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Abstract. Fix an arbitrary equilibrium refinement. Assume that, when we
need to check whether a prediction of this refinement applies to a particular
situation, we only know finitely many orders of players’ interim beliefs. Many
models may be consistent with this limited knowledge. In this paper, we char-
acterize the predictions that are robust to these alternative specifications of the
model, in the sense that they remain true independent of which of these models

is chosen, given that we apply the fixed equilibrium refinement to each model.
Assuming that the set of underlying payoff parameters is rich enough, for generic
payoffs, we show that a prediction is robust if and only if it is true for all rational-
izable strategies. Therefore, equilibrium refinements will be useful in generating
stronger predictions than those of rationalizability only when we have informa-
tion about the entire infinite hierarchy of beliefs, which is unlikely in practice.
We also show that our result remains intact when we restrict our attention to
finite type spaces, or impose the common-prior assumption.
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1. Introduction

In economic models, there are often many Nash equilibria. In order to be able to
make sharp predictions, game theorists have therefore developed stronger solution
concepts, which lead to a multitude of refinements of equilibrium, such as perfect
and robust equilibrium. In applications, researchers typically use these refinements,
often applying them to Bayesian games in which specific type spaces are chosen
to model the players’ incomplete information. In this paper, we characterize the
predictions of such refinements that retain their validity when we actually have
only a partial knowledge of the players’ incomplete information.

To explain our framework, imagine a researcher who subscribes to some re-
finement of Nash equilibrium. For each possible incomplete-information model,
represented by a Bayesian game, the researcher can compute a set of possible
strategies using the refinement. He would like to be able to make predictions in a
case of genuine incomplete information. By this we mean that when he is asked to
make his prediction, the players already have some beliefs about what the payoffs
are, which are called the first-order beliefs, beliefs about the other players’ beliefs,
which are called the second-order beliefs, and so on. In a standard type space,
where a type of a player is a signal about payoff-relevant fundamentals, players
form these beliefs at the interim stage upon learning their types, and we can com-
pute an entire hierarchy of beliefs for a given type using the joint distribution of
signals and the fundamentals (see Section 3).

Now we introduce the key assumption that the researcher is restricted to ob-
serving only finitely many orders of beliefs. This is especially plausible because
common sense suggests that the players themselves will have their beliefs only par-
tially articulated in their own minds. In particular, we assume that the researcher
observes the first k orders of beliefs and nothing more. Many types that come from
different type spaces are consistent with this observation, i.e., their first k orders
of beliefs are as observed. He applies his refinement to obtain a set of strategies in
each of these type spaces, specifying a set of actions for each of these types. The
researcher cannot rule out any of these actions based on his observation and his
refinement.

Now consider the researcher analyzing a particular type space, using his refine-
ment. Under our restriction on what he can observe in the interim stage, he can
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only make predictions that are robust to alternative specifications of higher-order
beliefs, in the sense that they will remain true for each of the models consistent
with his observation on the first k orders of beliefs, given that he would have used
the same equilibrium refinement in those alternative models as well. These are the
predictions that can be verified by knowing only finitely many orders of beliefs.

Assuming that the space of underlying payoff parameters is rich enough, for
generic payoffs we will characterize the robust predictions: a prediction is robust
if and only if it is true for all rationalizable strategies in the model. That is, no
equilibrium refinement produces any more predictive power than rationalizability,
unless we also make a very precise assumption about the infinite hierarchy of
beliefs. In other words, we cannot verify the predictions that are driven by the
equilibrium refinement without observing the entire infinite hierarchy of beliefs.

In particular, we show that, if the above researcher observes that the first k
orders of beliefs are consistent with a type ti, then he cannot rule out any action
that survives k rounds of iterated elimination of actions that are never a strict best
reply for type ti. On the other hand, by a result of Dekel, Fudenberg, and Morris
(2003), he can rule out the actions that are eliminated in k rounds of iterated
elimination actions that are never a weak best reply for type ti. When there are no
ties for best response (e.g., in generic games and nice games1), these elimination
procedures lead to the same outcome, yielding the above characterization. This
characterization is extended to all cases by allowing slight uncertainty in lower-
order beliefs.

One may think that the above lack of robustness may be due to some large type
spaces that do not satisfy certain standard assumptions, such as the common-
prior assumption. Our conclusions, however, remain virtually unchanged when we
restrict the possible type spaces to be finite and generated by a common prior.
This is mainly because the common-prior assumption does not put any significant
restriction on finite-order beliefs (Lipman (2003)).

A key element of our perspective on robustness is that we consider hierarchies of
beliefs about payoff-relevant parameters to be the basic objects to be perturbed.2

1These are games where the action spaces are compact intervals and the utility functions are
strictly concave in own action and continuous, as in many classical economic models.
2We define a perturbation as a mapping to a new type space such that the image of each type

has the same first k orders of beliefs as the original type (see Section 5).



4 JONATHAN WEINSTEIN AND MUHAMET YILDIZ

Alternatively, one could focus on perturbations of prior beliefs on type profiles
(e.g. Kajii and Morris (1997)). That is, we focus on the interim stage (after types
are realized, but before actions are taken), rather than the ex-ante stage. This
approach is attractive because the ex-ante stage is often a hypothetical construct
used to model the beliefs players hold in the interim stage (see Dekel and Gul
(1987) and Battigalli (2003) for a detailed discussion). It is therefore appropriate
to consider two situations with similar interim beliefs to be close, regardless of
what prior beliefs led to the existing situation. Since distinct ex-ante models can
lead to similar interim beliefs, our approach deals with the modeler’s problem of
selecting an ex-ante model that is appropriate for a given interim situation. We
want to make predictions that are independent of selection among the models that
are consistent with the data.

In the next section, using a variant of the e-mail game, we illustrate our results
and compare them to the major existing results in the robustness literature. We
present the basic definitions in Section 3. In Section 4, we prove a key result
about the sensitivity of equilibria in universal type space, which will lead to the
results in Section 5. In Section 5, we formulate our robustness notion and char-
acterize the robust predictions of arbitrary equilibrium refinements. In Section 6,
we present a modified version of our result without the richness assumption. In
Section 7, we present three applications of our results, obtaining stark results on
Cournot oligopoly and continuity and robustness of equilibrium strategies. Section
8 concludes. Some of the proofs are relegated to the appendix.

2. E-mail Game and Literature Review

To fix our ideas consider the coordinated attack game with payoff matrix

Attack No Attack
Attack θ,θ θ − 5,0
No Attack 0,θ − 5 0,0

where θ ∈ Θ = {−2, 2, 6}. First, consider the model in which it is common
knowledge that θ = 2. This case is modeled by a type space T with only one
type for each player i, which will be denoted by tCKi (2). In this game, there are
two Nash equilibria in pure strategies, namely, (Attack, Attack) and (No Attack,
No Attack), and an equilibrium in mixed strategies. Now imagine an incomplete
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information game in which the players may find it possible that θ = −2. Ex
ante, players assign probability 1/2 to each of the values −2 and 2. Player 1
observes the value of θ and automatically sends a message if θ = 2. Each player
automatically sends a message back whenever he receives one, and each message
is lost with probability 1/2. When a message is lost the process automatically
stops, and each player is to take one of the actions of Attack or No Attack. This
game can be modeled by the type space T̃ = {−1, 1, 3, 5, . . .} × {0, 2, 4, 6, . . .},
where the type ti is the total number of messages sent or received by player i
(except for type t1 = −1 who knows that θ = −2), and the common prior p
on Θ × T̃ where p (θ = −2, t1 = −1, t2 = 0) = 1/2 and for each integer m ≥ 1,
p (θ = 2, t1 = 2m− 1, t2 = 2m− 2) = 1/22m and p (θ = 2, t1 = 2m− 1, t2 = 2m) =
1/22m+1. Here, for k ≥ 1, type k knows that θ = 2, knows that the other player
knows θ = 2, and so on through k orders of belief. The new incomplete-information
game is dominance-solvable, and the unique equilibrium action for each player is
No Attack.

Recall the researcher from the introduction, who could observe only k orders
of beliefs for each player and has no knowledge of how players arrived at these
beliefs. Suppose that he observes that the players mutually believe that θ = 2

through k orders of beliefs. He cannot know whether the true model is T , or
whether the true model is T̃ and the players have types greater than or equal to k.
Now suppose that he subscribes to a non-empty equilibrium refinement that selects
the (Attack,Attack) equilibrium in the complete information game T , as Pareto-
dominance does. Since his refinement must assign the outcome (No Attack, No
Attack) for each possible type in the alternative type space T̃ , the researcher cannot
know whether the outcome will be (Attack, Attack) or (No Attack, No Attack)
according to his solution concept. To put it differently, even if the researcher
believed that the right model is T and it is commonly accepted that his solution
concept is the right solution concept, he could not prove his prediction that there
will be an attack with the available data, which is insufficient to confirm that the
correct model is T and not T̃ . Consequently, we say that his prediction that there
will be an attack is not robust at order k, for any k.

The above argument is based on Rubinstein’s (1989) result that an equilib-
rium refinement that selects (Attack,Attack) must be sensitive to specifications
of higher-order beliefs. A refinement that selects (No Attack,No Attack) is not
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sensitive in this example. Subsequently, in their seminal paper, Carlsson and van
Damme (1993) presented a class of similar perturbations, where players observe
noisy signals, according to which nearby types would always play the risk-dominant
equilibrium, which is (No Attack, No Attack) in the above game. They then pro-
posed that we should instead select the risk-dominant equilibrium of (No Attack,
No Attack). As we will discuss later, Kajii and Morris (1997) also proposed a no-
tion of robustness to incomplete information, according to which (No Attack, No
Attack) is a robust equilibrium. Nevertheless, as we will now show, an equilibrium
refinement that selects (No Attack, No Attack) must be sensitive to specifications
of higher-order beliefs in precisely the same way as refinements that select (At-
tack, Attack). Indeed, if in the above example we replace θ = −2 with θ = 6, we
obtain another, equally natural model, for which (Attack, Attack) is the unique
equilibrium outcome for each type profile.3 That is, we consider a new model
with type space Ť = {−1, 1, 3, 5, . . .} × {0, 2, 4, 6, . . .} and the common prior q
on Θ × T̃ where q (θ = 6, t1 = −1, t2 = 0) = 1/2 and for each integer m ≥ 1,
q (θ = 2, t1 = 2m− 1, t2 = 2m− 2) = 1/22m and q (θ = 2, t1 = 2m− 1, t2 = 2m) =
1/22m+1. One can easily check that this game is dominance-solvable, and all types
play Attack. In our formulation, then, both of the possible predictions are non-
robust, and the predictions of risk-dominance are no more robust than those of
Pareto-dominance or other refinements. Indeed, our result will establish for ar-
bitrary games and equilibrium refinements that a prediction will be robust only
if it is true for all strategies that survive our elimination process–in the above
example, all actions survive this process.

