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ABSTRACT

We propose a coherent unified approach to the study of the linkages among economic growth,
financial structure, and inequality, bringing together disparate theoretical and empirical literature.
That is, we show how to conduct model-based quantitative research on transitional paths. With
analytical and numerical methods, we calibrate and make tractable a prototype canonical model and
take it to an application, namely, Thailand 1976–96, an emerging market economy in a phase of
economic expansion with uneven financial deepening and increasing inequality. We look at the
expected path generated by the model and conduct robustness experiments. Because the actual path
of the Thai economy is imagined here to be just one realization of many possible histories of the
model economy, we construct a covariance-normalized squared error metric of closeness and find the
best-fit simulation. We also construct a confidence region from a set of simulations and formally test
the model. We broadly replicate the actual data and identify anomalies.
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I. I NTRODUCTION

We propose a coherent unified approach to the study of the linkages among economic growth,
financial structure, and inequality. Of course, the relationship between financial structure and
economic growth has long been studied both empirically and theoretically. Yet, on the one hand,
empirical studies have been mainly focused on statistical relationships without a serious study of
underlying mechanisms that generate the observations. On the other hand, most theoretical studies
have depicted clean but simple mechanisms without serious consideration given to the models’
quantitative predictions. The same dichotomy between theory and empirical work exists in the
literature on inequality and growth.

Early seminal empirical contributions focusing on growth and financial structure are Goldsmith
(1969), Shaw (1973), and McKinnon (1973). A more recent empirical treatment is King and Levine
(1993). This body of empirical work establishes that financial deepening is at least an intrinsic part
of the growth process and may be causal—that is, repressed financial systems harm economic
growth. Theoretical efforts at modeling growth and endogenous financial deepening include
Townsend (1978, 1983) and Greenwood and Jovanovic (1990) (hereinafter referred to as GJ). These
models posit costly bilateral exchange or intermediation costs—for example, a fixed cost to enter the
formal financial system and marginal costs to subsequent transactions. Other theoretical
contributions such as Bencivenga and Smith (1991) turn intermediation on and off exogenously and
have an external effect that makes growth with intermediation higher. Saint-Paul (1992) features
limited diversification and multiple equilibrium growth paths, some with developed financial systems
and specialized technologies and others with the opposite. In turn, Acemoglu and Zilibotti (1997)
show that capital accumulation is associated with increasing intermediation and that better
diversification, which comes with higher levels of wealth, reduces the variability of growth.

Likewise well known are seminal contributions on growth and inequality. Kuznets (1955) posited
that growth is associated with increasing and eventual decreasing inequality. Interest and
controversies, especially with respect to cross-country regressions, have continued ever since. A
recent paper, Forbes (2000), confirms previous regression studies that high (initial) inequality is
associated with low subsequent long-run growth but finds that the relationship is the opposite for the
medium term. Resting separately from this strand of the empirical literature are the deservedly
well-known theoretical contributions more motivated by Kuznets’s original assertion that growth
may bring increasing, and eventually decreasing, inequality—namely, Aghion and Bolton (1997),
Piketty (1997), Banerjee and Newman (1993), and Lloyd-Ellis and Bernhardt (2000).

We have a concern about this dichotomy between theories and empirical studies. Although most of
the theoretical models characterize economic growth with financial deepening and changing
inequality as transitional phenomena, typical empirical research employs regression analysis to find
a coefficient capturing the effect of financial depth or inequality on growth. The implicit assumptions
of stationarity and linearity are incorrect, even after taking logs and lags, if the variables of actual
economies lie on complex transitional growth paths, as they do in the theoretical models. Using
artificial data generated by a canonical model thatby constructiondisplays transitional growth with
financial deepening and increasing inequality, we can sometimes replicate the typical empirical
results of the literature: financial deepening appears to lead to subsequent higher growth, and
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inequality to subsequent lower growth. But the statistical significance is weak and sensitive to initial
history, time frame, the inclusion of covariates, and so on. Evidently regression coefficients are not
informative about the underlying true relationships. In pointing this out, we add to the list of
concerns which have been raised in recent literature—for example, in Banerjee and Duflo (2000).

Taking a more constructive tack, we show how to conduct quantitative research on transitional
growth paths—that is, how to test a model and learn something about actual economies from
potential rejections. Our canonical model is based on GJ.2 As a prerequisite for a numerical study,
we need to characterize analytical properties as much as possible. GJ characterizes primarily the
initial and asymptotic economy but leaves the all-important transitions somewhat unclear. GJ also
studies only the log utility function and does not take its characterization of the log case to data.
Here we extend the model to include a wider class of CRRA utility functions. We characterize much
of the transitional dynamics analytically and, in doing so, provide new results. The seemingly
nonconvex technology of participation is shown, under some conditions, to be convexified by the
optimal choice of portfolio shares between risky and safe assets. Consequently, savings and portfolio
choice are uniquely determined depending on the wealth level. In particular, ironically, those
risk-averse households and businesses without access are not condemned to low yield (though safe)
technologies but rather shift toward risky enterprizes, especially as their wealth approaches a critical
value. These make clear the rich and potentially complicated dynamics not obvious in the original
GJ formulation. Indeed, the single-valuedness of savings and portfolio choice facilitates further
research into transitional dynamics using numerical methods and we find, for example, overall
inequality movement is not necessarily monotonic on the growth path—it can increase, then
decrease, and then increase again as it moves slowly toward its asymptotic steady state. Financial
deepening and growth are not monotonic either.

With the model made tractable, we take it to an application, namely, Thailand between 1976–96, an
emerging market economy that was in a phase of economic expansion with uneven financial
deepening and increasing (and then decreasing) inequality. The Thai economy serves as a
prototypical example of the growth and inequality phenomena, pervasive in other countries, that
motivate the growth, financial deepening, and inequality literature. Using the ThaiSocio-Economic
Survey(SES), Jeong (2000) finds that growth and inequality are strongly associated with financial
deepening. We emphasize, however, that our methods are not peculiar to Thailand and we hope to
extend the analysis to other countries.

In the spirit of the business cycle literature, we calibrate the parameter values. Thus, the benchmark
parameters are set from several sources. Data on the yields of relatively safe assets or
occupations—5.4 percent per year for agriculture—and idiosyncratic shocks for business come from

2There are a few other model-based contributions to empirical work on growth and wealth inequality.
Álvarez and D́ıaz (2002) study evolution of wealth inequality in a nonstochastic neo-classical growth
model with minimum consumption requirements and apply it to the U.S. economy. It is a calibration
study of growth and inequality of wealth, but the growth rate is not affected by inequality of wealth
because of perfect capital markets and identical incomes among households. Likewise De Nardi
(2004) focuses on savings and bequests to explain wealth inequality in the U.S. and Sweden. De
Nardi’s is a steady-state calibration exercise based on an overlapping generation model. This also
contains an excellent review of the inter-generational inequality literature.
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the Townsend-Thai data.3 Risk aversion is set at values typically found in the financial economics
literature, and the real rate of interest implied by a preference for current consumption is set at 4
percent. Aggregate shocks are difficult to pin down, and we take advantage of the average and the
variation of the observed GDP growth rate over the sample period. The marginal cost of utilizing the
financial system is set at low values, but the higher fixed cost of entry is such that, as in the Thai
Socio-Economic Survey(SES), 6 percent of the Thai population would have had access to the
financial system in 1976, using a distribution of wealth estimated from the same 1976 SES data. The
model is simulated at these and nearby values to deliver predicted paths, which can be compared to
the actual Thai data.

Note that we are calibrating a non-steady-state stochastic model. The business cycle literature
calibrates around stochastic steady states, not transitions. For example, Krusell and Smith (1998)
find that a pseudo representative-agent model can almost perfectly characterize the behavior of the
macroeconomic aggregates of an actual incomplete market economy with wealth heterogeneity
among agents. This is not the case here. This different outcome stems from the fact that they look at
business cycle implications in a stochastic steady state and also their model does not contain a source
of non-linearity, such as the fixed cost to participate the financial system in our model. There is also
a literature on transitions or out-of-steady-state dynamics devoted to the study of depressions, but the
models are deterministic (e.g., Hayashi and Prescott, 2002). Indeed, it is a challenging task to
calibrate transitional paths in a stochastic environment, because there is no precedent sensible
statistic criteria for goodness of fit. Here, we examine the fit of the model in three ways: the expected
path, the best-fit prediction, and the confidence region.

First, we look at the expected path of the model. It is broadly consistent with the actual pattern of
growth with increasing inequality along with financial deepening. However, although the computed
expected participation rate and the Theil index (an inequality measure) in the model almost trace out
a smoothed version of the actual Thai data, the computed expected GDP growth rate is lower than
the actual Thai path. We vary the key parameters and conduct robustness experiments, exploring
some tradeoffs.

Second, we look at the best-fit path among 1000 simulations. Because the actual path of the Thai
economy is imagined here to be just one realization of many possible histories of the model
economy, the actual Thai path should differ from the expected path of the model. We construct a
metric of closeness between a simulated path and the actual data, considering the growth rate,
financial deepening, and inequality variables over the entire 1976–96 period to be one particular
realization. We pick the best-fit simulation under this metric. The best-fit simulation shows a
reasonable match with GDP growth rate, but misses a sharp upturn of the financial deepening in the
mid-1980s as well as the eventual downturn of inequality in 1990s.

Finally, we examine whether the actual Thai data lie within a confidence region generated by the
model, using a covariance-normalized mean squared error criteria constructed solely from the
model-generated histories. The model imposes sharp restrictions on the data, and indeed, at the
benchmark parameter values, the model is rejected. But this guides us in identifying where the
model fits well and where it does not.

3See Townsend and others (1997).
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Of course, we are not unaware of the tension in this paper between the working out of the details of a
structural and well articulated but highly abstract version of reality, on the one hand, and its serious
application to data on the other. But the goal here is to show that these two pieces can be brought
together. This, we believe, is the way to make progress toward understanding the true relationships
among endogenous financial deepening, economic development, and changing inequality.

II. M ODEL

A. Notation

The model is a simple, tractable growth model with a financial sector. It is assumed that a large
number of people live in the economy and they are consumers and entrepreneurs at the same time.
More specifically, there is a continuum of agents in the economy as if with names indexed on the
interval[0, 1]. At the beginning of each period, they start with their assetskt. After they consumect,
some portion of the assets, they use the remaining assets (i.e., savingsst) to engage in productive
activities.

An individual can engage in two types of productive activities: a safe but low-return occupation and
high-risk high-return business. The safe projects are assumed to returnδ and the risky businesses are
assumed to returnθt + εt, whereθt ∈ Θ is a shock common to all the people andεt ∈ E is an
idiosyncratic shock, different among people. An individual does not have to stick to the same
projects over time and she can choose portionφt ∈ [0, 1] of her savings to invest in high-risk
high-return projects.

A financial institution provides two services to their customers in this simple model. First, a financial
institution offers insurance for idiosyncratic shocks by pooling funds. Second, a financial institution
selects projects when people apply for loans by inferring the true aggregate shocks, and tell them if
they should stay in the relatively safe occupation or engage in the high-risk high-return business.4

Financial services, however, are not free. They require a one-time costq > 0 to start using them and
a per-period cost(1− γ) ∈ [0, 1] proportional to the investment amount. These costs can be thought

4An alternative interpretation is that the household puts money on deposit but then borrows to
finance a project under advice from the bank. Average repayment is determined by eitherθt or δ. But
if risky projects are undertaken, lowεt households repay less, as if receiving insurance, and highεt

households repay more, as if paying premia, so as to repayθt on average. That is, the debt repayment
is allowed to vary with idiosyncratic shocks. Either way, we recognize that this specification of the
financial sector’s advantages may be extreme. One could imagine less-than-perfect risk-sharing,
constrained by default or private information considerations, for example. One could also imagine
less-than-perfect information about forthcoming realizations, as the number of bank clients engaged
in any given activity (or sector/region) may be limited and, in any event, past experience in a given
activity is only a limited guide to future shocks. However, this specification of financial services
does make the model tractable.
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of as combinations of intrinsic transactions costs and institutional impediments to a country’s
financial sector.5

In summary, those who are not using financial services accumulate assets according to

kt+1 = (φt(θt + εt) + (1− φt)δ)st, (1)

and those who are using financial services accumulate according to

kt+1 = r(θt)st ≡ γ max{θt, δ}st. (2)

We assume here formally that a financial institution has indeed a real informational advantage despite
marginal costs, and that the risky asset is potentially profitable enough to attract positive investment,
that is, the expected risky return dominates the safe return, even without advance information.6

Assumption 1.
E[r(θt)] > E[θt] > δ > 0. (3)

An individual chooses whether she uses financial servicedt = 1 or notdt = 0, savingsst, and
portfolio share of risky projectsφt to maximize her expected life-time utility:

E1

[ ∞∑
t=1

βt−1u(ct)

]
(4)

subject to the budget constraint
ct = kt − st − q1dt>dt−1 , (5)

whereβ ∈ (0, 1) denotes the discount rate and1dt>dt−1 denotes an indicator function, which takes
value1 if an individual joins the financial system att (i.e.,dt > dt−1) and takes value0 otherwise.7

Though GJ restricts attention to the log contemporaneous utility,u(ct) = log ct, we analyze as well
the constant relative risk aversion (CRRA) utility functionu(ct) = c1−σ

t /(1− σ) for σ > 0, whereσ
denotes the degree of relative risk aversion.

Because assets might accumulate unboundedly toward∞ with a series of good shocks or deplete
toward zero with a series of bad shocks, we introduce three assumptions that ensure the consumer’s

5GJ and Townsend (1978) show this return is consistent with the return offered by a competing set of
financial intermediaries. We do not pursue decentralized interpretation further. Of course, this
specification of transactions costs begs for serious generalization, and extension to other kinds of
costs, to distinguish among various possible kinds of involvement in the financial system. We can
allow heterogeneous costs across different households/businesses, and indeed we do allow costs to
vary with education and urban/rural status below.

6This is assumption C and part of assumption A of Greenwood and Jovanovic (1990).

