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Abstract

Inanirreducible stochastic game, no single player can prevent the stochas-
tic process on states from being irreducible, so the other players can ensure
that the current state has little effect on events in the distant future. This pa-
per introduces stochastic games with imperfect public signals, and provides
a sufficient condition for the folk theorem when the game is irreducible, thus
generalizing the folk theorems of Dutta (1995) and Fudenberg, Levine, and
Maskin (1994). To prove this theorem, the paper extends the concept of
self-generation (Abreu, Pearce, and Stachetti (1990)) to “return generation,”
which explicitly tracks actions and incentives until the next time the state
returns to its current value, and asks that players not wish to deviate given
the way their continuation payoffs from the time of this return depend on the
public signals that have been observed.
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1 Introduction

Most social and economic interactions occur repeatedly, and the fact that agents
can condition their current play on information about past outcomes makes it pos-
sible to support outcomes that are not equilibria of one-shot interactions. In par-
ticular, the folk theorems for discounted repeated games show, roughly speaking,
that any feasible individually rational payoffs can be generated by an equilibrium
if the players are sufficiently patient. These theorems hold both in the classic
observed-actions case and also when players receive imperfect public signals of
one another’s actions.

Stochastic games (Shapley (1953)) generalize repeated games with observed
actions by allowing each period’s payoff functions to depend on a state variable
whose evolution can be influenced by the players’ actions; the state variable can
capture intertemporal links such as technological innovations, persistent demand
shocks, savings, and capital stocks. When there is an irreversible component to
the evolution of the state, single deviations can have permanent effects on the
sets of feasible and individually rational payoffs, and the structure of stochastic-
game equilibria can be very different than that of repeated games. Conversely,
if no single player can make the stochastic process irreversible- that is, when the
other players have a strategy that makes the process irreducible- then the feasible,
individually rational discounted average payoffs converge to a limit that is inde-
pendent of the current state as the discount factor converdgesRDutta (1995)
establishes a folk theorem for these irreducible stochastic games.

This paper introduces the class of stochastic games with imperfect public mon-
itoring, where players observe the state and public signal that is related to the
actions played, and shows that when the game is irreducible the folk theorem ap-
plies. Our proof is based on the extension of self-generation (Abreu, Pearce, and
Stachetti (1990, hereafter APS)) to “return-generation,” and on extensions of the
full-rank conditions of Fudenberg, Levine, and Maskin (1994, hereafter FLM).
The idea of return-generation is to explicitly track actions and incentives until the
next time the state returns to its current value, and then use the recursive structure
of the game to relate the equilibrium payoff in the current state to the equilibrium
continuation payoff when the current state next occurs, which will be a function
of the public signals that are observed. In our proof of the folk theorem, we



construct a return-generating set of “Markov review strategies”: The idea is that
players condition their actions only on the state, and not on the signals of each
other’s actions, until the first time the state returns to its initial position, and that
the incentive to conform to the specified Markov strategies is provided by the con-
tinuation payoffs from the time the state returns, which typically will depend on
the history of both states and public signals during this “review phase.”

Horner, Sugaya, Takahashi, and Vieille (2009) independently developed a dif-
ferent proof of the folk theorem for irreducible stochastic games. They first pro-
vide a linear programming characterization of the limit equilibrium payoffs by
using an extension of self-generation that tracks actions and incentives for the
nextT periods, regardless of the realization of the state, instead of using return-
generation. They then use somewhat weaker full-rank conditions to conclude that
the solution of the linear programming problems implies the folk theorem. Be-
cause we do not provide a characterization of payoffs when the folk theorem fails,
our proof more clearly highlights the link between the folk theorem in stochastic
games and the folk theorem of FLM. We also fill in the details needed to adapt
FLM'’s approach to account for the fact that “convex monotonicity” fails, as we
explain in Remark 6.

2 Stochastic Games and Perfect Public Equilibria

Let | ={1,---,1} be the set of players. At the beginning of the game, Nature
chooses the state of the word! from a finite setQ. The state may change as
time passes; lab! € Q denote the state in peridd

In each period, players observe the stai¢ € Q, and then move simultane-
ously, with playet € | choosing an actiog; from a finite sety.! Given an action
profilea= (a)ic; € A= xic| A, players observe a public signélfrom a finite set
Y and the state in periadt 1 is determined. Leti(y, «/|a) denote the probabil-
ity that players observe a signaand and the state for the next perioddswhen
today’s state iso and players play action profike (Note that the distributions of
andw’ may be correlated.) Playés realized payoff isi”(a;,y), so her expected

IFor notational convenience, we assume faloes not depend ow. But with no difficulty
our results extend to the case whéraelepends orw.
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payoff conditional orw andais g*(a) = ¥ yyeo Syey (Y, |@)uP(a,y); g¥(a)
denotes the vector of expected payoffs associated with action paofile

In the infinitely repeated game, players have a common discount factor
(0,1). Let (w',&],y") be the state, playels pure action, and observed signal in
period 1, and denote playsis private history at the end of peridd> 1 by h! =
(w',af,y")t_,. Leth? =0, and for each > 1, letH be the set of ali. Likewise,
a public history up to perioti> 1 is denoted byt = (w",y")!_,, andH' denotes
the set of alht. A strategy for player is a mappings : Ui~ oH! x Q — AA;: Here
s(ht, w) denotes playeits action for period + 1 if the history through periotlis
h' and the state for periddt 1 is w. LetS be the set of all strategies for playier
and letS= xi¢|S. Letv®(9,s) denote player’s average payoff in the stochastic
game when the initial state ¢s, the discount factor i8, and players play strategy
profiles. Letv®(d,s) = (v*(3,9))ic-

Remark 1. The state has to encode any and all history-dependent variation in
payoffs and signal structure, which puts some constraints on how small the state
space can be. However, becaysadw are both public information, a stochastic
game with state spa€e and signal space is equivalent to a stochastic game with
larger state spac®* =Y x Q and a null signal space. In this latter case payoffs
and state transitions are the same for states: (y, w) € Q* and®* = (¥, @) € Q*

if w= &. However, when we restrict attention to irreducible games, we will see
that the game may be irreducible @nbut not onQ*. For example when actions

are observableY(~ A) transitions orQ* are not irreducible but transitions @h

may be. Roughly speaking we would like the state space to be as small as possible,
as in this representation our assumptions are most likely to be satisfied.

This paper studies a special class of Nash equilibria cakefict public equi-
libria or PPE The notion of PPE was introduced by FLM for repeated games with
public monitoring. This paper extends their definition to stochastic games.

Definition 1. A strategys € S is publicif it depends only on public information,
ie.,s(h, wth) =g (R, @) forallt > 1, Hf = (w7, &, y')t_,, At = (&7, &,9)L_,,
W', and @' satisfyingw” = @ forall T <t+1andy’ =y  forall T <t. A
strategy profiles € Sis public if 5 is public for alli € I. A public strategy is
Markovif it depends only on the current state, ig(hf, w!*1) = s(ht, @*1) for
allt > 1, h, i, w1, and@?! satisfyingaw' 1 = @!+L.
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Given a public strategy profilec S, let 5+ denote its continuation strategy
profile after public historjt € H!, and lets| ¢ o1+1) denote the continuation strat-
egy profile given(ht, 1) e H! x Q.

Definition 2. A public strategy profilesis aperfect public equilibriunor PPE if
for every(ht, w) € H! x Q the profiles| 1 . is @ Nash equilibrium of the infinite-
horizon stochastic game with initial stade A PPE isMarkov-perfectf it uses
Markov strategies.

