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Abstract

In an irreducible stochastic game, no single player can prevent the stochas-

tic process on states from being irreducible, so the other players can ensure

that the current state has little effect on events in the distant future. This pa-

per introduces stochastic games with imperfect public signals, and provides

a sufficient condition for the folk theorem when the game is irreducible, thus

generalizing the folk theorems of Dutta (1995) and Fudenberg, Levine, and

Maskin (1994). To prove this theorem, the paper extends the concept of

self-generation (Abreu, Pearce, and Stachetti (1990)) to “return generation,”

which explicitly tracks actions and incentives until the next time the state

returns to its current value, and asks that players not wish to deviate given

the way their continuation payoffs from the time of this return depend on the

public signals that have been observed.
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1 Introduction

Most social and economic interactions occur repeatedly, and the fact that agents

can condition their current play on information about past outcomes makes it pos-

sible to support outcomes that are not equilibria of one-shot interactions. In par-

ticular, the folk theorems for discounted repeated games show, roughly speaking,

that any feasible individually rational payoffs can be generated by an equilibrium

if the players are sufficiently patient. These theorems hold both in the classic

observed-actions case and also when players receive imperfect public signals of

one another’s actions.

Stochastic games (Shapley (1953)) generalize repeated games with observed

actions by allowing each period’s payoff functions to depend on a state variable

whose evolution can be influenced by the players’ actions; the state variable can

capture intertemporal links such as technological innovations, persistent demand

shocks, savings, and capital stocks. When there is an irreversible component to

the evolution of the state, single deviations can have permanent effects on the

sets of feasible and individually rational payoffs, and the structure of stochastic-

game equilibria can be very different than that of repeated games. Conversely,

if no single player can make the stochastic process irreversible- that is, when the

other players have a strategy that makes the process irreducible- then the feasible,

individually rational discounted average payoffs converge to a limit that is inde-

pendent of the current state as the discount factor converges to1. Dutta (1995)

establishes a folk theorem for these irreducible stochastic games.

This paper introduces the class of stochastic games with imperfect public mon-

itoring, where players observe the state and public signal that is related to the

actions played, and shows that when the game is irreducible the folk theorem ap-

plies. Our proof is based on the extension of self-generation (Abreu, Pearce, and

Stachetti (1990, hereafter APS)) to “return-generation,” and on extensions of the

full-rank conditions of Fudenberg, Levine, and Maskin (1994, hereafter FLM).

The idea of return-generation is to explicitly track actions and incentives until the

next time the state returns to its current value, and then use the recursive structure

of the game to relate the equilibrium payoff in the current state to the equilibrium

continuation payoff when the current state next occurs, which will be a function

of the public signals that are observed. In our proof of the folk theorem, we
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construct a return-generating set of “Markov review strategies”: The idea is that

players condition their actions only on the state, and not on the signals of each

other’s actions, until the first time the state returns to its initial position, and that

the incentive to conform to the specified Markov strategies is provided by the con-

tinuation payoffs from the time the state returns, which typically will depend on

the history of both states and public signals during this “review phase.”

Hörner, Sugaya, Takahashi, and Vieille (2009) independently developed a dif-

ferent proof of the folk theorem for irreducible stochastic games. They first pro-

vide a linear programming characterization of the limit equilibrium payoffs by

using an extension of self-generation that tracks actions and incentives for the

nextT periods, regardless of the realization of the state, instead of using return-

generation. They then use somewhat weaker full-rank conditions to conclude that

the solution of the linear programming problems implies the folk theorem. Be-

cause we do not provide a characterization of payoffs when the folk theorem fails,

our proof more clearly highlights the link between the folk theorem in stochastic

games and the folk theorem of FLM. We also fill in the details needed to adapt

FLM’s approach to account for the fact that “convex monotonicity” fails, as we

explain in Remark 6.

2 Stochastic Games and Perfect Public Equilibria

Let I = {1, · · · , I} be the set of players. At the beginning of the game, Nature

chooses the state of the worldω1 from a finite setΩ. The state may change as

time passes; letω t ∈Ω denote the state in periodt.

In each periodt, players observe the stateω t ∈ Ω, and then move simultane-

ously, with playeri ∈ I choosing an actionai from a finite setAi .1 Given an action

profilea= (ai)i∈I ∈A≡×i∈I Ai , players observe a public signalyt from a finite set

Y and the state in periodt +1 is determined. Letπω(y,ω ′|a) denote the probabil-

ity that players observe a signaly and and the state for the next period isω ′ when

today’s state isω and players play action profilea. (Note that the distributions ofy

andω ′ may be correlated.) Playeri’s realized payoff isuω
i (ai ,y), so her expected

1For notational convenience, we assume thatAi does not depend onω. But with no difficulty

our results extend to the case whereAi depends onω.
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payoff conditional onω anda is gω
i (a) = ∑ω ′∈Ω ∑y∈Y πω(y,ω ′|a)uω

i (ai ,y); gω(a)
denotes the vector of expected payoffs associated with action profilea.

In the infinitely repeated game, players have a common discount factorδ ∈
(0,1). Let (ωτ ,aτ

i ,y
τ) be the state, playeri’s pure action, and observed signal in

periodτ, and denote playeri’s private history at the end of periodt ≥ 1 by ht
i =

(ωτ ,aτ
i ,y

τ)t
τ=1. Leth0

i = /0, and for eacht ≥ 1, letHt
i be the set of allht

i . Likewise,

a public history up to periodt ≥ 1 is denoted byht = (ωτ ,yτ)t
τ=1, andHt denotes

the set of allht . A strategy for playeri is a mappingsi :
⋃∞

t=0Ht
i ×Ω→4Ai : Here

si(ht ,ω) denotes playeri’s action for periodt +1 if the history through periodt is

ht and the state for periodt +1 is ω. Let Si be the set of all strategies for playeri,

and letS=×i∈I Si . Let vω
i (δ ,s) denote playeri’s average payoff in the stochastic

game when the initial state isω, the discount factor isδ , and players play strategy

profiles. Let vω(δ ,s) = (vω
i (δ ,s))i∈I .

Remark 1. The state has to encode any and all history-dependent variation in

payoffs and signal structure, which puts some constraints on how small the state

space can be. However, becausey andω are both public information, a stochastic

game with state spaceΩ and signal spaceY is equivalent to a stochastic game with

larger state spaceΩ∗ = Y×Ω and a null signal space. In this latter case payoffs

and state transitions are the same for statesω∗ = (y,ω)∈Ω∗ andω̃∗ = (ỹ, ω̃)∈Ω∗

if ω = ω̃. However, when we restrict attention to irreducible games, we will see

that the game may be irreducible onΩ but not onΩ∗. For example when actions

are observable (Y ' A) transitions onΩ∗ are not irreducible but transitions onΩ
may be. Roughly speaking we would like the state space to be as small as possible,

as in this representation our assumptions are most likely to be satisfied.

This paper studies a special class of Nash equilibria calledperfect public equi-

libria or PPE. The notion of PPE was introduced by FLM for repeated games with

public monitoring. This paper extends their definition to stochastic games.

Definition 1. A strategysi ∈ Si is public if it depends only on public information,

i.e.,si(ht
i ,ω t+1)= si(h̃t

i , ω̃ t+1) for all t ≥1, ht
i =(ωτ ,aτ

i ,y
τ)t

τ=1, h̃t
i =(ω̃τ , ãτ

i , ỹ
τ)t

τ=1,

ω t+1, andω̃ t+1 satisfyingωτ = ω̃τ for all τ ≤ t +1 andyτ = ỹτ for all τ ≤ t. A

strategy profiles∈ S is public if si is public for all i ∈ I . A public strategy is

Markov if it depends only on the current state, i.e.,si(ht
i ,ω t+1) = si(h̃t

i , ω̃ t+1) for

all t ≥ 1, ht
i , h̃t

i , ω t+1, andω̃ t+1 satisfyingω t+1 = ω̃ t+1.
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Given a public strategy profiles∈ S, let s|ht denote its continuation strategy

profile after public historyht ∈Ht , and lets|(ht ,ωt+1) denote the continuation strat-

egy profile given(ht ,ω t+1) ∈ Ht ×Ω.

Definition 2. A public strategy profiles is aperfect public equilibriumor PPE if

for every(ht ,ω) ∈Ht×Ω the profiles|(ht ,ω) is a Nash equilibrium of the infinite-

horizon stochastic game with initial stateω. A PPE isMarkov-perfectif it uses

Markov strategies.

It is a best response for each player to ignore the public signal and play a

Markov strategy if all of the other players do. Since a Markov-perfect equilibrium

exists (Sobel (1971)) there is always a PPE where all players ignore the signal.

Given a discount factorδ ∈ (0,1), let Eω(δ ) denote the set of PPE payoffs

with initial stateω, i.e.,Eω(δ ) is the set of all vectorsv = (vi)i∈I ∈ RI such that

there is a PPEs∈ Ssatisfying

(1−δ )E

[
∑
t=1

δ t−1gωt

i (at)

∣∣∣∣∣s,ω1 = ω

]
= vi

for all i ∈ I .

In repeated games, the set of all PPE payoffs at timet coincides with that

at timet + 1; this recursive structure is what permits the application of dynamic

programming ideas as in the self-generation results of APS. In a stochastic game,

the set of PPE payoffs conditional on the state has a recursive structure, which

will allow us to apply a modified version of self-generation.2 Self-generation

is based on the decomposition of the set of equilibrium payoffs into the sum of

current period payoffs and continuation equilibrium payoffs from the next period

on. To develop an analog of this decomposition for stochastic games, we instead

decompose the payoffs into the sum of payoffs until the state returns to its current

value and continuation payoffs from the time of this return.