7In practice,dt will be zero for several periods and then jump to one and stay there, that is, no one
will ever exit in this transitional growth model, and eitherdt > dt−1 or dt = dt−1. See below.
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optimization problem (4) is well defined.8 Note that these assumptions place restrictions on
parameter values for the calibration exercise.

First, the cumulative distributions ofθt andεt are assumed to be time invariant and denoted asF (θt)
andG(εt), respectively, with compact supports:9

Assumption 2. LetΘ = [θ, θ] ⊂ R++ andF : Θ → [0, 1]. LetE = [ε, ε] ⊂ R andG : E → [0, 1],
with E[εt] = 0.

We sometimes refer to total returnηt ≡ θt + εt ∈ [η, η], and its cumulative distribution is denoted as
H : Θ + E → [0, 1].

Second, the life time utility (4) must not explode. This is ensured by the following assumption,
limiting the expected return, adjusted by risk aversion, to be smaller than1/β:10

Assumption 3. βE[(r(θ))1−σ] < 1.

Finally, as we focus on perpetual growth cases, it seems natural that the optimized life time utility
have a real value bounded from below. A sufficient condition is to make the safe return sufficiently
high, that is, greater than1/β,

Assumption 4. βδ > 1.

B. Recursive Formulation

Because it is difficult to obtain analytical solutions that maximize the life time utility (4) for
non-participants, we use numerical methods. More specifically, we use dynamic programming,
transforming the original maximization problem at the initial date to a recursive maximization
problem conditional on assets and participation status to the financial system in each period.11

Following the notation of GJ, we defineV (kt) as the value for those who have already joined
financial intermediaries today, andW (kt) as the value for those who have not joined today but have

8Note thatu(∞) = ∞ for σ ≥ 1 andu(0) = −∞ for σ ≤ 1. Three assumptions 2–4 together with
some measurability requirements guarantee existence of the maximum and optimal decisions.
Assumption 4 also makes the economy to grow perpetually. See the proofs in the working paper,
Townsend and Ueda (2001).

9This assumption is also part of assumptions A and B of GJ.

10Whenσ = 1, assumption (3) becomesβ < 1. Although assumption 3 applies to participants,
βE[η1−σ] < 1 is the analogue condition for nonparticipants by the same argument. This latter
assumption is not necessary, because everyone eventually participates in the financial system, as is
shown below.

11With some additional technical assumptions we can establish the equivalence of solutions between
these two formulations. See proofs in the working paper, Townsend and Ueda (2001).
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an opportunity to do so tomorrow. Also, we introduce a pseudoW0(kt) as the value for those who
are restricted to never joining. Explicit forms of these value functions are following:
for participants

V (kt) = max
st

u(kt − st) + β

∫
max{W (kt+1), V (kt+1)}dF (θt) (6)

subject to the wealth accumulation process (2);
for nonparticipants

W (kt) = max
st,φt

u(kt − st) + β

∫
max{W (kt+1), V (kt+1 − q)}dH(ηt) (7)

subject to the wealth accumulation process (1); and
for never-joiners

W0(kt) = max
st,φt

u(kt − st) + β

∫
W0(kt+1)dH(ηt) (8)

subject to the same wealth accumulation process (1).

We can also establish, as in GJ, that participants will never terminate membership:12

W0(kt) ≤ W (kt) < V (kt). (9)

This implies thatV is the only relevant branch on the right-hand-side of the functional equation (6).

Note that in the notation of GJ, the entering decision is made next period, not today. We can write an
equivalent formulation in which the entering decision is made at the beginning of each period. We
use this formulation to derive some analytical properties as well as to obtain numerical solutions. It
is simply defined as

Z(kt) ≡ max
dt∈{0,1}

{W (kt), V (kt − q)}, (10)

whereV (kt − q) represents the value fornewparticipants today. Then, the nonparticipant’s valueW
in the GJ formulation can be also written as

W (kt) = max
st,φt

u(kt − st) + β

∫
Z(kt+1)dH(ηt). (11)

C. Solutions of Value Functions and Policies

For non-participants with valueZ(k), the savingss and the portfolio shareφ are functions of wealth
k, and these need to be obtained numerically.13 Since the economy grows perpetually, we cannot

12Again, see the proof in the working paper, Townsend and Ueda (2001).

13We omit time subscriptt in the value functions because individuals face the same problem in each
period given the current wealth levelk. For detailed derivation of solutions in this section, see
Townsend and Ueda (2001).
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apply a standard numerical algorithm, which requires an upper bound and a lower bound of wealth
levelk. Fortunately, the participant’s valueV (k) and the never-joiner’s valueW0(k) have closed
form solutions together with the associated optimal savings rate and portfolio share. We utilize these
two boundary value functionsV (k) andW0(k) to compute nonparticipant’s valuesW (k) andZ(k).
The numerical algorithm is described in the appendix.

Solution V(k), the Participant’s Value Function, and the Associated Policies

A participant’s value function (6) is easily obtained under log utilities, by guessing and verifying, as
in GJ.

V (k) =
1

1− β
ln(1− β) +

β

(1− β)2
ln β +

β

(1− β)2

∫
ln r(θ) dF (θ) +

1

1− β
ln k. (12)

The savingrateµ, defined asµ ≡ s/k, total savings divided by beginning-of-period wealth, is equal
to β for the log utility case.

More generally for CRRA utilities (σ 6= 1), we can also obtain the analytical formula for the value
functionV (k) and the optimal saving rateµ∗:

V (k) =
(1− µ∗)−σ

1− σ
k1−σ, (13)

and
µ∗ = {βE[r(θ)1−σ]}1/σ. (14)

Solution Wo(k), the Value Function for Those Never Allowed to Join the Bank, and the
Associated Policies

Similarly, we can obtain analytical solutions forW0(k), the associated optimal saving rateµ∗∗, and
the optimal portfolio share in the risky technologyφ∗∗. For CRRA utility,

W0(k) =
(1− µ∗∗)−σ

1− σ
k1−σ, (15)

and
µ∗∗ = {βE[e∗∗(η)1−σ]}1/σ, (16)

wheree∗∗(η) = φ∗∗η + (1− φ∗∗)δ is the optimized per unit return.14

14We can also show uniqueness of the optimal portfolio choiceφ∗∗, which can take on the boundary
values0 or 1 (see Townsend and Ueda, 2001). Conditions for the boundary values are given by
(i) φ∗∗ = 0 if E[η] < δ, that is, the safe return is sufficiently high (sufficient condition), and
(ii) φ∗∗ = 1 only if E[1/ησ] ≤ 1/βδ, that is, the safe return is sufficiently low (necessary condition).
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For the log utility, CRRA atσ = 1, the value function is

W0(k) =
1

1− β
ln(1− β) +

β

(1− β)2
ln β

+
β

(1− β)2

∫
ln e∗∗(η) dH(η) +

1

1− β
ln k,

(17)

and the optimal savings isµ∗∗ = β.

III. A NALYTICAL CHARACTERIZATION

A. Concavity of Transitional Value Functions

To simulate the economy, we need to make sure that we obtain optimal decisions by numerical
methods. This would be difficult if there were multiple optimal decisions on savings, portfolio share,
and entry to the financial system. This might be the case if the value function were not globally
concave functions.15 Indeed, the value functions for nonparticipants might not be concave, because
the entry cost is a one-time fixed cost and this introduces a fundamental nonconvexity. Put
differently, the value functionV (k) is strictly concave after entry and the value functionW (k) may
be strictly concave before entry, but still the outer envelope, the value functionZ(k), which
determines the entry point, might not be concave (see figure 1). IfZ(k) is not concave,W (k) is no
longer assured to be concave by definition (11).

However, with a concave period utility, an individual prefers to eliminate the nonconcave part of life
time utility, if possible. Fortunately, the risky asset is a natural lottery which allows some
convexification. Through the choice of her portfolio share in the risky asset, an individual can
“control” the randomness of her capital in the next period and hence her lifetime utility from the next
period on. If there remained a nonconcave part in the value function next period, increased variation
in random returns from her investment would make her expected lifetime utility today bigger relative
to nonrandom investment. Another way to see this result is to note that the outer envelopeZ(k) is
supposed to reflect discounted expected utility for each given wealthk, but evidently higher values
are possible, if the envelope is nonconcave, by a little more randomization ink today, something
possible with greater stochastic investment yesterday. This need for randomization would imply that
we have not found the optimal policy yet and that further iteration of the value function would be
called for, so as to eliminate the nonconcave part eventually.

The result here is new to the literature on switching-state models, not only in the costly participation
models of the financial system mentioned in the introduction, but also in labor search models. For
example, in Danforth (1979), there may exist multiple solutions for an unemployed person to select
his consumption level as well as when and which job offer he accepts over time. In a two-sided
match model, Mortensen (1989) shows that multiple equilibria arise when the technology of

15Proof of concavity is at best implicit in GJ, and single-valuedness of the policy functions seems to
be assumed implicitly in GJ though necessary for numerical computation here.
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Figure 1. Nonconcave FunctionZ(k)
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matching between workers and firms exhibits increasing returns to scale. Gomes and others (2001), a
recent application of a labor search model to the business cycle literature, note that the concavity
property for the life time utility with respect to asset holds for their simulation experiments, but they
do not provide a proof or a sufficient condition. The core idea of our proof is that risky business
serves as a natural lottery and that the optimal choice of risk makes the frontier of the life-time utility
concave. Although the proof provided here is tailored to a specific model, the core idea behind the
proof should make it possible to prove concavity of objective functions and uniqueness of policy
functions in other switching-state models.16

We now show below that, under quite general assumptions, the optimal portfolio choice by an
individual smooths out any nonconcave part and makes the overall value function concave. As a
result, decisions (policy functions) become single-valued. Sufficient conditions to make this
mechanism work are a reasonable degree of risk aversion and the existence of risk itself with some
realistic properties as in assumptions 5, 6, and 7 below.

We start the proof with three basic properties ofZ(k): single-valuedness, upper semicontinuity, and
monotonicity. The detailed proofs are in Townsend and Ueda (2001)17 and here we simply outline
the proofs. The life-time utility, which is the discounted sum of period utilities with costly switching
of participation status over infinite periods, is shown to be upper semicontinuous. The Wierstrass
theorem assures existence of the maximum as well as upper semicontinuity of the maximized
life-time utility. The value functionZ(k) is shown to be equivalent to the maximized life-time utility

16We owe this point to a referee.

17We also show there another desired property, measurability ofZ(k).
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given wealthk, implying single-valuedness and upper semicontinuity ofZ(k). Finally, given that a
household can dispose ofk freely,Z(k) must be monotonically increasing.

With these three properties we establish a lemma: ifZ(k) were not a globally concave function,
there should exist a region where a mid point of twoZ(k)s evaluated at the edges of the region is
greater thanZ(k) evaluated at the mid point of the region (see figure 1). Moreover, whenZ(k) is
continuous in that region, a mid point of twoZ(k)s evaluated at any symmetric pair ofk inside the
region is greater than or equal toZ(k) evaluated at the mid point of the region. Formally, we write
this as follows.

Lemma 1. If Z(k) were not a globally concave function, then there would exist an associated wealth
level k̃ for any sufficiently smallξ > 0, such that

1

2
Z(k̃ − ξ) +

1

2
Z(k̃ + ξ) > Z(k̃). (18)

In addition, ifZ(k) were also a continuous function inside the region(k̃ − ξ, k̃ + ξ), then for any
positiveξ < ξ, the following weak inequality (19) holds:

1

2
Z(k̃ − ξ) +

1

2
Z(k̃ + ξ) ≥ Z(k̃). (19)

See the proof in the appendix. Lemma 1 ensures that, whenZ(k) is a continuous function, a simple
sum of any symmetric pairs within the range[k̃ − ξ, k̃ + ξ] is larger thanZ(k̃).18 By taking a limit,
integration ofZ(k) over the range should also be larger thanZ(k̃), that is,

∫ ξ

−ξ

Z(k̃ + x)dx > Z(k̃). (20)

In our model, however, integration is taken for the product ofZ(k) andh(η), the combined
probability density for idiosyncratic and aggregate shocks. To preserve an inequality similar to (20),
it is sufficient for the probability density to exhibit positive mass almost everywhere and symmetric
as in the following assumption.

Assumption 5. Both of the cumulative density functions,F (θ) andG(ε), are non-degenerate and
strictly increasing with full support. Moreover, their probability densities are symmetric.

Assumption 5, together with Lemma 1, establishes that the integral ofZ(k̃ + x)h(x) over a
symmetric neighborhood would be larger thanZ(k̃), when it is continuous. Intuitively, Lemma1,

18For example, takeξ = ξ/2, then (18) and (19) imply

1

4
Z(k̃ − ξ) +

1

4
Z

(
k̃ − ξ

2

)
+

1

4
Z

(
k̃ +

ξ

2

)
+

1

4
Z(k̃ + ξ) > Z(k̃).
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which says a sum of each symmetric pair would be larger than or equal to the mid point, would be
valid evenZ(k) were multiplied byh(x), becauseh(x) gives the same weight for each element of a
pair. The details are given in the proof for lemma 2, but the same result can also be established even
if Z(k) were a discontinous function. In sum,

∫ ξ

−ξ

Z(k̃ + x)h(x)dx > Z(k̃). (21)

We can map this relationship to our model for stochastic next period wealth. Formally, we define a
hypothetical policy for savings̃µ ∈ (0, 1) and portfolio sharẽφ ∈ (0, 1] at k̃ with the associated
returnẽ(η) = φ̃η + (1− φ̃)δ that gives the average of capital next period equal to capital of this
period, that is,

E[ẽ(η)]µ̃k̃ = k̃. (22)

Note that it is always the case thatE[ẽ(η)] > 1 and thus̃µ ∈ (0, 1).

Lemma 2. Lemma 1 and Assumption 5 assure that there exists a pairµ̃ andφ̃ such that integral over
the value functionZ(k) over possible next period’s capital starting from̃k today is strictly larger
than the value function evaluated atk̃ (see figure 1), that is,

∫ η

η

Z(ẽ(η)µ̃k̃)dH(η) > Z(k̃). (23)

See the proof in the appendix. Essentially, integration is a weighted average with the weight equal to
the probability measure of shocksη, which is symmetric in the range[η, η], and the portfolio choice

φ determines the choice of the range of average on the next period capital[ẽ(η)µ̃k̃, ẽ(η)µ̃k̃], which is

analogous to[k̃ − ξ, k̃ + ξ] in (21).