With the above example in mind, we now compare our result to important earlier
results on robustness. Kajii and Morris (1997) introduced a notion of robustness
of a given equilibrium of a given complete-information game to incomplete infor-
mation. Their definition requires that for any incomplete-information game with
a common prior that puts high probability on the original game, the original equi-
librium action of the complete information game is played by most of the types in
an equilibrium of the incomplete information game.4 This concept of robustness

3At the end of Section 5, relaxing their assumptions on the noise structure, we also find a
similar example in the framework of Carlsson and van Damme (1993).
4In Subsection 7.3, we give the formal definition of robust equilibrium and show how their

results change when we switch to an interim notion of perturbation or drop the common-prior
assumption.
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rules out incomplete information games that involve large changes in prior but
may lead to interim beliefs that are similar to the actual situation. They thus
exclude the e-mail game, if the probability of θ 6= 2 is not close to zero. Thus, they
would exclude the constructions above, in which that probability is 1/2. Kajii and
Morris (1997) show, nevertheless, that this construction would work for the risk-
dominant equilibrium (as in the original e-mail game), even if that probability is
small.5 Our latter example would not work if that probability is small. As we have
shown above, however, a researcher could not distinguish these probabilities with-
out having the knowledge of the entire infinite-hierarchy of beliefs. Then, the key
difference between our notions of perturbation is that they focus on small changes
to prior beliefs, without regard to the size of changes to interim beliefs, while our
focus is the reverse. Their approach is appropriate when there is an ex-ante stage
with well-understood inference rules and we know the prior to some degree. As we
discussed in the introduction, however, in genuine incomplete-information situa-
tions, the type spaces and ex-ante stage are just tools for modeling interim beliefs.
In that case, it is appropriate to consider types with similar interim beliefs, even if
they come from models that assign small prior probability to the actual situation.
Another distinction is that we ask if a predicted behavior is true in the perturbed
game in every equilibrium that satisfies a given refinement, while they ask whether
the predicted behavior is true in some equilibrium of the perturbed game. Our
approach allows us to check directly if a theorem of the form "for all equilibria
s that satisfy (a given) refinement, Q (s) is true" remains valid if the modeling
assumptions are slightly altered in the sense of this paper. The robust equilibrium
notion of Kajii and Morris is silent as to whether such a theorem would remain
valid if we modify the model using their perturbation.

Brandenburger and Dekel (1987) have shown that given a distribution on ratio-
nalizable strategy profiles of a given complete information game, we can enrich type
space by adding payoff-irrelevant types and find an equilibrium in the new game
that yields the same distribution on the strategy profiles of the original game.6

5Using the construction of Kajii and Morris (1997), for complete-information games, one
could show that any robust prediction of a refinement must be true for (p1, . . . , pn)-dominant
equilibrium with p1 + · · ·+ pn < 1 if such an equilibrium exists.
6This result has been extended to incomplete-information games by Dekel, Fudenberg, and

Morris (2003) and also by Battigalli and Siniscalchi (2003), who also consider common-knowledge
restriction on first-order beliefs. Our discussion applies to these extensions as well.
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That is, in order for a prediction to be robust with respect to the entire set of
equilibria without any refinements, it must be true for all rationalizable strategies.
In contrast, we show that for any refinement of equilibrium, when we allow other
payoff-relevant types from alternative models that lead to similar interim beliefs,
in order for a prediction gained by the refinement to be robust, it must be true for
all strategies that survive our elimination process. Notice that these two results
point to somewhat contradictory properties for equilibrium correspondence. Bran-
denburger and Dekel suggest a large multiplicity of equilibria. Our result suggests
that it is hard to refine rationalizability without precise information about types.
This in turn suggests that there are relatively few rationalizability actions for a
large set of types. Following our framework, Yildiz (2005) shows that generically
there is indeed a unique rationalizable action.

Considering only payoff-irrelevant types (as Brandenburger and Dekel do), one
cannot address the problem of robustness for arbitrary refinements, addressed in
this paper. To see this, consider a non-dominance-solvable complete-information
game with a pure Nash equilibrium, such as the complete-information case of the
coordination game above. Following Brandenburger and Dekel, consider incom-
plete information games in which players have private information about some
payoff-irrelevant parameter. By Tan and Werlang (1988), there is such an incom-
plete information game with an equilibrium such that each rationalizable strategy
is played by some type. Since all types have the same belief hierarchy, this equi-
librium is highly sensitive to higher-order beliefs. Because of this equilibrium, we
cannot rule out any rationalizable action without invoking a refinement. Neverthe-
less, in those models, there always exists another equilibrium in which all types play
according to a fixed pure strategy equilibrium of the original complete-information
game. In contrast to extreme discontinuity of the former equilibrium with respect
to players’ hierarchy of beliefs about payoffs,7 this equilibrium is constant. Then,
following Carlsson and van Damme (1998) and others, such as Morris and Shin
(1998), we can invoke a continuity argument to eliminate the discontinuous equi-
librium. This would take us back to a subset of the equilibria of the original game.
In contrast, if one considers the payoff-relevant types of our paper, it will be hard
to invoke such a continuity argument. We show that, under a rich set of parame-
ters, every rationalizable strategy will be discontinuous at every type with multiple

7It is not even a function of these beliefs.
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rationalizable strategies; refinements based on continuity would lead to the empty
set when we consider all possible types.

It is crucial for the result of Brandenburger and Dekel that they drop the
common-prior assumption. By Aumann (1987), under the common-prior assump-
tion, all types in their type spaces must play a correlated equilibrium strategy.
Since economists commonly work under the common-prior assumption, they may
ignore such a result. In contrast, each of the type spaces we constructed above has
a common prior. Indeed, our results will remain virtually intact when we impose
the common-prior assumption.

Our approach is closest to that of Fudenberg, Kreps, and Levine (1988) and
Dekel and Fudenberg (1990). Fudenberg, Kreps, and Levine (1988) have shown
that any equilibrium of any complete-information game can be made strict by
perturbing the payoffs, showing that one cannot obtain any more predictions than
those of all equilibria by considering refinements that do not eliminate any strict
equilibria. Our result covers refinements that do eliminate some strict equilibria,
such as the popular risk-dominance, and compares them to the larger set of all
rationalizable strategies for arbitrary information structures.

In the same vein, Dekel and Fudenberg (1990) analyze the robustness of pre-
dictions based on iterated elimination of weakly dominated strategies when one
allows payoff uncertainty as in this paper. They show that with uncertainty about
players’ beliefs at all orders, the robust predictions gained from this procedure
for a complete-information game is equivalent to those of iterated strict domi-
nance after one round of eliminating weakly dominated strategies.8 They also
show that even if we know that each player’s prior put high probability to origi-
nal payoffs, we could not rule out the possibility that a strategy that survive the
latter elimination process is a strict equilibrium action. Hence, under this limited
knowledge, the "robust" predictions of a refinement that does not eliminate any

8Borgers (1994) shows that the latter solution concept charcterizes the strategies that are
consistent with almost common knowledge of players not playing weakly dominated strategies.
Here, almost common knowledge is in the sense of common p-belief by Monderer and Samet

(1989). Monderer and Samet show that an equilibrium remains as an approximate equilibrium
(similar to robust equilibrium of Kajii and Morris) if there is common p-belief of the original
game for high p, but we cannot check this condition without knowledge of infinite hierarchy of
beliefs.
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strict equilibrium are no more than the predictions of the latter solution concept.
Nevertheless, as they note, their construction crucially relies on their departure
from the common-prior assumption (as in Brandenburger and Dekel), and without
common-prior assumption, such restrictions on priors do not put any restriction on
the second-order beliefs and higher (see Section 7.3). Hence, in our formulation,
they in effect assume that the researcher has information only about the first-
order beliefs. In contrast, we consider arbitrary refinements, arbitrary information
structures (as opposed to the complete information games) for the original game,
impose common-prior assumption, allow the researcher to observe players’ beliefs
at arbitrarily high orders (as opposed to just observing the first-order beliefs), and
yet we conclude that the robust predictions are just those of rationalizability.9

Following the critique of Wilson (1987), a sizeable literature has established that
some central findings in economics, such as the full surplus extraction property of
Cremer and Mclean (1988) in mechanism design (Neeman (2004) and Heifetz and
Neeman (2003)) and the Coase conjecture in bargaining (Feinberg and Skrzypacz
(2002)), crucially rely on the assumptions on the second-order beliefs and higher.
In this paper, considering general games, under a richness assumption, we show
that every equilibrium is highly sensitive to the way higher-order beliefs are speci-
fied. When all the common-knowledge assumptions are dropped, one cannot make
any prediction that is stronger than rationalizability, no matter how sophisticated
the refinements one uses. Of course, some may want to make explicit common-
knowledge restrictions on players’ payoffs and beliefs. In that case, it seems that
a similar analysis to ours would show that the predictions of any refinement that
remain valid with only partial knowledge of interim beliefs will be equivalent to
that of ∆-rationalizability of Battigalli and Siniscalchi (2003), which corresponds
to common-knowledge of these assumptions and rationality.10

9We show that, if we just know the first-order beliefs, then robust predictions are just those
of rationality.
10Battigalli and Siniscalchi (2003) justify their solution concept following the framework of

Brandenburger and Dekel; the above discussion of Brandenburger and Dekel applies to their
analysis as well.
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3. Basic Definitions

We consider a finite set of playersN = {1, 2, . . . , n}. There is a possibly unknown
payoff-relevant parameter θ ∈ Θ where Θ is a compact (and hence complete and
separable) metric space. Each player i has action space Ai and utility function
ui : Θ × A → R, where A =

Q
iAi.11 We consider the set of games that differ in

their specifications of the belief structure on θ, i.e. their type spaces, which we
also call models. A type space is a set T = T1 × · · · × Tn associated with beliefs
κti ∈ ∆ (Θ× T−i) for each ti ∈ Ti.