It is a best response for each player to ignore the public signal and play a
Markov strategy if all of the other players do. Since a Markov-perfect equilibrium
exists (Sobel (1971)) there is always a PPE where all players ignore the signal.

Given a discount factod € (0,1), let E“(J) denote the set of PPE payoffs
with initial statecw, i.e.,E®(d) is the set of all vectors = (vj)ic; € R' such that
there is a PPE € Ssatisfying

s,wlzw] =V

1-8)E | o 1g¥ (a
( )L; g’ (@)

foralliel.

In repeated games, the set of all PPE payoffs at timeincides with that
at timet + 1; this recursive structure is what permits the application of dynamic
programming ideas as in the self-generation results of APS. In a stochastic game,
the set of PPE payoffs conditional on the state has a recursive structure, which
will allow us to apply a modified version of self-generatfonSelf-generation
is based on the decomposition of the set of equilibrium payoffs into the sum of
current period payoffs and continuation equilibrium payoffs from the next period
on. To develop an analog of this decomposition for stochastic games, we instead
decompose the payoffs into the sum of payoffs until the state returns to its current
value and continuation payoffs from the time of this return.

To simplify the notation, lePr(ht, w/|s, w) be the probability under profile
s that thet-period public history it and w't! = «’ given that the initial state
is w. (Note thatPr(ht, o/|s,w) = 0 for all h = (w",y")!_; such thatw! # w.)

2Just as in repeated games with imperfectly observed actions, the set of all Nash or sequential
equilibria need not have a recursive structure; see Fudenberg, Levine, and Maskin (1994, hereafter
FLM) or Exercise 5.10 of Fudenberg and Tirole (1991).
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Also, for eacht > 1 and w, let H®! be the set of alt-period public histories
ht = (w",y")!_; such that the state does not reastafter period two. (That is,

w' #wforl<1<t.) LetH®' =HOfort = 0. Let S° denote the set of all public
strategy profiles.

Definition 3. ForW C R, a pair(s,v) € S” x R' of a public strategy profile and
a payoff vector ienforceable with respect t® andW from statew if there is a
functionw = (W)i¢| : Ui~, H! — W such that

=(1- 5)[ +Z gﬂ’f 'l w)g” (s(h', ))]
hteHw!

Jrzl > &' Pr(ht, wls, w)w;(ht)
hteHw!

foralliel, and

(1—5)[ (Slrt(h Z Z 6TPrhT @[Sl @) g™ (sl (AT, w ”))]
T=1frch®
+§ ) 5’Pr(ﬁr,w|s|ht,w’)wi((ht,ﬁr))
Sl dfor
2(1—5)[ (EM +z mzafprhf RAUEINNA >f“”<sf|ht<ﬁf,w">>]
=1 éfor

+ Z Z o° Pr(ﬁraw|§‘ht7w/)wi((htaﬁr))
T=1hreHor
forallie |, foralls € Ssuch thas ; = s_j, for all (t,w’) such that (i = 0 and
W =wor (i)t >1andw # w, and for allh € H®! such thatw! = w. We say
(s,v) € S" x R is enforced byw for & at w if the above conditions are satisfied.

Here the functiorw specifies the continuation payoffs from the time the state
returns tow. The equality condition says that using the specified strategy will
yield the target payoff, provided that the continuation payoffs from the return
time onwards are as specified oy The inequality condition is the incentive
compatibility at states that are reached before the retusmdote that in games
with a single state, this definition of enforceability reduces to that of APS.

3To see this, suppose that the history up to petiistht , w!*t! = «/, and consider the contin-
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For each(d,W,s), let B®(8,W,s) denote the set of all payoff vectovse R!
such that(s,v) is enforceable with respect dandW from w. Let B®(d,W) be
the union ofB“(5,W, s) over alls.

The first theorem notes that the equilibrium payoff B&{(d) is a fixed point
of the operatoBY; it is the analog of the “factorization” theorem in APS.

Theorem 1. Foranyw € Q andd € (0,1), E®(d) = B¥(5,E®(9)).

Proof. We first proveE®(d) C B¥(5,E®(d)). Letve E®(J). Then there is a
PPEs with payoff v for initial state isw. Sincesis a PPE, nobody wants to
deviate until the state returnsda Also, the continuation play after returning is a
PPE. Therefore € B®(5,E“(9)), so thatE®(d) C B¥(5,E®(9)).

To prove the converse, we construct a PPE with payaffB®(5,E®(9)).
Let s andw be such thats,v) is enforced byw andw(h') € E(8). Consider a
strategy profile such that players folleswntil the state returns ta, and once
the state returns to after t-period play then players play a PPE with payoff
w(ht) thereafter. It is easy to check that this strategy profile is a PPE with payoff
V. Q.E.D.

The next theorem asserts that if a bounded/$es$ “return-generating” then
W is in the equilibrium payoff set. Note that it reduces to APS’s self-generation
theorem if there is only a single state.

Definition 4. A subseW of R' is return-generating with respect i and initial
statew if W C B®(5,W).

uation game from such that the game ends when the state reach&h’, w'|s|it, w') denotes

the probability that the history in the firstperiods of this continuation gameﬁé € H®T (so that

the state does not return teduring these periods) and the state in periedl is "’ # w. Also,

the stage game payoff after such a hist¢hy, w”) (i.e., the stage game payoff in tife -+ 1)st

period of the continuation game) gs)”. Thus the first term of left-hand side denotes the expec-
tation of the discounted sum of the stage game payoffs in this continuation game. On the other
hand,Pr(h’, w|s|it, @) denotes the probability that the history in the firgteriods of the contin-
uation game i$i" € H®T and the state returns to in period T -+ 1, andw;((h', 7)) denotes the
continuation payoff after such a history. Thus the second term of the left-hand side denotes the
expectation of the continuation payoffs Overall, the left-hand side is playés payoff in the
continuation game corresponding(td, ). Likewise, the right-hand side is playis payoff of

the continuation game when he deviatesto



Theorem 2. If a subseW of R is bounded and return-generating with respect to
0 and w thenW C E®(9).

Proof. As in APS, we first construct a candidate strategy profile, and then note
that it has the specified payoffs and satisfies the no-one-stage-deviations test. In
APS the definition of self-generation is used to find new actions in every period.
Here the fact thatV is return-generated fap implies that forv € W there is an
associated repeated game stratggshe construction of the overall equilibrium
specifies that players conform santil the state returns tw. Q.E.D.

Remark 2. It follows from Theorems 1 and 2 that the equilibrium payoff set
E®(d) for a givend is the largest fixed point of the opera®?f. Note that these
theorems do not assume the game is irreducible. Note also that they are vacuously
true at stateso that are transient regardless of play.

Remark 3. Horner, Sugaya, Takahashi, and Vieille (2009) useperiod gener-
ation,” which looksT periods ahead instead of looking to the time of first return.
In irreducible games, this property is sufficient for characterizing the equilibrium
payoff set in the limit a® goes to one. However, for a fixed discount factor, the
set of equilibrium payoffs need not be a fixed point of tHegeriod generation”
operator.

Remark 4. Our proof of the folk theorem will use “Markov return generation,”
meaning that the constructed strategies starting\aill be Markov until the state
returns tow. This restricted form of return generation is more tractable but does
not have the factorization property.

3 The Folk Theorem in Irreducible Stochastic Games

3.1 Irreducible Stochastic Games

In general, stochastic games can be very different than infinitely repeated games,
as shown by the fact that any static game can be viewed as the first period of a
stochastic game with two states, one of which is absorbing. More generally, the
irreversibility created by absorbing states can support various sorts of backwards
induction arguments with no real analog in the infinitely repeated setting. For
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the rest of this paper we will restrict attention to irreducible stochastic games;
this restriction rules out absorbing states and more strongly implies that no single
player can prevent some state from being reached.