Two more assumptions are needed to prove concavity ofZ(k). One requires that households be
sufficiently risk averse.

Assumption 6. The period utility is at least weakly more concave than log utility, that is,σ ≥ 1.

The last assumption is a complex one, and we explain it below in detail.

Assumption 7. The participant’s savings rateµ∗ satisfies

log(1− µ∗) ≥ 1

σ
log(1− β) +

(
1− 1

σ

)
log

(
1− 1

E(θ)

)
. (24)

This assumption is sufficient to assure proposition 1, which follows below, that the value function
Z(k) is concave. Forσ = 1 (log case), the right hand side of (24) islog(1− β), but the left hand side
is alsolog(1− β) becauseµ∗ = β in the log utility case. Hence the assumption 7 is always satisfied
in the log utility case. The reason why the participant’s savings rateµ∗ appears in the condition for
concavity of the nonparticipant’s value functionZ(k) is thatZ(k) itself is too complex to analyze
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and we use the participant’s value functionV (k) to obtain a stronger, sufficient condition. The
participant’s savings rate, nevertheless, is a good approximation of the average level of
nonparticipant’s saving rate and changes in the underlying parameters should have similar effects for
both.

Assumption 7 is another restriction on the growth rate. It says that the savings rate cannot be too
high, given the expected return from the risky assetE(θ). Since the savings rate is an endogenous
variable, assumption 7 essentially pins down the parameter values such as the curvature of utility
function. We can see this point clearly by simplifying assumption 7. Notice that the right hand side

of (24) is just a linear combination oflog(1− β) andlog
(
1− 1

E(θ)

)
and, by assumptions 1 and 4,

1− β < 1− 1
δ

< 1− 1
E(θ)

. Thus, withσ ≥ 1 (assumption 6), the right hand side of (24) is at most

log
(
1− 1

E(θ)

)
. Hence the stronger but easy-to-check version of condition (24) is19

µ∗ =
{
βE[r(θ)1−σ]

}1/σ ≤ 1

E(θ)
. (25)

Because the relative risk aversionσ increases, the stochastic savings becomes less attractive and the
savings rate decreases (i.e.,∂µ∗/∂σ < 0). Hence, the curvature of the utility function should be
sufficiently large, ceteris paribus, so that (25) is satisfied. Smaller discount rateβ, largerγ (lower
variable cost), and higher safe technology returnδ work similarly.20 Although assumption 5 reveals
that variations in return are essential to ensure concavity forZ(k), the effect of higher variation ofθ
on sufficient condition (25) is uncertain. Becauser(θ) = γ max{θ, δ}, with σ ≥ 1, is a convex and
decreasing function ofθ, higher variation ofθ could makeE[r(θ)1−σ] higher (and thus the saving
rate higher), but the left truncation ofr(θ) atγδ implies that higher variation ofθ could make
E[r(θ)1−σ] lower.

The intuition is as follows: Through the choice of his portfolio share of the risky asset, an individual
can control the randomness of his capital at the next period and his life time utility from the next
period on. Note in figure 1 it is essential to have random returns to span the convex part ofZ(k). If
there is a non-concave part in the value function, random returns from his investment may make his
expected life time utility bigger than non-random investment in the neighborhood of non-concave
part. This becomes true when his period utility is sufficiently concave. In figure 1, the wings of the
“butterfly” are more salient, if both sides of the kink point are more concave. Finally, if
randomization enlarged the frontier of the expected life time utility, further iteration of the value
function would be called for so as to eliminate the non-concave part.

Finally, we have the needed proposition:

19Note that condition (25) is only a slightly stronger condition than assumption 3, which restricts the
savings rate so that the life time utility is bounded by above. Indeed, withσ ≥ 1, assumption 3 is
always satisfied.

20Let M = βE[r(θ)1−σ] so thatµ∗ = M1/σ. Then,∂µ∗
∂σ

= ∂µ∗
∂M

∂M
∂σ

and ∂µ∗
∂M

= 1
σ
M (1−σ)/σ > 0. Hence,

the sign of ∂M
∂parameter

determines the sign of the effect onµ∗ by a change in a parameter value. For

example,∂M
∂σ

= −βE[r(θ)1−σ log r(θ)] < 0 (note thatr(θ) > 1 for all θ) and
∂M
∂γ

= (1− σ)E[r(θ)−σ max(θ, δ)] < 0 whenσ > 1.
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Proposition 1. Under assumptions 5, 6, and 7,Z(k) is concave.

Proof. Under assumptions 5 and 6, we claim that, if assumption 7 (condition 24) holds, thenZ(k) is
a concave function. We do not prove our claim directly, but prove its contrapositive: ifZ(k) is not a
globally concave function, then the opposite of condition (24) holds.

SupposeZ(k) were not a globally concave function, that is,Z(k) does not have a convex
subgraph.21 Then, there must exist a pointk̃ where integration overZ(k) for possible realizations in
the next period is outside the subgraph ofZ(k), as shown in lemma 2.

Consider now the value for the nonparticipant at the capital levelk̃,

W (k̃) = max
µ,φ

u((1− µ)k̃) + β

∫
Z(e(η)µk̃)dH(η). (26)

Since the policy(µ̃, φ̃) is possibly nonoptimal,

W (k̃) ≥ u((1− µ̃)k̃) + β

∫
Z(ẽ(η)µ̃k̃)dH(η). (27)

By lemma 2 (condition 23) with assumption 5 andc̃ = (1− µ̃)k̃,

W (k̃) > u(c̃) + βZ(k̃). (28)

Here, we focus on the caseσ > 1, but the following logic is applicable for theσ = 1 (log) case.22 By
the closed solution ofV (k) as in equation (13),

u(c̃) =
c̃1−σ

1− σ

=(1− β)(1− β)−1(1− µ∗)σ(1− µ∗)−σ c̃1−σ

1− σ

=(1− β)
(1− µ∗)−σ

1− σ

(
(1− β)

−1
1−σ (1− µ∗)

σ
1−σ c̃

)1−σ

=(1− β)V
(
(1− β)

−1
1−σ (1− µ∗)

σ
1−σ c̃

)
.

(29)

By substituting this foru(c̃) into the right hand side of inequality (28), and usingZ(k̃) = W (k̃),23

we obtain
W (k̃) > (1− β)V

(
(1− β)

−1
1−σ (1− µ∗)

σ
1−σ (1− µ̃)k̃

)
+ βW (k̃). (30)

21The subgraph ofZ(k) is the set{(k, z) ∈ R+ × R : z ≤ Z(k)}.
22We can takeσ → 1.

23Z(k) is by definition equal to eitherV (k − q) or W (k), butV (k − q) is concave. Hence, it must be
equal toW (k) at k̃, whereZ(k) is assumed to be non-concave.
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Equivalently, usinḡk ≡ (1− β)
−1
1−σ (1− µ∗)

σ
1−σ (1− µ̃)k̃,

W (k̃) > (1− β)V (k̄) + βW (k̃). (31)

We can simplify (31) to
W (k̃) > V (k̄). (32)

Note that, ifZ(k) is not globally concave, inequality (32) must hold.

SinceV (k) > W (k) for anyk, as shown in (9), if inequality (32) holds, then it must be the case that

V (k̃) > V (k̄). (33)

Because of the definition of̄k andV (k) defined in (13),

V (k̄) = V
(
(1− β)

−1
1−σ (1− µ∗)

σ
1−σ (1− µ̃)k̃

)

= (1− β)−1(1− µ∗)σ(1− µ̃)1−σV (k̃),
(34)

inequality (33) is equivalent to

1 > (1− β)−1(1− µ∗)σ(1− µ̃)1−σ. (35)

But µ̃ = 1/E[ẽ(η)] ≥ 1/E(θ) andσ ≥ 1 (assumption 6) implies(1− µ̃)1−σ ≥ (1− 1/E(θ))1−σ.
Hence, if inequality (35) holds, it must be the case that

1 > (1− β)−1(1− µ∗)σ

(
1− 1

E(θ)

)1−σ

. (36)

By taking logarithms, inequality (36) is equivalent to

log(1− µ∗) <
1

σ
log(1− β) +

(
1− 1

σ

)
log

(
1− 1

E(θ)

)
, (37)

which is the opposite to assumption 7 (condition 24). Therefore, under assumptions 5 and 6,
assumption 7 implies thatZ(k) is a globally concave function.

Here are straightforward implications of the proposition 1 (see the proof in the appendix).

Corollary 1. Z(k) is strictly concave. Givenkt−1, dt−1 anddt, the optimal policy(µt, φt) is
single-valued, andµt(k) andφt(k) are continuous functions onR++.

Remark.24 (i) It is an immediate result thatW (k) satisfies the same properties asZ(k) described in
proposition 1 and corollary 1.
(ii) Using proposition 1, we can show thatZ(k) is continuous and differentiable onR++.

24See Townsend and Ueda (2001) for the proof.
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B. Decisions in Transition and in the Long-run

As savings and portfolio decisions are single-valued for nonparticipants, we can now characterize
their properties. First, because nonparticipants prepare to pay the future fixed entry fee, their saving
rate will be higher than participants’µ∗, that is, for nonparticipants,

µ(k) > µ∗. (38)

Second, although it will be shown below that everyone eventually joins the financial system, those
who have very little wealth act as if they would never be able to join a bank. In other words, very
poor people have almost the same value and policies(µ∗∗, φ∗∗) as those who never have the
opportunity to join a bank. In the short run, agents with very small capital spend little effort to
accumulate capital to join the bank, that is, for the very poor, for allε > 0, there exists somekε

sufficiently small such that

sup
k∈(0,kε]

∣∣∣∣
s(k)

k
− µ∗∗

∣∣∣∣ < ε, (39)

and
sup

k∈(0,kε]

|φ(k)− φ∗∗| < ε. (40)

These are extensions of proposition 2 and 3 of Greenwood and Jovanovic (1990) to the CRRA utility
case, but the proof is the same and we omit it.

In the long run, every household becomes rich as its wealth grows unboundedly, implying that no
one actually takes the value ofW0. Namely, we can show25 the following properties:
(i) Participants in the bank almost surely accumulate their wealth to exceed anyK < ∞ in the long
run ast →∞;
(ii) Those who were never allowed to join the bank would almost surely accumulate their wealth to
exceed anyK < ∞ in the long run ast →∞; and
(iii) Everyone eventually participates in the bank, almost surely, and henceW (k) > W0(k) for all k.

Property (ii) implies that even a household outside the financial system and with only a little wealth,
eventually accumulates wealth, though stochastically, to a level greater than or equal to some critical
capital levelk∗. At that point, it will join the financial system and hence property (iii) must be true.
As inequality (9) suggests, it will stay inside forever, that is,dt+1 = 1 if dt = 1. Property (i) then
implies that its wealth grows unboundedly.

We do assume that a household joins the financial system whenever it is indifferent,26 that is,
dt(k) = 1 whenW (k) = V (k − q). In sum, we letk∗ denote thecritical capital level, that is, the
least capital level at which the values ofW (k) andV (k − q) coincide. This level is, of course,
uniquely determined. Then, the participation decision for those whose initial asset level is less than

25See the proofs in Townsend and Ueda (2001).

26As in the standard competitive theory of firm, firms are considered to operate under zero profit.
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the critical capital level becomes single-valued on the equilibrium growth path and thusdt is
monotonically (weakly) increasing in wealth. We use this property for simulation.27

C. Population Distributions

Although each household’s return is not affected by others’ choices, it does depend on its wealth. As
a consequence, “macroeconomic” variables such as the growth rate of per capita income,
participation rate, and overall inequality measures vary with the entire wealth distribution of
participants and nonparticipants.

We can define the cumulative transition function for nonparticipants from periodt capitalk to period
t + 1 capitalk′ as follows

Ψ(k′; k) ≡ prob[kt+1 ≤ k′|kt = k]. (41)

In theory, we constructΨ(k′; k) as defined in (41) from the law of motion of wealth (1), given the
optimal policies(dt, st, φt) and the distributions of shocksF (θ) andG(ε). In practice, we compute
the optimal policies(dt, st, φt), each as functions ofk, and then we approximateΨ(k′; k) on a
discrete wealth grid using the numerical policies and assumed distribution functionsF (θ) andG(ε)
with a continuum of agents.

Assuming nonparticipant’s initial wealth is below critical capital levelk∗, we can recursively derive
the wealth distribution at each periodt ≥ 1 for nonparticipants. To derive the wealth distribution
next period, we exclude the population who accumulate wealth more thank∗, because atk∗ people
join the financial system. We need to distinguish nonparticipants in the last period into two types
based on status in this period, either new entrants or continued nonparticipants.

DefineMt−1(k) as the size of the population (cumulative distribution) in periodt− 1, who were
outside of the intermediated sector at the last periodt− 1 and have a capital stockkt ≤ k in the
current periodt. Note thatMt−1(k) includes new entrants, who accumulate more thank∗ in this
period. We therefore construct the cumulative distributionMt(k

′) of wealth in the next period, for
nonparticipants in this period, by integrating the transition function with respect to this period’s
capital over the restricted range[0, k∗] for nonparticipants population in the last period,

Mt(k
′) =

∫ k∗

0

Ψ(k′; k)dMt−1(k). (42)

27The remaining theoretical question is whether the participation decisiondt is single-valued in an
off-equilibrium path, where a nonparticipant’s initial wealth is larger than the critical capital level.
Single-valuedness and monotonicity of the participation decision for all levels of wealth could be
shown. However, for our empirical (simulation) purposes, we do not need this, because we make
nonparticipants join the bank when their wealth first reaches the critical capital level and because we
assign initial participation status to people att = 0 depending on whether they have wealth above the
critical capital level.
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In a similar manner using (2), we can definêMt(k
′) as the population distribution of the participants

at t who have a capital stockkt+1 ≤ k′ in periodt + 1 andM̂t−1(k) for participants att− 1 who have
wealthkt ≤ k in periodt. In each period, we add new entrants, who were nonparticipants in the last
periodt− 1 but accumulate wealth more thank∗, to the pool of participants. These new entrants are
likely to have net wealth less thank∗ after they join the financial system because they pay the fixed
costq to do so.