Given any type ti in a type space T , we can compute the belief of ti on Θ by

t1i = margΘκti ,

which is called the first-order belief of ti. We can compute the second-order belief
of ti, i.e. his belief about (θ, t11, . . . , t

1
n), by setting

t2i (F ) = κti
¡©
(θ, t−i) |

¡
θ, t1i , t

1
−i
¢
∈ F

ª¢
for each measurable F ⊆ Θ × ∆ (Θ)n. We can compute an entire hierarchy of
beliefs

¡
t1i , t

2
i , . . . , t

k
i , . . .

¢
by proceeding in this way. We say that a type space T

does not have redundant types if

ti 6= t̃i ⇒
¡
t1i , t

2
i , . . . , t

k
i , . . .

¢
6=
¡
t̃1i , t̃

2
i , . . . , t̃

k
i , . . .

¢ ¡
∀ti, t̃i ∈ Ti

¢
.

Mertens and Zamir (1985) showed that any type space without redundant types
can be embedded in the universal type space, which we proceed to define following
Brandenburger and Dekel (1993).12

Our definition incorporates an additional assumption that the players’ beliefs at
each finite order have countable (or finite) support. This assumption is made to

11Notation: Given any list Y1, . . . , Yn of sets, write Y =
Q

i Yi, Y−i =
Q

j 6=i Yj , y−i =
(y1, . . . , yi−1, yi+1, . . . , yn) ∈ Y−i, and (yi, y−i) = (y1, . . . , yi−1, yi, yi+1, . . . , yn). Likewise, for
any family of functions fj : Yj → Zj , we define f−i : Y−i → Z−i by f−i (y−i) = (fj (yj))j 6=i.
Given any metric space (Y, d), we write ∆(Y ) for the space of probability distributions on Y ,
endowed with Borel σ-algebra and the weak topology. We use the product σ-algebra in product
spaces. We write δx for the probability distribution that puts probability 1 on {x}. We also
write supp (π) for the support of a probability distribution π, margY π for the marginal of π on

Y , and projY for the projection mapping to Y .
12If there are redundant types, one needs to consider a larger type space (Ely and Peski (2004))

in order to analyze the robustness of predictions. The results of such an analysis will, if anything,
show more sensitivity to the assumptions about higher-order beliefs.
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avoid technical issues related to measurability (see Remark 1.) Our type space is
dense in universal type space, and any countable type space with no redundant
type is embedded in our space.

Define a sequence of sets Xk inductively by X0 = Θ and Xk =
h
∆̂ (Xk−1)

in
×

Xk−1 for each k > 0, where ∆̂ (Xk−1) ⊆ ∆ (Xk−1) is the set of probability distribu-
tions on Xk−1 that have countable support. Universal type space T u =

Q
i∈N T u

i is

the subset of
³Q∞

k=1 ∆̂ (Xk−1)
´n
in which it is common knowledge that the players’

beliefs are coherent, i.e., the players know their own beliefs and their marginals
from different orders agree. Notice that a type ti in universal type space is sim-
ply the infinite hierarchy of beliefs (t1i , t

2
i , . . .) ∈

Q∞
k=1 ∆̂ (Xk−1). We will use the

variables ti, t̃i ∈ T u
i as generic types of any player i and t, t̃ ∈ T u as generic type

profiles.

From now on we will focus on type spaces with no redundant types; allowing
redundant types would not change our results. As we mentioned, each such type
space is isomorphic to a belief-closed subset of universal type space.13 We will
therefore represent all such type spaces as belief-closed subsets of universal type
space, and write each type ti as its belief hierarchy:

ti =
¡
t1i , t

2
i , . . . , t

k
i , . . .

¢
.

A type space (or a belief-closed subset) T is said to be finite iff T contains finitely
many members and t1i has finite support for each ti ∈ Ti. Members of finite type
spaces are referred to as finite types.

A strategy of a player i w.r.t. Ti is any measurable function si : Ti → Ai. Given
any type ti and any profile s−i of strategies, we write π (·|ti, s−i) ∈ ∆ (Θ×A−i) for
the joint distribution of the underlying uncertainty and the other players’ actions
induced by ti and s−i; π (·|ti, σ−i) is similarly defined for correlated mixed strategy
profile σ−i. For each i ∈ N and for each belief π ∈ ∆ (Θ×A−i), we write BRi (π)

for the set of actions ai ∈ Ai that maximize the expected value of ui (θ, ai, a−i)
under the probability distribution π. A strategy profile s∗ = (s∗1, s

∗
2, . . .) is a

Bayesian Nash equilibrium iff at each ti,

s∗i (ti) ∈ BRi

¡
π
¡
·|ti, s∗−i

¢¢
.

13A set T ⊂ Tu is said to be belief-closed iff supp(κti) ⊂ Θ× T−i for each ti ∈ Ti.
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An equilibrium s∗ on universal type space T u is said to have full range iff

(FR) s∗ (T u) = A.

We prove a modified version of our results without this full range assumption in
Section 6. Moreover, the assumption is without loss of generality, as we can restrict
the action space to s∗ (T u), by eliminating the actions that are never played in
equilibrium s∗. Finally, full range is implied by the following assumption on the
richness of the set Θ, commonly used in the global games literature. We will
mention this assumption explicitly for those results for which it is used.

Assumption 1 (Richness Assumption). For each i and each ai, there exists θai ∈
Θ such that

ui (θ
ai , ai, a−i) > ui (θ

ai , a0i, a−i) (∀a0i 6= ai, ∀a−i) .

This assumption corresponds to allowing the broadest possible set of beliefs
about other players’ payoffs, which should be allowed when we drop all common-
knowledge assumptions.

Lemma 1. Under Assumption 1, every equilibrium s∗ on universal type space has
full range.

Elimination Processes. We will use interim rationalizability of Dekel, Fuden-
berg, andMorris (2003); see also Battigalli (2003), Battigalli and Siniscalchi (2003).
Interim rationalizability allows correlations not only within players’ strategies but
also between their strategies and θ. Clearly, allowing such correlation only makes
our sets larger. Since our main result is a lower bound in terms of these sets,
this only strengthens our result. Moreover, our characterization provides yet
another justification for this correlated rationalizability. For each i and ti, set
S0i [ti] = Ai, and define sets Sk

i [ti] for k > 0 iteratively, by letting ai ∈ Sk
i [ti] if

and only if ai ∈ BRi

¡
margΘ×A−iπ

¢
for some π ∈ ∆ (Θ× T−i ×A−i) such that

margΘ×T−iπ = κti and π
¡
a−i ∈ Sk−1

−i [t−i]
¢
= 1, i.e., ai is a best reply to a belief

that assigns positive probability only to the actions that survive k − 1 orders of
elimination. The set of all rationalizable actions for player i (with type ti) is

S∞i [ti] =
∞\
k=0

Sk
i [ti] .
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By a rationalizable strategy (w.r.t. a model T ), we mean a strategy si : Ti → Ai

with si (ti) ∈ S∞i [ti] for each ti ∈ Ti.

Next we define the set of strategies that survive iterative elimination of strategies
that are never strict best reply, denoted by W∞ [ti], similarly. We set W 0

i [ti] = Ai

and let ai ∈ W k
i [ti] if and only if BRi

¡
margΘ×A−iπ

¢
= {ai} for some π ∈

∆ (Θ× T−i ×A−i) such that margΘ×T−iπ = κti and π
¡
a−i ∈W k−1

−i [t−i]
¢
= 1. Fi-

nally, we set

W∞
i [ti] =

∞\
k=0

W k
i [ti] .

Notice that we eliminate a strategy if it is not a strict best-response to any belief on
the remaining strategies of the other players. Clearly, this yields a smaller set than
the result of iterative elimination of weakly dominated strategies.14 In some games,
the latter may yield strong predictions. For example, in finite perfect information
games it leads to backwards induction outcomes. Nevertheless, in generic normal-
form games of complete information, all these concepts are equivalent and usually
have weak predictive power.

4. Sensitivity to higher-order beliefs

In Section 5, we will analyze the robustness of predictions according to arbitrary
equilibrium refinements to the assumptions about higher-order beliefs in arbitrary
type spaces. Robustness of such predictions is closely related to the sensitivity of
an equilibrium on universal type space with respect to the changes in higher-order
beliefs. In this section, we will focus on the latter problem.

We fix an equilibrium s∗ on universal type space and a type ti of a player i.
According to equilibrium, he will play s∗i (ti). Now imagine a researcher who only
knows the first k orders of beliefs of player i and knows that equilibrium s∗ is
played. All the researcher can conclude from this information is that i will play
one of the actions in

Ak
i [s

∗, ti] ≡
©
s∗i
¡
t̃i
¢
|t̃i ∈ T u

i , t̃mi = tmi ∀m ≤ k
ª
.

14In particular, if we use non-reduced normal-form of an extensive-form game, many strategies
will be outcome equivalent, in which case our procedure will eliminate all of these strategies. To
avoid such over-elimination, we can use reduced-form, by representing all outcome-equivalent
strategies by only one strategy.
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Assuming, plausibly, that a researcher can verify only finitely many orders of a
player’s beliefs, all a researcher can ever know is that player i will play one of the
actions in

A∞i [s
∗, ti] =

∞\
k=0

Ak
i [s

∗, ti] .

Our next result finds tight bounds for the sets Ak
i [s

∗, ti] for games with countable
action spaces.

Proposition 1. For any countable (or finite) action space A, any equilibrium s∗

with full range, any k ∈ N, i ∈ N , and any ti,

W k
i [ti] ⊆ Ak

i [s
∗, ti] ⊆ Sk

i [ti] ;

in particular,

W∞
i [ti] ⊆ A∞i [s

∗, ti] ⊆ S∞i [ti] .

The conclusion that W k
i [ti] ⊆ Ak

i [s
∗, ti] can be spelled out as follows. Suppose

that we know a player’s beliefs up to the kth order and do not have any further
information. Suppose also that he has an action ai that survives k rounds of
iterated elimination of strategies that cannot be a strict best reply–for some type
whose first k orders of beliefs match what we know. Then, we cannot rule out that
ai will be played in equilibrium s∗. Now, consider the equilibrium refinement that
selects the restriction of s∗ to T at each type space T . If an action ai survives k
rounds of our elimination procedure for a type ti within a type space T , then we
can find another type, possibly from another type space, whose first k orders of
beliefs are as specified by ti but plays ai according to the unique solution of the
refinement. Hence, we cannot rule out action ai as a solution of our equilibrium
refinement when we only know that the first k orders of beliefs are as specified
by ti. A prediction of our refinement then can only be robust if it remains true
when we assign ai as the solution at ti. In the next section we will formalize this
for arbitrary equilibrium refinements. We now proceed to the proof of the result,
which highlights the logic behind this sensitivity to higher-order beliefs.