Definition 5. A stochastic game isreducible despite playerif for each pair of
states(w, w') € Q x Q, there is aT > 0 and a sequenc@w!,---, ") of states
such thatw! = w, w' = «’, and for each < T, there is a profilex such that
Yyey e (Y, w”l]a;,a_i) > 0 for all g € A;. The game igrreducibleif it is irre-
ducible despite each player

One trivial case where our irreducibility condition is satisfied is when the state
represents a persistent demand shock whose evolution is independent of the play-
ers’ actions, as in Rotemberg and Saloner (1986) and Ellison (1994). Besanko,
Doraszelski, Kryukov, and Satterthwaite (2008) study an irreducible stochastic
game where the actions do influence the state transitions: In their model the state
is the knowledge or know-how of each firm, and a firm’s state increases stochas-
tically when it makes a sale, and decreases stochastically due to “organizational
forgetting.”

Let V¥(J) be the set of feasible payoffs when the initial stateviand the
discount factor i®; i.e.,V¥(d) = {v¥(d,s), forallse S}. Since the game is
irreducible, the set of feasible payoffs is independent of the initial state in the
limit as & goes to one. (See Dutta (1995).) DNétdenote this limit set, that is,

V =limg_1V?(9).

The minimax payoff to player in a stochastic game with initial state is

defined to be
v°(d) = inf supv’(d,s).

S*iGSLiSES

The limit of the minimax payoff a® — 1 is independent of the initial state from
irreducibility, again as in Dutta (1995). (See also Bewley and Kohlberg (1976)
and Mertens and Neyman (1981).) D\&t denote the limit of the set of feasible
and individually rational payoffs.

The following lemma records an immediate but important consequence of ir-
reducibility: For each player, there is a Markov strategy ; of the opponents
so that for any pair of stategv, ') there is strictly positive probability that the
state reache® from w’ within |Q| periods. When players are sufficiently patient,



this will allow us to provide adequate current incentives with strategies that are
Markov until the state returns to its current position.

Given a Markov strategy profilg let s(w) denote the action profile played by
sin statew.

Lemma 1. If the game is irreducible, then there is a Markov strategy prdfile
such that for each pair of statésv, o), there is an integeT > 0 and a sequence
(wh,---,w") of states such thab! = w, ' = &', andy ey 1 (y, w2 fa,s_i (@) >
Ofor all & € A; andt < T. Moreover for sucls_; there isp; € (0,1) such that for
each pair of state$w, '), the state reache® from «’ within |Q| periods with at
least probabilityp; if players plays' such thats’ ; =s_;.

Proof. One sucls_; is for players—i to randomize with each player using a uni-
form distribution over his actions in each state. Consider any suchnd fix

a pair of stategw, «'), and letT > 0 and (w?,---,w") be such that! = w,
@' = o, andyyey 1 (y, i, s i(wh)) > O for all & € A andt < T. With-
out loss of generality we assuriie< |Q|. The state reaches from «’ within T
periods with at least probability; (w, o), where

pi(w, @) mlnyz (', el s i (o).
1 &EA

Letting pi be the minimum ofp;(w, ') over all (w,«’), the lemma follows.

Q.E.D.

3.2 Full Rank Conditions

As in repeated games with imperfectly observed actions, the key to whether the
folk theorem holds is whether incentives can be provided along "hyperplanes”
that correspond to trading utility between the players at various rates, and this is
possible when the information revealed by the public outcomes permits deviations
by one player to be statistically identified and distinguished from deviations by
others. The following “full rank” conditions are sufficient for this.

For eachi, (w, &), anda, letn““) (a) be a matrix with rowg (', yla, a_i))yey

for all g € A;. Let I‘Igf"j’)‘”l)(a) be the matrix constructed by stacking matrices

I'Ii(w’w)(a) andl‘lgw’“’()(a).



Definition 6. Profile a hasindividual full rank for (i, w, o) if M'““)(a) has
rank equal tdAj|.

Note that this condition implies®(w/'|a;,a_;) > O for all &. It also implies
that each action by playeérneads to a different distribution oyy conditional on
a transition towy (though this need not be true if some other state occurs.) We
will use this in Lemmas 5 and 6 to construct return payoffs that make the player
indifferent between all of his actions.

Definition 7. For each, j, i # j and(w, '), profile a haspairwise full rank for

(i,j) and (w, o) if I'Igi‘"j’)‘“/)(a) has rank equal tpA | + |Aj| — 1.

Pairwise full rank for(w, &' )implies that conditional on a transition fromto
«' deviations by player can be statistically distinguished from deviations jby
It is satisfied for generic distributions on signals provided t¥fats at least{A;| +
|Aj| —1, as in FLM, and that the transition from to w’ has positive probability
regardless of the play ofor j.

Condition IFR. For each(w, ') € Q x Q, there is an integef > 0 and a se-
quence(w?,--- , w") of states such thab' = w, w' = «/, and for each < T,
every pure action profile has individual full rank few', w!*) and every player
i

Condition PFR. For each(w, ') € Q x Q, there is an integef > 0 and a se-
quencegw?, ---,w') of states such thab! = w, w" = «/, and for eactfi, j) and
t < T, there is a profiler! that has pairwise full rank fofew!, w1) and for(i, j).

Note that (IFR) and (PFR) are weaker than assuming that full rank conditions
are satisfied for all pairs of staté®, '), as these conditions require full rank only
for certain(w, w'). Note also that (IFR) applies to all pure action profiles, while
(PFR) only asks that for each pair of players there is at least one profile with the
stronger pairwise full rank property for that pair. These conditions are generically
satisfied if the game is irreducible apd > |A|+|Aj| — 1 for all (i, j) with i # j.4
In particular they are satisfied in irreducible games with observed actions, the
case studied by Dutta (1995), provided that the observations of the actions are

4These conditions could be relaxed along the lines of Kandori and Matsushima (1998).
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represented by the signglas opposed to being embedded in the state. If the
actions are represented as part of the state then both full rank and irreducibility
fail.

3.3 The Folk Theorem

Definition 8. A subseW of R is smoothif it is closed and convex; it has a non-
empty interior; and there is a unique unit normal for each point on the boundary
of W.5

The following theorem is the main result of this paper; it shows that (IFR) and
(PFR) are sufficient for the folk theorem.

Theorem 3. Suppose (IFR) and (PFR) hold. Then, for any smooth sWids#tthe
interior of V*, there isd € (0,1) such thatW C E®(5) for all wandé € (5,1).
Therefore ifV* has dimensio, thenlims_,, E®(d) =V*.

Remark 5. Because the state transitions are irreducible, it might seem natural to
consider strategies that track separate histories for each state, so that play in state
w, depends only on observations from previous periods where the stateywas
This approach works if the state transitions are independent of the actions, and
yields a folk theorem whenever the folk theorem holds in each state considered in
isolation. However, stratification by the state does not work when actions have an
effect on the state transitions, as even in a control problem optimization requires
that the player take into account the way his current action influences tomorrow’s
state and thus tomorrow’s payoffg=or this reason our proof does not stratify the
histories by state but instead works with the game as a whole, keeping track of the
effect of actions on state transitions.

