 0, . . . , k − 1).

When k is even, the conditional probability is at most 1 − c by (14). Hence Esτ
N
A ≤

2K
∑∞

j=0(1 − c)j = 2K/c. �
Proof of Proposition 4. Since {XN } reaches B and A ∪ Bc quickly, there exist N1 ∈ N and 
K < ∞ so that for all N ≥ N1 and all s ∈ �N , Esτ

N
B ≤ K and Esτ

N
A∪Bc ≤ K . If N ≥ N0, 

then, by (6), Ps(τ
N
A < τN

Bc) ≥ c for every s ∈ φ−1
N (B \ A). Lemma 2 with C = B \ A shows that 

Esτ
N
A ≤ 2K/c for all s ∈ �N , provided N ≥ max{N0, N1}. �

Proof of Proposition 5. Since {XN } reaches C and A ∪ Bc quickly, there exist N1 ∈ N and 
K < ∞ so that for all N ≥ N1 and all s ∈ �N , Esτ

N
A∪C ≤ Esτ

N
C ≤ K and Esτ

N
A∪Bc ≤ K . The 

last inequality implies by Markov’s inequality that Ps(τ
N
A∪Bc ≥ 2K) ≤ 1

2 . Since {XN } leaves C
slowly and C̄ ⊂ intB there exists N2 > N1 so that for all N ≥ N2,

Ps(τ
N
Bc ≤ 2K) ≤ 1

for all s ∈ φ−1
N (C).
4
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Thus, if N ≥ N2, then for every s ∈ φ−1
N (C),

Ps(τ
N
A ≥ τN

Bc) = Ps(τ
N
Bc = τN

A∪Bc) ≤ Ps(τ
N
A∪Bc ≥ 2K or τN

Bc ≤ 2K) ≤ 3

4
.

It now follows by Lemma 2 that Esτ
N
A ≤ 8K for all s ∈ �N if N ≥ N2. �

Proof of Example 2. The result can again be shown by applying Proposition 6(a), but instead we 
apply Proposition 8 to also justify the claim at the end of Subsection 5.3. The probability f1(x, β)

is uniquely determined by β[π1(x) − π2(x)] = ψ(f1(x, β)), where ψ(p) := c′(p) − c′(1 − p), 
0 < p < 1. The function ψ is continuous and strictly increasing, limp→0+ ψ(p) = −∞, and 
limp→1− ψ(p) = ∞. The inverse function ψ−1 is therefore a continuous strictly increasing 
function on R with limu→−∞ ψ−1(u) = 0 and limu→∞ ψ−1(u) = 1. Let ε be a random vari-
able that has ψ−1 as its distribution function. Then the support of ε is R, P(ε = 0) = 0, and 
f1(x, β) = ψ−1(β[π1(x) − π2(x)]) = P(β[π1(x) − π2(x)] ≥ ε). Since ψ(1 − p) = −ψ(p) for 
all p, 1 − ψ−1(u) = ψ−1(−u) for all u, which implies that ε and −ε have the same distribution. 
The assertion now follows from Proposition 8. �
Proof of Example 3. For every x ∈ �,

m∑
i=2

eβαixi ≤
m∑

i=2

eβα2xi ≤ m − 2 + eβα2(1−x1) ≤ m − 2 + eβα2 ,

where the second inequality follows from the Schur-convexity of 
∑m

i=2 eβα2xi , see e.g. Marshall 
and Olkin (1979), page 64. Hence, f1(x) ≥ h(x1), where

h(x1) = 1

1 + (m − 2 + eβα2)e−βα1x1
.

Since, by (7), βα1 > 2(m − 2 + eβα2)/e and eu ≥ eu for all u ≥ 0, eβα1x1 > 2(m − 2 + eβα2)x1
for x1 > 0. Consequently,

h(x1) >
1

1 + 1
2x1

≥ x1

for 0 < x1 ≤ 1
2 . Since h is continuous and h(0) > 0, it follows that there exists c > 0 so that 

f1(x) − x1 ≥ h(x1) − x1 ≥ c for all x ∈ � with x1 ≤ 1
2 . The assertion follows from Proposi-

tion 6(a). �
Proof of Example 4. (a) For every x ∈ �,∑

j 	=2

eβαj xj ≤
∑
j 	=2

eβα1xj ≤ (m − 2) + eβα1(1−x2),

where the second inequality follows from the Schur-convexity of 
∑

j 	=2 eβα1xj . Thus,

1

f2(x)
= 1 + e−βα2x2

∑
j 	=2

eβαj xj ≤ 1 + (m − 2)e−βα2x2 + eβ[α1(1−x2)−α2x2].