Proof. We first show that W k
i [ti] ⊆ Ak

i [s
∗, ti]. For k = 0, the statement is equiva-

lent to the full-range assumption. For any given k and any player i, write each t−i
as t−i = (l, h) where l =

¡
t1−i, t

2
−i, . . . , t

k−1
−i
¢
and h =

¡
tk−i, t

k+1
−i , . . .

¢
are the lower
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and higher-order beliefs, respectively. Let L =
©
l|∃h : (l, h) ∈ T u

−i
ª
. The induction

hypothesis is that

W k−1
−i [l] ≡

[
h0

W k−1
−i [(l, h0)] ⊆ Ak−1

−i [s
∗, (l, h)] (∀ (l, h) ∈ T u

−i).

Fix any type ti and any ai ∈ W k
i [ti]. We will construct a type t̃i such that

s∗i
¡
t̃i
¢
= ai and the first k orders of beliefs are same under ti and t̃i, showing that

ai ∈ Ak
i [s

∗, ti]. Now, by definition of W k
i [ti], BRi

¡
margΘ×A−iπ

¢
= {ai} for some

π ∈ ∆
¡
Θ× T u

−i ×A−i
¢
such that margΘ×T−iπ = κti and π

¡
a−i ∈W k−1

−i [t−i]
¢
= 1.

By the induction hypothesis, for each (θ, l, a−i) ∈ supp
¡
margΘ×L×A−iπ

¢
, a−i ∈

W k−1
−i [l] ⊆ Ak−1

−i [s
∗, (l, h)] for some h. Hence, there exists a mapping µ : supp

¡
margΘ×L×A−iπ

¢
→

Θ× T u
−i,

(4.1) µ : (θ, l, a−i) 7→
³
θ, l, h̃ (a−i, θ, l)

´
,

such that

(4.2) s∗−i

³
l, h̃ (a−i, θ, l)

´
= a−i.

We define t̃i by

κt̃i ≡
¡
margΘ×L×A−iπ

¢
◦ µ−1,

the probability distribution induced on Θ× T u
−i by the mapping µ and the prob-

ability distribution π. Notice that, since tki has countable support and the action
spaces are countable, the set supp

¡
margΘ×L×A−iπ

¢
is countable, in which case µ is

trivially measurable. Hence κt̃i is well-defined. By a well-known isomorphism by
Mertens and Zamir (1985), κt̃i is the belief of a (unique) type t̃i, such that

(4.3) t̃mi = δt̃m−1i
×margΘ×[∆(Xm−2)]

N\{i}κt̃i , (∀m > 1)

and t̃1i = margΘκt̃i. Since supp
¡
κt̃i
¢
is countable, each t̃mi has countable support.

By construction of µ, the first k orders of beliefs (about (θ, l)) are identical under
ti and t̃i:

margΘ×Lκt̃i = margΘ×L
£¡
margΘ×L×A−iπ

¢
◦ µ−1

¤
= margΘ×L

¡
margΘ×L×A−iπ

¢
= margΘ×Lπ = margΘ×L

³
margΘ×Tu−iπ

´
= margΘ×Lκti ,

where the second equality is by (4.1). Together with (4.3) and identical equality
for ti, this shows that t̃mi = tmi for each m ≤ k. Towards showing that s∗i

¡
t̃i
¢
= ai,
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let π̃ = κt̃i ◦ γ−1 ∈ ∆
¡
Θ× T u

−i ×A−i
¢
be the equilibrium belief of type t̃i, where

γ : (θ, l, h) 7→
¡
θ, l, s∗−i (l, h)

¢
. By construction,

margΘ×L×A−iπ̃ = κt̃i ◦ γ
−1 ◦ proj−1Θ×L×A−i

=
¡
margΘ×L×A−iπ

¢
◦ µ−1 ◦ γ−1 ◦ proj−1Θ×L×A−i = margΘ×L×A−iπ.

[By (4.2) and the definition of γ, projΘ×L×A−i ◦ γ ◦ µ is the identity mapping,
yielding the last equality.] Therefore,

π
¡
·|t̃i, s∗−i

¢
= margΘ×A−iπ̃ = margΘ×A−iπ.

Since ai is the only best reply to these beliefs, t̃i must play ai in equilibrium s∗:

(4.4) s∗i
¡
t̃i
¢
∈ BRi

¡
π
¡
·|t̃i, s∗−i

¢¢
= BRi

¡
margΘ×A−iπ

¢
= {ai} .

To see the inclusion Ak
i [s

∗, ti] ⊆ Sk
i [ti], observe that for any t̃i with t̃mi = tmi for

each m ≤ k, we have

s∗i
¡
t̃i
¢
∈ S∞i

£
t̃i
¤
⊆ Sk

i

£
t̃i
¤
= Sk

i [ti] ,

where the last equality is due to a result by Dekel, Fudenberg, and Morris (2003)
that Sk

i [ti] depends only on the first k orders of beliefs
¡
t1i , . . . , t

k
i

¢
, completing

the proof. [Dekel, Fudenberg, and Morris (2003) make some further finiteness
assumptions. For a constructive but much longer proof of the last part under our
relaxed assumptions, see our earlier working paper.] ¤

Remark 1. Notice that the countability assumptions about the finite-order be-
liefs and the action spaces are used only to make sure that κt̃i is a well-defined
probability distribution, or µ is measurable. In fact, whenever µ is measurable, our
proof is valid. Below, we present another class of games in which µ is measurable;
µ may not be measurable in general. These assumptions are not needed at all for
the inclusion Ak

i [s
∗, ti] ⊆ Sk

i [ti].

The next example shows that either of the inclusions in Proposition 1 may be
strict in general.
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Example 1. Take N = {1, 2}, Θ = {θ0, θ1}, and let the action spaces and the
payoff functions for each θ be given by

a0 a1

a0 0,0 0,0
a1 0,0 1,1

.

(Note that θ is not payoff relevant.) Define s∗ by

s∗i (ti) =

(
a0 if ti = tCKi (θ0) ;

a1 otherwise.

Clearly, for each k ≥ 1, we have W k
i [ti] = {a1} and Sk

i [ti] = {a0, a1} for each ti,
while Ak

i

£
s∗; tCKi (θ0)

¤
= {a0, a1}, and Ak

i

£
s∗; tCKi (θ1)

¤
= {a1}.

On the other hand, in many cases the two elimination processes are equivalent,
and Proposition 1 yields a precise characterization of the set Ak. We now present
two such important cases. First, let tCKi

¡
θ̄
¢
denote the type who believes that it

is common knowledge that θ = θ̄, for some θ̄ at which the payoffs are generic.15

In this case, any action that is not strictly dominated will be a strict best reply
against some belief (at each round), and hence the two elimination processes will
be equivalent. Therefore, Proposition 1 yields the following characterization.

Corollary 1. For any finite-action game and any equilibrium s∗ with full range,
if the payoffs are generic at some θ, then for each i and k,

Ak
i

£
s∗, tCKi (θ)

¤
= Sk

i

£
tCKi (θ)

¤
.

In particular, letting k = ∞, we find that the set of actions we cannot exclude
with only finite-order knowledge of players’ beliefs is precisely the set of rational-
izable actions.

The second case is the class of “nice” games (Moulin (1984)), which are widely
used in economic theory, such as imperfect competition, spatial competition, pro-
vision of public goods, theory of firm, etc.

15We say that the payoffs are generic at θ iff there do not exist i, non-zero α ∈ RAi , and distinct
ai, a0i, a−i, and a0−i such that (i) ui (θ, ai, a−i) = ui (θ, a

0
i, a−i) or (ii)

P
ai
α (ai)ui (θ, ai, a−i) =P

ai
α (ai)ui

¡
θ, ai, a

0
−i
¢
= 0.
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Definition 1. A game is said to be nice iff for each i, Ai = [0, 1] and ui (θ, ai, a−i)
is continuous in a = (ai, a−i) and strictly concave16 in ai.

In a nice game, since players always have unique best reply, our elimination
processes will be equivalent, yielding the functional equation

(4.5) W = S.

Moreover, a lemma by Moulin (1984) and Battigalli (2003) ensures that we can
focus on degenerate beliefs, allowing us to circumvent the measurability issue dis-
cussed in Remark 1. We then obtain the same characterization of Ak for nice games
that we found above under the conditions of Corollary 1. (The formal statement
of the lemma and the proof of the proposition are in the appendix.)

Proposition 2. For any nice game, any equilibrium s∗ with full range, any count-
able, belief-closed T ⊂ T u, for any k ≤ ∞, i ∈ N , and ti ∈ Ti,

Sk
i [ti] = Ak

i [s
∗, ti] .

Under a stability condition similar to that of Nyarko (1996), Weinstein and
Yildiz (2003) have shown that the maximum impact of higher-order beliefs to
diminish exponentially, i.e. the set Ak

i [s
∗, ti] shrinks to a point as k →∞. Then,

Proposition 2 shows that, in nice games, these stability conditions must imply that
the game is dominance solvable.

In analysis of general equilibrium refinements, we will assume that the refinement
is non-empty at least in finite games. Since the existence results are often for
mixed-strategies, we now extend Proposition 1 to the mixed-strategy equilibria.
Using interim formulation, we define a mixed strategy as any measurable function
σi : Ti → ∆ (Ai). A mixed strategy profile σ∗ is Bayesian Nash equilibrium iff
supp(σ∗i (ti)) ⊆ BRi

¡
π
¡
·|ti, σ∗−i

¢¢
for each i and ti. We say that σ∗ has full range

iff for each ai, there exists ti with supp(σ∗i (ti)) = {ai}. Clearly, under Assumption
1, every equilibrium on universal type space has full range. We also set

Ak
i [σ

∗; ti] =
©
ai|supp

¡
σ∗i
¡
t̃i
¢¢
= {ai} , t̃mi = tmi ∀m ≤ k

ª
,

16We use the strict concavity assumption to make sure that a player’s utility function for any
fixed strategy profile of the others is always single-peaked in his own action. (Single-peakedness
is not preserved in presence of uncertainty.)
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the set of all actions that are played with probability 1 under σ∗ by some type t̃i
whose first k orders of beliefs are identical to those of ti.

Proposition 3. For any countable-action game, any (possibly mixed strategy) equi-
librium σ∗ with full range, any k ≤ ∞, i ∈ N , and any ti,

W k
i [ti] ⊆ Ak

i [σ
∗, ti] ⊆ Sk

i [ti] .