5A sufficient condition for each point on the boundarygfto have a unique unit normal is

that the boundary is @%-submanifold ofR'.
6Suppose for example there are two actiahanda’ and three statesy, wy, andws; (wy, &)

is followed by, and(wy,a”) is followed by ws; both w, andw; are followed byw, regardless

of the action played. In state, & gives payoffl anda” gives payoff0; in statew, payoffs ared
regardless of the action played, while in statepayoffs are identically equal t& State-by-state
optimization leads the player to choagen statecw, but this is not optimal i > % Then even
whend is close tol, equilibrium play for the “statesy; game” need not be consistent with overall
equilibrium, as players will give roughly equal weight to their current period payoff and the payoff
in the next period.
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Remark 6. Much of the proof of this theorem is similar to FLM: We first develop

a local condition -one that applies pointwise to eaehW- for a set to be return-
generating for large discount factors. We then show that the local condition is
satisfied under the full-rank assumptions, basically because they albmthe
boundary oWV to be generated by continuation payoffs that lie on the hyperplanes
tangent towW at v and whose variation is of ordg¢f — o). One key difference

with FLM is that we use return-generation instead of self-generation to show that
various payoff vectors can be supported by equilibrium strategies. The particular
strategies that we show are return-generated have the form of stochastic review
strategies, in the sense that the strategies are Markov (depend only on the state
and not on the sequence of signals) until the state returas’t@he second key
difference is that the local condition, which we call “uniform decomposability,”
is more complicated then the “local self-decomposability” used in FLM’s Lemma
4.2. The reason for this is as follows. In a repeated game, if payoff veasor
generated using a functiomfor somed, thenv is generated by for &’ € (9,1)
where the functionw’ is a convex combination ofs and the constant function

v. In particular, ifv and all continuation payoffs specified layare chosen from

a convex seW, then the continuation payoffs specified Wyare inW as well.
Using this monotonicity result, FLM show that fa¥ to be self-generating for
sufficiently larged, it is sufficient thatV is “locally decomposable.” In stochastic
games this monotonicity result fails because for any fixethe payoff to a given
strategy depends on the initial stéte.

"More specifically, in order to generate a target payoff, we let players follow a Markov strategy
profile until the state returns t@, and we choose the continuation payoffs when the state returns
to w in such a way that no player wants to deviate. This construction requires that a player’s
deviation be statistically distinguished from a distribution of a public sigraven that the state
tomorrow isw. This is the reason why we need full-rank conditions for a distributiongi¥en a
state transition.

8For example, suppose there is one player and two stateand w,. The state transitions
follow a cycle regardless of the actions playea; is followed by w, andw; is followed by .

The player has a single action (so the incentive constraint is vacuous) and his payofiatecw,
andO in statew,. Ford’ = % the average payoff during the first two periodsfg%(lJrO) = %

so that the payoff/ = % is enforced by the constant continuation paywff= % On the other
hand, ford” > % the average payoff during the first two periods is less %mnd hence fov

to be enforced, the constant continuation paydfimust be greater tha%, which is not a convex
combination ofv andw'. Thus local decomposability is not sufficient for self-generation, and
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We first introduce the concept ohiform decomposabilitywe say thad € R
is regular if it has at least two non-zero components, angirgular if it has
exactly one non-zero component. Lete the set of alh with [A| = 1. Given
anyve R, A €A, e>0K>0, andd € (0,1), let Gy ¢ k.5 be the set of alV/
such thatA -v> A -V 4 (1— 9)¢e and such that’ is within (1— d)K of v. (See
Figure 1, where this set is labele@®.”)

Figure 1: Continuation payoffi(h') is chosen fronG.

Definition 9. A subset seW of R is uniformly decomposable for initial state
if there areg > 0, K > 0, andd € (0,1) such that for alv e W, 6 € (8,1), and
A € A, there ares€ Sandw : |Ji>; H' — R! such that(s,v) is enforced byw for
J atw, and such thaw(h') € Gy, k5 for all t andht.

In words, uniform decomposability requires that ang W is enforced by a
functionw that chooses continuation payoffs from theGgj . 5. Note that the
setGy, ¢ k 5 is bounded uniformly im; indeed, for eacid, the setG ) ¢k 5 IS
in the ball with center and radiug1— d)K.

The following lemma shows that if a smooth $#tis uniformly decompos-
able, then it is return-generating for sufficiently lade

Lemma 2. Suppose that a smooth and bounded sudsef R' is uniformly de-
composable for initial statev. Then there i> € (0,1) such thatw is return-
generating ford € (&,1) and forw, and henc&V C E®(5) for 6 € (8,1) and for
w.

FLM'’s proof does not directly apply.
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Proof. First of all, we prove the following claim: For any smooth $¢t and
for any e > 0, K, andv € W, there ared, € (0,1), Ay € A, and an open sei,
containingv such that for any’ € UyNnW andé € (&, 1), the selGy ), ¢ k 5 is in
W.

If vis in the interior oW, then the statement is obvious. So considen the
boundary olW. Let Ay be a unit normal at. SinceW is smooth, its boundary is
locally flat, so that (as in Fudenberg and Levine (1994)) thefg & (0,1) such
thatGy), ¢ k.5, is in the interior ofW. Then there is an open g containingv
such that for any’ € U,NW, the seGy ), ¢ k 5, is in the interior oW. Note that
for any é € (&,1) andv € U,NW, any pointv’ € Gy », ¢ k.5 IS @ strict convex
combination of’ and some point” € Gy, ¢« 5,- This shows that such is
in the interior ofW, sinceW is convexy is an element dfV, andv” is an interior
point of W. (See Figure 2.) Therefore, for adye (d,,1) andV' € U,NW, the set
Gv a.ek,5 IS in the interior oW. This completes the proof of the above claim.

Figure 2:v" is a convex combination afandv”’.

LetUy andd, be as in the claim for eache W. Note that{Uy }yew is an open
cover ofW. SinceW is compact,{U,}vew has a finite subcover. Let be the
maximum ofd,’s on this subcover. Then the above claim implies that for each
pointv € W, there isA € A such that for any € (3,1), the setGy ¢k s iS in
W. SinceW is uniformly decomposabile, it follows th¥ is return-generating for
5€(d,1). Q.E.D.

In what follows, we show that any smooth sub¥étf the interior ofV* is
uniformly decomposable. LEFR(i) be the set of Markov strategiss; such that
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for any playeii’s pure Markov strategg and for any(w, w') € Q x Q, there is an
integerT > 0 and a sequendev!,---,w") of states such thab! = w, w' = o/,
and for each < T, profiles(w') has individual full rank for(e!, w!**) and for all
j #i. LetSFR(i, ) be the set of Markov strategy profésuch that playei's play
is pure and optimal in every history férands_j € SFR(i).° Note thatS™R(i, 5)
is non-empty if (IFR) holds.

Likewise, letS°FR be the set of Markov strategy profilesuch that for any
(w,w) € Q x Q, there is an integeF > 0 and a sequendao’,--- ,w") of states
such thatw! = w, 0" = ', and for each < T, profile s(w') has pairwise full
rank for (w!, ') and for all pairs of players.

The next two lemmas are straightforward extensions of FLM: Lemma 3 shows
that 7R is non-empty if (PFR) holds. Lemma 4 asserts that pl&geninimax
payoff can be approximated lsyc SFR(8,1), if (IFR) holds. The proofs are pre-
sented in Appendix.

Lemma 3. Suppose that (PFR) holds. Then theS&R is dense in the set of all
Markov strategy profiles.

Lemma 4. Suppose that (IFR) holds. Then for amye Q, é € (0,1), ande > 0,
there iss € STR(8,i) such thafv®(d,s) —v¥(d)| < €.