If x2 = 1 − α2/(4α1), then x2 > 3
4 and

α1(1 − x2) − α2x2 <
1
α2 − 3

α2 = −1
α2,
4 4 2



G. Ellison et al. / Journal of Economic Theory 161 (2016) 1–36 27
and it follows that

1

f2(x)
< 1 + (m − 2)e− 3

4 βα2 + e− 1
2 βα2 . (15)

Hence, if β satisfies (8), then for every x with x2 = 1 − α2/(4α1),

f2(x) >
1

1 + (m − 1)e− 1
2 βα2

≥ 1

1 + (4α1/α2 − 1)−1
= 1 − α2

4α1
.

This implies by Proposition 6(c) that {XN } leaves {x : x2 > 1 − α2/(4α1)} slowly. As 1 −
α2/(4α1) > 3

4 , it follows that {XN } does not reach {x : x1 > 1
2 } quickly.

(b) The inequality eu ≥ 1 + u implies that for all x ∈ �,

1

f1(x)
= 1 +

∑
j≥2

eβ(αj xj −α1x1) ≥ m + β[αm(1 − x1) − (m − 1)α1x1]. (16)

Hence, if β satisfies (9), then for all x with x1 = 1
m

+ 1
m2 ,

1

f1(x)
≥ m + β

[
αm

(
1 − 1

m
− 1

m2

)
− (m − 1)

(
1

m
+ 1

m2

)
α1

]

= m − β

[
(α1 − αm)

(
1 − 1

m2

)
+ αm

m

]
> m − m

m + 1
= 1

x1
,

so that by Proposition 6(b), {XN } leaves {x : x1 < 1
m

+ 1
m2 } slowly. If m ≥ 3, then 1

m
+ 1

m2 < 1
2 , 

and it follows that {XN } does not reach {x : x1 > 1
2 } quickly.

(c) A numerical computation shows that e−9/4 + e−3/2 < 1
3 , and so there is a constant c ∈

( 4
5 , 1) such that e−9c/4 + e−3c/2 < 1

3 . Let

φ(u) = 1 + (u − 2)e−3cu/4 + e−cu/2.

We have for all u ≥ 3

φ′(u) = e−3cu/4
[

1 − 3

4
c(u − 2) − c

2
ecu/4

]
< e−3cu/4

[
1 − 3c

4
− c

2

]
< 0,

so that 1 < φ(u) ≤ φ(3) < 4
3 . Set γ1 = 1/[4(1 − 1/φ(3))]. Then γ1 > 1.

Suppose first that

α1 ≤ γ1α2 and βα2 ≥ cm. (17)

Then for all x ∈ � with x2 = 1 − α2/(4α1), by (15),

f2(x) >
1

φ(m)
≥ 1

φ(3)
= 1 − 1

4γ1
≥ 1 − α2

4α1
,

provided that m ≥ 3. This implies by Proposition 6(c) that {XN } does not reach {x : x1 > 1
2 }

quickly.
Suppose next that

α1 < γ2αm and βα2 < cm, (18)
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where γ2 = 1 + (1 − c)2/(4c) > 1. Then for every x ∈ � with x1 = 2/[m(1 + c)], by (16),

1

f1(x)
≥ m + βαm

[
1 − x1 − (m − 1)γ2x1

] = m − βαm(1 − c)

2c
+ βαm(1 − c)2

2cm(1 + c)

> m − βα2(1 − c)

2c
> m − m(1 − c)

2
= 1

x1
.

