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Forecasting the Forecasts of Others 

Robert M. Townsend 
Carnegi-Me-le/lo University 

This paper explores the Formulation and analysis of linear equilib- 
rium models of investment in which learning is perpetual and infor- 
mationally decentralized firms need never share the same beliefs 
concerning time series relevant to their decisions. Recursive, Kalman 
filtering techniques are shown to be applicable in an illustrative, 
hierarchical information structure, and a nonlinear technique of un- 
determined coefficients is shown to be applicable in an illustrative, 
symmetric information structure in which there is a confounding of 
laws of motion with forecasting problems. The equilibrium time 
series of these models can display interesting movement in response 
to shocks and measurement errors, including persistence, certain 
cross-correlation properties, and damped oscillations. That is, fore- 
cast errors are serially correlated over decision makers and serially 
correlated over time in a certain crucial sense. More generally, these 
models do place restrictions on observed time series and can be fitted 
to data. 

I. Introduction 

That economic decision makers do not share the same beliefs con- 
cerning the time series of economic variables relevant to their deci- 
sions is a key part of the writings of such diverse authors as Pigou 

I am extraordinarily indebted to Lars Peter Hansen, Thomas J. Sargent, Edward 
C. Prescott, and Ian Bain for instruction and insights; would like to thank Robert E. 
Lucas, Jr., Edmund S. Phelps, Carl Futia, and participants of seminars at Carnegie- 
Mellon University, the University of Chicago, Columbia University, the Federal Re- 
serve Bank of Minneapolis, and the NBER Conference on Business Fluctuations in 
Chicago, October 198 1, for helpful comments; and accept full responsibility for errors 
and the views expressed herein. Support for this research from the National Science 
Foundation and the Alfred P. Sloan Foundation and programming assistance from 
Riccardo Revelli and Lakshmi Subramanian are also gratefully acknowledged. 
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(1929), Keynes (1936), and Lucas (1972, 1975). In his explanation of 
industrial fluctuations, Pigou (1929) emphasizes that in modern in- 
dustry businessmen are partially but not completely interconnected, 
possessing only limited information on what others are doing. Pigou 
then argues that these interconnections tend to promote the mutual 
generation of forecast errors, both within and across industries. Fur- 
ther, such forecast errors can be mutually generated over time, lead- 
ing to serial correlation and waves of optimism and pessimism. Simi- 
larly, it was Keynes's (1936) view that with the opening of stock 
exchanges investors shift from a concern with long-term determi- 
nants of profitability or yield to a concern with short-term movements 
in market prices themselves. Thus, conventional valuation would be 
liable to change violently as the result of sudden fluctuations in opin- 
ion due to factors which do not really make much difference to pro- 
spective yield, and even relatively informed investors would be con- 
cerned with average opinion. More recently, Lucas (1972) has 
emphasized the role of confusion between relative and absolute price 
movements in his explanation of the positive correlation between 
prices and economic activity. And Lucas (1975) uses economy-wide 
average beliefs as a state variable, along with money and capital, to 
explain certain stylized facts of business cycles, especially persistence 
and cumulation in response to serially uncorrelated economic shocks. 

This paper represents an attempt to develop further an equilib- 
rium account of some of the qualitative observations which motivate 
Pigou (1929) and Keynes (1936) as well as Lucas (1972, 1975). That is, 
it follows Muth (1961), Lucas and Prescott (1971), and Lucas (1972, 
1975) in adopting the "rational expectations" hypothesis, supposing 
that (1) decision makers act as if they were solving explicit inference 
and dynamic decision problems, with well-specified information sets 
and objective functions, taking as given the aggregate laws of motion 
of observed and unobserved state variables, including perhaps the 
laws describing the inferences of other decision makers, and (2) these 
laws of motion are in turn those actually generated in the model by 
the inferences and decisions of the decision makers.' The important 
aspect of this formulation is that it can accommodate learning and 
disparate expectations across decision makers and can handle infor- 
mation structures in which decision makers forecast the forecasts of 
others.2 

' The equilibrium definition employed here builds on Townsend (1978), Sargent 
(1979), and Prescott and Townsend (1980), among others, and is related to ongoing 
work in the theory of general economic equilibrium by Green (1977), Jordan (1977), 
Kreps (1977), Radner (1979), and Allen (1981), among others. Unlike the general 
equilibrium literature, however, here prices do not simultaneously clear markets and 
convey information. 