Now with these cumulative wealth distributions, we can find the ex post gross growth rate of capital
kt+1/kt from t to t + 1, namely (43) below for those who are outside of financial system both in
periodt− 1 andt,

gw(kt, θt, εt) ≡ {φ(kt)(θt + εt) + (1− φ(kt))δ}µ(kt), (43)

(44) below for participants both in periodt− 1 andt,

gp(kt, θt) ≡ r(θt)µ
∗, (44)

and (45) below for new participants28 who were outside in periodt− 1 but join the bank att,

gn(kt, θt) ≡ r(θt)(kt − q)

kt

µ∗. (45)

The economy-wide gross growth rate is easily obtained as the evolution of the population average
wealth level. Specifically, we need an expression for the average wealth level of the economy in the
current periodKt and in the next periodKt+1. Kt is defined as:

Kt ≡
∫ ∞

0

kdMt−1(k) +

∫ ∞

0

kdM̂t−1(k). (46)

From this, the economy-wide gross growth rate is calculated essentially asKt+1/Kt. That is, the
economy-wide growth rate is basically a wealth-weighted average of the growth rate of each
household, so it reflects rich households’ growth rates more than poor households’. This is clear if
we writeKt+1 in terms of periodt’s population distributionsMt−1 andM̂t−1, as below:29

E[Kt+1] =

∫ ε

ε

∫ θ

θ

[ ∫ k∗

0

gw(k, θ, ε)kdMt−1(k) +

∫ ∞

k∗
gn(k, θ)kdMt−1(k)

+

∫ ∞

0

gp(k, θ)kdM̂t−1(k)

]
dF (θ)dG(ε).

(47)

In sum, the expected economy-wide gross growth rateE[Kt+1]/Kt in transition, denoted byxGt, is
derived from formulas (46) and (47). As is clear from (46) and (47), it is a function (denotedQ

28Note that the new participants must pay fixed costq before they save.

29To distinguish each integral, we write the domains of integrals explicitly here.
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below) ofMt−1(k) andM̂t−1(k), the entire wealth distribution of participants and nonparticipants,
respectively:

xGt = Q(Mt−1(k), M̂t−1(k))

≡ E[Kt+1]

Kt

.
(48)

As t →∞, xGt approachesµ∗E[r(θt)], the long-run, steady-state growth rate in which (almost)
everyone participates in the financial system.

Apparently, the expected participation rate att, denoted byxPt, can be also written as a function (P )
of the entire wealth distribution of participants and nonparticipants:

xPt = P (Mt−1(k), M̂t−1(k))

≡
∫∞
0

dMt−1(k)∫∞
0

dMt−1(k) +
∫∞
0

dM̂t−1(k)
.

(49)

We use the Theil index as a measure of inequality. Unlike the Gini coefficient, it is decomposable
into subpopulations, such as participants and nonparticipants. This is a nice property that simplifies
analytical and numerical calculations.30 The expected Theil indexxIt can be written also as a
function (I) of the entire wealth distribution of participants and nonparticipants:

xIt = I(Mt−1(k), M̂t−1(k))

≡
∫ ∞

0

k

Kt

log

(
k

Kt

)
dMt−1(k) +

∫ ∞

0

k

Kt

log

(
k

Kt

)
dM̂t−1(k).

(50)

In practice, we need to approximate these “macro” variables(xGt, xPt, xIt)
∞
t=1 numerically. We

compute the optimal savings rateµ(k) and the portfolio shareφ(k) for nonparticipants, and construct
the transition function (e.g., (41) for nonparticipants) over a set of discrete wealth levels as an
approximation to the continuum space of wealth. We also have closed-form policy solutions for
participants. We preserve the assumption of a continuum households, as noted in the discussion
above, just after the introduction of the transition functionΨ(k′; k) in (41). We refer to the sequence
(xGt, xPt, xIt)

∞
t=1 as the expected path in the sense of integration over the population distribution of

idiosyncratic shocksεt and expectation with respect to the distribution of aggregate shocksθt.

It is clear that the macro variables are functions of entire wealth distributions of participants and
nonparticipants. These distributions evolve over time and reach the steady state growth path only
after everyone joins the financial system. Until then, we cannot apply econometrics based on the
assumption that these macro variables are stationary series, even after taking logs and lags, as clear
in the formulae (48)–(50).

30See, for example, Cowel (1995) and Deaton (1997) for further properties of general entropy class
measures of inequality. Our version here is a limit form of the Theil index defined for finite
populations.
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IV. T HAI ECONOMY : GROWTH , I NEQUALITY , AND FINANCIAL DEEPENING

The economy to which we take the model is the Thai economy, concentrating on its emerging market
growth phase, 1976–96, prior to the financial crisis of 1997. Needless to say, we do not attempt in
this paper to analyze the crisis itself. Rather, we concentrate on the prior growth period, to see if we
can understand this through the lens of the model, as a financial transition.31

We use various, multiple sources of data for calibration, estimation, and general discussion of the
Thai economy. The national income accounts are constructed by the National Economic and Social
Development Board, the NESDB. Credit and monetary aggregates as well as savings are provided by
the Bank of Thailand. A complete village census with interviews of headmen was conducted by the
Community Development Department, the CDD, biannually starting in 1986. A nationally
representativeSocio-Economic Surveycovering income and expenditures, the SES, has been
implemented at a substantial scale starting in 1976 with over 11,000 households, then repeated in
1981, and finally biannually after 1984.32 In addition, we draw on the Townsend-Thai data,33 a
specialty cross-sectional May 1997 survey of 2,880 households in the central and northeastern
regions, with measures of income, wealth, financial sector participation, savings and credit, and other
items.

The Thai economy displays growth, financial deepening, and increasing (and eventually decreasing)
inequality. Before the financial crisis of 1997, the Thai economy had grown rapidly. The NESDB
numbers show growth in gross domestic product, ranging from 3 to 7 percent from 1976 to 1986,
then a relatively high and sustained average growth of more than 8 percent for 1986–94, especially
high in the 1987–89 period, and finally tailing off somewhat to 4 percent by 1996. The per capita
income numbers from the SES are similar, with an overall average at 5 percent, relatively low at 2
percent for 1976–86, then high at 9 percent for 1986–92, and lower but still high at 7 percent for
1992–96.

Overall financial deepening is apparent in the macro aggregates. The ratio of M2/GDP rises steadily,
surpassing the U.S. by 1992. Similar movements are apparent in M3/GDP, rising even faster in the
1988–94 period and also total credit/GDP, as reported in Klinhowhan (1999). Total credit extended
by commercial banks increased with a particular surge in credit received by firms in the 1986–90
period. Likewise, restricting attention to rural areas, credit from the Bank for Agriculture and
Agricultural Cooperatives (BAAC, a rural development bank) as a percentage of agricultural output
increased throughout the 1981–97 period.

At a more micro level, from the CDD data, the fraction of village headmen reporting access to
commercial bank credit rises from 0.26 to 0.41 in the 1986 to 1994 period, and to the BAAC from

31We also take the view that to understand the crisis and the subsequent recovery one must
understand the growth that preceded it.

32We interpolate the bank access and inequality variables linearly for missing years.

33Detailed information is available in Townsend and others (1997), and also at the web page:
http://www.src.uchicago.edu/users/robt.
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0.80 to 0.92. At the level of households in theSocio-Economic Survey, respondents are asked
whether they had changes in assets and/or liabilities from various financial institutions due to a
transaction by any member in the previous month. Though no doubt noisy and off in levels, this
measures rises from 6 to 26 percent, 1976–96. This is the measure of changing participation we use
below. Further, we can stratify by occupation, education, and urban/rural status and see the same
upward trend on this extensive margin for all groups. Though the access numbers are higher for those
in urban areas and those with secondary or higher education, the expansion is particularly evident for
villagers, from 5 to 23 percent, and those with primary education, from 5 percent to 22 percent.

We also emphasize the apparent effect of wealth constraints within each of these categories. We use
the SES data to extract a latent-index measure of wealth and thus plot estimated wealth against that
same SES measure of financial participation. Specifically, as in Jeong (2000), the SES provides
ownership information on twenty household assets, and the latent variable is constructed to try to
best explain the cross sectional variance. This is given a crude value in Thai baht by multiplying
against the rental value of the respondent’s house, though one should not take the assigned values
literally (and we rescale below relative to the transactions cost). Then average access (again,
transaction in the previous month) can be plotted by wealth deciles. In every survey year, even as late
as 1996, these profiles are distinctly upward sloping with somewhat higher slopes at relatively high
wealth levels. The theory with no heterogeneity in costs would predict a 0–1 jump up at some
threshold wealth level but mitigated locally by the incurred fixed costs. We take these figures as
prima facie evidence of wealth constrained choice of access to the financial system, as the theory
would suggest. Of course the theory is giving us the structure to interpret the data. Causality cannot
be inferred from these data alone.

As the model would suggest, beneath the growth of income and financial deepening lies relatively
high and increasing inequality. The Gini measure of income inequality computed from the SES rises
slowly but steadily from 0.42 in 1976 to 0.54 in 1992, then falls in the end to 0.50 by 1996. This is
high for Asia, but lower than in some Latin American countries. This inequality reflects disparities in
regional and rural/urban growth rates and appears to be related to factors discussed in various
literatures, in particular, as we emphasize here, wealth-constrained access to the formal financial
system.

Logically, we now focus on the financial transition. We formally view the Thai economy through the
lens of the model to see if we can interpret some of these data and document anomalies.

V. SETUP FOR NUMERICAL ANALYSIS

In the following sections, we analyze quantitative properties of the model by looking at numerically
constructed expected paths, as described in section III. C, as well as Monte-Carlo simulations.
Specifically, we examine the model in three ways: the expected path, the best-fit simulation, and the
confidence region. With the expected path, we are able to see how well the model replicates the
actual economy on average. With the best-fit simulation, we are able to see how the model can
replicate the actual Thai data if we pick a particular path under a covariance-normalized mean
squared error metric. With the confidence region, we are able to see whether the actual data lies
within standard error bands using a test statistic. Before proceeding with these analyses, we pick



24

reasonable values for the parameters, as in calibration exercises of the business cycle literature, then
compute the value and policy functions using numerical methods.34

A. Setting Parameters

First, we set preference parameters following the business cycle literature.35 Namely, we set the
value of the discount rateβ = 0.96. We report the log utility case primarily, but in a later section we
also reportσ = 1.5 as a robustness check.

Second, we set the technology parameters using Townsend Thai data (Townsend and others 1997).
We use income-to-capital ratios to estimate the technology parameters for those not in the financial
system. The survey shows that the median net return from capital investment in subsistence
agriculture, which we regard here as a crude approximation to the safe projectδ, at 5.4 percent in
1997. For the idiosyncratic shocks to the risky project, we also use income-to-capital ratios, but for
those in nonagricultural business with no access to the financial sytem, and set the support of
idiosyncratic shocksε asE = [−0.6, 0.6]. This is the range of returns or income-to-capital ratios
from the bottom 1 percent to the top 99 percent.36

Pinning down the parameters on aggregate shocks turned out to be somewhat difficult. We know that
the difference between the minimum and maximum real per capita growth rate from 1976 to 1996 is
about 8.7 percent, and according to the model with projects selected by the financial sector,
underlying variation of the aggregate shocks would be yet larger. Thus we assume therangefor the
aggregate shocksθ at 10 percent.37 We vary themeanof θ and pick the support ofθ as
Θ = [1.047, 1.147] to minimize sum of squared errors of the actual GDP growth rate and the model
prediction under some additional assumptions.38 This is the only part of calibration which uses
dynamic data. This is our benchmark.

34The numerical algorithm is described in detail in Appendix II.

35See, for example, Kydland and Prescott (1982).

36The more extreme tails no doubt contain noisy outliers.

37If our model were the true underlying mechanism, the observed aggregate GDP growth rate (and
TFP, if it could be calculated) would not be a process generated by a stationary and ergodic process.
Thus, the mean and variance of the GDP growth rate would not represent those of the underlying
aggregate shock.

38In this search for the mean ofθ, we cannot, for computational reasons, continuously update the
optimal policy functions of the model. We thus make several assumptions and approximate the
predictions of the model as we search for a plausible value for the mean ofθ. Specifically, we
assume the following: the actual participation rate is as observed in the data; savings rate of
non-participants is 0.4 percent higher than participants regardless of wealth level; risky asset holding
by non-participants are 30 percent of their savings; and households lose 1/3 of their assets upon their
entry to the financial system. These are the typical values we observe in various parameter values,
but it is not guaranteed that the optimal policies under the distribution of shock coincides with these
simplistic assumptions.
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Surprisingly, this benchmark makes the model’s expected paths of financial deepening and inequality
match with the actual Thai data on average over time. However, the predicted growth rate is about 2
percent lower than the actual one, and thus we also report an alternative case with 2 percent higher
aggregate shocks, that is,Θ = [1.067, 1.167]. This indeed makes the model’s expected path of
wealth growth match with the actual Thai GDP growth on average over time (see below).

The fixed costq is a free parameter, and we take it to beq = 5 in model units of capital. By
comparing the critical capital levelk∗ in the model units andk∗ in the actual data in Thai baht, we
find a scalar or “exchange rate” between the model units and the actual Thai baht. The critical capital
level in model units is obtained by computing the value functions, namelyk∗ = 15 under the
benchmark parameter values.39 The critical capital level in the actual data is estimated using the SES
and the observed fraction participating in 1976. That is, we use the wealth distribution of 1976 from
SES of Thailand as the initial condition40 (in 1990 baht), following Jeong (2000). We also use the
information about participation in the financial system from the same SES. According to that survey,
the fraction of the population who had access to the financial system was 6 percent in 1976. The
estimated cumulative distribution of wealth in 1976 shows that people who had wealth of more than
220,000 baht41 were 6 percent of the population in 1976. Since the critical level of the model is
k∗ = 15, we set the scalar or “exchange rate” as about 15,000 baht per model unit capital (in 1990
baht) to generate6 percent participation in 1976.42

These parameters must satisfy the assumptions described in the model section. For example, we
made assumption 1,E[r(θ)] > E[θ] > δ. This condition implies that the variable cost1− γ cannot
be large, and we assume a zero variable cost,1− γ = 0 for the benchmark case but run some
robustness checks for other values (e.g., 2 percent). Also, we would like to see some variation in the
functionφ(k), implying an interior solution ofφ∗∗ for W0(k) is desirable. This is checked
numerically, but essentially, the mean risky returnE[θ] with some adjustment for risk aversion
cannot be much larger than the safe returnδ.