That is, if σ∗ has full range and we know only the first k orders of a player’s
beliefs, then for any ai ∈ W k

i [ti], we cannot rule out that ai is played with prob-
ability 1 according to σ∗. The proof of this result simply focus on the types with
pure actions and applies the proof of Proposition 1.

5. Robustness to higher-order beliefs

In this section we will formalize our notion of robustness to higher-order beliefs
and bound the set of robust predictions for arbitrary refinements of equilibrium.
Under Assumption 1, we will obtain a sharp characterization. We start by formally
presenting some basic definitions.

Definition 2. A solution concept is any mapping Σ that maps each type space
T to a set Σ (T ) of (mixed) strategy profiles σ with respect to T . An equilibrium
refinement is any solution concept Σ such that for each T and σ ∈ Σ (T ), σ is a
Bayesian Nash equilibrium of T .

We will frequently refer to solution concepts Sk, which yields all the strategy
profiles with s (t) ∈ Sk [t] for each t ∈ T at each T , and W k (similarly defined).

Definition 3. Given a solution concept Σ and a type space T , by a prediction of
(Σ, T ), we mean any formula Q with free variable s : T → A such that Q (s) is
true for each s ∈ supp(σ) and each σ ∈ Σ (T ).

Although we allow solution concepts to be mixed, we are here focusing on the
deterministic predictions, the predictions that remain true for each realization.
Here a prediction can be about the behavior of a particular type. In an auction,
for example, a prediction could be "the type with lowest valuation bids zero." A
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prediction can also be about a relation between the behavior of different types,
e.g., "a player’s bid is an increasing function of his valuation."

We first envision a researcher who subscribes to an equilibrium refinement Σ and
can observe players’ beliefs precisely up to an arbitrary but finite order k, where k
is large. This is clearly an unrealistically generous assumption, but we will show
that, despite this, the researcher cannot make very strong predictions.

Definition 4. Given a model T , a pair (T̃ , τ) of a model T̃ and a mapping τ :

T → T̃ is said to be a k-perturbation of T iff for each t ∈ T and t̃ = τ (t), we have
t̃li = tli for each l ≤ k.

The definition of k-perturbation requires that whenever our researcher believes
that a type profile t in T may describe the actual situation, he cannot rule out that
the type profile τ (t) in T̃ describes the situation. That is, the researcher cannot
reject the perturbation without rejecting the original model. A perturbation may
result from relaxing the assumption that a certain fact is common knowledge,
instead assuming that it is mutually known only up to kth order, and perhaps
making some other assumption about the higher-order beliefs. Reflecting such a
relaxation, the perturbed model will then have more type profiles. This is the case
in the coordinated attack game of Section 2. As we discussed, type k (in T̃ or in
Ť ) agrees with the common knowledge type tCKi (2) up to order k. Therefore, both
(T̃ , τ) and

¡
Ť , τ

¢
are k-perturbations of the complete information game T for any

mapping τ whose values are both at least k.

Our robustness condition will require that the prediction remains valid for all
perturbations defined as above. The motivation is clear. Imagine a researcher
analyzing a model T , knowing that when he is asked to validate that his model
applies to a particular situation, he will be able to observe only first k orders of
beliefs. He knows that, if he can validate that T is consistent with the actual
situation, T̃ will also be consistent with the actual situation. If a prediction of
his model T does not remain true for a perturbation T̃ , then he cannot justify
that his prediction applies to a particular situation, even when he could validate
his model. Therefore, the researcher would like to focus on the predictions of T
that are robust to alternative specifications, such as T̃ , given that he was going
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to apply his solution concept in those alternative specifications as well. We define
robustness as follows.

Definition 5. A prediction Q of (Σ, T ) is said to be k-robust (to higher-order
beliefs) iff for each k-perturbation (T̃ , τ), for each σ ∈ Σ(T̃ ), for each s ∈ supp(σ),
Q (s ◦ τ) is true. Prediction Q is said to be robust to higher-order beliefs iff it is
k-robust for some k <∞.

That is, a prediction is said to be k-robust if it remains true in models where
beliefs change at orders higher than k according to the perturbation mapping and
we apply the same solution concept throughout. We could weaken our robustness
requirement by requiring Q (s ◦ τ) to be true only if s is the "unique" solution
in the perturbed model, i.e., supp(σ (τ (t))) = {s (t)} at each t ∈ T . It will be
clear that our results would remain valid under this substantially weaker require-
ment. Returning again to the coordinated attack example, the prediction of no
attack for the complete information game T =

©
tCK (2)

ª
is not robust under any

equilibrium refinement Σ because for each k,
¡
Ť , τ

¢
with τ

¡
tCK (2)

¢
> (k, k) is a

k-perturbation of T , and for the unique member σ of Σ
¡
Ť
¢
, σ
¡
τ
¡
tCK (2)

¢¢
assigns

probability 1 to (Attack,Attack). Similarly, the prediction of attack is not robust.

Both of the non-robustness results in this example are special cases of the up-
coming proposition. It states no refinement can make robust predictions that are
any more powerful than the predictions that are generated by W∞, the iterated
elimination of actions that are never a strict best reply.

Proposition 4. Let A be countable (or finite), T be any model, and Σ be an equi-
librium refinement with σ ∈ Σ (T u) that has full range. Every k-robust prediction
Q of (Σ, T ) is also a prediction of

¡
W k, T

¢
. In particular, if Q is robust to higher-

order beliefs, then Q is a prediction of (W∞, T ). Conversely, if Q is a prediction
of
¡
Sk, T

¢
, then Q is a k-robust prediction of (Σ, T ).

Proof. Take any k-robust prediction Q of (Σ, T ) and any s : T → A with s (t) ∈
W k [t] for each t ∈ T . By Proposition 3, for each t, there exists t̃ = τ (t) such
that supp(σ (τ (t))) = {s (t)} and t̃li = tli for each l ≤ k and each i. Taking (T u, τ)

as a k-perturbation of T , we then conclude that Q (s) is true. Therefore, Q is a
prediction of

¡
W k, T

¢
. For the converse, take any prediction Q of

¡
Sk, T

¢
. Take
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also any k-perturbation (T̃ , τ) of T and any s ∈ supp(σ) and σ ∈ Σ(T̃ ). For
each τ (t), s (τ (t)) ∈ Sk [τ (t)] = Sk [t], showing that s ◦ τ ∈ Sk (T ). Since Q is a
prediction of

¡
Sk, T

¢
, this shows that Q (s ◦ τ) is true. Therefore, Q is a k-robust

prediction of (Σ, T ). ¤

For nice games, using Proposition 2, we obtain a characterization:

Proposition 5. For any nice game, any equilibrium refinement Σ with σ ∈ Σ (T u)

that has full range, any model T , and any k < ∞, a prediction Q of (Σ, T ) is k-
robust if and only if Q is a prediction of

¡
Sk, T

¢
.

While the above propositions yield strong bounds for robust predictions, they
leave number of issues unresolved. Firstly, they assume that the refinement is non-
empty on universal type space. But most existing existence results for refinements
assume finite models.17 Secondly, our robustness condition above requires that the
researcher does not restrict the set of models a priori. In particular, for simplicity,
our proof uses the universal type space as one of possible models. Although we
find this a reasonable condition, some may want to restrict the set of models by
fiat. For example, it is customary in economics literature to assume that there is
a common prior, and one may want to impose the common prior assumption on
possible models, ignoring the models without a common prior all together. One
may also want to focus on small models, such as finite type spaces, for perhaps to
assure existence. Finally, our lower bound for countable-action games is in terms
of W∞, which may be small in certain games, weakening our results. We will next
show that these potential issues are not crucial for our results. Indeed, requiring
that the predictions remain valid if there is also very small misspecification in
lower-order beliefs, we will obtain a characterization of robust predictions in terms
of rationalizability, even when the set of models are restricted to be finite models
with common prior.

Formally, a finite model T is said to have a common prior (with full support) if
there exists a probability distribution p ∈ ∆ (Θ× T ) such that supp(p) = Θ0 × T

for some Θ0 ⊆ Θ and κti = p (·|Θ× {ti} × T−i) for each ti ∈ Ti. In the remainder

17Simon (2003) shows existence of equilibrium with non-measurable strategies for the union of
countable type spaces, but he also shows that there may not exist an equilibrium with measurable
strategies in universal type space for some payoff functions. We do assume that the strategies
are measurable for ease of exposition, but that assumption does not play any role in our results.
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of the section we will focus on the finite models with a common prior. We now
imagine that a researcher can observe finitely many orders of beliefs with some
small noise. We focus on the case that the noise is small in the sense that, for
each l ≤ k, the finite-order beliefs t̃li that the researcher finds possible converge to
the observed beliefs tli in the sense of "convergence in distribution", i.e., in weak
topology. (Recall that tli is a probability distribution.) To do this, we consider
an arbitrary metric d on finite-order beliefs that metrizes the weak topology. The
arbitrary metric d is taken to measure the distance according to the test the re-
searcher employs. Given the observed or estimated beliefs, tli, l ≤ k, the researcher
finds the set of beliefs t̃li with d

¡
t̃li, t

l
i

¢
≤ for all l ≤ k possible (or cannot reject

them at a particular level of confidence) for some > 0, where is meant to mea-
sure the precision of the researcher’s observations. Again, we focus on the limit
→ 0 and k →∞.

Definition 6. A model (T̃ , τ) is said to be ( , k)-perturbation of T iff (i) T̃ is finite
and has a common prior, and (ii) τ : T → T̃ is such that for each t and t̃ = τ (t),
we have d

¡
t̃li, t

l
i

¢
≤ for each l ≤ k.

Definition 7. A prediction Q of (Σ, T ) is said to be ( , k)-robust iff for each ( , k)-
perturbation (T̃ , τ) of T , for each σ ∈ Σ(T̃ ), for each s ∈ supp(σ), Q (s ◦ τ) is true.
Prediction Q is said to be robust iff it is ( , k)-robust for some > 0 and k <∞.

On the one hand, we strengthen our robustness requirement by requiring to
be positive but arbitrarily small, instead of setting it to zero as in the previous
definition. On the other hand, we weaken our condition substantially by ignoring
the perturbations that do not lead to a finite model with a common prior. In
particular, the universal type space is no longer accepted as a possible perturbation.
The next result, proven in Yildiz (2005, Proposition 3), will help us to characterize
the robust predictions.