To simplify the notation, letPr(ht ,ω ′|s,ω) be the probability under profile

s that thet-period public history isht andω t+1 = ω ′ given that the initial state

is ω. (Note thatPr(ht ,ω ′|s,ω) = 0 for all ht = (ωτ ,yτ)t
τ=1 such thatω1 , ω.)

2Just as in repeated games with imperfectly observed actions, the set of all Nash or sequential

equilibria need not have a recursive structure; see Fudenberg, Levine, and Maskin (1994, hereafter

FLM) or Exercise 5.10 of Fudenberg and Tirole (1991).
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Also, for eacht ≥ 1 and ω, let H̃ω,t be the set of allt-period public histories

ht = (ωτ ,yτ)t
τ=1 such that the state does not reachω after period two. (That is,

ωτ ,ω for 1< τ ≤ t.) Let H̃ω,t = H0 for t = 0. Let Sp denote the set of all public

strategy profiles.

Definition 3. ForW ⊆ RI , a pair(s,v) ∈ Sp×RI of a public strategy profile and

a payoff vector isenforceable with respect toδ andW from stateω if there is a

functionw = (wi)i∈I :
⋃∞

t=1Ht →W such that

vi =(1−δ )

[
gω

i (s(h0,ω))+
∞

∑
t=1

∑
ht∈H̃ω,t

∑
ω ′,ω

δ t Pr(ht ,ω ′|s,ω)gω ′
i (s(ht ,ω ′))

]

+
∞

∑
t=1

∑
ht∈H̃ω,t

δ t Pr(ht ,ω|s,ω)wi(ht)

for all i ∈ I , and

(1−δ )

[
gω ′

i (s|ht (h0,ω ′))+
∞

∑
τ=1

∑
h̃τ∈H̃ω,τ

∑
ω ′′,ω

δ τ Pr(h̃τ ,ω ′′|s|ht ,ω ′)gω ′′
i (s|ht (h̃τ ,ω ′′))

]

+
∞

∑
τ=1

∑
h̃τ∈H̃ω ,τ

δ τ Pr(h̃τ ,ω |s|ht ,ω ′)wi((ht , h̃τ))

≥ (1−δ )

[
gω ′

i (s′|ht (h0,ω ′))+
∞

∑
τ=1

∑
h̃τ∈H̃ω,τ

∑
ω ′′,ω

δ τ Pr(h̃τ ,ω ′′|s′|ht ,ω ′)gω ′′
i (s′|ht (h̃τ ,ω ′′))

]

+
∞

∑
τ=1

∑
h̃τ∈H̃ω,τ

δ τ Pr(h̃τ ,ω|s′|ht ,ω ′)wi((ht , h̃τ))

for all i ∈ I , for all s′ ∈ Ssuch thats′−i = s−i , for all (t,ω ′) such that (i)t = 0 and

ω ′ = ω or (ii) t ≥ 1 andω ′ , ω, and for allht ∈ H̃ω ,t such thatω1 = ω. We say

(s,v) ∈ Sp×RI is enforced byw for δ at ω if the above conditions are satisfied.

Here the functionw specifies the continuation payoffs from the time the state

returns toω. The equality condition says that using the specified strategy will

yield the target payoff, provided that the continuation payoffs from the return

time onwards are as specified byw. The inequality condition is the incentive

compatibility at states that are reached before the return toω .3 Note that in games

with a single state, this definition of enforceability reduces to that of APS.
3To see this, suppose that the history up to periodt is ht , ω t+1 = ω ′, and consider the contin-
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For each(δ ,W,s), let Bω(δ ,W,s) denote the set of all payoff vectorsv∈ RI

such that(s,v) is enforceable with respect toδ andW from ω. Let Bω(δ ,W) be

the union ofBω(δ ,W,s) over alls.

The first theorem notes that the equilibrium payoff setEω(δ ) is a fixed point

of the operatorBω ; it is the analog of the “factorization” theorem in APS.

Theorem 1. For anyω ∈Ω andδ ∈ (0,1), Eω(δ ) = Bω(δ ,Eω(δ )).

Proof. We first proveEω(δ ) ⊆ Bω(δ ,Eω(δ )). Let v ∈ Eω(δ ). Then there is a

PPEs with payoff v for initial state isω. Sinces is a PPE, nobody wants to

deviate until the state returns toω. Also, the continuation play after returning is a

PPE. Thereforev∈ Bω(δ ,Eω(δ )), so thatEω(δ )⊆ Bω(δ ,Eω(δ )).
To prove the converse, we construct a PPE with payoffv ∈ Bω(δ ,Eω(δ )).

Let s andw be such that(s,v) is enforced byw andw(ht) ∈ E(δ ). Consider a

strategy profile such that players follows until the state returns toω, and once

the state returns toω after t-period play then players play a PPE with payoff

w(ht) thereafter. It is easy to check that this strategy profile is a PPE with payoff

v. Q.E.D.

The next theorem asserts that if a bounded setW is “return-generating” then

W is in the equilibrium payoff set. Note that it reduces to APS’s self-generation

theorem if there is only a single state.

Definition 4. A subsetW of RI is return-generating with respect toδ and initial

stateω if W ⊆ Bω(δ ,W).

uation game from such that the game ends when the state reachesω. Pr(h̃τ ,ω ′′|s|ht ,ω ′) denotes

the probability that the history in the firstτ periods of this continuation game ish̃τ ∈ H̃ω,τ (so that

the state does not return toω during these periods) and the state in periodτ +1 is ω ′′ , ω. Also,

the stage game payoff after such a history(h̃τ ,ω ′′) (i.e., the stage game payoff in the(τ + 1)st

period of the continuation game) isgω ′′
i . Thus the first term of left-hand side denotes the expec-

tation of the discounted sum of the stage game payoffs in this continuation game. On the other

hand,Pr(h̃τ ,ω|s|ht ,ω ′) denotes the probability that the history in the firstτ periods of the contin-

uation game is̃hτ ∈ H̃ω,τ and the state returns toω in periodτ + 1, andwi((ht , h̃τ)) denotes the

continuation payoff after such a history. Thus the second term of the left-hand side denotes the

expectation of the continuation payoffsw. Overall, the left-hand side is playeri’s payoff in the

continuation game corresponding to(ht ,ω ′). Likewise, the right-hand side is playeri’s payoff of

the continuation game when he deviates tos′i .
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Theorem 2. If a subsetW of RI is bounded and return-generating with respect to

δ andω thenW ⊆ Eω(δ ).

Proof. As in APS, we first construct a candidate strategy profile, and then note

that it has the specified payoffs and satisfies the no-one-stage-deviations test. In

APS the definition of self-generation is used to find new actions in every period.

Here the fact thatW is return-generated forω implies that forv∈W there is an

associated repeated game strategys; the construction of the overall equilibrium

specifies that players conform tosuntil the state returns toω. Q.E.D.

Remark 2. It follows from Theorems 1 and 2 that the equilibrium payoff set

Eω(δ ) for a givenδ is the largest fixed point of the operatorBω . Note that these

theorems do not assume the game is irreducible. Note also that they are vacuously

true at statesω that are transient regardless of play.

Remark 3. Hörner, Sugaya, Takahashi, and Vieille (2009) use “T-period gener-

ation,” which looksT periods ahead instead of looking to the time of first return.

In irreducible games, this property is sufficient for characterizing the equilibrium

payoff set in the limit asδ goes to one. However, for a fixed discount factor, the

set of equilibrium payoffs need not be a fixed point of the “T-period generation”

operator.

Remark 4. Our proof of the folk theorem will use “Markov return generation,”

meaning that the constructed strategies starting atω will be Markov until the state

returns toω. This restricted form of return generation is more tractable but does

not have the factorization property.

3 The Folk Theorem in Irreducible Stochastic Games

3.1 Irreducible Stochastic Games

In general, stochastic games can be very different than infinitely repeated games,

as shown by the fact that any static game can be viewed as the first period of a

stochastic game with two states, one of which is absorbing. More generally, the

irreversibility created by absorbing states can support various sorts of backwards

induction arguments with no real analog in the infinitely repeated setting. For
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the rest of this paper we will restrict attention to irreducible stochastic games;

this restriction rules out absorbing states and more strongly implies that no single

player can prevent some state from being reached.

Definition 5. A stochastic game isirreducible despite playeri if for each pair of

states(ω,ω ′) ∈ Ω×Ω, there is aT > 0 and a sequence(ω1, · · · ,ωT) of states

such thatω1 = ω, ωT = ω ′, and for eacht < T, there is a profileα such that

∑y∈Y πωt
(y,ω t+1|ai ,α−i) > 0 for all ai ∈ Ai . The game isirreducible if it is irre-

ducible despite each playeri.

One trivial case where our irreducibility condition is satisfied is when the state

represents a persistent demand shock whose evolution is independent of the play-

ers’ actions, as in Rotemberg and Saloner (1986) and Ellison (1994). Besanko,

Doraszelski, Kryukov, and Satterthwaite (2008) study an irreducible stochastic

game where the actions do influence the state transitions: In their model the state

is the knowledge or know-how of each firm, and a firm’s state increases stochas-

tically when it makes a sale, and decreases stochastically due to “organizational

forgetting.”

Let Vω(δ ) be the set of feasible payoffs when the initial state isω and the

discount factor isδ ; i.e., Vω(δ ) = {vω(δ ,s), for all s∈ S}. Since the game is

irreducible, the set of feasible payoffs is independent of the initial state in the

limit as δ goes to one. (See Dutta (1995).) LetV denote this limit set, that is,

V = limδ→1Vω(δ ).
The minimax payoff to playeri in a stochastic game with initial stateω is

defined to be

vω
i (δ ) = inf

s−i∈S−i
sup
si∈Si

vω
i (δ ,s).