The next lemma is an extension of Theorem 5.1 of FLM. Roughly speaking,
it shows that ang € S Ris “enforceable with respect to all regular hyperplanes,”
and that the continuation payoffs used to enforce it can be chosen to converge to
a constant at ratél — &). Note that the latter conclusion uses the irreducibility
assumption. As Lemma 1 shows, irreducibility assures that there is strictly posi-
tive probability that the state returns to the initial state witlidh periods. We use
this and individual full rank to show that a player’s short-run incentive to deviate
can be offset by an appropriate specification of the continuation payoffs on return
to the initial state; the ability to do this with payoffs on the specified hyperplane
comes from the pairwise full rank assumption.

In the proof of the lemma, we explicitly construct the continuation paywffs
as follows: We first show that for a given staig, playeri will be indifferent

°Note the dependence @nhere, which does not occur in the analogous definition in FLM.
This is because our analog of a static best response is a response that is optimal until the state
returns tow, and this sort of intermediate-horizon optimality dependg®on
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over all actions at' if he receives a bonus continuation payzff when the state
evolves following a specific chain from’ to w, with no bonus paid if the state
follows a different path. Then we defing as the collection of the bonusgghat
should be paid at the corresponding histories. See Appendix for a detailed proof.

Lemma 5. For each initial statew, Markov strategy profiless € R and d e
(0,1), there isk > 0 such that for each regular directioh € A, there isK > 0
such that for eachd € (8,1) and for eachv € R' such thatA -v¥(5,s) > A -v,
there isw such that

(i) (s,v) is enforced by for d at w,

(i) A-w(h') is independent of and ht and A -w(h') < A -v—(1—-9)(A -
v¥(d,s) — A -v), and

(i) [v—w(ht)| < (1—8)(k|v¥®(d,s) — V| +K) for eacht andht.

The next lemma is an extension of Lemma 5.2 of FLM; it shows that any
se SFRis “enforceable with respect to all coordinate hyperplanes orthogonal to
the ith coordinate axis.” Here we choose playsrstrategys depending ord,
since player’s best reply againg_j might vary with the discount factor. Again,
the proof can be found in Appendix.

Lemma 6. For each initial statew, Markov strategys € SFR(i), andé < (0,1),
there isk > 0 such that for each direction such thatA; # 0 andA; = O for all
j #1, there isK > 0 such that for eactd € (5,1) and for eachv € R' such that
AV <A maxy v?(3,5,s_i), there is playei’s pure Markov strategg andw such
that

(i) (s,v)is enforced byv for d at w,

(i) Aiwi(h') is independent afandh' andAiwi (h') < Aivi — (1—8)Ai(maxg (8, 5,5-i) —
vi), and

(i) [v—w(ht)| < (1—08)(k|v¥(d,s) — V| +K) for eacht andh'.

The previous lemmas each apply for a giverthe next lemma states conclu-
sions that hold for alb sufficiently close tdl. The proof is given in Appendix.
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Lemma 7. Suppose that (IFR) and (PFR) hold. Then for any initial state Q
and for any smooth subsét of the interior ofV*, there ares > 0andd € (0,1)
such that the following properties hold:

(a) There is a finite set of Markov strategy profilgs, --- ,sV} such thats” €
SPFRfor all n, and for everyd € (8, 1) and for every regulad € A, MaX,c(1... 3 A -
V' > maxew A - v+ €, wherev! = v¥(95,").

(b) Foreachi € | and for each suchthatAi| =1andA; =0forall j #i, there
is s_; € SFR(i) such that for every < (5,1), there is playeii’s Markov
strategys such thats= (s,s_j) € STR(4,i) andA -v> maxyew A -V + ¢,
wherev = Vv¥(9,s).

Now we are in a position to prove uniform decomposability of a smooth sub-
setW of the interior ofV*. A main point in the proof is that the variation in
continuation payoffs needed to enforce a given limit payash the hyperplane
corresponding td is bounded uniformly im .

Lemma 8. Suppose that (IFR) and (PFR) hold. Then any smooth suds#tthe
interior of V* is uniformly decomposable for any initial stadec Q.

Proof. Fix w andW. Fix é € (0,1) and & so that Lemma 7 holds. Applying
Lemmas 5 and 6 to the strategy profiles specified in Lemma 7, it follows that there
is k > 0 such that for eaciA € A, there isK, > 0 such that for eacld € (J,1)

andv e W, there is a Markov strategy profigg, 5 and a functionw, , 5 such that

(i) (sya.5,V) is enforced by, , 5 for J at w,
(i) AWy, 5(h') <A -v—(1—0)E for eacht andh', and
(i) [v—w(h')| < (1—8)(k|V°(8,5,2.5) — V| +Ky) for eacht andh'.

Sete = % and for eaciA € A\, letK, > k2|v®(3,s,, 5) — V| +K, forallveWw
andd € (8,1). Then it follows from (i) and (iii) thatw, ) 5(ht) € Gy, 2e.K,,5 for
allt andh'.

Note that for eackr€c W andA € A\, there is an open sk, 5 C R' containing
A suchthad’-v>A"-w, s(h) + (1—8)e for all t, ht, andA’ € ANUy, 5. I
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particular, sinc&V is bounded, there i, 5 C R' containingA such that\’-v >
A wyy s(h)+ (1= 0d)eforallt, h', ve WandA’ € ANU, 5.

The set/A is compact, sqU, 5}rea has a finite subcovefU, s}ycn-. For
eachv andA, lets), s =s,1.5 andw;, s(h') =w,,/ 5(h'), whereA’ € A* is
such thatA € UA,75.7 Then lettingK = n71é>g€,\* Ky, the specifieds], 5, W, 5)
satisfies all the desired conditions for a giver A; that is,(s) , 5,V) is enforced
by V\r\“mé andvv\ﬁz)\’5 chooses the continuation payoffs from thé@@x7e7K75. Note
that nowK is independent ok, and hence the proof is completed. Q.E.D.

4 Conclusion

Our results leave open many interesting avenues of research. One of them is
whether the folk theorem for stochastic games holds when strategies are restricted
to have finite memory, as it does in games with a single staten@t and Ol-
szewski (2009)). A second is to suppose that the discount factor tends to one
because time periods grow short, so that the state transition probabilities will
vary with the discount factor; we explore this in ongoing research with Johannes
Horner. Yet another extension is to allow for private information about the time-
varying state, as in Athey and Bagwell (2008) and Escobar and Toikka (2009).

Appendix

A.1 Proof of Lemma 3

Lemma 3. Suppose that (PFR) holds. Then theS&R is dense in the set of all
Markov strategy profiles.

Proof. For eachw € Q, let Q(w) denote the set of aly € Q such that for each
pair (i, j) of players, there is a profile that has pairwise full rank fofi, j) and
(w,w). Let APFR(w, w') be the set of all action profileg that has pairwise

full rank for (w, ') and for all pairs of players. As Lemma 6.2 of FLM shows,
the setAPFR(w, /) is open and dense in the set of all action profiles for each
weQandw € Q(w). Let A" R(w) = Nyen(w AW, ). ThenA" R(w)

is open and dense in the set of all action profiles. Note that under (PFR), for
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any pair(w, '), there is an integef and a sequencéw!,---,w') such that
w'=w, 0" =, andw' ! € Q(w') for all t < T. Thus we haves € SR for
any Markov strategy profilssuch thas(w) € AP™R(w) for all w. This shows that
SR containsx e APTR(w). ThereforeS R is dense in the set of all Markov
strategy profiles. Q.E.D.

A.2 Proof of Lemma 4

Lemma 4. Suppose that (IFR) holds. Then for amye Q, é € (0,1), ande > 0,
there iss € SFR(8,i) such thafv®(d,s) — v¥(d)| < €.