All these numbers are summarized in table 1.

39The fixed cost turns out one third of wealth at the entry point. This might seem large, but if we take
into account construction of bank branches and roads, it is not obviously too large.

40We include all 10,619 households after dropping about 600 households that report no income, and
take sample weights into account. See Jeong (2000) for further discussion of the estimation of
wealth.

41It is evaluated at the 1990 price level.

42In the simulations below, we need to approximate the initial wealth distribution. Assuming no new
entrants in 1976, we divide the entire wealth distribution atk∗ = 220, 000 baht into two parts, one
belowk∗ as the nonparticipants’ wealth distributionM0(k) and the other as the participants’M̂0(k).
Also note that the “exchange rate” possibly varies with parameter values, because different
parameter values produce differentk∗ in the model units but corresponding values in the data are
always the same,k∗ = 220, 000 baht (except for a numerical approximation error).
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Table 1. Parameter Values

σ q δ θ ε β γ

Benchmark 1 5 1.054 [1.047,1.147] [−0.6, 0.6] 0.96 0

Alternative 1 5 1.054 [1.067,1.167] [−0.6, 0.6] 0.96 0

B. Value and Policy Functions

Computed value functions for the benchmark parameter values are shown in figure 2.W (k) is
always betweenV (k) andW0(k) as discussed in section II.B. It approachesW0(k) ask goes to zero,
and approachesV (k − q) ask goes to∞, as discussed in section III.B. The critical level of capital to
join the bank isk∗ = 15, whereW (k) andV (k − q) cross.

The saving rate of nonparticipants increases with their wealth level up to near the critical level of
capital that determines the entry decision, and then decreases slightly (see figure 3).43 This is due to
intertemporal consumption smoothing, preparing for the payment of the fixed fee. The portfolio
share of risky assets varies in figure 3 as expected around the optimal levelφ∗∗ underW0(k), the
value function of those who never enter the bank. It increases first and then decreases. It is, however,
almost alwayslarger thanφ∗∗ for k < k∗. As anticipated, nonparticipants put their wealth in the
risky asset as a natural lottery to convexify their life-time utility (value function). For small levels of
capital, the figures show that the saving rate and portfolio share approach those of those who never
join the bank. This illustrates the analytical results (39) and (40).

These value and policy functions are very similar for the alternative parameter values
Θ = [1.067, 1.167]. One of the differences is the critical capital level to join the financial systemk∗,
which is smaller. Also, the portfolio share of risky assets is higher. Those results are natural
consequences of the higher return (but the same risk) of risky assets.

Using these numerically obtained savings and portfolio share functions, we simulate the economy,
given the initial wealth distribution. Figure 4 shows the simulated wealth evolution over 30 periods
under the benchmark parameter values. We will discuss further how to evaluate the model with the
actual Thai data, but, before proceeding, we would like to make it clear that simple regression
studies are not well suited for a study of transitional economic dynamics.

VI. G ROWTH , I NEQUALITY , AND FINANCIAL DEEPENING : SPURIOUS REGRESSIONS

We will show here that regression studies cannot capture true linkages among economic growth,
financial deepening, and inequality, when the underlying economy is on a transitional growth path.
Namely, we ask here whether our canonical model can generate data consistent with the findings in

43Note that the graph contains the counterfactual nonparticipants’ policy over the capital range more
than the critical valuek∗ = 15.
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the empirical literature. Overall, the regression results are favorable: effects are found as in King and
Levin (1993) and Forbes (2000). However, as we might expect for a transitional economy, we find
these effects to be unstable, and this is also in line with some recent empirical studies. For example,
Banerjee-Duflo (2000) reports on unstable and nonlinear relationship between inequality and growth
and Favara (2003) reports similar findings between financial depth and growth.

Specifically, we conduct an experiment: we fix the benchmark economy, populate it with 1002
households respecting the initial 1976 Thai wealth distribution, and then draw idiosyncratic shocks
in the population and aggregate temporal shocks for 30 years. We do this experiment 1000 times,
with different shocks, generating in effect panel data for 1000 (artificial) countries. We then revisit
these countries after 1976 to examine their status in later years.44

The advantage of any formal, structural model of growth is that the mechanism or “drivers” are made
clear. Here for example, given common initial inequality in the wealth distribution and the
parameters of technology and preferences, the drivers are the realized draws of idiosyncratic and
aggregate shocks. There are stationary aspects to the model: household savings and portfolio
decisions at datet, and hence the likelihood of financial participation at datet + 1, are all determined
by current wealth and current participation status. But aggregate growth, inequality, and overall
financial deepening are not stationary time series even after taking logs and lags. They are all
endogenous and all determined by these underlying shocks and decisions in complex and nonlinear
ways.45 Note that these complex dynamics are not only found in our canonical model, but also in
many other theoretical models that depict endogenous financial deepening, inequality, and growth.

King and Levine (1993) report that there is a robust positive relationship between “initial” 1960
financial depth and subsequent growth, averaged over 1960 to 1989. They conclude that financial
services stimulated growth. Here we regress 20 year average growth rates on the “initial” 1985, or
1980, level of financial depth, controlling for the initial log level of GDP (as created by 5 or 10 years
of early model history).46 Likewise Forbes (2000) replicates a typical finding in the empirical
literature: a robust negative relationship between “initial” inequality in 1965 and average growth
from 1965 to 1990. Here we regress 20 year average growth rates on initial 1985, or 1980, levels of

44Here, we use the Gini coefficient as a measure of inequality to be consistent with the empirical
literature.

45If the data came from a stochastic steady state, there are some ways to normalize nonstationary time
series so as to be represented as stationary time series. But, in this paper, the macro data are by
construction taken from transient states. From the equation (47) of evolution of aggregate capital, the
macro variables are functions of the underlying wealth distributions of participantsMt(k) and
nonparticipantsM̂t(k). These distributions change forms over time. Before reaching the steady state,
they are transient, as shown in figure 4, never coming back to have the same shape, even after any
macro level normalization is taken, due to the nonlinear savings and portfolio functions of
individuals. Therefore, the stationarity assumption, that error terms of simple regressions are drawn
from the same distribution over time or over countries, is not valid here. Moreover, the ergodic
assumption, that error terms of simple regressions over time or over countries can reveal the
underlying error distributions with a large sample, is not valid here either.

46The GDP level is normalized to one at 1976 in the regressions.
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Table 2. Spurious Growth Regression Results: Long-Run Effects of Initial Financial Depth and In-
equality onto Growth

Estimation 1985 as initial period 1980 as initial period
Method (1) (2) (3) (4) (5) (6)

Constant 3.5110 7.0600 12.7343 3.6189 8.3826 11.1520
(11.8937) (4.7252) (11.7274) (10.8625) (3.9869) (6.5943)

Initial Financial Depth 4.7298 −36.0538 3.7519 −55.9250
(1.7914) (−31.0114) (0.9869) (−26.0722)

Initial Inequality −5.2447 −8.8110 −5.8565 −1.9792
(−1.8188) (−4.2517) (−1.4235) (−0.6003)

Initial GDP 0.4324 0.4284 4.2420 0.5488 1.8229 4.4722
(1.0919) (1.1932) (15.3375) (1.0689) (3.3601) (10.0040)

R2 0.9863 0.9942 0.9970 0.9860 0.9959 0.9975

Notes: The dependent variable is 20-year average annual GDP growth, the same as per capita growth. Robust
t-statistics are in parentheses.

inequality. Finally, we include both inequality and financial deepening on the right hand side.
Specifically, with error termνm for them-th simulation or country, we run various versions of
cross-country regressions:

Growthm = α0 + α1InitialF inancialDepthm + α2InitialGinim + α3Log(InitialGDPm) + νm.
(51)

Table 2 reports on these long-run, 20 year growth regressions. As shown in the first column, the
higher is the “initial” 1985 level of financial deepening, the higher is the subsequent 20 year average
growth rate, though the significance level is marginal. The positive sign is of course consistent with
King and Levine (1993). Also, column (2) reports that the lower is the “initial” level of inequality,
the higher is the subsequent 20 year average growth rate. The significance level is marginal, but the
sign is consistent with Forbes (2000). However, when we include both financial depth and inequality
as right-hand side variables, in column (3), the negative sign on inequality is reinforced while the
sign on financial depth is reversed—both are now quite significant.47

47To the best of our knowledge, there is no empirical study that includes these two variables at the
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Table 3. Spurious Growth Regression Results: Medium-Term Effects of Financial Depth and Inequal-
ity onto Growth

Estimation 1981–85 as initial period 1976–80 as initial period
Method (1) (2) (3) (4) (5) (6)

Financial Depth 2.7300 1.9684 0.0599 0.6710
(0.7645) (0.5412) (0.0230) (0.2501)

Inequality −11.2361 −10.3229 4.9854 5.4020
(−1.2557) (−1.1328) (0.8192) (0.8610)

GDP −0.0342 1.4357 1.1718 −0.2008 −0.7181 −0.8326
(−0.0557) (1.2823) (0.9574) (−0.4596) (−0.9936) (−0.9728)

R2 0.9530 0.9530 0.9531 0.9601 0.9602 0.9602

Notes: The dependent variable is 5-year average annual GDP growth, same as per capita growth. The indepen-
dent variables are lagged variables. Robustt-statistics are in parentheses.

We repeat these regressions with 1980 as the initial year. The results on both financial depth and
inequality are weakened, except for the financial depth in column (6). The substantial changes of
sign, size, and significance of coefficients are consistent with the underlying transitional growth
model, that is, there is no stable relationship among these variables.

Most of what shows up in the regression results appear to be determined by initial conditions and the
history of shocks,48 rather than the structure of the model. There is an extreme, if easy, way to make
this point. Suppose we had taken 1976 as an “initial” period, then all 1000 simulations share the
same wealth distribution in 1976, and hence the same levels of inequality and financial depth. In
other words, the true initial condition is the same for all 1000 simulated economies, meaning there
would not exist any meaningful relationship between initial financial depth or initial inequality and
subsequent growth. The fact that this is less true over time does not mitigate the point that a

same time.

48Given imposed parameter values, the model generates growth in part by the shift of the population
into the financial sector. As a result, levels of per-capita income, which are just the weighted
averages of incomes in the participant and nonparticipant groups, are highly correlated with financial
depth and hence also with inequality. This multicollinearity is a reason for the observed highR2 in
the regression.
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regression of growth onto financial depth and inequality is a questionable way to think about the data
and possible structural models.49

This instability can be observed more clearly for medium-term regressions, similar to what Forbes
(2000) reports. She estimated a robust positive relationship between lagged inequality and five year
average growth rates over 1965 to 1995, contrary to her long-run regressions. We construct
medium-term, five year average variables50 and conduct panel estimation of the effect of lagged
financial deepening and inequality on the GDP growth rate, controlling for country fixed effects,
time dummies, and the lagged GDP levels in logarithms. In sum, we run the following regression on
the panel, though abusing the notation above,

Growthm,t = αm +α1FinancialDepthm,t−1 +α2Ginim,t−1 +α3Log(GDPm,t−1)+αt +νm,t, (52)

whereαm is the country fixed effect andαt is the time dummy.51

We confirm in table 3 that the regression results of medium-term panel regressions are quite different
from long-run regressions. While the sign on inequality is now positive in some instances, consistent
with the results of Forbes (2000), the sign is negative in other instances, depending apparently on
sampling and data availability, as it were, and inequality is never significant. Indeed, none of the
regressors are significant.52

We conclude that regressions are not an effective way to examine the data from economies in
transition.

49This does not exclude the possibility of causal link from financial deepening to growth, even within
our model. For example, if we generated data by varying the cost of financial access among
countries (e.g., different degrees of financial repression in our model), we would see a causal
relationship between financial depth/inequality and growth using the cost as an instrument in a
regression. However, without the information on the cost, it would be difficult for regression studies
to distinguish real effects of the institutional arrangements from spurious effects of endogenous
transitional dynamics reported here.

50Variables are five-year average of 1976–80, 1981–85, 1986–90, 1991–95, 1996–00, and 2001–05.

51Note that these regressions (51) and (52) have other technical problems even if stable relationships
are assumed (see Forbes (2000)). However, Forbes (2000) reports that results from simple
regressions are similar to those from better estimation techniques. Given our model, even the best
estimation technique would not bring meaningful results, and thus we run only these simple
regressions.

52The highR2 in Table 3 comes from the country-specific fixed effects, which capture the history of
past shocks before the (artificial) initial period. The history of shocks up to periodt determines the
wealth distribution att− 1 andt as well as the evolution of financial participation status up to period
t. As explained in section III.C, these are the drivers of the GDP growth, the financial participation
rate, and Theil index.
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VII. G ROWTH , I NEQUALITY , AND FINANCIAL DEEPENING : EXAMINING THE M ODEL’ S

PREDICTIONS

In this section, we use simulations to examine the model in three ways: the expected path, the best-fit
simulation, and a confidence region test of the model against the actual Thai data. Our procedure is
similar to what is done in the real business cycle literature, but the task here is more challenging.
Because of the history dependence generated in a transitional growth path,we need to treat the entire
historical series as one sample.

A. Expected Path

We start by examining the model based on the expected path it generates for three aggregate
variables, that is, economic growth (the GDP growth rate), financial deepening (the participation
rate), and inequality (the Theil index), from 1976 to 1996. Because the model does not make a sharp
distinction between wealth and income, we compare the growth of wealthk in the model to the Thai
GDP growth.