The limit of the minimax payoff asδ → 1 is independent of the initial state from

irreducibility, again as in Dutta (1995). (See also Bewley and Kohlberg (1976)

and Mertens and Neyman (1981).) LetV∗ denote the limit of the set of feasible

and individually rational payoffs.

The following lemma records an immediate but important consequence of ir-

reducibility: For each playeri, there is a Markov strategys−i of the opponents

so that for any pair of states(ω,ω ′) there is strictly positive probability that the

state reachesω from ω ′ within |Ω| periods. When players are sufficiently patient,
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this will allow us to provide adequate current incentives with strategies that are

Markov until the state returns to its current position.

Given a Markov strategy profiles, let s(ω) denote the action profile played by

s in stateω .

Lemma 1. If the game is irreducible, then there is a Markov strategy profiles−i

such that for each pair of states(ω,ω ′), there is an integerT > 0 and a sequence

(ω1, · · · ,ωT) of states such thatω1 = ω, ωT = ω ′, and∑y∈Y πωt
(y,ω t+1|ai ,s−i(ω t))>

0 for all ai ∈ Ai andt < T. Moreover for suchs−i there ispi ∈ (0,1) such that for

each pair of states(ω,ω ′), the state reachesω fromω ′ within |Ω| periods with at

least probabilitypi if players plays′ such thats′−i = s−i .

Proof. One suchs−i is for players−i to randomize with each player using a uni-

form distribution over his actions in each state. Consider any suchs−i and fix

a pair of states(ω,ω ′), and letT > 0 and (ω1, · · · ,ωT) be such thatω1 = ω,

ωT = ω ′, and∑y∈Y πωt
(y,ω t+1|ai ,s−i(ω t)) > 0 for all ai ∈ Ai andt < T. With-

out loss of generality we assumeT ≤ |Ω|. The state reachesω from ω ′ within T

periods with at least probabilitypi(ω,ω ′), where

pi(ω,ω ′) =
T−1

∏
t=1

min
at

i∈Ai
∑

yt∈Y

πωt
(yt ,ω t+1|at

i ,s−i(ω t)).

Letting pi be the minimum ofpi(ω,ω ′) over all (ω,ω ′), the lemma follows.

Q.E.D.

3.2 Full Rank Conditions

As in repeated games with imperfectly observed actions, the key to whether the

folk theorem holds is whether incentives can be provided along ”hyperplanes”

that correspond to trading utility between the players at various rates, and this is

possible when the information revealed by the public outcomes permits deviations

by one player to be statistically identified and distinguished from deviations by

others. The following “full rank” conditions are sufficient for this.

For eachi, (ω,ω ′), andα , letΠ(ω,ω ′)
i (α) be a matrix with rows(πω(ω ′,y|ai ,α−i))y∈Y

for all ai ∈ Ai . Let Π(ω,ω ′)
(i, j) (α) be the matrix constructed by stacking matrices

Π(ω ,ω ′)
i (α) andΠ(ω ,ω ′)

j (α).
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Definition 6. Profile α has individual full rank for (i,ω,ω ′) if Π(ω ,ω ′)
i (α) has

rank equal to|Ai |.

Note that this condition impliesπω(ω ′|ai ,α−i) > 0 for all ai . It also implies

that each action by playeri leads to a different distribution ony, conditional on

a transition toω ′ (though this need not be true if some other state occurs.) We

will use this in Lemmas 5 and 6 to construct return payoffs that make the player

indifferent between all of his actions.

Definition 7. For eachi, j, i , j and(ω,ω ′), profile α haspairwise full rank for

(i, j) and(ω,ω ′) if Π(ω,ω ′)
(i, j) (α) has rank equal to|Ai |+ |A j |−1.

Pairwise full rank for(ω,ω ′)implies that conditional on a transition fromω to

ω ′ deviations by playeri can be statistically distinguished from deviations byj.

It is satisfied for generic distributions on signals provided that|Y| is at least|Ai |+
|A j |−1, as in FLM, and that the transition fromω to ω ′ has positive probability

regardless of the play ofi or j.

Condition IFR. For each(ω,ω ′) ∈ Ω×Ω, there is an integerT > 0 and a se-

quence(ω1, · · · ,ωT) of states such thatω1 = ω, ωT = ω ′, and for eacht < T,

every pure action profile has individual full rank for(ω t ,ω t+1) and every player

i.

Condition PFR. For each(ω,ω ′) ∈ Ω×Ω, there is an integerT > 0 and a se-

quence(ω1, · · · ,ωT) of states such thatω1 = ω, ωT = ω ′, and for each(i, j) and

t < T, there is a profileα t that has pairwise full rank for(ω t ,ω t+1) and for(i, j).

Note that (IFR) and (PFR) are weaker than assuming that full rank conditions

are satisfied for all pairs of states(ω,ω ′), as these conditions require full rank only

for certain(ω,ω ′). Note also that (IFR) applies to all pure action profiles, while

(PFR) only asks that for each pair of players there is at least one profile with the

stronger pairwise full rank property for that pair. These conditions are generically

satisfied if the game is irreducible and|Y| ≥ |Ai |+ |A j |−1 for all (i, j) with i , j.4

In particular they are satisfied in irreducible games with observed actions, the

case studied by Dutta (1995), provided that the observations of the actions are

4These conditions could be relaxed along the lines of Kandori and Matsushima (1998).
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represented by the signaly as opposed to being embedded in the state. If the

actions are represented as part of the state then both full rank and irreducibility

fail.

3.3 The Folk Theorem

Definition 8. A subsetW of RI is smoothif it is closed and convex; it has a non-

empty interior; and there is a unique unit normal for each point on the boundary

of W.5

The following theorem is the main result of this paper; it shows that (IFR) and

(PFR) are sufficient for the folk theorem.

Theorem 3. Suppose (IFR) and (PFR) hold. Then, for any smooth subsetW of the

interior of V∗, there isδ ∈ (0,1) such thatW ⊆ Eω(δ ) for all ω andδ ∈ (δ ,1).
Therefore ifV∗ has dimensionI , thenlimδ→1Eω(δ ) = V∗.

Remark 5. Because the state transitions are irreducible, it might seem natural to

consider strategies that track separate histories for each state, so that play in state

ω1 depends only on observations from previous periods where the state wasω1.

This approach works if the state transitions are independent of the actions, and

yields a folk theorem whenever the folk theorem holds in each state considered in

isolation. However, stratification by the state does not work when actions have an

effect on the state transitions, as even in a control problem optimization requires

that the player take into account the way his current action influences tomorrow’s

state and thus tomorrow’s payoffs.6 For this reason our proof does not stratify the

histories by state but instead works with the game as a whole, keeping track of the

effect of actions on state transitions.
5A sufficient condition for each point on the boundary ofW to have a unique unit normal is

that the boundary is aC2-submanifold ofRI .
6Suppose for example there are two actionsa′ anda′′ and three states,ω1, ω2, andω3; (ω1,a′)

is followed byω2, and(ω1,a′′) is followed byω3; bothω2 andω3 are followed byω1 regardless

of the action played. In stateω1, a′ gives payoff1 anda′′ gives payoff0; in stateω2 payoffs are0

regardless of the action played, while in stateω3 payoffs are identically equal to3. State-by-state

optimization leads the player to choosea′ in stateω1 but this is not optimal ifδ > 1
3. Then even

whenδ is close to1, equilibrium play for the “stateω1 game” need not be consistent with overall

equilibrium, as players will give roughly equal weight to their current period payoff and the payoff

in the next period.
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Remark 6. Much of the proof of this theorem is similar to FLM: We first develop

a local condition -one that applies pointwise to eachv∈W- for a set to be return-

generating for large discount factors. We then show that the local condition is

satisfied under the full-rank assumptions, basically because they allowv on the

boundary ofW to be generated by continuation payoffs that lie on the hyperplanes

tangent toW at v and whose variation is of order(1− δ ). One key difference

with FLM is that we use return-generation instead of self-generation to show that

various payoff vectors can be supported by equilibrium strategies. The particular

strategies that we show are return-generated have the form of stochastic review

strategies, in the sense that the strategies are Markov (depend only on the state

and not on the sequence of signals) until the state returns toω.7 The second key

difference is that the local condition, which we call “uniform decomposability,”

is more complicated then the “local self-decomposability” used in FLM’s Lemma

4.2. The reason for this is as follows. In a repeated game, if payoff vectorv is

generated using a functionw for someδ , thenv is generated byw′ for δ ′ ∈ (δ ,1)
where the functionw′ is a convex combination ofw and the constant function

v. In particular, ifv and all continuation payoffs specified byw are chosen from

a convex setW, then the continuation payoffs specified byw′ are inW as well.

Using this monotonicity result, FLM show that forW to be self-generating for

sufficiently largeδ , it is sufficient thatW is “locally decomposable.” In stochastic

games this monotonicity result fails because for any fixedδ , the payoff to a given

strategy depends on the initial state.8

7More specifically, in order to generate a target payoff, we let players follow a Markov strategy

profile until the state returns toω, and we choose the continuation payoffs when the state returns

to ω in such a way that no player wants to deviate. This construction requires that a player’s

deviation be statistically distinguished from a distribution of a public signaly given that the state

tomorrow isω. This is the reason why we need full-rank conditions for a distribution ofy given a

state transition.
8For example, suppose there is one player and two states,ω1 andω2. The state transitions

follow a cycle regardless of the actions played:ω1 is followed byω2 andω2 is followed byω1.