Thus, by Proposition 6(b), {XN } leaves {x : x1 < 2/[m(1 + c)]} slowly. If m ≥ 3, 2/[m(1 + c)] <
1
2 , and it follows that {XN } does not reach {x : x1 > 1

2 } quickly.
To complete the proof set γ = min(γ1, γ2) and observe that (10) implies that for every β > 0

either (17) or (18) must hold. �
Proof of Example 5. For x ∈ �, 0 ≤ ε ≤ 1 − 1

m
, and 0 ≤ y ≤ 1 let

q(x, ε) = x1(1 − ε) + (1 − x1)
ε

m − 1
, H(y) = 1 − (1 − y)r .

In state x, the probability that a randomly sampled agent is thought to have played strategy 1 is 
q(x, ε), so that in a sample of size r , the probability that a revising agent chooses strategy 1 is 
f1(x, ε) = H(q(x, ε)).

Obviously, H is strictly increasing, and (∂/∂ε)q(x, ε) = (1 −mx1)/(m −1). Hence, for every 
x ∈ �, f1(x, ε) is strictly increasing in ε if x1 < 1

m
, and f1(x, ε) is strictly decreasing in ε if 

x1 > 1
m

.
Let ξ = (ξ1, . . . , ξm) be a point in � with ξ1 = 1 − (1 − 1

m
)r . Then f1(ξ, 1 − 1

m
) = ξ1. Since 

r ≥ 2, ξ1 > 1
m

, so that f1(ξ, ε) is strictly decreasing in ε. Thus, f1(ξ, ε) − ξ1 > 0 for every 
ε ∈ (0, 1 − 1

m
). Also, if x ∈ � and x1 = 0, then f1(x, ε) > 0 for ε > 0. Since H is concave, 

it follows that for every ε ∈ (0, 1 − 1
m

), f1(x, ε) − x1 > 0 for all x ∈ � with x1 ≤ ξ1. In view 
of the continuity of f1 it now follows from Proposition 6(a) that {XN } has fast convergence to 
{x : x1 > ξ1}. �

The proof of Proposition 7 uses two lemmas. The first notes that in a 2 ×2 game Proposition 4
implies that we have fast convergence if we can show that {XN } quickly reaches some threshold 
and the dynamics are monotone from that point. The second provides the desired monotonicity 
result for the dynamics with sampling. In the following the state x ∈ [0, 1] is the fraction of 
agents using strategy 1 and g(x) is the probability that a revising agent chooses strategy 1.

Lemma 3. In the model of Proposition 7 let a and ξ be constants with 0 < a < ξ < 1 and suppose 
c > 0. Suppose that {XN } reaches [a, 1] quickly and

g(x) − x ≥ c for all x ∈ [a, ξ ].
Then {XN } has fast convergence to (ξ, 1].

Proof of Lemma 3. Let A = (ξ, 1], B = [a, 1]. It follows from Proposition 1 with V (x) = 1 −x

that {XN } reaches A ∪ Bc quickly. For x ∈ (B \ A) ∩ {0, 1
N

, . . . , N
N

},
Px(X

N( 1
N

) = x + 1
N

)

P (XN( 1 ) = x − 1 )
= (1 − x)g(x)

x(1 − g(x))
≥ (1 − x)(x + c)

x(1 − x − c)
≥ c0,
x N N
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where c0 := (1 + c)2/(1 − c)2. Hence, by the formula for absorption probabilities of birth and 
death chains, see e.g. Karlin and Taylor (1975), page 113,

Px(X
N(τN

A∪Bc) ∈ A) ≥ 1∑∞
k=0 c−k

0

= 1 − c−1
0 > 0.

Thus, by Proposition 4, {XN } reaches A quickly. That {XN } leaves A slowly follows from Propo-
sition 2 with V (x) = 1 − x as the Lyapunov function. �
Lemma 4. Suppose g(0) > 0, g(k

r
) ≥ k

r
for all k < r

2 , g(k
r
) + g(1 − k

r
) ≥ 1 for all k = 0, . . . , r , 

and g(k
r
) + g(1 − k

r
) > 1 for some k. Then min{f (r)(x) − x : 0 ≤ x ≤ 1

2 } > 0.