To generate the expected path from the model, we first construct the Markov transition matrix
Ψ(k′; k), defined in equation (41) for nonparticipants, and similarly for participants. We continue to
assume as in the model that there is a continuum of agents so that the idiosyncratic shocks sum to
zero—more generally the fraction of households with a particular set of idiosyncratic shocks is
exactly the probability of that set of shocks for each household. We approximate, however, smooth
wealth distributions of the continuum agents with histograms on discrete wealth grids.53 Multiplying
the approximated initial wealth distribution by the transition matrices produces the wealth
distribution in the second period. The third period wealth distribution is computed in the same way
as the second period wealth distribution using the same transition matrices.

Figure 4 shows the evolution of wealth distribution over time in log scale. The overall distribution
becomes more dispersed over time. The lower bound is only slightly moving towards the left, due in
part to low draws of idiosyncratic shocks for some households. The upper portion is expanding
rapidly to the right.54 Three aggregate variables are computed based on these wealth distributions.

53In the SES data, the sample size (e.g., 10,619 households in 1976) is large but of course finite. In
principle, we could populate the model economy with the same number of agents with randomly
drawn idiosyncratic shocks and study the evolution of the wealth distribution. However,
computational issues limits us in practice. We use a smaller number of agents (1002) for the
regression studies in the previous section and a continuum of agents assigned to discrete histograms
in the following sections.

54The shapes of simulated and true distributions do not match exactly. In particular, while the actual
distribution (though not shown) moved from left to right keeping a similar shape with one peak over
time, the simulated distribution has an uneven shape due to a common threshold for entry across the
households. This suggests a role for heterogeneity in costs, to be addressed in section VIII below.
The simulated distribution also shows a much wider support than the true distribution. Despite these
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Table 4. 1976–1996 Averages of Expected Paths of Macro Variables

Growth Fin.Dep. Inequality

(percentage point)

Actual Thai Data 5.9 14.6 8.6

Benchmark Expected Path 4.0 14.8 8.6

Alternative Expected Path 6.0 19.8 9.1

Table 4 shows 1976–1996 averages of the expected paths of the three variables. At the benchmark
specification for the aggregate shockθ, the model closely predicts the sample-period averages of
financial deepening and inequality. However, the model predicts a low GDP growth rate relative to
the actual data. With a higher mean for the aggregate shocks (the alternative case), the model
replicates the sample-period average of the GDP growth rate, but over-predicts financial participation
and inequality. This trade-off among the three variables appears in many of our experiments. In
summary, the model can do well with sample-period averages of the three variables, but not
simultaneously. It seems that there is something in the structure of the actual Thai economy which is
not present in structure of the model. We return to this in the next section.

To diagnose the model’s performance further, we look at entire paths, not only sample-period
averages. The solid lines in figure 5 show the expected paths. While the GDP growth rate increases
over time, these are low relative to the Thai data (the dashed line). In particular, the model misses the
upturn in the data around 1986. Participation in the financial system, while missing theS-upturn in
the data that began around 1986, goes through the middle of the Thai data, an excellent fit to the
overall trend.55 A Theil index of inequality in the bottom part of figure 5 (the solid line) shows a
more or less steady increase over time with initially coinciding with the Thai data (the dashed line)
up to mid-1980s, but the model prediction misses the downturn in Thai inequality in 1990s.56

two problems, the 1996 cumulative distribution of the model and that of the data are not dissimilar.
Indeed, similarity is not rejected statistically in Jeong and Townsend (2001).

55It is not a “trend” in the strict sense defined in the business cycle literature, because again a
stationarity assumption is needed to filter out trends and cycles. In this paper, we casually use the
word “trend” as a linear line going through the middle of data points.

56Note that the initial 1976 levels of the participate rate and Theil inequality are constructed in such a
way as to exactly match the data. In particular, as a result of the approximation, inequality does not
necessarily match the data exactly, and we adjust the point values, so that the starting point in the
model and the data are the same. There are two possible approximation errors. First, the initial
wealth distribution of the model is taken as a finite approximation of the data, assigning each data
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With the alternative specification, higher mean aggregate shocks, the model’s prediction of the GDP
growth rate, as suggested by table 4, is closer to the actual Thai data, a success. But, as is evident in
figure 6, the model’s prediction for financial deepening and inequality now overshoots, especially the
former.

We check if the model’s prediction of the observed transitional dynamics move with variations
around the chosen benchmark parameters. In this way we see the mapping from the parameters of
the model to policy functions and dynamic paths and so better understand the capabilities and
limitations of the model. Figure 7 and 8 show two of various experiments, with policy functions on
the left hand side (the dotted lines are the policy under the benchmark) and the expected paths on the
right hand side (the actual Thai economy paths are again dashed lines). Lowering the variance of the
idiosyncratic shock to[−0.3, 0.3], as in figure 7, lowers the saving rate, causes the portfolio
allocation to go to the obvious risky extreme, and raisesk∗ (the critical level of wealth to join the
financial system). This accelerates participation well above observed Thai rates, though again the
growth rate becomes more in line with the actual Thai data. A well-fit dynamic path evident in
Figure 8 comes from assuming a higher return on the safe asset, to8.49, so the share of the risky
asset in the portfolio goes very low. This raisesk∗ considerably, and of even greater interest, captures
the initially slow and subsequent fast rise in participation in the Thai data. Evidently, the prediction
for participation can be improved. Raising the risk aversion parameter to1.5 lowers the saving rate
initially, though savings rises sharply with higher wealth, lowers the fraction invested in risky assets,
and lowersk∗ (figure is omitted). The dynamic paths of the model display slightly less growth and
less participation but put the rising trend of inequality squarely through the Thai data path.
Evidently, the prediction for inequality can be improved. A higher marginal transaction cost at2
percent lowers both savings and growth. Setting a higher variation of aggregate shocksθ to 15
percent, asΘ = [1.022, 1.172], makes little changes in the expected path from the benchmark case
(but see the next section, which shows a different result).

In summary, the benchmark calibrated set of parameters does a reasonable job in tracing out the
trends in the data. It could perhaps do even better if we were free to choose parameters at will. In the
neighborhood where we are searching, however, there are nontrivial trade-off among income growth,
financial deepening, and inequality.

B. Best-Fit Simulation

We now focus on whether the model is capable of reproducing the actual economy well, if we are
given the discretion of choosing a specific sequence of shocks. After all, the actual Thai path should
differ from the expected path in the previous section because the actual path is imagined here to be
just one realization of many possible histories of the model economy. The strategy is similar in spirit
to episode studies, such as the Hayashi and Prescott (2002) study of the Japanese economy using a
deterministic growth model, with TFP growth rates as measured in the national accounts.

point to the nearest of a large number of cells. Second, we use a log scaled grid for simulation, which
more accurately approximates the true distribution for the low to medium wealth households, though
less accurately for the high-wealth households.
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Here, however, it is difficult to identify TFP shocks, the aggregate shocksθ in our model. A higher
aggregate shock does not necessarily correspond to higher growth, because a higher shock may
induce much more people to join the financial system at the end of the period,57 resulting in possibly
negative growth after netting out fixed costq.

To identify the aggregate shocks, we select the simulation that best fits the actual Thai data among
many simulations. Although it is possible to select aggregate shocks solely based on one variable
(e.g., the GDP growth rate), we make use as well of the variables for financial deepening and
inequality, as these are supposed to come from the same economy. Specifically, we generate 1000
simulations of the model economy, from 1976 to 1996, where each simulation is associated with a
specific random draw of a sequence of aggregate shocks from the specified cumulative distribution
over the 21 year period, integrating out only the idiosyncratic shocks using their known distribution.
In the previous section, to compute the expected paths, all possible aggregate and idiosyncratic
shocks are incorporated in the transition matrices (e.g.,Ψ(k′; k)) through their cumulative
distributions, but only the distribution of idiosyncratic shocks is used here to construct similar
transition matrices given particular draws of aggregate shocks. In sum, a particular simulated path
depends only on a particular sequence of aggregate shocks. Naturally, the averages of the simulated
paths, averaging over different sequences of aggregate shocks (the dot-dashed lines in figures 5 and
6) are almost identical to the expected paths of these variables calculated in the previous section (the
solid lines).58

A remaining question is how to define the “best fit” path or the measure of closeness to the actual
Thai path. We letxs denote a vector containing 57 variables—three variables (income growth,
financial depth, and inequality) over 19 years (1978-1996)—for thes-th simulation, for
s = 1, · · · , S = 1000, andx0 denote the actual Thai data. An obvious choice for measuring distance
between each simulated path and the actual data would bexs − x0, but this is a vector, not a scaler.
Note thatxs treats the entire observation in the sample period as one draw. The second choice would
be the simple sum of squared errors, that is,(xs − x0)

′(xs − x0). However, if for example, the model
generates a particular variable with high variations, then the simple sum of squared errors would be
affected heavily by its performance on that particular variable. Hence, a discount for variance would
be necessary. Additional discount would also be desirable for covariation of two variables, for
example, income and financial deepening. If these two variables are highly correlated, then the
simple sum of squared errors would be almost doubly counting the same common error in those two
variables.

Hence, we measure closeness of each of the 1000 simulations (each with different aggregate shocks)
to the actual Thai path using a covariance-normalized mean squared error criteria, namely,

(xs − x0)
′b−1

0 (xs − x0). (53)

57To calculate growth, we use the original timing in GJ, that is, the participation decision is made at
the end of each period.

58Note that the expected wealth distribution (figure 4) includes dispersion caused by possible
aggregate shocks. This creates a small disparity between the expected Theil indices and the average
of the Theil indices of the Monte Carlo simulations.
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Here covariance matrixb0 is calculated by the sample analogue,(1/S)
∑S

s=1(xs − x0)
′(xs − x0).

The first two periods, 1976 and 1977, are discarded because there is little difference among
simulations and the sample covariance matrix is almost singular.

The solid line in figure 9 shows the best-fit simulations from among the 1000 possibilities for the
benchmark economy. The best-fit simulations show more realistic variations in the growth rate, but
this variation is relatively small, not large enough to replicate the big upturn in income around 1986.
At the same time, the best-fit model path shows high frequency variation that is seemingly not in the
data. Strikingly, the best-fit participation rate virtually replicates the expected path and thus show no
high frequency fluctuation, though still missing theS-upturn. The Theil index of inequality shows
some high frequency wiggles but still misses the Kuznets-curve downturn. The alternative case with
higher mean aggregate shocks shows a very similar picture (and we omit showing the plots). In
short, the model can do reasonably well in delivering the trends we observe in the Thai data, since as
we noted the expected path is close to the Thai trends, but not so well in delivering dynamic changes
from mid-1980’s.

We thus simulate another economy with a higher variation (15 percent) in aggregate shocks, that is,
Θ = [1.022, 1.172] retaining the other benchmark parameter values. This makes for larger variation
in the aggregate variables, as figure 10 shows, and succeeds somewhat in replicating the big upturn
of the GDP growth rate around mid-1980s. There is, however, little change in the participation rate,
while inequality rises faster.

C. Confidence Region

We now impose a yet more demanding standard. Namely, we test whether the actual Thai economy
path itself could be a likely realization of the model atgiven calibrated parameter values. To do so,
we use another mean squared error criterion, a covariance-normalized deviation of each simulated
path from the the expected patha, that is,

ψs ≡ (xs − a)′b−1(xs − a), (54)

whereb denotes the covariance matrix of thexs around the meana,59 estimated from the sample as
(1/S)

∑S
s=1(xs − a)′(xs − a).

We construct a distribution for this metric using 1000 simulation and judge if the actual Thai pathx0

lies within a reasonable range of model predictions at the calibrated parameter values. We treat the
actual Thai pathx0 as one sample simulation and computeψ0 according to (54). We then place that
test statistic among the distribution ofψs. We will accept the null hypothesis that the Thai path was

59Assuming that the model at given parameter values is the true data generating mechanism, this
covariance matrix around the expected patha is the right one to use to normalize the distance
statistic. In the previous section, we focused on measuring distance of a simulated path from the
actual path and chose the covariance matrix around the actual pathx0 accordingly, without
considering a statistical test that requires a null hypothesis.
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generated under the model with its given benchmark parameter values ifψ0 lies within the 2.5
percentile to 97.5 percentile of the density (i.e., 95 percent confidence region).

The statistic in (54) is similar to a distance statistic to be minimized in GMM estimation. There are
two differences, however. First, our statistic does not necessarily follow aχ2 distribution even with
large samples. Still, as figure 11 shows, the simulated cumulative distribution of the statistic (the
dashed line) is almost identical toχ2(57) cumulative distribution (the solid line).60 Second, while a
distance statistic used in GMM estimation has the property that sample moments approach their true
moments with a larger sample size, here, there is virtually zero probability that a sample path will be
close to the expected path. That is, the probability density ofχ2(57) (figure 12) shows the mode of
the density is 55, implying 55 is the value with the highest likelihood among possibleψs.61 The
expected path would by construction deliver a mean squared error of zero, but this is in the extreme
left tail of the density.

The value ofψ0 confirm that the model is not replicating all aspects of the dynamics of change of the
Thai economy. Again,χ2(57) statistic at the 2.5 percent to 97.5 percent level ranges from 38 to 80.
In contrast, the Thai economy path produces aψ0 statistics in the far extreme right tale of the
distribution. Thus, the null hypothesis that the Thai economy path could have been generated by the
model at the calibrated parameter values is rejected.

We can ask nevertheless what aspects of the model fit the data best and where the fit is the worst, by
decomposingψ0 into its elements, that is, creating covariance-normalized mean squared errors for
each variable and for each combination of two variables. The model fits inequality the best, then
growth, and financial deepening the worst.62 The cross-variable covariance between growth and
financial deepening is helping to reduce distances from the mean, but the opposite is true for growth
and inequality.

Rejection by this strict criterion does not stem solely from the structure of the model, but also from
several other sources potentially. For example, parameter values are not estimated. We know from
our robustness experiments (section VII. A) that solutions can be improved on certain dimensions,
though there are trade-offs among the variables.63

It is also possible that Thailand benefited from a rare sequence of aggregate shocks: the Thai growth
episode was praised as a “miracle” in a World Bank report (1993). If this view is right, that is, the

60Tails of the simulated distribution seem thinner than theχ2(57), but this is not always the case in
our several experiments (figures are omitted). This near normality may be created by the cumulative
aggregate shocks over periods. Recall that shocks themselves are drawn from a uniform, not normal,
distribution.