The player has a single action (so the incentive constraint is vacuous) and his payoff is1 in stateω1

and0 in stateω2. Forδ ′ = 1
2, the average payoff during the first two periods is1−δ

1−δ 2 (1+0) = 2
3,

so that the payoffv = 2
3 is enforced by the constant continuation payoffw′ = 2

3. On the other

hand, forδ ′′ > 1
2, the average payoff during the first two periods is less than2

3, and hence forv

to be enforced, the constant continuation payoffw′′ must be greater than23, which is not a convex

combination ofv and w′. Thus local decomposability is not sufficient for self-generation, and

12



We first introduce the concept ofuniform decomposability. We say thatλ ∈ RI

is regular if it has at least two non-zero components, and issingular if it has

exactly one non-zero component. LetΛ be the set of allλ with |λ | = 1. Given

anyv∈ RI , λ ∈ Λ, ε > 0, K > 0, andδ ∈ (0,1), let Gv,λ ,ε,K,δ be the set of allv′

such thatλ · v≥ λ · v′+(1− δ )ε and such thatv′ is within (1− δ )K of v. (See

Figure 1, where this set is labeled “G.”)

λ

(1−δ )ε(1−δ )K

v

W
G

Figure 1: Continuation payoffw(ht) is chosen fromG.

Definition 9. A subset setW of R is uniformly decomposable for initial stateω
if there areε > 0, K > 0, andδ ∈ (0,1) such that for allv∈W, δ ∈ (δ ,1), and

λ ∈ Λ, there ares∈ Sandw :
⋃∞

t=1Ht → RI such that(s,v) is enforced byw for

δ at ω , and such thatw(ht) ∈Gv,λ ,ε,K,δ for all t andht .

In words, uniform decomposability requires that anyv∈W is enforced by a

functionw that chooses continuation payoffs from the setGv,λ ,ε,K,δ . Note that the

setGv,λ ,ε,K,δ is bounded uniformly inλ ; indeed, for eachλ , the setGv,λ ,ε,K,δ is

in the ball with centerv and radius(1−δ )K.

The following lemma shows that if a smooth setW is uniformly decompos-

able, then it is return-generating for sufficiently largeδ .

Lemma 2. Suppose that a smooth and bounded subsetW of RI is uniformly de-

composable for initial stateω. Then there isδ ∈ (0,1) such thatW is return-

generating forδ ∈ (δ ,1) and forω, and henceW⊆ Eω(δ ) for δ ∈ (δ ,1) and for

ω.

FLM’s proof does not directly apply.
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Proof. First of all, we prove the following claim: For any smooth setW, and

for any ε > 0, K, andv ∈W, there areδv ∈ (0,1), λv ∈ Λ, and an open setUv

containingv such that for anyv′ ∈Uv∩W andδ ∈ (δv,1), the setGv′,λv,ε,K,δ is in

W.

If v is in the interior ofW, then the statement is obvious. So considerv on the

boundary ofW. Let λv be a unit normal atv. SinceW is smooth, its boundary is

locally flat, so that (as in Fudenberg and Levine (1994)) there isδv ∈ (0,1) such

thatGv,λv,ε,K,δv
is in the interior ofW. Then there is an open setUv containingv

such that for anyv′ ∈Uv∩W, the setGv′,λv,ε,K,δv
is in the interior ofW. Note that

for any δ ∈ (δv,1) andv′ ∈Uv∩W, any pointv′′ ∈ Gv′,λv,ε,K,δ is a strict convex

combination ofv′ and some pointv′′′ ∈ Gv′,λv,ε,K,δv
. This shows that such av′′ is

in the interior ofW, sinceW is convex,v′ is an element ofW, andv′′′ is an interior

point ofW. (See Figure 2.) Therefore, for anyδ ∈ (δv,1) andv′ ∈Uv∩W, the set

Gv′,λv,ε,K,δ is in the interior ofW. This completes the proof of the above claim.

λ

(1−δ )ε

(δ −δv)ε

(1−δ )K

(δ −δv)K

v

v′′

v′′′

W

Figure 2:v′′ is a convex combination ofv andv′′′.

LetUv andδv be as in the claim for eachv∈W. Note that{Uv}v∈W is an open

cover ofW. SinceW is compact,{Uv}v∈W has a finite subcover. Letδ be the

maximum ofδv’s on this subcover. Then the above claim implies that for each

point v ∈W, there isλ ∈ Λ such that for anyδ ∈ (δ ,1), the setGv,λ ,ε,K,δ is in

W. SinceW is uniformly decomposable, it follows thatW is return-generating for

δ ∈ (δ ,1). Q.E.D.

In what follows, we show that any smooth subsetW of the interior ofV∗ is

uniformly decomposable. LetSIFR
−i (i) be the set of Markov strategiess−i such that
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for any playeri’s pure Markov strategysi and for any(ω,ω ′) ∈Ω×Ω, there is an

integerT > 0 and a sequence(ω1, · · · ,ωT) of states such thatω1 = ω, ωT = ω ′,
and for eacht < T, profiles(ω t) has individual full rank for(ω t ,ω t+1) and for all

j , i. Let SIFR(i,δ ) be the set of Markov strategy profilessuch that playeri’s play

is pure and optimal in every history forδ ands−i ∈ SIFR
−i (i).9 Note thatSIFR(i,δ )

is non-empty if (IFR) holds.

Likewise, letSPFR be the set of Markov strategy profiless such that for any

(ω,ω ′) ∈Ω×Ω, there is an integerT > 0 and a sequence(ω1, · · · ,ωT) of states

such thatω1 = ω, ωT = ω ′, and for eacht < T, profile s(ω t) has pairwise full

rank for(ω t ,ω t+1) and for all pairs of players.

The next two lemmas are straightforward extensions of FLM: Lemma 3 shows

thatSPFR is non-empty if (PFR) holds. Lemma 4 asserts that playeri’s minimax

payoff can be approximated bys∈ SIFR(δ , i), if (IFR) holds. The proofs are pre-

sented in Appendix.

Lemma 3. Suppose that (PFR) holds. Then the setSPFR is dense in the set of all

Markov strategy profiles.

Lemma 4. Suppose that (IFR) holds. Then for anyω ∈Ω, δ ∈ (0,1), andε > 0,

there iss∈ SIFR(δ , i) such that|vω
i (δ ,s)−vω

i (δ )|< ε.

The next lemma is an extension of Theorem 5.1 of FLM. Roughly speaking,

it shows that anys∈ SPFR is “enforceable with respect to all regular hyperplanes,”

and that the continuation payoffs used to enforce it can be chosen to converge to

a constant at rate(1− δ ). Note that the latter conclusion uses the irreducibility

assumption. As Lemma 1 shows, irreducibility assures that there is strictly posi-

tive probability that the state returns to the initial state within|Ω| periods. We use

this and individual full rank to show that a player’s short-run incentive to deviate

can be offset by an appropriate specification of the continuation payoffs on return

to the initial state; the ability to do this with payoffs on the specified hyperplane

comes from the pairwise full rank assumption.

In the proof of the lemma, we explicitly construct the continuation payoffsw

as follows: We first show that for a given stateω ′, player i will be indifferent
9Note the dependence onδ here, which does not occur in the analogous definition in FLM.

This is because our analog of a static best response is a response that is optimal until the state

returns toω, and this sort of intermediate-horizon optimality depends onδ .
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over all actions atω ′ if he receives a bonus continuation payoffzω ′
i when the state

evolves following a specific chain fromω ′ to ω, with no bonus paid if the state

follows a different path. Then we definewi as the collection of the bonuseszi that

should be paid at the corresponding histories. See Appendix for a detailed proof.

Lemma 5. For each initial stateω, Markov strategy profiles∈ SPFR, and δ ∈
(0,1), there isκ > 0 such that for each regular directionλ ∈ Λ, there isK > 0

such that for eachδ ∈ (δ ,1) and for eachv ∈ RI such thatλ · vω(δ ,s) ≥ λ · v,

there isw such that

(i) (s,v) is enforced byw for δ at ω,

(ii) λ ·w(ht) is independent oft and ht and λ ·w(ht) ≤ λ · v− (1− δ )(λ ·
vω(δ ,s)−λ ·v), and

(iii) |v−w(ht)|< (1−δ )(κ|vω(δ ,s)−v|+K) for eacht andht .

The next lemma is an extension of Lemma 5.2 of FLM; it shows that any

s∈ SIFR is “enforceable with respect to all coordinate hyperplanes orthogonal to

the ith coordinate axis.” Here we choose playeri’s strategysi depending onδ ,

since playeri’s best reply againsts−i might vary with the discount factor. Again,

the proof can be found in Appendix.

Lemma 6. For each initial stateω, Markov strategys−i ∈ SIFR
−i (i), andδ ∈ (0,1),

there isκ > 0 such that for each directionλ such thatλi , 0 and λ j = 0 for all

j , i, there isK > 0 such that for eachδ ∈ (δ ,1) and for eachv∈ RI such that

λivi ≤ λi maxs′i v
ω
i (δ ,s′i ,s−i), there is playeri’s pure Markov strategysi andw such

that

(i) (s,v) is enforced byw for δ at ω,

(ii) λiwi(ht) is independent oft andht andλiwi(ht)≤ λivi−(1−δ )λi(maxs′i v
ω
i (δ ,s′i ,s−i)−

vi), and

(iii) |v−w(ht)|< (1−δ )(κ|vω(δ ,s)−v|+K) for eacht andht .

The previous lemmas each apply for a givenδ ; the next lemma states conclu-

sions that hold for allδ sufficiently close to1. The proof is given in Appendix.
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Lemma 7. Suppose that (IFR) and (PFR) hold. Then for any initial stateω ∈ Ω
and for any smooth subsetW of the interior ofV∗, there areε > 0 andδ ∈ (0,1)
such that the following properties hold:

(a) There is a finite set of Markov strategy profiles{s1, · · · ,sN} such thatsn ∈
SPFR for all n, and for everyδ ∈ (δ ,1) and for every regularλ ∈Λ, maxn∈{1,··· ,N}λ ·
vn > maxv∈W λ ·v+ ε, wherevn = vω(δ ,sn).