Proof of Lemma 4. Set g̃(x) = g(x) − x. Then g̃(1 − k
r
) ≥ −g̃( k

r
) for all k. Hence for all 

x ∈ [0, 1],

f (r)(x) − x =
∑
k≤ r

2

g̃

(
k

r

)(
r

k

)
xk(1 − x)r−k +

∑
k< r

2

g̃

(
1 − k

r

)(
r

k

)
xr−k(1 − x)k

≥
∑
k< r

2

g̃

(
k

r

)(
r

k

)[
xk(1 − x)r−k − xr−k(1 − x)k

]
. (19)

If k < r
2 , then g̃( k

r
) ≥ 0 and the term in square brackets is nonnegative for all 0 ≤ x ≤ 1

2 . Thus 
for all 0 ≤ x < 1

2 ,

f (r)(x) − x ≥ g(0)[(1 − x)r − xr ] > 0.

Since g(k
r
) +g(1 − k

r
) > 1 for some k, the inequality in (19) is strict for x = 1

2 , and so f (r)( 1
2 ) −

1
2 > 0. �
Proof of Proposition 7. Suppose {XN } reaches [x∗, 1] quickly. To apply Lemma 4 note first 
that if there existed some x0 ∈ (0, x∗) with g(x0) < x0, then, since g is nondecreasing, for all 
x ∈ ( 1

2 (g(x0) + x0), x0),

g(x) − x ≤ g(x0) − g(x0) + x0

2
= g(x0) − x0

2
< 0.

By the remark after the proof of Proposition 6, it would follow that {XN } does not reach [x∗, 1]
quickly. Thus g(x) ≥ x for all 0 ≤ x ≤ x∗. As g(x∗) ≥ 1

2 and g is strictly increasing, there exists 
δ > 0 such that g(x) ≥ x + δ for all x ∈ [x∗, 12 + δ]. For all x ∈ [0, 12 ],

1

2
+ x > x∗ + min(x, x∗), 1

2
− x ≥ x∗ − min(x, x∗),

and so

g

(
1

2
+ x

)
+ g

(
1

2
− x

)
> g(x∗ + min(x, x∗)) + g(x∗ − min(x, x∗)) ≥ 1.

In particular, g(0) > 0. It now follows from Lemma 4 that min{f (r)(x) − x : 0 ≤ x ≤ 1
2 } > 0 for 

every r .
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As g is nondecreasing, so is each f (r), and limr→∞ f (r)( 1
2 ) = 1

2 [g( 1
2−) + g( 1

2+)] > 1
2 (see 

Lorentz, 1986, pages 23 and 27). Since f (r)( 1
2 ) > 1

2 for every r , it follows that there exists 
ξ ∈ ( 1

2 , 12 + δ) so that f (r)( 1
2 ) > ξ for every r . Hence, if x ∈ [ 1

2 , ξ ], then f (r)(x) −x ≥ f (r)( 1
2 ) −

ξ > 0. Consequently,

min
0≤x≤ξ

f (r)(x) − x > 0 and inf
x∗≤x≤ξ

g(x) − x > 0.

Therefore, by Proposition 6(a), {XN
r } has fast convergence to (ξ, 1] and by Lemma 3, {XN } has 

fast convergence to the same set. �
Proof of Proposition 8. Write h(u) for P [u ≥ ε]. Note that the restrictions on the distribution 
of ε imply that h is strictly increasing and satisfies

h(u) + h(−u) ≥ 1 for all u, lim
u→−∞h(u) < x∗, lim

u→0−h(u) > x∗.

For β > 0 let G(β) = inf{g(x, β) − x : 0 ≤ x ≤ x∗}. Let β∗ = sup{β > 0 : G(β) ≥ 0}. Since 
limu→0− h(u) > x∗, G(β) > 0 for some small β > 0, and so β∗ > 0. If x ∈ (limu→−∞ h(u), x∗), 
then limβ→∞ g(x, β) − x < 0. Thus, β∗ < ∞. To prove claims (i) and (ii) it will suffice to show 
that for some β∗

r > β∗ three results hold:

(a) if 0 < β < β∗, {XN } has fast convergence to ( 1
2 , 1];

(b) if β > β∗, {XN } does not reach [x∗, 1] quickly;
(c) if 0 < β < β∗

r , {XN
r } has fast convergence to ( 1

2 , 1].