61The mean is 57 and the median is 56.

62We suspect that the increase in wage income is associated with the decline of inequality in the Thai
data. Thus asking this model to replicate the inequality path may be too much. Still, the model
matches inequality with the data better than the other variables, according to our criterion.

63Currently we are exploring whether the techniques of this paper would allow full estimation.
However, there are constraints on computation which need to be overcome.
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actual aggregate shocks were outliers, then the model simulated path under such specific shock
should also be an outlier. Although we cannot know the actual aggregate shocks exactly, we were
able in the previous section to pick the realization that fits best to the actual Thai path. By putting the
best fit simulated path into the metric (54), we can compute the relative occurrence of the best fit
path among all the simulations. The best-fit simulated path at the calibrated parameter values gives
33 as theψ0 statistics. This test statistic is located on the left tail, 0.5 percentile, of theχ2(57)
distribution, implying the generated path is too close to the expected, smoothed path.64 However, the
test statistic for the actual Thai data is located in the right tale (far from the expected path), not in the
left tail (close to the expected path). Hence, some explanation other than the realization of the
extraordinary sequence of shocks is called for. Note that introducing positive temporary
autocorrelation, as is with business cycle models, could help to smooth high frequency wiggles. But
it would do so by generating slower movements of the variables and thus it would make the model
less able to generate large, dynamic changes observed in the three macro variables.

A plausible explanation is that the anomalies are caused by a change in the financial sector policy. In
fact, Abiad and others (2004) report that financial liberalization took place in Thailand from
mid-1980s on and, more importantly, that under their measure of efficiency, capital allocation
improved in the mid-1980s. In short, there seems to have been a policy change. While the model
assumes no distortion or intervention, the path of Thailand may have been influenced in fact by this
policy shift. In that case, the difference between the actual and simulated data represents the impact
of changes in the government policies for the financial system.

VIII. M ICRO HETEROGENEITY

It is natural to ask whether the model imposes unrealistic uniformity on the households. Indeed, the
micro movements that underlie Kuznets’s assertion on the aggregate statistics have been made clear
in the contributions of Mookherjee and Shorrocks (1982). As with income growth, the Theil index of
inequality can also be decomposed into within- and across-group changes. It consists of changes in
inequality within groups, population shifts between low- and high-income groups, and changes in
income differentials across these groups. These decompositions have established for several
countries65 and, for Thailand, Jeong (2000) reveals that occupation and education along with
participation in the financial sector are the key driving variables. These explain66 72 percent of the

64This confirms our findings in the previous section that the best-fit path is close to the expected path
and thus replicates overall trend of the Thai data.

65For example, in periods of nontrivial growth in Mexico and Brazil, increasing inequality (and,
eventually, decreasing inequality in Brazil) are associated with changing returns to education and
changing regional or urban-rural income differentials (and, in Brazil, inflation). See Bouillon,
Legovini, and Lustig (1999) and Ferreira and Litchfield (1999), respectively. In Taiwan and Chile,
growth coupled with an apparently stable income distribution appears to be the result of offsetting
structural forces. See Bourguignon, Fournier and Gurgand (2001) and Bravo, Contreras, and Urzua
(1999), respectively.

66Jeong (2000) uses the mean log deviation metric, a similar metric to the Theil index as both are
general entropy class metric (see Cowel, 1995).
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change in inequality from 1976 to 1996 (the residual is change in inequality within categories).
Financial participation alone can account for 41 percent, implying it is the largest but not the unique
factor.

With heterogeneity in mind, we have conducted a preliminary sensitivity analysis, specifically
allowing variation in the entry costq over different education and geographic groups, utilizing
additional information in SES. Fortunately, the model with its linear returns (and no endogenous
prices) allows us to calibrate and simulate for various key education and geographic groups, one at a
time. For example, we can distinguish SES households by the completed level of education of the
head (elementary and advanced secondary). We continue to fix technology and preference
parameters at their benchmark values, including the model version ofq, hencek∗. But for each group
separately we center the initial (SES estimated) wealth distribution so that the initial participation
rates of the Thai data match the predictions of the model (on the false assumption that everyone
above the threshold was participating). Those initial participation rates in 1976 were 5 and 20
percent for the two chosen education groups (again, elementary and advanced secondary) and 5 and
16 percent for rural and urban households, respectively. We then simulate the model economy from
1976 to 1996 one group at a time.

The model at benchmark values tends to over predict subsequent participation rates of the advanced
secondary and urban groups. The model predicts that access would have been higher for them over
time relative to what we observe in the data (at the benchmark parameters, which, again, match
reasonably well with the overall rates on average.) Ironically, one begins to wonder if there are
barriers to participation, not for the poorly educated, village residents but rather for their highly
educated urban counterparts. Of course we could introduce heterogeneity in preference and
technology parameters across these groups, but the direction of needed change might seem
surprising a priori. From our earlier robustness checks, we know that the model would require higher
risk aversion for those educated/urban groups, higher variance of idiosyncratic shocks, or lower
mean returns.

We also conduct another, closely related, experiment. We fix the exchange rate between the model
units and Thai baht using only one group, and thus compare the transactions costsq across the
various groups in the common currency units. Even though the educated have higher access, for
example, they have an even higher, right-shifted distribution of wealth, so the threshold wealthk∗ for
them is relatively high, making their transaction costsq relatively high also. Thus we find that
participation costs are higher (not lower) for the educated and urban groups. Again, to overturn this,
we would need to raise (not lower) risk aversion, raise the variance of the idiosyncratic shocks, or
lower the mean return for them.

In summary, there seems to emerge additional anomalies with introduction of heterogeneity. Again,
one plausible explanation may lie in financial sector policies. There may have been substantial
policy distortions facilitating financial access in rural areas (e.g., expansion of BAAC) while limiting
access to the middle class.
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IX. C ONCLUSION

We follow the research agenda laid out in Lucas’s Presidential Address to the American Economic
Association in 2003 (Lucas, 2003):
“For us, today, value theory refers to models of dynamic economies subject to unpredictable shocks,
populated by agents who are good at processing information and making choices over time.· · ·
[This involves]· · · formulating explicit models, computing solutions, comparing their behavior
quantitatively to observed time series and other data sets. As a result, we are able to form a much
sharper quantitative view· · · .”

In this paper, we take this agenda to the study of economies in transition, a departure from typical
calibration exercises on steady-state dynamics. That is, we have proposed a quantitative research
methodology consistent with the widely held view that financial deepening and changing inequality,
along with economic development, are transitional phenomena. We also show that, consistent with
this view, simple regression studies would not be able to capture the true linkages among growth,
financial deepening, and inequality.

The model we use is a relatively simple prototype which emphasizes a fixed cost of financial
participation, but this generates complicated nonlinear nonstationary dynamics. We overcome
apparent nonconvexities. In particular, we point out the possible usage of a risky asset or occupation
as a natural lottery which can convexify the frontier of the lifetime utility (the value function). We
then establish, for each wealth level, there are uniquely determined optimal decisions, that is,
savings, portfolio choices, and participation. These analytical results enable us to study the model
further with numerical methods.

We apply the model to Thai data, calibrate, and make predictions. We look at the expected paths
generated by the model. They are broadly consistent with the 1976–1996 averages in the data, and
with the time trends of the data, especially for increasing inequality and financial deepening. By
changing parameters as in our robustness checks, we can match GDP growth as well, but then actual
financial depth and inequality are low compared to the model prediction. We conclude that the
model is a useful starting point for studying these phenomena. Apparently we need either an
additional factor promoting growth, ceteris paribus, under the benchmark parameter values, or
something impeding financial deepening at higher growth as under the alternative parameters.

To examine further the model’s performance along the transition, we look at the best-fit simulation,
based on a covariance-normalized squared error metric of closeness. This is because the actual path
of the Thai economy is imagined here to be just one realization of many possible histories of the
model economy. The best-fit simulation shows some resemblance to the actual Thai data, especially
to GDP growth rate. But the best-fit path at the calibrated parameters does not follow the dynamic
S-curve in financial sector participation and the eventual decline of inequality. These features are
statistically unlikely to be delivered by the model at the benchmark parameter values, and the actual
Thai path is formally classified as outside the confidence region, constructed by a set of Monte Carlo
simulations.

In sum, the model succeeds in producing the trends and some of the movements in the GDP growth,
the financial access, and the Theil index evident in the Thai data from 1976 to 1996, but the model
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misses the specific dynamic changes that happened in the mid-1980’s. We did explore several
possible explanations: a rare sequence of shocks, autocorrelation in shocks, and heterogeneity in
financial participation. However, these do not seem to resolve the anomalies. We conjecture there
was a substantial financial sector liberalization in mid-1980s that led both to anS-curve of financial
deepening and a sharp upturn in GDP growth.

The relationship among economic growth, financial deepening, and inequality are complex as they
come from non-linear relationships and from an economy in transition. Simple least squares
regressions do not provide the diagnostics to help us decode the meaning of the data. In this paper
we have viewed both micro and macro data through the lens of a structural model. We have
documented, with several diverse criteria, where the models fits well and where it falls short.
Anomalies in the data relative to an explicit model have directed our thinking and can be used to
guide future research. This is the agenda we commend to the reader.
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Figure 2. Value Functions
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Figure 3. Policy Functions

2 4 6 8 10 12 14 16 18 20

0.92

0.94

0.96

0.98

1

sa
vi

ng
s 

ra
te

W policy
Wo policy
V policy

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

wealth (model unit)

po
rt

fo
lio

 s
ha

re

W policy
Wo policy



42

Figure 4. Wealth Evolution
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Figure 5. Benchmark Case
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Figure 6. Alternative Case
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Figure 7. Lower Variance of Idiosyncratic Shock
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Figure 8. Higher Safe Return
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Figure 9. Benchmark, best-fit
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Figure 10. Higherθ Variance, best-fit

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996
0

0.05

0.1

GDP Growth

Best Fit
Actual Data

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996

0.1

0.2

Participation Rate

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996
0.06

0.08

0.1

0.12
Theil Index



47

Figure 11. Cumulative Distribution ofψs Statistics
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Figure 12. Probability Density ofχ2(57) Statistics
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APPENDIX I. PROOFS

A. Proof of Lemma 1

Given the three properties ofZ(k) (i.e., single-valuedness, upper semicontinuity, and monotonicity)
there are only three cases (or their combinations) that would not makeZ(k) a globally concave
function. The first case is whenZ(k) jumps up at some points and is right-continuous. In this case,
we can satisfy condition (18), for any sufficiently smallξ > 0, by takingk̃ as a point just before (less
thanξ) the jumping point so that̃k + ξ is a little larger than the jumping point. The second case is
whenZ(k) is a continuous function on some domain butZ(k) has non-convex subgraph in the
neighborhood of a point, that is,Z(k) is a strictly convex function in the domain of(k̃ − ξ, k̃ + ξ). In
this case, the conditions (18) and (19) are straightforward from the definition of a strictly convex
function.

The final case is whenZ(k) is a continuous function on some domain but there is no domain
(k̃− ξ, k̃ + ξ) on whichZ(k) is a strictly convex function and yet there is a domain(k̃− ξ, k̃ + ξ) on
whichZ(k) has non-convex subgraph. This is possible only whenZ(k) is a concave function both in
the domain(k̃ − ξ, k̃] and in[k̃, k̃ + ξ), while it has a kink at̃k (as in figure 1). By taking any
sufficiently smallν > 0, we can define the left- and right-derivatives67 at k̃ as

Z−(k̃) ≡ Z(k̃)− Z(k̃ − ν)

ν
, (A1)

and

Z+(k̃) ≡ Z(k̃ + ν)− Z(k̃)

ν
, (A2)

respectively. To have a non-convex subgraph in(k̃ − ν, k̃ + ν), the left-derivative must be smaller
than the right derivative at̃k (as in figure 1), implying that

Z(k̃ + ν) + Z(k̃ − ν)

2ν
>

Z(k̃)

ν
. (A3)

By changing the notation fromν to ξ, this is equivalent to condition (18). As long asν is appropriate
choice to calculate left- and right-derivatives, any smallerν < ν should also be a choice satisfying
condition (A3) and, in turn, guaranteeing the condition (19).

B. Proof of Lemma 2

We can define Borel algebra on[η, η], and for any small4 > 0, we can think of a measurable set in
the neighborhood of the lowest possible shock[η, η +4) and its measureλ4. Similarly, we can
define a measureλ4 on a measurable set in the neighborhood of the highest possible shock

67SinceZ(k) is a proper concave function in the domain(k̃ − ξ, k̃] and in[k̃, k̃ + ξ), left- and
right-derivatives at̃k exist (Rockafellar, 1970, pp.214).
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(η −4, η]. By symmetry of the probability distributions (assumption 5), these two measures should
have the same mass, that is,λ4 = λ4 = λ4.

Becauseξ in lemma 1 can be chosen arbitrarily small, we can always choose a portfolio share for the
risky asset̃φ and an associated̃µ that equates the next period capital level with a close-to-best
realization tõk + ξ. That is, for any small4 > 0.

(
φ̃

(
η − 4

2

)
+ (1− φ̃)δ

)
µ̃k̃ = k̃ + ξ. (A4)

By symmetry of distribution ofη (assumption 5), this specific policy(µ̃, η̃) equates the next period
capital level with a close-to-worst realization tok̃ − ξ, that is,

(
φ̃

(
η +

4
2

)
+ (1− φ̃)δ

)
µ̃k̃ = k̃ − ξ. (A5)

As we discussed in the proof of lemma 1, there would be three cases whenZ(k) is not globally
concave. The second and the third cases are whenZ(k) is a continuous function, and the first case is
whenZ(k) is a discontinuous, upper semicountinuous function. In any cases, note thatZ(k) is
Rieman integrable68 when given compact domain, because it is real valued, single valued,
monotonically increasing, upper semicontinuous, and Borel measurable.