(b) For eachi ∈ I and for eachλ such that|λi |= 1 andλ j = 0 for all j , i, there

is s−i ∈ SIFR
−i (i) such that for everyδ ∈ (δ ,1), there is playeri’s Markov

strategysi such thats= (si ,s−i) ∈ SIFR(δ , i) andλ ·v > maxv′∈W λ ·v′+ ε,

wherev = vω(δ ,s).

Now we are in a position to prove uniform decomposability of a smooth sub-

setW of the interior ofV∗. A main point in the proof is that the variation in

continuation payoffs needed to enforce a given limit payoffv on the hyperplane

corresponding toλ is bounded uniformly inλ .

Lemma 8. Suppose that (IFR) and (PFR) hold. Then any smooth subsetW of the

interior of V∗ is uniformly decomposable for any initial stateω ∈Ω.

Proof. Fix ω andW. Fix δ ∈ (0,1) and ε̃ so that Lemma 7 holds. Applying

Lemmas 5 and 6 to the strategy profiles specified in Lemma 7, it follows that there

is κ > 0 such that for eachλ ∈ Λ, there isK̃λ > 0 such that for eachδ ∈ (δ ,1)
andv∈W, there is a Markov strategy profilesv,λ ,δ and a functionw̃v,λ ,δ such that

(i) (sv,λ ,δ ,v) is enforced byw̃v,λ ,δ for δ at ω,

(ii) λ · w̃v,λ ,δ (ht)≤ λ ·v− (1−δ )ε̃ for eacht andht , and

(iii) |v−w(ht)|< (1−δ )(κ|vω(δ ,sv,λ ,δ )−v|+ K̃λ ) for eacht andht .

Setε = ε̃
2, and for eachλ ∈Λ, letKλ > κ2|vω(δ ,sv,λ ,δ )−v|+ K̃λ for all v∈W

andδ ∈ (δ ,1). Then it follows from (ii) and (iii) thatwv,λ ,δ (ht) ∈Gv,λ ,2ε,Kλ ,δ for

all t andht .

Note that for eachv∈W andλ ∈Λ, there is an open setUv,λ ,δ ⊆ RI containing

λ such thatλ ′ ·v≥ λ ′ ·wv,λ ,δ (ht)+ (1− δ )ε for all t, ht , andλ ′ ∈ Λ∩Uv,λ ,δ . In
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particular, sinceW is bounded, there isUλ ,δ ⊆ RI containingλ such thatλ ′ ·v≥
λ ′ ·wv,λ ,δ (ht)+(1−δ )ε for all t, ht , v∈W andλ ′ ∈ Λ∩Uλ ,δ .

The setΛ is compact, so{Uλ ,δ}λ∈Λ has a finite subcover{Uλ ,δ}λ∈Λ∗. For

eachv and λ , let s∗v,λ ,δ = sv,λ ′,δ andw∗v,λ ,δ (ht) = wv,λ ′,δ (ht), whereλ ′ ∈ Λ∗ is

such thatλ ∈Uλ ′,δ . Then lettingK = maxλ∈Λ∗ Kλ , the specified(s∗v,λ ,δ ,w∗v,λ ,δ )
satisfies all the desired conditions for a givenλ ∈ Λ; that is,(s∗v,λ ,δ ,v) is enforced

by w∗v,λ ,δ andw∗v,λ ,δ chooses the continuation payoffs from the setGv,λ ,ε,K,δ . Note

that nowK is independent ofλ , and hence the proof is completed. Q.E.D.

4 Conclusion

Our results leave open many interesting avenues of research. One of them is

whether the folk theorem for stochastic games holds when strategies are restricted

to have finite memory, as it does in games with a single state (Hörner and Ol-

szewski (2009)). A second is to suppose that the discount factor tends to one

because time periods grow short, so that the state transition probabilities will

vary with the discount factor; we explore this in ongoing research with Johannes

Horner. Yet another extension is to allow for private information about the time-

varying state, as in Athey and Bagwell (2008) and Escobar and Toikka (2009).

Appendix

A.1 Proof of Lemma 3

Lemma 3. Suppose that (PFR) holds. Then the setSPFR is dense in the set of all

Markov strategy profiles.

Proof. For eachω ∈ Ω, let Ω(ω) denote the set of allω ′ ∈ Ω such that for each

pair (i, j) of players, there is a profileα that has pairwise full rank for(i, j) and

(ω,ω ′). Let APFR(ω,ω ′) be the set of all action profilesα that has pairwise

full rank for (ω,ω ′) and for all pairs of players. As Lemma 6.2 of FLM shows,

the setAPFR(ω,ω ′) is open and dense in the set of all action profiles for each

ω ∈ Ω andω ′ ∈ Ω(ω). Let APFR(ω) =
⋂

ω ′∈Ω(ω) APFR(ω,ω ′). ThenAPFR(ω)
is open and dense in the set of all action profiles. Note that under (PFR), for
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any pair(ω,ω ′), there is an integerT and a sequence(ω1, · · · ,ωT) such that

ω1 = ω, ωT = ω ′, andω t+1 ∈ Ω(ω t) for all t < T. Thus we haves∈ SPFR for

any Markov strategy profilessuch thats(ω)∈APFR(ω) for all ω. This shows that

SPFR contains×ω∈ΩAPFR(ω). ThereforeSPFR is dense in the set of all Markov

strategy profiles. Q.E.D.

A.2 Proof of Lemma 4

Lemma 4. Suppose that (IFR) holds. Then for anyω ∈Ω, δ ∈ (0,1), andε > 0,

there iss∈ SIFR(δ , i) such that|vω
i (δ ,s)−vω

i (δ )|< ε.

Proof. For eachω ∈ Ω, let Ω(ω) denote the set of allω ′ ∈ Ω such that any pure

action profile has individual full rank for(ω,ω ′) and for all players. For each

ai ∈ Ai , letC(ω,ω ′,ai) denote the set of allα−i such that the profile(ai ,α−i) has

individual full rank for all j , i and for(ω,ω ′). As Lemma 6.3 of FLM shows, the

setC(ω,ω ′,ai) is open and dense in the set of allα−i , for eachω ∈Ω, ω ′ ∈Ω(ω),
andai ∈Ai . LetC(ω) =

⋂
ω ′∈Ω(ω)

⋂
ai

C(ω,ω ′,ai). LetC=×ω∈ΩC(ω). ThenC is

dense in the set of all Markov strategy profiles. Since (IFR) holds, for any Markov

strategy profiles in C and for any(ω,ω ′), there is a sequence(ω1, · · · ,ωT) of

states such that for eacht, s(ω t) has individual full rank for(ω t ,ω t+1) and for all

j , i.

Let sbe a minimax profile against playeri for δ and for initial stateω. Without

loss of generality,s is Markov, so write it as(s(ω))ω∈Ω. SinceC is dense, there is

a sequence{(sk
−i(ω))ω∈Ω}∞

k=1 converging to(s−i(ω))ω∈Ω with (sk
−i(ω))ω∈Ω ∈C

for all k. Let sk
i be a best response to(sk

−i(ω))ω∈Ω. Without loss of general-

ity sk
i is pure and Markov, so write it by(sk

i (ω))ω∈Ω. By definition ofC, for

any pair(ω,ω ′), there is an integerT and a sequence(ω1, · · · ,ωT) such that

ω1 = ω, ωT = ω ′, and for eacht < T, the profile(sk
i (ω t),sk

−i(ω t)) has indi-

vidual full rank for all j , i and for(ω t ,ω t+1). Choose(si(ω))ω∈Ω and a sub-

sequence of{(sk
i (ω),sk

−i(ω))ω∈Ω}∞
k=1 such that(sk

i (ω))ω∈Ω = (si(ω))ω∈Ω. Since

(sk
−i(ω))ω∈Ω converges to(s−i(ω))ω∈Ω, (si(ω))ω∈Ω is a best reply to(s−i(ω))ω∈Ω

and givesvω
i (δ ) to player i. Therefore for anyε > 0, there isk such that the

Markov strategy profile corresponding to(sk(ω))ω∈Ω satisfies all the desired con-

ditions. Q.E.D.
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A.3 Proof of Lemma 5

Lemma 5. For each initial stateω, Markov strategy profiles∈ SPFR, and δ ∈
(0,1), there isκ > 0 such that for each regular directionλ ∈ Λ, there isK > 0

such that for eachδ ∈ (δ ,1) and for eachv ∈ RI such thatλ · vω(δ ,s) ≥ λ · v,

there isw such that

(i) (s,v) is enforced byw for δ at ω,

(ii) λ ·w(ht) is independent oft and ht and λ ·w(ht) ≤ λ · v− (1− δ )(λ ·
vω(δ ,s)−λ ·v), and

(iii) |v−w(ht)|< (1−δ )(κ|vω(δ ,s)−v|+K) for eacht andht .

Proof. Fix ω, s, λ , δ , and v. Sinces ∈ SPFR, for eachω ′ there is an inte-

ger T(ω ′) > 0 and a sequence(ω t(ω ′))T(ω ′)
t=1 of states such thatω1(ω ′) = ω ′,

ωT(ω ′) = ω, and for eacht < T(ω ′), profile s(ω t−1(ω ′)) has pairwise full rank

for each(i, j) for (ω t−1(ω ′),ω t(ω ′)). To simplify the notation, we denote this se-

quence by~ω(ω ′), that is,~ω(ω ′) = (ω t(ω ′))T(ω ′)
t=1 Note that~ω(ω ′) is a path from

ω ′ to ω that occurs with positive probability even if playeri unilaterally deviates.