Proof. For eachw € Q, let Q(w) denote the set of ally € Q such that any pure
action profile has individual full rank fofw, ') and for all players. For each
a € A, letC(w, ', a) denote the set of alt_; such that the profiléa;, a_;) has
individual full rank for all j # i and for(w, &'). As Lemma 6.3 of FLM shows, the
setC(w, ', ) is open and dense in the set ofall;, for eachw € Q, w' € Q(w),
anda; € Aj. LetC(w) = Nuyeq(w) Ny C(w, o, ). LetC = X 4»eqoC(w). ThenCis
dense in the set of all Markov strategy profiles. Since (IFR) holds, for any Markov
strategy profiles in C and for any(w, /'), there is a sequendev®,---,w") of
states such that for eatfs(w') has individual full rank for(w!, w!**) and for all
j#1.

Letsbe a minimax profile against playefior 6 and for initial statev. Without
loss of generalitysis Markov, so write it ags(w))weq. SinceC is dense, there is
a sequencé(s’;(w))wea iy converging to(s_;(w))weo With (8*;(w))wea €C
for all k. Let s be a best response {8, (w))weq. Without loss of general-
ity #‘ is pure and Markov, so write it bf(sf(w))weg. By definition of C, for
any pair (w, '), there is an integef and a sequencéw?,---, ') such that
w' = w, W' = w, and for eactt < T, the profile ((w'),s,(«w!)) has indi-
vidual full rank for all j # i and for (!, w*?1). Choose(s (w))weo and a sub-
sequence of (s((), 8()) wen iy SuCh thals())wea = (8 (@))weo- Since
(8%i(®)) weq cONverges tds_j(w)) wea, (S())wea is abestreply tds_i(w))wea
and givesv/’(d) to playeri. Therefore for any > 0O, there isk such that the
Markov strategy profile corresponding (i (w))weq satisfies all the desired con-
ditions. Q.E.D.
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A.3 Proof of Lemma5

Lemma 5. For each initial statew, Markov strategy profiles € R and d e
(0,1), there isk > 0 such that for each regular directioh € A, there isK > 0
such that for eachd € (8,1) and for eachv € R' such thatA -v¥(5,s) > A -v,
there isw such that

(i) (s,v)is enforced byv for d at w,

(i) A-w(h') is independent of and h* and A -w(ht) < A -v—(1—8)(A -
v¥(d,s) — A -v), and

(i) [v—w(ht)| < (1—8)(k|v¥®(d,s) — V| +K) for eacht andht.

Proof. Fix w, s, A, &, andv. Sincesec SR for eachw' there is an inte-

gerT(«w') >0and a sequenc(m)‘(a/));(f/) of states such thab!(w') = o/,

w' (w') = w, and for each < T(«/), profile s(w!~1(w')) has pairwise full rank

for each(i, j) for (w'~(w'), w'(«')). To simplify the notation, we denote this se-

quence by(w'), that is,(w') = (wt(w’))tT:((f/) Note thatw(«') is a path from

o' to w that occurs with positive probability even if playieunilaterally deviates.
Given eachw/, consider the “return game” such that the game starts at initial

statew’ (instead ofw) and ends when the state reachesand playei obtains a

paymenty; at the end of the game, where

~

o V(179 |07(S() 4 37 Birctior Tarswd” Pr(h", o'|s, w)g® (s(e"))

Zf}o:l Zhr€ﬁw7r ot Pr(hr7 (A)|S, OJ)

(1)

Let v,‘*" denote playei’s payoff in this return game when players follow the
Markov strategy profiles, that is,

00

v =(1-8) [gf*"<s(w’>>+ )3

T:lﬁrgHw,r 0

5" Pr(h", s, w’)gf*”(s(w"))]
+5 Z " Pr(h", w|s, w')V.
T=LlhreH®.T
Also, letv? (al) denote the analogous value when playemooses! € A in the
initial period of the return game and then folloasNote that, from (1), we have
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v =v;. That is, the payment is chosen in such a way that playi&r payoff in
the return game from initial state with constant paymery is equal tov;.

Choose{z (yl)}(i7y1)€| v in such a way that playeris indifferent over all
actions in the first period of the return game from initial stafewith constant
paymentV; supposing that all players followin all periodst > 1 and that player
i receives a bonug® (y!) in period two when the evolution of states follows
(wH(w'),w?(w')), while he receives no bonus when the state reaches other state
w’ # w?(w') in period two. That is, Ie{;‘*’(y )iyl xy b€ such that

w8 5 260 ) s (@) @)
y1€

for all i anda1 € A. The existence of suc{”lq“/ )} is guaranteed, because the
profile s(w*(w')) has pairwise full rank fofw'(w'), w?(w')) so that the state
moves fromw!(w') to w?(w') with positive probability regardless of playes
action, and the coefficient matrix of system (2) has full rank. In particular, as in
Lemmas 5.3 and 5.4 of FLI\/{;“' )} can be set to lie on a hyperplane orthog-
onal toA, that is,

ZAf = (3)

forallyt e Y.10

For o' such thafl («') > 2, we recursively construgiz? (v, ,¥) } 41 . )
for eacht € {2,---, T(w') — 1} as follows. Intuitively,z” (y*,---,y) is a bonus
paid to player in periodt + 1 of the return game from’ with constant paymeri,
when the evolution of states is preciséty’ («/))t"}. Lett € {2,---, T(«/) — 1}
and{z(y*,---,y*"1)} be given. We choosgz” (y*,--- ,y)} in such a way that,
in the return game from state/, giving the bonug® (y, --- ,y*~1) in periodt is
equivalent to giving the boan;‘,”'(yl, ---,y%) in periodt + 1, regardless of player
i's play in periodt. That is,

1 -1 1 1
fwfw¢>:ﬂz#wf~y Dy 0 o) s ()
eY
4)
10Here each row of the coefficient matnikgi‘f’;(“")""z(“{))(s(wl( w')) may not be a probability

distribution and some rows can have larger norm than others. But since the rows of the matrix are
linearly independent the resulting linear system still has a solution.
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for all i andal € A.. Again, the existence of thez (y,--- ,y!)}is guaranteed
because the profile w'(w')) has pairwise full rank fofw' («'), w1 (w')). Also,
{;-“" (y,---,y")} can be set to lie on a hyperplane orthogonal tdhat is,

> XA ) =0 (5)

forall (y,--- ,yb).
By construction, in the return game from stabé giving the bonuszi“f(yl)

in period two when the evolution of states follo®*(w'), w?(w')) is equiva-
lent to giving the bonug® (y*,--- ,y"(@)=1) in period T («') when the evolution

of states follows the sequenc&«’). Therefore, player is indifferent over all
actions in the first period of the return game from statewith constant pay-
mentVi, if players do not deviate frorain periodt > 1 and if playeri receives
z7 (yh, - ,y"(@)=1) in period T (w') when the evolution of states follows the se-
quencew(w’), with no bonus if the evolution of states does not follow this se-
qguence. Indeed, from (2) and (4), we obtain

v = (af)
+5T@ oy

T(w)-1 ,
(L, yT @)t ﬂ @)y, (o) a5 (0H ()
(yr.yT (@)1 =

for all i and (al,--,a' “)™%) e (A)T@)-1, which implies indifference in the
first period. Note also that the above equality holds for(a}l - - ,aiT(“’!)_l) €
(Ai)T(‘*’/)‘l, so that player’s action in period > 1 of the return game does not
affect the expectation af? (y%,---,y"(@)-1). Moreover, from (3) and (5), the
{2 (y,---,y"@)-1)} lie on the hyperplane orthogonalAq i.e.,

3 Xty YT = 0 (6)

forall (yt, .. ,yT(@)-1),

Now we are in a position to construet We constructv in such a way that at
the end of the return game, playiereceives a constant paymeitplus a bonus
contingent on the past public history. Specifically, giventaauydc/, if the state in
periodt is &’ and if the evolution of states follows the sequengeJ) thereafter,
then playeii receives a bonug” (v, - -, y+T(@)=2) in periodt + T(«/') — 1 (i.€.,
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when the state reaches the end of the chal®”)(w/) = w so that the game
ends). By the definition oii‘*", this return payoff makes playeindifferent over
all actions in any periotl with any statewy’. Note that the sequences for two (or
more) different states might overlap; for example, there mighwbandw” # «’
such that for somg (wr(w’))l‘{)/) = @(w"). In this case we construatin such
away that player receives botlz”’ andz”" simultaneously if the recent evolution
of states igo(w').