(a) Let 0 < β < β∗. Then there exists β ′ ∈ (β, β∗] with G(β ′) ≥ 0. As g(x∗, β) = h(0) ≥ 1
2

and limu→0− h(u) > x∗, there exists δ > 0 such that g(x, β) − x ≥ δ for all x ∈ [x∗ − δ, x∗]. If 
x ∈ [0, x∗ −δ], then x′ := β

β ′ (x −x∗) +x∗ ∈ [0, x∗] and β[π1(x) −π2(x)] = β ′[π1(x
′) −π2(x

′)], 
so that

g(x,β) − x = g(x′, β ′) − x′ + (x∗ − x)

(
1 − β

β ′

)
≥ G(β ′) + δ

(
1 − β

β ′

)
.

Hence g(x, β) − x ≥ δ(1 − β/β ′) for all x ∈ [0, x∗]. Since g(x, β) is strictly increasing in x and 
g(x∗, β) ≥ 1

2 , it follows that inf0≤x≤ 1
2
g(x, β) −x > 0 and so, by Proposition 6(a), {XN } has fast 

convergence to ( 1
2 , 1].

(b) Let β > β∗. Then G(β) < 0, so that for some x0 ∈ (0, x∗], δ := x0 − g(x0, β) > 0. Since 
g(x, β) is increasing in x, g(x, β) − x ≤ − δ

2 for all x ∈ [x0 − δ
2 , x0]. Hence, by the remark after 

the proof of Proposition 6, {XN } does not reach [x∗, 1] quickly.
(c) To prove the assertion about {XN

r } we first show that for r ≥ 2,

inf
1
r
≤x≤ 1

2

g(x,β) − x ≥ 1 − β

β∗ if β ≥ β∗ and (r − 2)β ≤ rβ∗. (20)

Suppose β satisfies both conditions. If x∗ ≤ x ≤ 1
2 , then g(x, β) −x ≥ g(x∗, β) − 1

2 ≥ 0 ≥ 1 − β
β∗ . 

Suppose now 1
r

≤ x ≤ x∗. Let {βn} be a sequence with G(βn) ≥ 0 for all n and βn → β∗. Let 
xn = β

βn
(x − x∗) + x∗. Then xn ≤ x∗ for all n and limn→∞ xn > 0. Thus, for n sufficiently large, 

xn ∈ [0, x∗], so that g(xn, βn) − xn ≥ G(βn) ≥ 0 and

g(x,β) − x = g(xn,βn) − xn + (x∗ − x)

(
1 − β

βn

)
≥ 1 − β

βn

.

Letting n → ∞ completes the proof of (20).
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Since x∗ < 1
2 , π1(1 − x) − π2(1 − x) > π2(x) − π1(x), and so,

g(x,β) + g(1 − x,β) > h(β[π1(x) − π2(x)]) + h(β[π2(x) − π1(x)]) ≥ 1

for all x ∈ [0, 1] and β > 0. Consequently,

f (r)(x,β) − x =
r∑

k=0

(
g

(
k

r
,β

)
− k

r

)
pr,k(x)

≥ g(0, β)(1 − x)r + [g(1, β) − 1]xr

+
∑

1≤k< r
2

(
g

(
k

r
,β

)
− k

r

)
[pr,k(x) − pr,r−k(x)],

where pr,k(x) = (
r
k

)
xk(1 − x)r−k . Recall from (a) that g(k

r
, β) ≥ k

r
if k ≤ r

2 and β < β∗. More-
over, 0 ≤ pr,k(x) − pr,r−k(x) ≤ 1 if k ≤ r

2 and x ∈ [0, 12 ]. It now follows by (20) that for every 
β > 0 with (r − 2)β ≤ rβ∗,

min
x∈[0, 1

2 ]
f (r)(x,β) − x ≥ [g(0, β) + g(1, β) − 1]

(
1

2

)r

− r

2

(
1 − β

β∗

)−
,

where u− = − min(u, 0). Since π1(1) − π2(1) > π2(0) − π1(0), g(0, β) + g(1, β) > 1 for every 
β > 0, and

lim inf
β→β∗ g(0, β) + g(1, β) ≥ g(0, β∗+) + g(1, β∗−) > 1.