Given eachω ′, consider the “return game” such that the game starts at initial

stateω ′ (instead ofω) and ends when the state reachesω , and playeri obtains a

paymentṽi at the end of the game, where

ṽi =
vi− (1−δ )

[
gω

i (s(ω))+∑∞
τ=1∑h̃τ∈H̃ω ,τ ∑ω ′′,ω δ τ Pr(h̃τ ,ω ′′|s,ω)gω ′′

i (s(ω ′′))
]

∑∞
τ=1∑hτ∈H̃ω,τ δ τ Pr(hτ ,ω|s,ω)

.

(1)

Let vω ′
i denote playeri’s payoff in this return game when players follow the

Markov strategy profiles, that is,

vω ′
i =(1−δ )

[
gω ′

i (s(ω ′))+
∞

∑
τ=1

∑
h̃τ∈H̃ω,τ

∑
ω ′′,ω

δ τ Pr(h̃τ ,ω ′′|s,ω ′)gω ′′
i (s(ω ′′))

]

+
∞

∑
τ=1

∑
hτ∈H̃ω,τ

δ τ Pr(hτ ,ω|s,ω ′)ṽi .

Also, letvω ′
i (a1

i ) denote the analogous value when playeri choosesa1
i ∈ Ai in the

initial period of the return game and then followss. Note that, from (1), we have
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vω
i = vi. That is, the payment̃vi is chosen in such a way that playeri’s payoff in

the return game from initial stateω with constant payment̃vi is equal tovi .

Choose{zω ′
i (y1)}(i,y1)∈I×Y in such a way that playeri is indifferent over all

actions in the first period of the return game from initial stateω ′ with constant

paymentṽi supposing that all players follows in all periodst > 1 and that player

i receives a bonuszω ′
i (y1) in period two when the evolution of states follows

(ω1(ω ′),ω2(ω ′)), while he receives no bonus when the state reaches other state

ω ′′ , ω2(ω ′) in period two. That is, let{zω ′
i (y1)}(i,y1)∈I×Y be such that

vω ′
i = vω ′

i (a1
i )+δ ∑

y1∈Y
zω ′
i (y1)πω1(ω ′)(y1,ω2(ω ′)|a1

i ,s−i(ω1(ω ′))) (2)

for all i anda1
i ∈ Ai . The existence of such{zω ′

i (y1)} is guaranteed, because the

profile s(ω1(ω ′)) has pairwise full rank for(ω1(ω ′),ω2(ω ′)) so that the state

moves fromω1(ω ′) to ω2(ω ′) with positive probability regardless of playeri’s

action, and the coefficient matrix of system (2) has full rank. In particular, as in

Lemmas 5.3 and 5.4 of FLM,{zω ′
i (y1)} can be set to lie on a hyperplane orthog-

onal toλ , that is,

∑
i∈I

λiz
ω ′
i (y1) = 0 (3)

for all y1 ∈Y.10

Forω ′ such thatT(ω ′) > 2, we recursively construct{zω ′
i (y1, · · · ,yt)}(i,y1,··· ,yt)

for eacht ∈ {2, · · · ,T(ω ′)−1} as follows. Intuitively,zω ′
i (y1, · · · ,yt) is a bonus

paid to playeri in periodt+1of the return game fromω ′ with constant payment̃vi ,

when the evolution of states is precisely(ωτ(ω ′))t+1
τ=1. Let t ∈ {2, · · · ,T(ω ′)−1}

and{zω ′
i (y1, · · · ,yt−1)} be given. We choose{zω ′

i (y1, · · · ,yt)} in such a way that,

in the return game from stateω ′, giving the bonuszω ′
i (y1, · · · ,yt−1) in periodt is

equivalent to giving the bonuszω ′
i (y1, · · · ,yt) in periodt +1, regardless of player

i’s play in periodt. That is,

zω ′
i (y1, · · · ,yt−1) = δ ∑

yt∈Y

zω ′
i (y1, · · · ,yt)πωt(ω ′)(yt ,ω t+1(ω ′)|at

i ,s−i(ω t(ω ′)))

(4)

10Here each row of the coefficient matrixΠ(ω1(ω ′),ω2(ω ′))
(i, j) (s(ω1(ω ′)) may not be a probability

distribution and some rows can have larger norm than others. But since the rows of the matrix are

linearly independent the resulting linear system still has a solution.
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for all i andat
i ∈ Ai . Again, the existence of the{zω ′

i (y1, · · · ,yt)}is guaranteed

because the profiles(ω t(ω ′)) has pairwise full rank for(ω t(ω ′),ω t+1(ω ′)). Also,

{zω ′
i (y1, · · · ,yt)} can be set to lie on a hyperplane orthogonal toλ . That is,

∑
i∈I

λiz
ω ′
i (y1, · · · ,yt) = 0 (5)

for all (y1, · · · ,yt).
By construction, in the return game from stateω ′, giving the bonuszω ′

i (y1)
in period two when the evolution of states follows(ω1(ω ′),ω2(ω ′)) is equiva-

lent to giving the bonuszω ′
i (y1, · · · ,yT(ω ′)−1) in periodT(ω ′) when the evolution

of states follows the sequence~ω(ω ′). Therefore, playeri is indifferent over all

actions in the first period of the return game from stateω ′ with constant pay-

ment ṽi , if players do not deviate froms in periodt > 1 and if playeri receives

zω ′
i (y1, · · · ,yT(ω ′)−1) in periodT(ω ′) when the evolution of states follows the se-

quence~ω(ω ′), with no bonus if the evolution of states does not follow this se-

quence. Indeed, from (2) and (4), we obtain

vω ′
i =vω ′

i (a1
i )

+δ T(ω ′) ∑
(y1,··· ,yT(ω ′)−1)

zω ′
i (y1, · · · ,yT(ω ′)−1)

T(ω ′)−1

∏
t=1

πωt(ω ′)(yt ,ω t+1(ω ′)|at
i ,s−i(ω t(ω ′)))

for all i and (a1
i , · · · ,aT(ω ′)−1

i ) ∈ (Ai)T(ω ′)−1, which implies indifference in the

first period. Note also that the above equality holds for all(a1
i , · · · ,aT(ω ′)−1

i ) ∈
(Ai)T(ω ′)−1, so that playeri’s action in periodt > 1 of the return game does not

affect the expectation ofzω ′
i (y1, · · · ,yT(ω ′)−1). Moreover, from (3) and (5), the

{zω ′
i (y1, · · · ,yT(ω ′)−1)} lie on the hyperplane orthogonal toλ , i.e.,

∑
i∈I

λiz
ω ′
i (y1, · · · ,yT(ω ′)−1) = 0 (6)

for all (y1, · · · ,yT(ω ′)−1).
Now we are in a position to constructw. We constructw in such a way that at

the end of the return game, playeri receives a constant paymentṽi plus a bonus

contingent on the past public history. Specifically, given anyt andω ′, if the state in

periodt is ω ′ and if the evolution of states follows the sequence~ω(ω ′) thereafter,

then playeri receives a bonuszω ′
i (yt , · · · ,yt+T(ω ′)−2) in periodt +T(ω ′)−1 (i.e.,
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when the state reaches the end of the chainωT(ω ′)(ω ′) = ω so that the game

ends). By the definition ofzω ′
i , this return payoff makes playeri indifferent over

all actions in any periodt with any stateω ′. Note that the sequences for two (or

more) different states might overlap; for example, there might beω ′ andω ′′ , ω ′

such that for somet, (ωτ(ω ′))T(ω ′)
τ=t = ~ω(ω ′′). In this case we constructw in such

a way that playeri receives bothzω ′
i andzω ′′

i simultaneously if the recent evolution

of states is~ω(ω ′).
The formal specification ofw is as follows. For each historyht =(ωτ ,yτ)t

τ=1∈
H̃ω,t , let Ω(ht) be the set of allω ′ ∈Ω such that the sequence of states for the last

T(ω ′)−1 periods is identical to(ω1(ω ′), · · · ,ωT(ω ′)−1(ω ′)), i.e.,Ω(ht) is the set

of all ω ′ ∈Ω such that(ω t−T(ω ′)+2, · · · ,ω t) = (ω1(ω ′), · · · ,ωT(ω ′)−1(ω ′)). Note

that if the history up to periodt is ht and the state returns toω in periodt +1, then

the recent evolution of states is exactly the sequence~ω(ω ′) for eachω ′ ∈ Ω(ht).
Thus we payzω ′

i (yt−T(ω ′)+2, · · · ,yt) to playeri after such a history. Specifically,

we set

wi(ht) = ṽi + ∑
ω ′∈Ω(ht)

zω ′
i (yt−T(ω ′)+2, · · · ,yt).

That is, the continuation payoffwi(ht) when the public history up to periodt is ht

and the state returns toω in periodt +1 is a sum of the constant paymentvω
i (δ ,s)

and the bonuseszω ′
i (yt−T(ω ′)+2, · · · ,yt) for all ω ′ such that the recent evolution of

states is exactly~ω(ω ′).
Thisw enforces(s,v) because it makes each player exactly indifferent between

all actions, and it yields payoffv, by construction. (Recall thatṽi is chosen so that

vω
i = vi .) Therefore clause (i) follows, and it remains to show clauses (ii) and (iii).

To simplify the notation, let

xω ′
=

∞

∑
τ=1

∑
hτ∈H̃ω,τ

δ τ Pr(hτ ,ω|s,ω ′)

and

xω ′
i = gω ′

i (s(ω ′))+
∞

∑
τ=1

∑
h̃τ∈H̃ω,τ

∑
ω ′′,ω

δ τ Pr(h̃τ ,ω ′′|s,ω ′)gω ′′
i (s(ω ′′)).