The formal specification ofris as follows. For each histohy = (a)T,yT)tT:1 €
Ht let Q(ht) be the set of altw’ € Q such that the sequence of states for the last
T(w') — 1 periods is identical tdw!(w'), - -, w" (@) -1(w)), i.e., Q(h) is the set
ofall ' € Q such tha{wT(@)+2 ... of) = (w (), -, 0" @) ~1(a)). Note
that if the history up to periotlis ht and the state returns toin periodt + 1, then
the recent evolution of states is exactly the sequed@e’) for eachw’ € Q(h').
Thus we payz” (y'~T(@)+2 ... ! to playeri after such a history. Specifically,
we set

wi(h) =G+ 5 27Ty,
W' €Q(ht)
That is, the continuation payoff; (h') when the public history up to peridds h'
and the state returns toin periodt + 1 is a sum of the constant payme#t(d,s)
and the bonus%"/(yt*T(‘*/)”, .-,y for all ' such that the recent evolution of
states is exactlyd(w').

Thisw enforceqs,v) because it makes each player exactly indifferent between
all actions, and it yields payoff, by construction. (Recall thadt is chosen so that
v =v;.) Therefore clause (i) follows, and it remains to show clauses (ii) and (jii).

To simplify the notation, let

i Z O"Pr(h", wls, ')
1=1hréfer

and
X| — gl + Z Z 51’ PI‘(F]T, w”]s, w/)giw//(s(w//))'
T=1TcHoT W#w

Note that playei’s payoff in the original stochastic game from staiés v’(9,s),
if players plays. Also, sinces is Markov, playeri’s payoff in the continuation
game such that the current statewsis v°(d,s) as well. Therefore playeirs
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payoff when players plagin the return game from state with constant payment
v®(d,9) is equal tov®(d, s); that is,

V?(9,5) = (1—3)x’ +x?v°(9,s).

Arranging,
(1—-9)x?
Vi’(9,8) = 1——x‘*’| (7)
Recall thatV; = \% Plugging (7) to this, we have
- 1—x®
Vi = Vi — —5—(v’(8,) —vi) (8)
foralli € | sothat
- 1—x®
AV=A-v— @ (A-Vv¥(d,8) —A V).
Then it follows from (6) that
A-w(h)=A-v— w7 (A-Vv¥(d,5) —A V)

for all t andh'. Since0 < x® < &, we havel;—cf,(w > 1— 9 for anyd. Then for any
dandv, A -w(ht) <A -v—(1—9)(A-v¥(d,s) — A -v). This proves clause (ii).

Next we prove (iii). Lettingp; be as in Lemma 1, it follows that if playersi
play the strategg, then given any periot the state reaches within |Q| periods
with at least probabilityp;. Therefore,

(29
/

1-xV=1-% > " Pr(h", w|s, o)

T=1hTcH®.T
S 1_ z 6T‘Q‘(1_ pi)Tflpi
=1
1 p|5|Q|
ST 1-08°(1-p)
1— 5@l
- 1-00(1-p)
Q]
<(1-9)—
< ) Pi
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so thatl —x¥' is of order(1— &). Also, lettingg" = maxycq Maxca|g® (a)], we
have

I <1 (s()+ 3 > 3 SPiials)lg ' (s(w")
1hT6H°~’T
<3 - Jojg = 2%
— Pi

so that(1— &)x* is of order(l 3).

Sincevi‘*’ = (1-9)x o 4 x@, and both(1— 0)x "and1—x¢ are of order
(1—9), it follows thatvI — Vi is of order(1—9d). Likewise, one can check that
vi‘*’(a;) —V; is of order(1—9) for all & € A;. Then without loss of generality we
can letz (y!) be of order(1— &). (This follows from the fact thae® — v& (a)
is of order(1— 9) and that the coefficient matrix corresponding to (2) and (3) is
independent od. If the coefficient matrix has many more columns than rows,
then there are infinitely many solutions, but we can still satﬁ—t’c(yl) so that itis
of order(1—&).) Similarly, we can lez” (y!,--- ,y!) be of order(1— &). Thus
there isK > 0 such thatic; | T oyeam) 27 (Y T@H2,... )| < K(1-5) for
anyt andh'. Also, sincel —x? is of order(1— &), given anyd € (0,1), there
is k > 0 such that=X* < (1— )k for any € (5,1). Then it follows from (8)
that |V —v| < (1— 6)k|v®(8,s) —v| for any & € (8,1) andv. This proves clause
(iii). Q.E.D.

A.4 Proof of Lemma 6

Lemma 6. For each initial statew, Markov strategys ; € S¥R(i), andd € (0,1),
there isk > 0 such that for each direction such thatA; # 0 andAj = O for all
j #1, there isK > 0 such that for eactd € (,1) and for eachv € R' such that
Aivi < Ajmaxy v®(d,5,5si), there is player’s pure Markov strategg andw such
that

(i) (s,v)is enforced byv for d at w,

(i) Aiwi(h') is independent dfandh' andAiwi (h') < Aivi — (1—8)Ai(max (3, 5,5-i) —

Vi), and
(i) [v—w(ht)| < (1—06)(k|v¥(d,s) — V| +K) for eacht andh'.

25



Proof. Fix s_j € SFR(i), A, &, andv. we finds andw(h') satisfying the desired
conditions.
We first specifys. Given any Markov strategy, let

9" (s (), s-i(w)) ) )
+ 371 Threfor Ywrzw 0" PN, o'|5, s i, w)g” (5 (w"), s-i(w"))
Z?:l ZhTEHw*T ot Pr(hT7 w|§/7 S, (J))

vi—(1-9)
Ui(§) =

That is,Vi(s) is chosen in such a way thsatis achieved as playeis payoff in
the return game fromw to w when players plays,s_i) and playeii receives the
constant paymeni;(s) at the end of the return game. LE(s) be the set of
playeri’s optimal Markov strategies against; in the return game from state
with constant paymeri(s ). The correspondenéeis non-empty-valued, convex
valued, and has closed graph, so by Kakutani’s fixed point theorem, ti&eseich
that§ € F(§). We denote’ (§) by Vi, and lets be playeii’s pure Markov strategy
such thas is a best reply against ; in the return game with constant payment
By construction, players payoff in the return game from state with constant
paymenty; is v;, if players plays.