Lemma 2. Assume that A is finite. Under Assumption 1, for any finite model
T , any rationalizable strategy profile s : T → A, for each > 0 and k <∞, there
exist a ( , k)-perturbation (T̃ , τ) of T , where T̃ is finite and has a common prior,
such that S∞ [τ (t)] = {s (t)} for each t ∈ T .

This result immediately yields a sharp characterization of the robust predictions.
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Proposition 6. Assume that A is finite. Under Assumption 1, for any equilibrium
refinement Σ that is non-empty on finite models with a common prior, any finite
model T , and any k <∞, a prediction Q of (Σ, T ) is robust if and only if Q is a
prediction of (S∞, T ).

Under the stronger richness assumption of Assumption 1, this result provides a
characterization of robust predictions, which addresses all of the issues discussed
above. Firstly, we only assume that Σ is non-empty on the finite models with a
common prior. Since it is customary to prove such an existence result whenever
a refinement is proposed, this assumption allows most equilibrium refinements.
Secondly, our perturbation considers only the finite models with a common prior.
Hence, the non-robustness implied by our characterization is not due to models that
are usually assumed away by economists. Therefore, it is immune to the possible
critique for earlier results based on models without a common prior, discussed in
Section 2. Finally, we have a characterization in terms of usual rationalizability,
muting the hope of obtaining positive robustness results in cases in which W k is a
small set.

We will now revisit the coordinated attack problem of Section 2 and illustrate
how the methodology of global games can be extended to more general information
structures and why the results will critically rely on the assumptions made on the
information structure.

Example 2 (Izmalkov and Yildiz (2006)). In the coordinated attack problem of
Section 2, assume that each player i observes a noisy signal xi = θ + εηi, where
(η1, η2) is independently distributed from θ, with

(5.1) Pri
¡
ηj > ηi|xi

¢
= q (∀i 6= j)

for some constant q ∈ (0, 1), where Pri is the probability according to player i18,
and the support of θ contains an interval [a, b] where a < 0 < 5 < b. That is, player
i assigns probability q to the event that the other player is more optimistic ex-post.
Carlsson and van Damme have shown that under the common-prior assumption,

18In this example, we do not have a common prior. We can construct a similar example with
common prior, where the same unique actions survive iterated dominance, by using the Lipman
construction as discussed above. In the new model, the signals will be two-dimensional, and the
additive separability and independence assumptions of Carlsson and van Damme will be violated.
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q = 1/2. Global games literature focuses on this case. Here, q − 1/2 measures
the level of optimism of j according to i. Using the techniques and the mild
assumptions of Carlsson and van Damme, one can easily check that, when ε > 0 is
small, for each xi 6= 5 (1− q), there is a unique rationalizable action s∗i (xi), given
by

s∗i (xi) =

(
Attack if xi > 5 (1− q)

No Attack if xi < 5 (1− q) .

In the complete-information game, Attack is risk-dominant when θ > 5/2, and
No Attack is risk-dominant when θ < 5/2. Under the common-prior assumption
(i.e. when q = 1/2), players play according to risk dominance. In the general
model, however, risk-dominance does not play any role. Given any xi, we can
make Attack uniquely rationalizable by choosing the level q of optimism sufficiently
high, or make No Attack uniquely rationalizable by choosing the level q of optimism
sufficiently low. Notice that, when ε is very small, the value of q has a very small
impact on xi − xj = ε

¡
ηi − ηj

¢
and on players’ beliefs, and the players’ beliefs

converge to that of common knowledge at all orders as ε → 0, but equilibrium
behavior does not.

Taking θ as the vulnerability of economy, Morris and Shin (1998) have applied
this idea to the currency-attack problem (where there is a continuum of players).
They have illustrated that, attacks are closely related to the vulnerability of econ-
omy, as the likelihood of an attack is increasing with θ. They also noted that, in
their model, investor sentiments do not play a role, which were given a prominent
role in previous informal arguments based on multiple equilibria of the complete
information game. In the above example, however, there is a precise measure
concerning investor sentiments, namely q − 1/2, that determines belief in others’
confidence in the economy. It plays an intuitive role similar to the vulnerability of
the economy. Attack becomes more likely if the players become more optimistic or
the economy becomes more vulnerable. That is, considering more general informa-
tion structures, we can develop insightful models as in the global games literature,
but focusing on their particular models which lead to risk-dominance is a very
restrictive way of doing that.

Now, under the original assumptions of Carlsson and van Damme, despite the
degenerate case of multiplicity in the complete-information game, there is an open
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set of nearby types that can only play risk-dominant equilibrium.19 The global
games literature would then argue that we ignore the complete-information case,
even if that case is consistent with the researcher’s observation of the situation.
Nevertheless, when the complete-information case is consistent with his observa-
tion, there will also be an alternative open set of types that are consistent with
his observation, leading to the opposite outcome of (Attack,Attack) as the only
possibility–as in the above example. Then, the researcher will not be able to check
whether the conditions assumed in the information structure of Carlsson and van
Damme (1993) are satisfied even if he considers the complete-information to be
degenerate. To put it differently, while the global games literature criticizes the
multiplicity arguments for relying on simplifying common-knowlegde assumptions
that we cannot check, our example shows that the same applies to their results.
Their conclusions also critically depend on their simplifying assumptions on the
noise structure.

More broadly, as Carlsson and van Damme (1993) and Kajii and Morris (1997)
illustrate, by considering only some of the information structures that lead to a set
of lower-order beliefs, one may be able to make sharper predictions. The analysis of
such structure would be of great interest, but it is beyond the scope of this paper.
Our paper shows that the resulting predictions will always critically depend on the
assumptions built into these structures, and we cannot verify those assumptions
and the conclusions with limited knowledge of the situation.

6. Without Full-Range Assumption

For ease of exposition, we have so far focused on equilibria with full range. Our
full range assumption allowed us to consider large changes in higher-order beliefs.
A researcher may be certain that it is common knowledge that the set of parameters
are restricted to a small subset, or equivalently, the equilibrium considered may
not vary much as the beliefs about the underlying uncertainty change. We will
now present an extension of our main result to such cases. (For illustrations of
proofs, see our earlier working paper.)

19When a type has unique rationalizable action, this action will be uniquely rationalizable
for all types in an open neighborhood of this type (with respect to the product topology in the
universal type space).
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Local Rationalizability. For any B1 × · · · × Bn ⊂ A, define sets Sk
i [B; ti],

Sk
i [B; ti], i ∈ N , k ∈ N, ti ∈ Ti, as before but set by setting

S0i [B; ti] =W 0
i [B; ti] = Bi.

Unlike before, the new sets can become larger as k increases. Hence, we define the
limit sets by

S∞i [B; ti] =
∞\
k=0

∞[
m=k

Sm
i [B; ti] ,

W∞
i [B; ti] =

∞\
k=0

∞[
m=k

Wm
i [B; ti] .

Proposition 7. For any equilibrium s∗, if the game has countable action spaces,
then

W k
i [s

∗ (T u) ; ti] ⊆ Ak
i [s

∗, ti] ⊆ Sk
i [s

∗ (T u) ; ti] (∀i, k, ti) ;
if the game is nice, then with notation of Proposition 2, for any B ⊆ s∗ (T ),

Sk
i

£
B; t̂i

¤
⊆ Ak

i [s
∗, ti] = Sk

i

£
s∗ (T u) ; t̂i

¤ ¡
∀i, k, t̂i

¢
.

ReplacingW∞ and S∞ with their local versions, this proposition establishes that
the bounds for A∞ provided by Propositions 4 and 5 remains valid even if one does
not assume that the equilibrium has full range. Then, using this result instead of
Propositions 1 and 2, we can obtain similar bounds to those of Propositions 4 and
5 without assuming full range assumption, but instead replacingW∞ and S∞ with
their local versions for some set of actions which are known to be played by some
types.

The last statement in the proposition implies that, for nice games, even the slight
changes in very higher-order beliefs will have substantial impact on equilibrium
behavior, unless the game is locally dominance-solvable. There are important
games in which a slight failure of common knowledge assumption in very high
orders leads to substantially different outcomes–as we show next.

7. Applications

In this section, we will provide three applications of our results. First, we will
show that in Cournot oligopoly with sufficiently firms, even a slight relaxation of
the common-knowledge assumption will preclude us from making any prediction
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beyond the elementary fact that no firm will produce more than the monopoly
outcome. Second, we will show that an equilibrium (or rationalizable) strategy
is continuous with respect to the product topology at a given type if and only if
that type has a unique rationalizable action. Third, we will show that, under our
perturbation, there is a robust equilibrium if and only if the game is dominance
solvable.

7.1. Cournot Oligopoly. In a Cournot oligopoly with sufficiently many firms,
any production level that is less than or equal to the monopoly production is
rationalizable (Bernheim (1984), Basu (1992)).20 Then, our Proposition 2 implies
that a researcher cannot rule out any such output level as the equilibrium output
for a firm no matter how many orders of beliefs he specifies, assuming the set of
payoff parameters is rich. Using Proposition 7, we will now show that the richness
assumption is not needed for this conclusion. Even a slight doubt about the payoffs
in very high orders will lead a researcher to fail to rule out any outcome that is
less than the monopoly outcome as a firm’s equilibrium output. More broadly, this
establishes that our non-robustness results apply to some very important games in
economics, even without our richness assumptions.

Consider n firms with identical constant marginal cost c > 0. Simultaneously,
each firm i produces qi at cost qic and sell its output at price P (Q; θ) where Q =P

i qi is the total supply. For some fixed θ̄, we assume that Θ is a closed interval
with θ̄ ∈ Θ 6=

©
θ̄
ª
. We also assume that P

¡
0; θ̄
¢
> 0, P

¡
·; θ̄
¢
is strictly decreasing

when it is positive, and limQ→∞ P
¡
Q; θ̄

¢
= 0. Therefore, there exists a unique

Q̂ such that P
³
Q̂; θ̄

´
= c. We assume that, on [0, Q̂], P

¡
·; θ̄
¢
is continuously

twice-differentiable and P 0 +QP 00 < 0.