Therefore, for every r ∈ N there exists β∗
r > β∗ so that if β < β∗

r , then inf
x∈[0, 1

2 ] f
(r)(x, β) −

x > 0. By Proposition 6(a), if β < β∗
r , then {XN

r } has fast convergence to ( 1
2 , 1]. �

Proof of claim in footnote 20. Assume the payoff functions πi are as in Proposition 8 and the 
choice rule g(x, β) is generated by a perturbed utility function with cost function c(p) = p2. To 
show that the conclusion of Proposition 8 does not hold we show that for every parameter β > 0
either {XN } and {XN

r } have fast convergence to ( 1
2 , 1] or neither system has.

For the present cost function c, g(x, β) = h(β[π1(x) − π2(x)]), where

h(u) =

⎧⎪⎨
⎪⎩

0, u ≤ −2
u+2

4 , −2 < u < 2,

1, u ≥ 2.

Let β∗ = 2/[π2(0) − π1(0)]. If β ≥ β∗, then g(0, β) = 0 and so 0 is an absorbing state of XN

and XN
r for every N . In particular, neither {XN } nor {XN

r } has fast convergence to ( 1
2 , 1].

Suppose next that β < β∗. Then there exist γ0 > 0, γ1 > 0 so that g(x, β) = min(γ0 + γ1x, 1)

for all x ∈ [0, 1], and γ0 + γ1x
∗ = 1

2 . If γ0 + γ1 ≤ 1, then g(x, β) = γ0 + γ1x for all x, and so 
f (r)(x, β) = γ0 + γ1x for all x. If γ0 + γ1 > 1, then g(x, β) ≥ γ0 + (1 − γ0)x for all x, and 
so f (r)(x) ≥ γ0 + (1 − γ0)x for all x. In either case, g(x, β) > x and f (r)(x, β) > x for every 
x ∈ [0, 1 ]. Thus, by Proposition 6(a), {XN } and {XN

r } have fast convergence to ( 1 , 1]. �
2 2
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Proof of Lemma 1. For ε > 1
4 the result is trivial. Otherwise, let y1 and y2 be the fraction of 

players who have 1 as a best response in s and the fraction who are using action 1 in s. We wish 
to show that

Es

[
V

(
YN

(
1

N

))
− V

(
YN (0)

)]
≤ −ε2

N

whenever y1 < 1 − 4ε. We do this using two cases.

Case 1: s has two adjacent players using strategy 2.
Any such state can be written as a concatenation of one or more substrings by the follow-

ing algorithm: initially pick a player using strategy 1 and view that player as belonging to the 
largest substring containing that player that does not have adjacent players using strategy 2; re-
peat adding additional substrings by starting with as-yet unassigned players using strategy 1 until 
there are no such players; if two of the resultant substrings are separated by two or more play-
ers using 2 regard the sequence of two or more 2’s as another substring; otherwise if a single 2
separates two of the initially defined substrings treat the single 2 as belonging to the substring 
immediately to its right. This produces a division of s into some number M of substrings, each of 
which starts and ends with a 2. Further, each substring is of one of three possible types: (i) a se-
quence of two or more 2s, e.g. 22222; (ii) a string starting and ending with 2 containing at least 
one 1 and with no consecutive 2s, e.g. 21212 or 2121112112; or (iii) a string starting with 22, 
ending with 2 and containing at least one 1 and no consecutive 2s after the first pair, e.g. 2212 or 
221212111112.

Let m = 1, 2, . . . , M index the substrings. Write Nm for the length of substring m, km for the 
number of players within substring m who have 2 as their best response, and �m for the number 
of players in substring m who are using strategy 1. Note that

Es

[
V

(
YN

(
1

N

))
− V

(
YN (0)

)]
=

M∑
m=1

Nm

N
�Vm,

where �Vm is the expected change in V conditional on the player chosen to update belonging to 
substring m. We will show below using three subcases that

�Vm ≤ − 1

N

1

Nm

(kmε − 3�mε2). (21)

Using the formula above equation (21) will imply that

Es

[
V

(
YN

(
1

N

))
− V

(
YN (0)

)]
≤ − 1

N2

M∑
m=1

kmε − 3�mε2.