Next we constructv. For eachj # i, letVj, vj‘", andvj‘"(aj) be as in the proof
of Lemma 5. Since_; € SFR(3), for eachw’ there is an integef (w') > 0and a
sequencéw!(w')){_, of states such thab'(«w') = o/, " (') = w, and for each
t < T(w'), the profiles(w'~1(w')) has individual full rank for{w!~1(w'), w!(w'))
and for allj #i. Then as in the proof of Lemma 5, there 4z (y*,--- ,y"(?)=1)}
such that

T(w)-1
W =v(ag)+o") 4 YT T D, o W) s (0 (@)
(y17.,,7yT(w’)—l) t=

forall j #iand(al,--- ,ajT(‘d)_l). Letz (y!,---,y"(@)=1) = 0. For each history
ht, let Q(h') be the set of alty’ € Q such that the sequence of states for the last
T(w') — 1 periods is identical tdw!(w'), - -+, @' (@) ~1(w')). Then let

wih) =0+ § 27 T@2

w'eQ(ht)

for eachj € 1.
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Now we show that the aboves, w) satisfies all the desired conditions. As in
the proof of Lemma 5, playegr+ i is indifferent over all actions in every period so
that his incentive compatibility is satisfied. Also, playsiincentive compatibility
is satisfied as well, becauseis defined to be a best reply in the return game. In
addition,v is generated usings, w), asV is chosen in such a way that the payoff
of the return game i8. Therefore, clause (i) follows.

Lets" be a Markov strategy such thgite maxy wi’(d,5,s-i). Let

00
*

X'=3 Z O"Pr(h", w|s",s_ i, w)
T=Lhrefor

00

m; 5T PR, w5, 5., w)g® (5 ("), 5 ("))
w

T—lﬁr%w,r +

Note that player’s payoff in the return game from stadéewith constant payment
v®(d,s,si) is equal tov®(5,s) when players plays',s_i); that is,

Vi’(0,57,5.i) = (1-9)X +Xx"V’(0,5',5).

Arranging,

(1-9)%
1—x ©)
Recall that playings is optimal in the return game from stade with constant
paymentV;, and its payoff isyj. Therefore playings' can yield at mosy; in this

return game, i.e.,

Vi&)(5751*737i) =

Vi > (1-90)% +XV.
Plugging (9) to this,

1-—x*
X*

(M°(3,5,5-i) —vi).

Then forA; > 0,

*

— X N(VE(3,5,5.1) — Vi)-

)\iWi(ht) = AiVi < Ajvj — !

Also, lettingx® be as in the proof of Lemma 5, we have (8) so thatXfor: O,

_xw W

A () = X = Aivi — N (V2(8,9) W) < A —

Ai(vP(3,8',51) —Vi).

XOO
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Then clause (ii) follows for either case, singec x* < d and0 < x¥ < 4. Also,
clause (iii) follows as in the proof of Lemma 5. Note in particular that we can
choosex andK independently of the specification gf as the number of player
i's pure Markov strategies is finite. Q.E.D.

A.5 Proof of Lemma 7

Lemma 7. Suppose that (IFR) and (PFR) hold. Then for any initial state Q
and for any smooth subsét of the interior ofV*, there ares > 0andd € (0,1)
such that the following properties hold:

(a) There is a finite set of Markov strategy profilgs, --- ,sV} such thats” €
SPPRfor all n, and for evenyd € (3, 1) and for every regulah € A, MaX,c(q... Ny A -
V' > maxew A - v+ €, wherev! = v¥(5,").

(b) Foreachi € | and for each suchthatA;| =1andA; =0forall j #i, there
is s_j € SFR(i) such that for every < (8,1), there is playeri’s Markov
strategys such thats= (s,s_;) € STR(d,i) andA -v> maxyew A -V + ¢,
wherev = Vv®(9,s).

Proof. SinceW is in the interior ofV*, there ise > 0 such thatmaxXcy+A -v >
max,cw A -V+6¢€ for all A € A. In what follows, we consider a fixed initial state
w.

Part (a). Let{¥,--- ,¥N} be the finite set of all extreme points of the feasible
setV. As Dutta (1995) shows, each extreme poinMofs attainable by a pure
Markov strategy profile in the no-discounting case. [&%---,§\} be the set
of pure Markov strategy profiles that achieve these extreme points. Then from
Lemma 3, there is a nearby Markov strategy profilesuch thats" € SR and
A Vs within € of A - V" for sufficiently larged, wherev! = v®(9,s"). (The latter
condition holds from Abel’s theorem: the limit payoff of a Markov strategy profile
is equal to its time-average payoff. See also (A.2) of Dutta (1995).) This proves
part (a).

Part (b). We first prove the following claim: Theredsc (0,1) such that for
any d € (8,1), for anyi € |, and for any Markov strategy profi V°(0,s) —
lims_1v¥(3,9)| < €. The key here is thad < (0,1) is cohesions independently
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of i ands. To prove the claim, note first that for a given pure Markov strategy
profile s, there isé € (0,1) such thatv®(3,s) — limg_,V¥(d',s)| < € for any
i €1 andd € (8,1). Since the action space and the state space are finite, it follows
that there is5 € (0,1) such thatv®(3,s) —limg_1v®(d',)| < € for anyi € 1,
for any & € (8,1), for any pure Markov strategy profie One can check that
this inequality remains true even for a mixed Markov strategy prefitnce the
payoff from a mixed Markov strategy profile is a convex combination of those
from pure Markov strategy profiles. This shows the claim. In what follows) let
be as in the claim.

ConsiderA such thaiz; = 1 andAj = Ofor all j #i. Given ad, lets(d) be a
strategy profile that gives the highest discounted average payoff to playem
the initial state isv. Without loss of generality we assume tis&d) is pure and
Markov for all 8. It is easy to see that fa¥ sufficiently close to one, playeis
discounted average payoff fros(d) is within € of his highest payoff of the limit
feasible seV. This, together with the above claim, shows that theis (5, 1)
such that for every € (6*,1),

v@(5,8(0%)) — r\pg/x)\ V| < 2e. (10)

Choose sucld* and lets* denotes(5*). For eachd € (6*,1), lets? be playeri’s
pure Markov strategy that is optimal agaisst for 5. We will show that for each
5 € (6*,1), the profile(s°,s* ;) satisfies the desired properties.

Sinces" gives the highest payoff to playerfor 6*, we havev’(6*,s") >
v@(8*,8°,s ;). Likewise, sinces’ is a best reply ford, we havev®(5,s") <
V@(3,82,s",). Also, from the above claim, we obtawf’(6*,s*) —v¥(5,s")| < 2¢
and|v® (6", s ;) —v¥?(5,,s";)| < 2¢ for everyd € (6*,1). These inequalities
yield [v®(6*,s) —v®(8,s2,s";)| < 2¢. Plugging this into (10), it follows that

Via)(éasia;S*_i) —maxA -V| < 4¢
VeV

for everyd € (8*,1). Sincemaxey A - V> maxey+A -V > maXew A - V+ 6¢, it
follows thatA -v©(6,s2,s" ;) > maxew A - v+ €, as desired. Also, by definition,
(9,5)) € SR(3,i).

Next we consideA such that\j = —1andA; =0forall j #i. Lemma 4 says
that for anyd, there is a Markov strategy profid) such thats(5) € SFR(6,i)
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and playei’s payoff is withine of v;(J). Sincev;(d) approximatesnax,cy: A -V
asd goes to one, the above claim implies that theré*is= (5,1) such that for
everyd € (6*,1),

vi’(,8(58")) —\%31(A V| < 3.

Choose sucld*, and lets* denotes(5*). For eachd < (8%,1), lets? be player
I's pure Markov strategy that is optimal agaigst for 6. Then as in the previous
case, we can show that this, s* ;) satisfies the desired properties.  Q.E.D.
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