Note that playeri’s payoff in the original stochastic game from stateω is vω
i (δ ,s),

if players plays. Also, sinces is Markov, playeri’s payoff in the continuation

game such that the current state isω is vω
i (δ ,s) as well. Therefore playeri’s
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payoff when players plays in the return game from stateω with constant payment

vω
i (δ ,s) is equal tovω

i (δ ,s); that is,

vω
i (δ ,s) = (1−δ )xω

i +xωvω
i (δ ,s).

Arranging,

vω
i (δ ,s) =

(1−δ )xω
i

1−xω . (7)

Recall thatṽi = vi−(1−δ )xω
i

xω . Plugging (7) to this, we have

ṽi = vi− 1−xω

xω (vω
i (δ ,s)−vi) (8)

for all i ∈ I so that

λ · ṽ = λ ·v− 1−xω

xω (λ ·vω(δ ,s)−λ ·v).

Then it follows from (6) that

λ ·w(ht) = λ ·v− 1−xω

xω (λ ·vω(δ ,s)−λ ·v)

for all t andht . Since0 < xω < δ , we have1−xω

xω > 1−δ for anyδ . Then for any

δ andv, λ ·w(ht)≤ λ ·v− (1−δ )(λ ·vω(δ ,s)−λ ·v). This proves clause (ii).

Next we prove (iii). Lettingpi be as in Lemma 1, it follows that if players−i

play the strategys, then given any periodt, the state reachesω within |Ω| periods

with at least probabilitypi . Therefore,

1−xω ′
= 1−

∞

∑
τ=1

∑
hτ∈H̃ω ,τ

δ τ Pr(hτ ,ω|s,ω ′)

≤ 1−
∞

∑
τ=1

δ τ|Ω|(1− pi)τ−1pi

= 1− piδ |Ω|

1−δ |Ω|(1− pi)

=
1−δ |Ω|

1−δ |Ω|(1− pi)

≤ (1−δ )
|Ω|
pi
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so that1−xω ′
is of order(1−δ ). Also, lettingg∗i = maxω ′∈Ω maxa∈A |gω ′

i (a)|, we

have

|xω ′
i | ≤ |gω ′

i (s(ω ′))|+
∞

∑
τ=1

∑
h̃τ∈H̃ω ,τ

∑
ω ′′,ω

δ τ Pr(h̃τ ,ω ′′|s,ω ′)
∣∣∣gω ′′

i (s(ω ′′))
∣∣∣

≤
∞

∑
τ=0

(1− pi)τ |Ω|g∗i =
|Ω|g∗i

pi

so that(1−δ )xω ′
i is of order(1−δ ).

Sincevω ′
i = (1− δ )xω ′

i + xω ′
ṽi and both(1− δ )xω ′

i and1− xω ′
are of order

(1− δ ), it follows thatvω ′
i − ṽi is of order(1− δ ). Likewise, one can check that

vω ′
i (ai)− ṽi is of order(1−δ ) for all ai ∈ Ai . Then without loss of generality we

can letzω ′
i (y1) be of order(1− δ ). (This follows from the fact thatvω ′

i − vω ′
i (ai)

is of order(1− δ ) and that the coefficient matrix corresponding to (2) and (3) is

independent ofδ . If the coefficient matrix has many more columns than rows,

then there are infinitely many solutions, but we can still selectzω ′
i (y1) so that it is

of order(1− δ ).) Similarly, we can letzω ′
i (y1, · · · ,yt) be of order(1− δ ). Thus

there isK > 0 such that∑i∈I |∑ω ′∈Ω(ht) zω ′
i (yt−T(ω ′)+2, · · · ,yt)| < K(1− δ ) for

any t andht . Also, since1− xω is of order(1− δ ), given anyδ ∈ (0,1), there

is κ > 0 such that1−xω

xω < (1− δ )κ for anyδ ∈ (δ ,1). Then it follows from (8)

that |ṽ−v| < (1− δ )κ|vω(δ ,s)−v| for anyδ ∈ (δ ,1) andv. This proves clause

(iii). Q.E.D.

A.4 Proof of Lemma 6

Lemma 6. For each initial stateω, Markov strategys−i ∈ SIFR
−i (i), andδ ∈ (0,1),

there isκ > 0 such that for each directionλ such thatλi , 0 and λ j = 0 for all

j , i, there isK > 0 such that for eachδ ∈ (δ ,1) and for eachv∈ RI such that

λivi ≤ λi maxs′i v
ω
i (δ ,s′i ,s−i), there is playeri’s pure Markov strategysi andw such

that

(i) (s,v) is enforced byw for δ at ω,

(ii) λiwi(ht) is independent oft andht andλiwi(ht)≤ λivi−(1−δ )λi(maxs′i v
ω
i (δ ,s′i ,s−i)−

vi), and

(iii) |v−w(ht)|< (1−δ )(κ|vω(δ ,s)−v|+K) for eacht andht .
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Proof. Fix s−i ∈ SIFR
−i (i), λ , δ , andv. we findsi andw(ht) satisfying the desired

conditions.

We first specifysi . Given any Markov strategys′i , let

ṽi(s′i)=

vi− (1−δ )

[
gω

i (s′i(ω),s−i(ω))
+∑∞

τ=1∑h̃τ∈H̃ω,τ ∑ω ′′,ω δ τ Pr(h̃τ ,ω ′′|s′i ,s−i ,ω)gω ′′
i (s′i(ω ′′),s−i(ω ′′))

]

∑∞
τ=1∑hτ∈H̃ω,τ δ τ Pr(hτ ,ω|s′i ,s−i ,ω)

.

That is, ṽi(s′i) is chosen in such a way thatvi is achieved as playeri’s payoff in

the return game fromω to ω when players play(s′i ,s−i) and playeri receives the

constant payment̃vi(s′i) at the end of the return game. LetF(si) be the set of

player i’s optimal Markov strategies againsts−i in the return game from stateω
with constant payment̃vi(si). The correspondenceF is non-empty-valued, convex

valued, and has closed graph, so by Kakutani’s fixed point theorem, there iss̃i such

thats̃i ∈ F(s̃i). We denotẽvi(s̃i) by ṽi , and letsi be playeri’s pure Markov strategy

such thatsi is a best reply againsts−i in the return game with constant paymentṽi .

By construction, playeri’s payoff in the return game from stateω with constant

paymentṽi is vi , if players plays.

Next we constructw. For eachj , i, let ṽ j , vω ′
j , andvω ′

j (a j) be as in the proof

of Lemma 5. Sinces−i ∈ SIFR
−i (δ ), for eachω ′ there is an integerT(ω ′) > 0 and a

sequence(ω t(ω ′))T
t=1 of states such thatω1(ω ′) = ω ′, ωT(ω ′) = ω, and for each

t < T(ω ′), the profiles(ω t−1(ω ′)) has individual full rank for(ω t−1(ω ′),ω t(ω ′))
and for all j , i. Then as in the proof of Lemma 5, there are{zω ′

j (y1, · · · ,yT(ω ′)−1)}
such that

vω ′
j = vω ′

i (a1
j )+δ T(ω ′) ∑

(y1,··· ,yT(ω ′)−1)

zω ′
j (y1, · · · ,yT(ω ′)−1)

T(ω ′)−1

∏
t=1

πωt(ω ′)(yt ,ω t+1(ω ′)|at
j ,s− j(ω t(ω ′)))

for all j , i and(a1
j , · · · ,aT(ω ′)−1

j ). Let zω ′
i (y1, · · · ,yT(ω ′)−1) = 0. For each history

ht , let Ω(ht) be the set of allω ′ ∈ Ω such that the sequence of states for the last

T(ω ′)−1 periods is identical to(ω1(ω ′), · · · ,ωT(ω ′)−1(ω ′)). Then let

w j(ht) = ṽ j + ∑
ω ′∈Ω(ht)

zω ′
j (yt−T(ω ′)+2, · · · ,yt)

for eachj ∈ I .
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Now we show that the above(s,w) satisfies all the desired conditions. As in

the proof of Lemma 5, playerj , i is indifferent over all actions in every period so

that his incentive compatibility is satisfied. Also, playeri’s incentive compatibility

is satisfied as well, becausesi is defined to be a best reply in the return game. In

addition,v is generated using(s,w), asṽ is chosen in such a way that the payoff

of the return game isv. Therefore, clause (i) follows.

Let s∗i be a Markov strategy such thats∗i ∈maxs′i w
ω
i (δ ,s′i ,s−i). Let

x∗ =
∞

∑
τ=1

∑
hτ∈H̃ω,τ

δ τ Pr(hτ ,ω|s∗i ,s−i ,ω)

and

x∗i = gω ′
i (s∗i (ω),s−i(ω))+

∞

∑
τ=1

∑
h̃τ∈H̃ω,τ

∑
ω ′′,ω

δ τ Pr(h̃τ ,ω ′′|s∗i ,s−i ,ω)gω ′′
i (s∗i (ω ′′),s−i(ω ′′)).

Note that playeri’s payoff in the return game from stateω with constant payment

vω
i (δ ,s∗i ,s−i) is equal tovω

i (δ ,s) when players play(s∗i ,s−i); that is,

vω
i (δ ,s∗i ,s−i) = (1−δ )x∗i +x∗vω

i (δ ,s∗i ,s−i).

Arranging,

vω
i (δ ,s∗i ,s−i) =

(1−δ )x∗i
1−x∗

. (9)

Recall that playingsi is optimal in the return game from stateω with constant

paymentṽi , and its payoff isvi . Therefore playings∗i can yield at mostvi in this

return game, i.e.,

vi ≥ (1−δ )x∗i +x∗ṽi .