Here, we first look at the case of a continuous function. We focus on neighborhood ofk̃, whereZ(k)
is not concave. Since Rieman integrability ofh(η) is guaranteed by assumption 5 (full support with
positive mass everywhere), we divide its support into many grids,j = 1, · · · , J with width4 and
approximate its probability density functionh(η) by a step function having4 as width and
h(ηj +4/2) as hight, whereηj ≡ η + (j − 1)4. Moreover we define the probability mass
Dj ≡ 4 ∗ h(ηj +4/2). Using this notation, we can approximate a portion of integration near the
worst realization by evaluating at the mid-point as follows:

∫ η+4

η

Z(φη + (1− φ)δ)µ̃k̃dH(η) ≈ Z

(
φ

(
η +

4
2

)
+ (1− φ)δ

)
µ̃k̃D1. (A6)

Similarly, a portion of integration near the best realization can be approximated as

∫ η

η−4
Z(φη + (1− φ)δ)µ̃k̃dH(η) ≈ Z

(
φ

(
η − 4

2

)
+ (1− φ)δ

)
µ̃k̃DJ . (A7)

Therefore, the probability-measure weighted average of the next capital levels in the most fortunate
realization and the least fortunate realizations can be approximated as a sum of two steps with
associated probability mass:

Z

((
φ̃

(
η +

4
2

)
+ (1− φ̃)δ

)
µ̃k̃

)
D1 + Z

((
φ̃

(
η − 4

2

)
+ (1− φ̃)δ

)
µ̃k̃

)
DJ . (A8)

68See the precise definition, for example, in Stokey and others (1989).
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Becauseh(η) is symmetric (assumption 5), the probability measures corresponding to the highest
realizationD1 and the lowest realizationDJ are both equal value, denoted asλ1. Therefore, (A8) is
equal to the simple average with measure2λ1,

2λ1

(
1

2
Z

((
φ̃

(
η +

4
2

)
+ (1− φ̃)δ

)
µ̃k̃

)
+

1

2
Z

((
φ̃

(
η − 4

2

)
+ (1− φ̃)δ

)
µ̃k̃

))
(A9)

Using (A4) and (A5), it is equal to

2λ1

(
1

2
Z(k̃ − ξ) +

1

2
Z(k̃ + ξ)

)
. (A10)

Thus, applying condition (18), the simple average of the outermost steps is larger than the value ofZ
at k̃, that is,

(A8) > 2λ1Z(k̃). (A11)

To complete the integration for other grid between[η +4, · · · , η −4], we chose symmetrical pairs
of the step functions sequentially from outside and apply the same logic above, except that we use
condition (19), a weaker condition. In this way, overall integration ofZ with next period capital is
approximated by sum of those pair-wise approximations. Because sum of eachj-th pair is larger
than or equal to2λjZ(k̃), the overall integration has higher value thanZ(k̃), that is,

∫
Z(ẽ(η)µ̃k̃)dH(η) > Z(k̃). (A12)

For the discontinuous, upper semicontinuous case, to satisfy (18), we pickk̃ as a point just before the
jumping point so that̃k + ξ −4 is equal to the jumping point. At the same time, we pick(ξ,4) so
thatZ(k) on [k̃ − ξ, k̃ + ξ −4) is a continuous function. Hence, the sum of the outermost pair
would deliver the same condition as in (A11). For the remaining pairs, as long asZ(k) is a convex
function on the subdomain smaller than the jumping point (i.e.,[k̃ − ξ, k̃ + ξ −4)), the proof is the
same as above.

In case whenZ(k) is not a convex function on the subdomain smaller than the jumping point, a sum
of a pair of the step functions on the subdomain[k̃ − ξ, k̃ + ξ −4) can be smaller thanZ(k̃),
because of the possible concavity. However, as we takeξ to be very small, with associated4, and
adjusting location of̃k, the difference betweenZ(k̃) and the sum of a pair of the step functions on
the subdomain[k̃ − ξ, k̃ + ξ −4) becomes smaller, converging to zero in the limit, becauseZ(k) is
continuous and concave function on the subdomain. But, the sum of outermost pair (A8) is
significantly larger thanZ(k̃) thanks to the discrete, finite jump atk̃ + ξ −4. Since the overall
integration is the sum of all pairs of step functions, (A12) is valid in this case, too.
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C. Proof of Corollary 1

We would like to apply Berge’s maximum theorem and its corollary.69 Givenkt−1 anddt−1, (µt, φt)
can be chosen from compact, convex domain[0, 1]× [0, 1]. To prove(µ, φ) are single-valued
continuous function ofk, it is enough to show the objective function has a rangeR (excluding±∞)
and is a strictly concave function.

First, we would like to show that the range of the objective function,
u((1− µ)k) + β

∫
Z(e(η)µk)dH(η), isR given somek ∈ R++. Note that the solution would not

change by restrictingµ ∈ (0, 1) (not taking boundary values) because of Inada conditions. This gives
|u((1− µ)k)| < ∞. Assumptions 3 and 4 ensure|Z(e(η)µk)| < ∞ for anyη ∈ Θ + E, µ ∈ [0, 1],
φ ∈ [0, 1], andk ∈ R++.70 Hence, the objection function as a whole has a rangeR.

Second, we would like to show thatu((1− µ)k) + β
∫

Z(e(η)µk)dH(η) is strictly concave in(µ, φ).
But u is apparently strictly concave inµ, so we only need to show concavity of

∫
Z(e(η)µk)dH(η).

Take anya ∈ (0, 1) as well as any(µ1, φ1) and(µ2, φ2), both from(0, 1)× [0, 1]. Consider
∫

Z(a(φ1η + (1− φ1)δ)µ1k + (1− a)(φ2η + (1− φ2)δ)µ2k)dH(η). (A13)

SinceZ(k) is concave by proposition 1,

≥
∫

[aZ((φ1η + (1− φ1)δ)µ1k) + (1− a)Z((φ2η + (1− φ2)δ)µ2k)] dH(η)

=a

∫
Z((φ1η + (1− φ1)δ)µ1k)dH(η) + (1− a)

∫
Z((φ2η + (1− φ2)δ)µ2k)dH(η).

(A14)

Hence
∫

Z(e(η)µk)dH(η) is concave in(µ, φ).

69See Stokey and others (1989) pages 62–63 and also Berge (1997) pages 116–117.

70See Townsend and Ueda (2001) for the proofs of boundedness the maximized life-time utility and
of equivalence between the maximized life-time utility and the value function.
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APPENDIX II. N UMERICAL ALGORITHM

A. Outline

The main program computes the optimal policy functions, the saving rate and the portfolio share,
and the value functions. With these data, the simulation program computes the population dynamics
of the economy.

The main program consists of six parts:

1. Set the relevant parameters.

2. Write the functions ofV (k) andW0(k) in order to refer to these values in the following
procedure and to take appropriate initial function of iteration.

3. Computation ofZ(k).

4. Save the data of value functions and policy functions together with parameter values.

5. Simulation of population dynamics on growth and inequality using the data of 4.

6. Save the data of the simulation of 5.

B. The Construction of a Compact Domain forZ(k)

We useZ(k) in (10) instead ofW (k) in (11) for iteration. Iteration onZ(k) has at least two
advantages over iteration onW (k). One is that theZ(k) formulation involves simple integration,
while theW (k) formulation requires an evaluation of the maximum operator inside the integrals.
Essentially, the decision to join the financial intermediation is written explicitly forZ(k). Simple
integration saves much computational time.

The other advantage is that sinceZ(k) takes the same value asV (k − q) whenk is high, we can use
V (k − q) as the value ofZ(k) for k higher than some upper end pointK. This is an exact
extrapolation, which we do not get in theW (k) formulation.71

The analytical results (39) and (40) suggests that those who have very small wealth act
approximately as if they do not expect to join the bank ever. This implies in turn that we can truncate
the domain on the left at some small capitalK.72 That is,W0(k) gives us fairly accurate
extrapolation value forZ(k) for these lower capitals. In notation, ifkt+1 goes lower thanK, Z(kt+1)
will be approximated byW0(kt+1). In this way, we construct a compact domain[K, K] to compute

71We get the upper end-point of the domainK for computation through trial and error.

72Apparently, a small value of the minimum of the capital grid is better. For log utility and CRRA
with σ > 1, u(0) = −∞ and thus we cannot include zero in the domain of value functions. We pick
0.01 as the minimum.
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Z(k). Still, the value functionZ(k) and its policy function(µ(k), φ(k)) are defined for allk ∈ R+,
for the value and policies outside the domain[K,K] are approximated by the value functionsV (k)
andW0(k) and their policy functions, respectively.

C. Approximation and Iteration

We use the value function iteration method to obtain values and policies. Since the model uses
continuous utility functions and continuous distributions of shocks, some computational difficulties
arise. The computer can only handle discrete data, and approximation of the functions and
integrations are necessary.

The following is the numerical procedure to obtain value functions and policy functions.

1. First, we choose the initial given and known functionZ0(k) on given[K,K]. Basically any
continuous function that is betweenW0 andV is appropriate.73

2. Second, we construct an approximation to thatZ0. This is given notationally by

Ẑ0(k; A0) ≡ C(Z0(k)), (A15)

whereC denotes the approximation procedure andAn is the parameter of that approximation
at iteration numbern. Here of coursen = 0, since we have not yet done any iteration.

We use the Chebyshev approximation method, which is more accurate than any approximation
with the same number of nodes.74 This interpolates between special grid points by utilizing the
information of all the points, and the fit is almost the best possible.

(a) We set the Chebyshev interpolation nodes in the compact state spacek ∈ [K,K] for
evaluating the functionZ0(k). Given the degree of polynomialsp and the choice of
number of nodesm over[K,K], the nodesk(l) is given by

k(l) = (x(l) + 1)(
K −K

2
) + K, (A16)

wherex(l) on [−1, 1] (l = 1, · · · ,m, m > p + 1) is a Chebyshev interpolation node:

x(l) = cos(
2l − 1

2m
π). (A17)

(b) EvaluateZ0 at the nodesk = k(l) for l = 1, · · · ,m:

y(l) = Z0(k(l)). (A18)

73See the working paper, Townsend and Ueda (2001).

74See Theorem 6.5.4 of Judd (1998) page 214.
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(c) Then compute the Chebyshev coefficientA0 ≡ (A01, · · · , A0p) by the least squares
method:

A0i =

∑m
l=1 ylTi(xl)∑m
l=1 Ti(xl)2

. (A19)

whereTi is the Chebyshev polynomial defined over [-1, 1] as

Ti(x) = cos(i arccos(x)). (A20)

(d) Finally, we get the approximation over allk:

Ẑ0(k; A0) =

p∑
i=0

A0iTi(2
k −K

K −K
− 1). (A21)

3. Third, we take the appropriate extrapolation. This is for the entire range ofk. Specifically,
defineZ

0
(k) for all k ∈ R as follows.

Z
0
(k; A0) = V (k − q) for k > K,

= Ẑ0(k; A0) for k ∈ [K,K],

= W0(k) for k < K.

(A22)

4. Fourth, we calculateW 1(k) at each grid point by

W 1(k) = max
µ,φ

u((1− µ)k) + β

∫ η

η

Z
0
(k+(k, µ, φ, η), A0) dH(η), (A23)

wherek+(k, µ, φ, η) = µk(φη + (1− φ)δ).

(a) We change variables of integration. Leth(η) denote probability distribution ofη (recall
the cdf was defined asH(η)). Given(k, µ, φ), k+(k, µ, φ, η) is a function ofη. Given
(k, µ, φ) and the specific value fork+, η is calculated from inverse function ofk+,
η = k+(−1)(k, µ, φ). We change the variable fromη to k+ and redefine the integrand as
Z̃(k+; A0), a function ofk+ given the Chebyshev coefficientA0,

∫ η

η

Z
0
(k+(k, µ, φ, η), A0)dH(η)

=

∫ k+(k,µ,φ,η)

k+(k,µ,φ,η)

Z
0
(k+, A0)h(k+(−1)(k, µ, φ))

dη

dk+
dk+

=

∫ k+(k,µ,φ,η)

k+(k,µ,φ,η)

Z̃(k+; A0)dk+.

(A24)

(b) Here, we use the Gaussian quadrature to get the approximate value of integral. The
Gaussian quadrature utilizes the orthogonal polynomial approximation and calculates the
integration with good accuracy and little time. Using specific discretization ofk+, which
is {k+

i }pw

i=1, with associated weightwi, orthogonal approximation of the integral takes the
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form: ∫ k+(k,µ,φ,η)

k+(k,µ,φ,η)

Z̃(k+; A0)dk+ =

pw∑
i=1

wiZ̃
0(k+

i ; A0). (A25)

These(k+
i , wi)

pw

i=1 are specific to polynomial and degree of approximation, which one can
get from a table in a textbook on computation.75

(c) Maximization over(µ, φ) on equation (A23) is conducted by a grid search with
successive refinements and simplex method.

5. Finally, we take the value ofZ1(k) for eachk = k(l).

Z1(k) ≡ max
d∈{0,1}

{W 1(k), V (k − q)}. (A26)

Then we approximate theZ1(k) as same asZ0(k); i.e., Ẑ1(k, A1) = C(Z1(k)). From this we
can calculateW 2(k), and constructZ2(k). This makesẐ2(k,A2).

6. Iteration goes untilZ(k) converges to a fixed point.

D. Numerical Approximation of Evolution of Population Density

After the optimal policies(µ(k), φ(k)) are obtained from the numerical computation, given the
initial distribution of the wealth,M0(k1), the wealth distribution at each period for nonparticipants is
recursively derived by equation (42). Here, we also need to approximate analytical distribution
Ψ(k′; k), equation (41), givenk andk′, because a computer cannot handle a continuous distribution.
We use a step function approximation with finite grids. Given an initial distribution ofk1 defined on
a grid, we define the distributionk2 using the nearest point in the grid as the approximation for a
particulark2.

Note that as economy grows, the wealth distribution will disperse. This creates some difficulties that,
in each tail end of distribution, the mass become tiny and cannot be captured by a computer. Here we
face a trade-off, that is, making the grid space finer increases accuracy for early periods when the
distribution is thick everywhere, but reduces accuracy for later periods when the distribution
becomes diffused.

75See Hildebrand (1987) page 392 for a table.
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