It is well known that, under the assumptions of the model, (i) the profit function,
u
¡
q,Q; θ̄

¢
= q (P (q +Q)− c), is strictly concave in own output q; (ii) the unique

best response q∗ (Q−i) to others’ aggregate production Q−i is strictly decreasing on
[0, Q̂] with slope bounded away from 0 (i.e., ∂q∗/∂Q−i ≤ λ for some λ < 0); (iii)
equilibrium outcome at tCK

¡
θ̄
¢
, s∗

¡
tCK

¡
θ̄
¢¢
, is unique and symmetric (Okuguchi

20Borgers and Janssen (1995) show that if we replicate both consumers and the firms in such
a way that the cobweb dynamics is stable for the resulting demand and supply curves, then
the Cournot oligopoly will be dominance-solvable. In that case, by Proposition 2, equilibrium
outcomes will not be sensitive to higher-order beliefs.
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and Suzumura (1971)). We will also assume that θ is a payoff-relevant parameter
in the following sense: q∗ (Q−i; θ) is a continuous and strictly increasing function
of θ at

¡
Q−i, θ̄

¢
where Q−i = (n− 1) s∗j

¡
tCK

¡
θ̄
¢¢
.

Lemma 3. In the Cournot oligopoly above, there exists n̄ <∞ such that for any
n > n̄ and any B =

£
s∗1
¡
tCK1

¡
θ̄
¢¢
− , s∗1

¡
tCK1

¡
θ̄
¢¢
+
¤n ⊂ A with > 0, we have

S∞i
£
B; tCK

¡
θ̄
¢¤
=
£
0, qM

¤
(∀i ∈ N),

where qM is the monopoly output under P
¡
·; θ̄
¢
and s∗

¡
tCK

¡
θ̄
¢¢
is the unique

equilibrium of the complete information game
©
tCK

¡
θ̄
¢ª
.

This is a straightforward extension of a result by Basu (1992) for rationalizability
to local rationalizability. The proof is in the appendix. Together with Proposition
7, this lemma yields the following.

Proposition 8. In the Cournot oligopoly above, let Θ =
£
θ̄ − ε, θ̄ + ε

¤
for arbi-

trarily small ε > 0. Then, for any equilibrium s∗ on the universal type space,

A∞i
£
s∗, tCKi

¡
θ̄
¢¤
=
£
0, qM

¤
(∀i ∈ N),

where qM is the monopoly output under P
¡
·; θ̄
¢
.

Proof. Since we can put a large upper bound on q, by (i) above, we have a nice
game. By the hypothesis, there exists B ⊂ s∗ (T ) as in Lemma 3. Hence, Lemma
3 and Proposition 7 imply£

0, qM
¤
= S∞i

£
B; tCKi

¡
θ̄
¢¤
⊆ A∞i

£
s∗, tCKi

¡
θ̄
¢¤
⊆
£
0, qM

¤
,

yielding the desired equality. ¤

Our proposition suggests that, with sufficiently many firms, any equilibrium pre-
diction that is not implied by strict dominance will be invalid whenever we slightly
deviate from the idealized complete information model. To see this, consider two
researchers. One is confident that it is common knowledge that θ = θ̄. The other
is slightly skeptical: he is only willing to concede that it is common knowledge
that

¯̄
θ − θ̄

¯̄
≤ ε and agrees with the kth-order mutual knowledge of θ = θ̄. He is

an arbitrarily generous skeptic; he is willing to concede the above for arbitrarily
small ε > 0 and arbitrarily large finite k. Our proposition states that the skeptic
nonetheless cannot rule out any output level that is not strictly dominated.
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7.2. Continuity of equilibrium. It is well-known that some equilibria of some
games are discontinuous in the universal type space under the product topology.
For example, if we combine the e-mail game of Rubinstein (1989) with the com-
plete information case, there will be one continuous equilibrium, prescribing No
Attack everywhere, and one discontinuous equilibrium, prescribing Attack only in
the complete information case. After all, best response of a single player may be
discontinuous when A is finite. Similarly, a Nash equilibrium may be discontinuous
function of complete information games, while the Nash equilibrium correspon-
dence is generically lower-hemicontinuous on the space of complete-information
games. Now we will show that, in nice and finite-action games every equilibrium
strategy will be discontinuous at every type with multiple rationalizable actions.

We consider an arbitrary metric dA onA. (WhenA is finite, dA will be equivalent
to the discrete metric.) A sequence (am)m∈N is said to converge to some a ∈ A iff
for each > 0, there exists k such that dA (am, a) < for each m > k. When A is
finite this simplifies to the requirement that am = a for m > k.

Definition 8. A strategy profile s is said to be continuous (with respect to product
topology) at t iff for each sequence

¡
t̃ [m]

¢
m∈N of type profiles

£
t̃k [m]→ tk ∀k

¤
⇒
£
s
¡
t̃ [m]

¢
→ s (t)

¤
.

Proposition 2 implies that if an equilibrium s∗ with full range is continuous at
t, then S∞ [t] = {s∗ (t)}, yielding the following discontinuity result.

Proposition 9. For any nice game, every equilibrium s∗ : T u → A with full
range is discontinuous at each type profile t for which there are more than one
rationalizable action profiles. In particular, if a nice game possesses an equilibrium
s∗ that is continuous and has a full range, then the game is dominance solvable.

Proof. Take any equilibrium s∗ with full range and any t with a ∈ S∞ [t] such that
s∗ (t) 6= a. Then, for each k, there exists t̃ [k] such that t̃m [k] = tm for each m ≤ k

and s∗
¡
t̃ [k]

¢
= a 6= s∗ (t). Clearly, s∗

¡
t̃ [k]

¢
does not converge to s∗ (t). But, by

definition, for each m and each k > m, t̃m [k] = tm, and hence t̃m [k] → tm as
k →∞. Therefore, s∗ is discontinuous at t. ¤
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Under a stability condition, Nyarko (1996) shows that equilibrium is continuous
on universal type space. Our result then shows that his condition implies that
the game is dominance-solvable. Considering a class of simple dominance-solvable
games that satisfies the stability condition of Nyarko (1996), Morris (2002) shows,
among other things, that continuity of equilibrium is not uniform over these games.
That is, even in dominance-solvable games, we may need to pay special attention
to how we specify the higher-order beliefs.

One can obtain a discontinuity result for countable-action games at each type
with |W∞ [t]| > 1, similar to the previous proposition. For mixed-strategy equilib-
ria, one can obtain similar discontinuity results under substantially weaker conti-
nuity requirements (see our working paper). We will now obtain a characterization
for all rationalizable strategies in finite-action games.

Proposition 10. Assume that A is finite. Under Assumption 1, a rationalizable
strategy profile s : T u → A is continuous at a finite type profile t̂ if and only if t̂ has
a unique rationalizable action, i.e.,

¯̄
S∞

£
t̂
¤¯̄
= 1. This characterization remains

intact if the domain of s is TCPA = {t|t ∈ T , T is finite and has a common prior}.

Proof. The "if" part follows from the fact that S∞ is upper-semicontinuous (Dekel,
Fudenberg, and Morris (2004)). To prove the "only if" part, take any rationalizable
strategy profile s and any a ∈ S∞

£
t̂
¤
with s

¡
t̂
¢
6= a. By Lemma 2, there exists a

sequence of types t [m] → t̂ with s (t [m]) ∈ S∞ [t [m]] = {a}. Since s (t [m]) = a

for each t [m], s (t [m]) does not converge to s
¡
t̂
¢
. The last statement follows from

the fact that t [m] ∈ TCPA in Lemma 2. ¤

Proposition 10 establishes that, at each finite type, either there is a unique
rationalizable action and all rationalizable strategies are continuous (in fact, lo-
cally constant) at that type, or there are multiple rationalizable actions and all
rationalizable strategies are discontinuous at that type. As discussed in Section
2, this raises a serious difficulty in usefulness of continuity arguments to refine
equilibrium (or rationalizability). Whenever there is a possibility of refining ra-
tionalizability, all of the rationalizable strategies are discontinuous at the relevant
type, and imposing continuity leads to the empty set. Note that generically there
exists a unique rationalizable outcome, and hence all rationalizable strategies are
continuous at generic types, where there is no need for a refinement.
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7.3. Robustness of equilibrium. Kajii and Morris (1997) introduced an ex ante
notion of robustness of equilibrium to incomplete information. We will now inves-
tigate how the results will change if we consider an analogous interim notion of
robustness for equilibrium, or drop the common-prior assumption in their formu-
lation. Following Kajii and Morris (1997), we will assume that the set of payoff
profiles is not restricted, so that for each payoff profile v : A → RN , there exists
θ such that u (θ, ·) = v. With our notation, for pure strategy equilibria, their
robustness can be defined as follows.

Definition 9 (Kajii and Morris (1997)). An equilibrium â ∈ A of a complete-
information game

©
tCK

¡
θ̄
¢ª
is said to be robust to incomplete information iff for

every δ > 0, there exists ε > 0 such that for each finite T with common prior
p such that p

¡©
(θ, t) |ui (θ, ·) = ui

¡
θ̄, ·
¢
, κti

¡
ui (θ, ·) = ui

¡
θ̄, ·
¢¢
= 1∀i

ª¢
≥ 1 − ε,

there exists an equilibrium σ∗ of T with p (supp (σ∗ (t)) = {â}) ≥ δ.

That is, if the common prior of T puts high probability on the event that the
payoffs are as described in the complete-information game and everybody knows
his payoffs, then T will have an equilibrium in which most of the types will play
according to the original equilibrium. Here, there is no restriction on players’
interim beliefs, other than what the restriction on the prior implies. This definition
envisions a researcher who believes that his complete information model is the true
model with high probability according to the prior of the correct model. As we
discussed before, we are interested in the robustness in the interim stage when
we do not have any information about the ex ante stage, which the researcher
constructs to model the interim beliefs. Accordingly, we define interim robustness,
again for pure strategy equilibria of complete information games, as follows.

Definition 10. An equilibrium â ∈ A of a complete-information game
©
tCK

¡
θ̄
¢ª

is said to be interim robust to incomplete information iff there exists ε > 0 and
k < ∞ such that for each (ε, k)-perturbation (T, τ) of

©
tCK

¡
θ̄
¢ª
, there exists an

equilibrium σ∗ of T with supp
¡
σ∗
¡
τ
¡
tCK

¡
θ̄
¢¢¢¢

= {â}, where T is finite and has
a common prior.

In this definition, we keep their requirement that the perturbed game has a com-
mon prior, but we do not require the perturbed game to assign a high probability
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to the original model. Instead, we require only that the perturbed model has a
type that has similar beliefs in the interim stage. Also, instead of requiring that
most of the types play according to the original equilibrium, we only require the
type with similar beliefs to do so.