Plugging (9) to this,

ṽi ≤ vi− 1−x∗

x∗
(vω

i (δ ,s∗i ,s−i)−vi).

Then forλi > 0,

λiwi(ht) = λi ṽi ≤ λivi− 1−x∗

x∗
λi(vω

i (δ ,s∗i ,s−i)−vi).

Also, lettingxω be as in the proof of Lemma 5, we have (8) so that forλi < 0,

λiwi(ht)= λi ṽi = λivi− 1−xω

xω λi(vω
i (δ ,s)−vi)≤ λivi− 1−xω

xω λi(vω
i (δ ,s∗i ,s−i)−vi).
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Then clause (ii) follows for either case, since0 < x∗ < δ and0 < xω < δ . Also,

clause (iii) follows as in the proof of Lemma 5. Note in particular that we can

chooseκ andK independently of the specification ofsi , as the number of player

i’s pure Markov strategies is finite. Q.E.D.

A.5 Proof of Lemma 7

Lemma 7. Suppose that (IFR) and (PFR) hold. Then for any initial stateω ∈ Ω
and for any smooth subsetW of the interior ofV∗, there areε > 0 andδ ∈ (0,1)
such that the following properties hold:

(a) There is a finite set of Markov strategy profiles{s1, · · · ,sN} such thatsn ∈
SPFR for all n, and for everyδ ∈ (δ ,1) and for every regularλ ∈Λ, maxn∈{1,··· ,N}λ ·
vn > maxv∈W λ ·v+ ε, wherevn = vω(δ ,sn).

(b) For eachi ∈ I and for eachλ such that|λi |= 1 andλ j = 0 for all j , i, there

is s−i ∈ SIFR
−i (i) such that for everyδ ∈ (δ ,1), there is playeri’s Markov

strategysi such thats= (si ,s−i) ∈ SIFR(δ , i) andλ ·v > maxv′∈W λ ·v′+ ε,

wherev = vω(δ ,s).

Proof. SinceW is in the interior ofV∗, there isε > 0 such thatmaxv∈V∗ λ · v >

maxv∈W λ ·v+6ε for all λ ∈ Λ. In what follows, we consider a fixed initial state

ω.

Part (a). Let{ṽ1, · · · , ṽN} be the finite set of all extreme points of the feasible

setV. As Dutta (1995) shows, each extreme point ofV is attainable by a pure

Markov strategy profile in the no-discounting case. Let{s̃1, · · · , s̃N} be the set

of pure Markov strategy profiles that achieve these extreme points. Then from

Lemma 3, there is a nearby Markov strategy profilesn such thatsn ∈ SPFR and

λ ·vn is within ε of λ · ṽn for sufficiently largeδ , wherevn = vω(δ ,sn). (The latter

condition holds from Abel’s theorem: the limit payoff of a Markov strategy profile

is equal to its time-average payoff. See also (A.2) of Dutta (1995).) This proves

part (a).

Part (b). We first prove the following claim: There isδ ∈ (0,1) such that for

any δ ∈ (δ ,1), for any i ∈ I , and for any Markov strategy profiles, |vω
i (δ ,s)−

limδ→1vω
i (δ ,s)| < ε. The key here is thatδ ∈ (0,1) is cohesions independently
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of i ands. To prove the claim, note first that for a given pure Markov strategy

profile s, there isδ ∈ (0,1) such that|vω
i (δ ,s)− limδ ′→1vω

i (δ ′,s)| < ε for any

i ∈ I andδ ∈ (δ ,1). Since the action space and the state space are finite, it follows

that there isδ ∈ (0,1) such that|vω
i (δ ,s)− limδ ′→1vω

i (δ ′,s)| < ε for any i ∈ I ,

for any δ ∈ (δ ,1), for any pure Markov strategy profiles. One can check that

this inequality remains true even for a mixed Markov strategy profiles, since the

payoff from a mixed Markov strategy profile is a convex combination of those

from pure Markov strategy profiles. This shows the claim. In what follows, letδ
be as in the claim.

Considerλ such thatλi = 1 andλ j = 0 for all j , i. Given aδ , let s(δ ) be a

strategy profile that gives the highest discounted average payoff to playeri when

the initial state isω. Without loss of generality we assume thats(δ ) is pure and

Markov for all δ . It is easy to see that forδ sufficiently close to one, playeri’s

discounted average payoff froms(δ ) is within ε of his highest payoff of the limit

feasible setV. This, together with the above claim, shows that there isδ ∗ ∈ (δ ,1)
such that for everyδ ∈ (δ ∗,1),

∣∣∣∣vω
i (δ ,s(δ ∗))−max

v′∈V
λ ·v′

∣∣∣∣ < 2ε. (10)

Choose suchδ ∗ and lets∗ denotes(δ ∗). For eachδ ∈ (δ ∗,1), let sδ
i be playeri’s

pure Markov strategy that is optimal againsts∗−i for δ . We will show that for each

δ ∈ (δ ∗,1), the profile(sδ
i ,s∗−i) satisfies the desired properties.

Sinces∗ gives the highest payoff to playeri for δ ∗, we havevω
i (δ ∗,s∗) ≥

vω
i (δ ∗,sδ

i ,s∗−i). Likewise, sincesδ
i is a best reply forδ , we havevω

i (δ ,s∗) ≤
vω

i (δ ,sδ
i ,s∗−i). Also, from the above claim, we obtain|vω

i (δ ∗,s∗)−vω
i (δ ,s∗)|< 2ε

and|vω
i (δ ∗,sδ

i ,s∗−i)−vω
i (δ ,sδ

i ,s∗−i)|< 2ε for everyδ ∈ (δ ∗,1). These inequalities

yield |vω
i (δ ∗,s∗)−vω

i (δ ,sδ
i ,s∗−i)|< 2ε. Plugging this into (10), it follows that

∣∣∣∣vω
i (δ ,sδ

i ,s∗−i)−max
v′∈V

λ ·v′
∣∣∣∣ < 4ε

for everyδ ∈ (δ ∗,1). Sincemaxv∈V λ ·v > maxv∈V∗ λ ·v > maxv∈W λ ·v+6ε, it

follows thatλ ·vω(δ ,sδ
i ,s∗−i) > maxv∈W λ ·v+ ε, as desired. Also, by definition,

(sδ
i ,s∗−i) ∈ SIFR(δ , i).

Next we considerλ such thatλi =−1 andλ j = 0 for all j , i. Lemma 4 says

that for anyδ , there is a Markov strategy profiles(δ ) such thats(δ ) ∈ SIFR(δ , i)
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and playeri’s payoff is withinε of vi(δ ). Sincevi(δ ) approximatesmaxv′∈V∗ λ ·v′
asδ goes to one, the above claim implies that there isδ ∗ ∈ (δ ,1) such that for

everyδ ∈ (δ ∗,1),
∣∣∣∣vω

i (δ ,s(δ ∗))−max
v′∈V∗

λ ·v′
∣∣∣∣ < 3ε.

Choose suchδ ∗, and lets∗ denotes(δ ∗). For eachδ ∈ (δ ∗,1), let sδ
i be player

i’s pure Markov strategy that is optimal againsts∗−i for δ . Then as in the previous

case, we can show that this(sδ
i ,s∗−i) satisfies the desired properties. Q.E.D.

References

Abreu, D., D. Pearce, and E. Stacchetti (1990): “Toward a Theory of Discounted

Repeated Games with Imperfect Monitoring,”Econometrica58, 1041-1063.

Athey, S., and K. Bagwell (2008): “Collusion with Persistent Cost Shocks,”

Econometrica76,493-540.

Besanko, D., U. Doraszelski, Y. Kryukov, and M. Satterthwaite (2008): “Learning

by Doing, Organizational Forgetting, and Industry Dynamics,” forthcoming in

Econometrica.

Bewley, T., and E. Kohlberg (1976): “The Asymptotic Theory of Stochastic

Games,”Mathematics of Operations Research1, 200-208.

Dutta, P. (1995): “A Folk Theorem for Stochastic Games,”Journal of Economic

Theory66, 1-32.

Ellison, G. (1994): “Theories of Cartel Stability and the Joint Executive Commit-

tee,” RAND Journal of Economics25, 37-57.

Escobar, J., and J. Toikka (2009) “A Folk Theorem with Markovian Private Infor-

mation,” mimeo.

Fudenberg, D., and D.K. Levine (1994): “Efficiency and Observability in Games

with Long-Run and Short-Run Players,”Journal of Economic Theory62, 103-

135.

30



Fudenberg, D., D.K. Levine, and E. Maskin (1994): “The Folk Theorem with

Imperfect Public Information,”Econometrica62, 997-1040.

Fudenberg. D., and J. Tirole (1991):Game Theory, MIT Press, Cambridge, MA.

Hörner, J., and W. Olszewski (2009): “How Robust is the Folk Theorem?”Quar-

terly Journal of Economics124, 1773-1814.

Hörner, J., T. Sugaya, S. Takahashi, and N. Vieille (2009): “Recursive Methods in

Discounted Stochastic Games: an Algorithm forδ → 1 and a Folk Theorem,”

mimeo.

Kandori, M., and H. Matsushima (1998): “Private Observation, Communication

and Collusion,”Econometrica66, 627-652.

Mertens, J.F., and A. Neyman (1981): “Stochastic Games,”International Journal

of Game Theory10, 53-66.

Rotemberg, J., and G. Saloner (1986): “A Supergame-Theoretic Model of Price

Wars during Booms,”American Economic Review76, 390-407.

Shapley, L. (1953): “Stochastic Games,”Proceedings of the National Academy

of Sciences of the United States of America39, 1095-1100.

Sobel, M. (1971): “Noncooperative Stochastic Games,”The Annals of Mathe-

matical Statistics42, 1930-1935.

31