Note that 
∑M

m=1 km = (1 −y1)N and 
∑M

m=1 �m is simply the number of players using strategy 1. 
When y1 < 1 − 4ε the first of these is at least 4εN . And the second is at most (1 − 4ε)N because 
the number of players using strategy 1 is at most the number with 1 as a best response (because 
the player to the left of any player using 1 has 1 as a best response). Hence,

Es

[
V

(
YN

(
1

N

))
− V

(
YN (0)

)]
≤ − 1

N2

(
(4Nε)ε − 3(1 − 4ε)Nε2

)
≤ − 1

N
ε2.

We show that equation (21) is satisfied by considering three subcases:

Case 1(i) Substring m is of the form 222 . . .2 with km ≥ 1 2s.
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All players in substring m have 2 as a best response so km = Nm. Each player switches to 1 
with probability ε. A switch to 1 by the leftmost or rightmost player increases y1 by at least 1

N
because the player to his or her right/left now has 1 as a BR. And a switch to 1 by any player 
interior to substring m increases y1 by 2

N
. The expected change in y2 is positive. Hence,

�Vm ≤ − 1

N

(
2

Nm

ε + Nm − 2

Nm

2ε

)
= − 1

N

1

Nm

(2km − 2)ε.

For km ≥ 2 we have 2km − 2 ≥ km so �Vm ≤ − 1
N

1
Nm

kmε which is stronger than (21).

Case 1(ii) Substring m starts and ends with a single 2, contains at least one 1 and has no 
consecutive 2s.

Each player in such a substring is in one of four situations: playing 2; playing 1 and having 
both neighbors playing 2; playing 1 and being on the boundary of a cluster of two or more players 
using strategy 1; or playing 1 and being interior to a cluster of three or more players using 1. Write 
n2, n1i , n1b , and n1m for the number of players in each of these four situations; here the i, b, 
and m can be thought of as referring to whether a 1 player is “isolated”, on the “boundary” of a 
cluster, or in the “middle” of a cluster. Note that only players in the second situation (playing 1 
and having both neighbors playing 2) have 2 as their best response. Hence, km = n1i .

The number of players with 1 as a best response will increase if and only if a neighbor of 
one of the 1 players flanked by 2 players is selected and switches to 1. The number of play-
ers with 1 as a best response will decrease by one in two situations: if the 1-playing neighbor 
of a player who is using 1 and is on the boundary of a cluster of 1 players switches to 2; or 
if the 1-playing neighbor of the leftmost or rightmost player in the substring switches to 2. 
Hence the expected change in y1 conditional on a player from this cluster being chosen is 
1
N

(
2n1i

Nm
(1 − ε) − n1b

Nm
ε − 1

Nm
(2ε + (1 − 2ε)z)

)
, where z is the 0, 1, or 2 depending on whether 

the leftmost and rightmost players in the substring have a total of 0, 1, or 2 neighbors who are 
isolated 1-players.

All 2 players and isolated 1 players will switch strategies with probability 1 − ε if selected. 
Other players will switch from 1 to 2 with probability ε. Hence, the expected change in y2 con-

ditional on a player from this cluster being chosen is 1
N

(
n2
Nm

(1 − ε) − n1i

Nm
(1 − ε) − n1b+n1m

Nm
ε
)

. 
Adding the expressions for the two components of the Lyapunov function gives

�Vm = − 1

N

1

Nm

(
n1i (2 − 2ε) − n1bε − 2ε − (1 − 2ε)z + n23ε(1 − ε)

− n1i3ε(1 − ε) − (n1b + n1m)3ε2)
≤ − 1

N

1

Nm

(
n1i (2 − 2ε) − (1 − 2ε)z + n23ε(1 − ε)

− (n1bε + 2ε + n1i3ε(1 − ε)) − (n1b + n1m)3ε2).
The number n2 of players playing 2 is n1b+2n1i

2 + 1 because we can count them by counting the 
number of 2-playing neighbors that each 1-player has, dividing by 2 to account for the double 
counting, and adding 1 because the leftmost and rightmost 2 players were only counted once. 
Making this substitution for n2 in the middle of the above expression and cancelling (and using 
that 3

2ε(1 − ε) > ε) gives

�Vm ≤ − 1 1 (
n1i (2 − 2ε) − (1 − 2ε)z + ε − 3ε2 − (n1b + n1m)3ε2

)
.