Kajii and Morris (1997) showed that, although a unique Nash equilibrium need
not be robust to incomplete information, if there is a unique correlated equilib-
rium, then it will be robust. Moreover, any (p1, . . . , pn)-dominant equilibrium with
p1 + · · ·+ pn < 1, such as a risk-dominant equilibrium, is robust. These are strin-
gent sufficient conditions, but they yield existence of robust equilibria in many
cases, such as generic two-player, two-action games. In contrast, we will now show
that existence of interim robust equilibrium is equivalent to dominance-solvability.
Therefore, when we do not impose that the prior of the correct model assigns high
probability to the actual case, there will be significantly fewer robust equilibria,
even if we impose stringent conditions on the beliefs of the perturbed type.

Proposition 11. Let A be finite and let θ̄ have generic payoffs. Under Assumption
1,
©
tCK

¡
θ̄
¢ª
has an interim robust equilibrium â if and only if there is a unique

rationalizable action profile for tCK
¡
θ̄
¢
.

Proof. The "if" part follows from the fact that S∞ is upper-semicontinuous, so
that whenever S∞

£
tCK

¡
θ̄
¢¤
= {â}, we have S∞ [t] = {â} in a neighborhood

of tCK
¡
θ̄
¢
. Then, when ε is small and k large, for every (ε, k)-perturbation

(T, τ), S∞
£
τ
¡
tCK

¡
θ̄
¢¢¤

= {â}. Letting σ∗ be any equilibrium of T , we con-
clude that supp

¡
σ∗
¡
τ
¡
tCK

¡
θ̄
¢¢¢¢

= {â}. To prove the "only if" part, assume
that

¯̄
S∞

£
tCK

¡
θ̄
¢¤¯̄

> 1, and take any equilibrium â of
©
tCK

¡
θ̄
¢ª
. There exists

a ∈ S∞
£
tCK

¡
θ̄
¢¤
with a 6= â. Then, by Lemma 2, for each ε > 0 and k <∞, there

exists (ε, k)-perturbation (T, τ) of
©
tCK

¡
θ̄
¢ª
such that S∞

£
τ
¡
tCK

¡
θ̄
¢¢¤

= {a}.
Then, for any equilibrium σ of T , σ

¡
τ
¡
tCK

¡
θ̄
¢¢¢

must assign zero probability to
â. Therefore, â is not interim robust. ¤

What happens if we drop the common-prior assumption in Kajii-Morris defin-
ition of robustness, keeping their (prior, rather than interim) notion of perturba-
tion? To answer this question, let us modify Definition 9.

Definition 11. An equilibrium â ∈ A of a complete-information game
©
tCK

¡
θ̄
¢ª

is said to be weakly robust to incomplete information without CPA iff there exists
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ε > 0 such that for each finite T , defined by κti ≡ pi (·|ti) for priors (p1, . . . , pn) and
such that pi

¡©
(θ, t) |uj (θ, ·) = uj

¡
θ̄, ·
¢
, κtj

¡
uj (θ, ·) = uj

¡
θ̄, ·
¢¢
= 1∀j

ª¢
≥ 1−ε for

each i, there exist an equilibrium σ∗ of T and t ∈ T such that σ∗ assigns positive
probability to â at t, and t is assigned a positive probability by some pi.

Above, we drop the common-prior assumption in the Kajii-Morris definition,
making robustness more stringent. We also weaken the robustness condition signif-
icantly by simply requiring that â is played in equilibrium with positive probability
according to some player, as opposed to â being the pure equilibrium outcome with
high probability. We show that the impact of dropping the common-prior assump-
tion is so strong that now robustness roughly implies that we have a dominant-
strategy equilibrium. This is because without a common prior, the restrictions on
prior beliefs have no implications for interim beliefs beyond second order.

Proposition 12. For N = {1, 2}, let â = (â1, â2) be a Nash equilibrium of©
tCK

¡
θ̄
¢ª
where neither of âi is a dominant strategy in

©
tCK

¡
θ̄
¢ª
. Then, â is

not weakly robust to incomplete information without CPA.

Proof. We will define, for arbitrary ε, a model T as in Definition 11 which will not
possess any equilibrium with the desired properties. For each i, since âi is not a
dominant strategy, there exist āi and ã−i such that ui (āi, ã−i) > ui (âi, ã−i). Let
θi be a state at which ãi is a strictly dominant action and the payoffs of the other
player j are as in θ̄. Define T with Ti = {ti, t0i, t00i }, i ∈ N , with prior beliefs21

(p1, p2) given in the following tables for each triple in Θ× T1 × T2

θ̄ t2 t02 t002
t1 0,0 1− ε− ε2,ε2 0,0
t01 ε2,1− ε− ε2 0,0 0,0
t001 0,0 0,0 0,0

θ1 t2 t02 t002
t1 0,0 0,0 0,0
t01 0,0 0,0 0,0
t001 0,0 ε

2
, ε
2
0,0

θ2 t2 t02 t002
t1 0,0 0,0 0,0
t01 0,0 0,0 ε

2
, ε
2

t001 0,0 0,0 0,0

Now, define F =
©¡
θ̄, t1, t

0
2

¢
,
¡
θ̄, t01, t2

¢ª
. On F players’ payoffs are given as

in θ̄, and each player knows his own payoffs, i.e., both types ti and t0i put zero
probability on θ = θi. Since p1 (F ) = p2 (F ) = 1 − ε, T satisfies the condition in
Definition 11. However, we will show that there does not exist any equilibrium σ∗

21Notice that p1 and p2 have common support, and hence our result would not change if we
imposed the common-support assumption.
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where â is played with positive probability anywhere on the common support of p1
and p2. Take any equilibrium σ∗. First, each type t00i puts probability 1 on θ = θi.
Hence, by definition of θi, type t00i must play ãi with probability 1. Now, type t0i
puts probability 2ε/ (2ε+ 1) on

¡
θ̄, t−i

¢
and probability 1/ (2ε+ 1) on

¡
θ−i, t

00
−i
¢
.

When ε is small, type t0i puts nearly probability 1 on type t
00
−i, who plays ã−i. Then,

under equilibrium beliefs, āi yields higher expected payoff than âi, and hence t0i
puts zero probability on âi. Everywhere in the common support of p1 and p2, one
of the types is either of the form t0i or t

00
i , which put zero probability on âi, and

hence σ∗ puts zero probability on â. ¤

Oyama and Tercieux (2005) extend Proposition 12 to n players. They show that
if an equilibrium is weakly robust to incomplete information without CPA, then
n − 1 players play dominant strategies. As mentioned above, the extreme lack
of robustness in these results stems from the fact that without CPA, restrictions
on priors do not put any restriction on beliefs at second order and higher. Then,
Proposition 1 suggests that robustness of an equilibrium would require that W 1 is
singleton, leading to Proposition 12. Oyama and Tercieux (2005) also consider a
weaker robustness notion for equilibrium without CPA, combining our approach of
restricting higher-order beliefs with robustness of Kajii and Morris (1997). They
consider perturbations where each player’s prior puts high probability on the event
that the first k orders of beliefs are as specified, for arbitrarily large k. Consistent
with Proposition 1, they show that there is no robust equilibrium in this very weak
sense whenever |W∞| > 1.

8. Conclusion

Most predictions in economics are based on some equilibrium refinement, applied
to specific models. In this paper, we recognize that, when we need to check whether
such a prediction applies to a particular situation, we could only know finitely
many orders of players’ interim beliefs. There are many models compatible with
this partial information. We ask which predictions remain valid under our limited
information, in the sense that we could make that prediction independent of which
compatible model is chosen, given that we will apply the same refinement at each
model. We show that predictions remain valid only if they are true for all strategies
that survive iterated elimination of actions that are never a strict best reply. For
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generic payoffs, we find a characterization: a prediction remains valid if and only
if it is true for all rationalizable strategies. Therefore, equilibrium refinements will
be useful in generating extra predictions only when we have information about
the entire infinite hierarchy of beliefs. We prove this by establishing that every
equilibrium refinement has to be highly sensitive to specification of higher-order
beliefs when there are multiple rationalizable actions. This sensitivity is what
drives our result. We also show that our result remains intact when we restrict our
attention to small (i.e. finite) type spaces, or impose the common-prior assumption.

Appendix A. Omitted Proofs

Lemma 4 (Moulin (1984) and Battigalli (2003)). For any nice game, for any i, ti, k,
and any ai ∈ Sk

i [ti], there exists a pure strategy ŝ−i such that ŝ−i (t−i) ∈ Sk−1
−i [t−i] for

each t−i and

BRi (π (·|ti, ŝ−i)) = {ai}.

Proof of Proposition 2. For any ai ∈ Sk
i [ti] =W k

i [ti], by Lemma 4, there exists ŝ−i such
that ŝ−i (·) ∈ Sk−1

−i [·] = Sk−1
−i [·] and ai is a strict best reply against π (·|ti, ŝ−i). Since

κti has countable support, P (·|ti, ŝ−i), the probability distribution induced by κti and
ŝ−i on Θ× L×A−i, has a countable support:

suppP (·|ti, ŝ−i) = {(θ, l, ŝ−i (θ, l, h)) | (θ, l, h) ∈ suppκti} .

Hence our proof of Proposition 1 applies. That is, there exists t̃i ∈ Ti (not necessarily in
Ti) such that s∗i

¡
t̃i
¢
= ai and t̃mi = tmi for each m ≤ k, yielding the equality above. ¤

Proof of Lemma 3. Let n̄ be any integer greater than 1 + 1/ |λ|, where λ is as in (ii).
Take any n > n̄. By (iii), B = [q0, q̄0]n for some q0, q̄0 with q0 < q̄0. By (ii), for any
k > 0, Sk

£
B; tCK

¡
θ̄
¢¤
= [qk, q̄k]n, where

q̄k = q∗
³
(n− 1) qk−1

´
and qk = q∗

³
(n− 1) q̄k−1

´
.

Define Qk ≡ (n− 1) qk, Q̄k ≡ (n− 1) q̄k, and Q∗ = (n− 1) q∗, so that

Q̄k = Q∗
³
Qk−1

´
and Qk = Q∗

³
Q̄k−1

´
.

Since (n− 1)λ < 1, the slope of Q∗ is strictly less than −1. Hence Qk decreases with
k and becomes 0 at some finite k̄, and Q̄k increases with k and takes value Q∗ (0) =
(n− 1) qM at k̄ + 1. That is, Sk

£
B; tCK

¡
θ̄
¢¤
=
£
0, qM

¤n for each k > k̄. Therefore,
S∞

£
B; tCK

¡
θ̄
¢¤
=
£
0, qM

¤n. ¤
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