N Nm
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Comparing this expression to (21) we see that (21) will hold if

n1i (2 − 2ε) − (1 − 2ε)z + ε − 3ε2 ≥ n1iε,

which is equivalent to

n1i (2 − 3ε) + ε − 3ε2 ≥ (1 − 2ε)z.

We must have n1i ≥ 1 when z > 0 and direct computations show that the equation is satisfied for 
all ε < 1

3 when z = 0, when z = 1 and n1i ≥ 1, and when z = 2 and n1i ≥ 1.

Case 1(iii) Substring m starts with 22, ends with a single 2, contains at least one 1 and has no 
other consecutive 2s.

This case is almost identical to the previous one. The expected change in y1 is 1
N

1
Nm

(1 − ε)

larger because the only difference is that y1 increases by an additional 1
N

with probability (1 − ε)

if the second player from the left is chosen because a switch by that player also makes the leftmost 
player have 1 as a best response. The expected change in y2 is 1

N
1

Nm
ε larger than what one 

gets from the formula for the previous case after plugging in ( n1b+2n1i

2 + 1) for n2 because that 
counting of the number of 2-players misses the leftmost player who switches to 1 with probability 
ε when selected. Hence, �Vm is 1

N
1

Nm

(
(1 − ε) + 3ε2(1 − ε)

)
larger in absolute value than the 

expression derived above for Case 1(ii). The number km of players with 2 as a best response is 
one larger than in Case (ii). So the fact that 1 − ε > ε implies that inequality (21) continues to 
hold.

Case 2: s does not have two adjacent players using strategy 2.
In this case we view the state as a single string similar to that involved in Case 1(ii) above: 

it starts with a single 2, contains at least one 1, has no consecutive 2s, and ends with a 1 which 
is adjacent to the initial 2. Define n2, n1i , n1b , and n1m as in Case 1(ii). Again, the number of 
players with 2 as a best response is n1i . By an argument similar to that above it will suffice to 
show that

Es

[
V

(
YN

(
1

N

))
− V

(
YN (0)

)]
≤ − 1

N2
(n1iε − 3�ε2), (22)

where � is the number of players using strategy 1. (This is sufficient because n1i ≥ 4εN and 
�m ≤ (1 − 4ε)N .)

To show that equation (22) is satisfied we compute bounds on the expected changes in y1
and y2 similar to those used in Case 1(ii). The number of players with 1 as a best reopens will 
increase if and only if one of the neighbors of one of the 1 players flanked by 2 players is selected 
and switches to 1. The number of players with 1 as a best response will decrease if and only if 
the 1-playing neighbor of a player who is using 1 and is on the boundary of a cluster of 1 players 

switches to 2. Hence, the expected change in y1 is 1
N

(
2n1i

N
(1 − ε) − n1b

N
ε
)

.25

All 2 players and isolated 1 players will switch strategies with probability 1 − ε if selected. 
Other players will switch from 1 to 2 with probability ε. Hence, the expected change in y2

is 1
N

(
n2
N

(1 − ε) − n1i

N
(1 − ε) − n1b+n1m

Nm
ε
)

. Adding the expressions for the two components of 

25 This formula assumes that N ≥ 2 so that the neighbors of an isolated 1-player are distinct.
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the Lyapunov function and writing �V as shorthand for the expected change in the Lyapunov 
function gives

�V = − 1

N2

(
n1i (2 − 2ε) − n1bε + n23ε(1 − ε) − n1i3ε(1 − ε) − (n1b + n1m)3ε2

)
≤ − 1

N2

(
n1i (2 − 2ε) + n23ε(1 − ε) − (n1bε + n1i3ε(1 − ε)) − (n1b + n1m)3ε2

)
.

The number of players n1b playing 2 is n1b+2n1i

2 because we can now double count them by 
counting the number of 2-players adjacent to each 1-player. Making this substitution gives

�V ≤ − 1

N2

(
n1i (2 − 2ε) +

(n1b

2
+ n1i

)
3ε(1 − ε)

− (n1bε + n1i3ε(1 − ε)) − (n1b + n1m)3ε2
)

≤ − 1

N2

(
n1i (2 − 2ε) − (n1b + n1m)3ε2

)
≤ − 1

N2

(
n1iε − 3�ε2

)
.

This establishes equation (22) and completes the final case of the proof. �
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