2 Again, the learning takes place in a rational expectations equilibrium way, as in 
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This paper emphasizes four qualitative characteristics of economic 
time series which equilibrium models of this kind can generate. The 
first is the "learning mechanism" for the propagation of economic 
shocks. That is, learning alone can convert serially uncorrelated eco- 
nomic shocks into serially correlated movements in economic decision 
variables.3 This result is not particularly novel-it is clear from the 
earlier work of Lucas (1975) and Crawford (1979), for example. But 
perhaps this propagation mechanism has not yet received the at- 
tention it deserves.4 Second, because decision makers have limited 
a prior information on underlying economic shocks, they may well 
respond to variables generated by the decisions of others and to the 
noise in such decisions, even if there are no real economic links 
among such decision makers. Thus, time series can display certain 
cross-correlation properties and may appear more noisy than if deci- 
sion makers acted in isolation. Third, models with disparate but ra- 
tional expectations, in which decision makers forecast the forecasts of 
others, can lead to some rather new and exciting dynamics. In partic- 
ular, the paper shows how serially uncorrelated economic shocks can 
induce a certain volatility-relatively rapid oscillations in forecasts 
and decision variables in response to economic shocks, not the usual 
exponential decay. Fourth, and more generally, the paper argues that 
forecasts and forecast errors can be serially correlated in a certain 
crucial sense. That is, economic shocks which are innovations relative 
to the underlying driving stochastic processes of the model, and 
hence are serially uncorrelated, are not necessarily the innovations of 
the information sets of decision makers. Thus, forecasts of the eco- 
nomic innovations and forecast errors of the driving stochastic pro- 
cesses can display certain cross-correlation and serial correlation 
properties when expressed in terms of the economic innovations 
themselves. This is one way to understand the first three properties. 

One might well ask at this point whether these results are easily 
obtained. After all, models in which decision makers forecast the 

Townsend (1978) and Bray and Kreps (1981). In Arrow and Green (1973), Cyert and 
DeGroot (1974), DeCanio (1979), Blume and Easley (1982), and Bray (1982), learning 
can produce convergence to rational expectations equilibrium, but the learning process 
itself need not be rational. See also Friedman (1979). 3 As Lucas and Sargent (1978) note, the distinction between sources of impulses and 
propagation mechanisms is stressed by Frisch (1933) in a classic paper. Lucas and 
Sargent also identify three propagation mechanisms in the literature. One stems from 
costs of adjustment, a second from optimal asset accumulation, and a third from the 
frictions of search theory. 

4 See also jovanovic (1979), Brunner, Cukierman, and Meltzer (1980), and Kydland 
and Prescott (1982). A more comprehensive discussion of the relationship between 
economic models with uncertainty and statistical decision theory is contained in Pres- 
cott and Townsend (1980). 
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forecasts of others have a reputation for being difficult to formulate 
and analyze.5 Indeed, the paper was originally motivated by a search 
for solution techniques which would prove useful in a variety of appli- 
cations, under a variety of information structures. To that end, the 
paper adopts a highly stylized model and focuses attention on what 
problems arise and what formulation-solution techniques are needed 
as the information structure is varied. As it turns out, all the informa- 
tion variants examined here are easy to analyze. That is, techniques do 
vary somewhat across information variants, but, in one form or an- 
other, all techniques make use of standard formulas for conditional 
means and variances of normal random variables. 

With interesting economic time series and tractable solution tech- 
niques, one can proceed to ask whether the models studied here have 
content in a more formal, econometric sense. That is, suppose an 
econometrician were confronted with data generated from one of the 
information variants of the basic model, and suppose that market 
beliefs are unobserved, latent variables. Would he be able to make 
sense of such time series, that is, interpret the time series relative to 
theory?6 More specifically, would the econometrician be able to fit the 
data to the theoretical model and identify key underlying parame- 
ters?7 As it turns out, in the linear-quadratic, normal random variable 
model under consideration, many of these questions can be answered 
in the affirmative.8 

To summarize, the paper proceeds as follows. Section II describes 
the basic model, a partial equilibrium model of investment, following 
Lucas and Prescott (1971), with unobserved permanent and transi- 
tory shocks to demand, so there is a nontrivial signal extraction prob- 

In Lucas (1975) agents with different histories have different forecasts, and, in 
effect, these forecasts themselves become an object of speculation. But to simplify this 
complex picture, Lucas pools the forecasts and makes the average common knowledge. 
Futia has taken up models with disparate but rational expectations in two papers and 
emphasizes that Lucas's problem is one of making inferences front eodogenoto time 
series. Futia (1 98 1) has solved such a problem in a hierarchical structure with informed 
and uninformed traders. But in general the problem is nonlinear and seems difficult to 
solve. It is avoided in Futia's (1980) work on capturing what are believed to be the key 
elements of Lucas's model; agents are endowed with exogenous, distinct information 
sets but with more information than they can capture from endogellous time series. 
Chari (1979) studies models with dispersed information and turns up more difficulties. 
If agents do not see economy-wide output, then there cannot be a finite list of state 
variables; agents must be concerned with the infinite past in an explicit way. Of course, 
this paper does not propose a way out of all the difficulties associated with the above- 
mentioned models. It does seek to identify a broad class of models under which such 
difficulties can be either handled or avoided. 

This paper delivers on Sargent's (1981) call for econometric analysis of models in 
which there are information discrepancies across agents. 

7 The need for this type of analysis, to overcome Lucas's (1976) critique of conven- 
tional econometric practice, is eloquently described in Sargent (1981). 

8 There are some caveats on identification, however-. 
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lem; with the Lucas (1967), Gould (1968), Treadway (1969), Morten- 
sen (1973), and Sargent (1979) costly adjustment of capital, following 
Haavelmo (1960), Eisner and Strotz (1963), and Jorgenson (1963), so 
there is already present a natural propagation mechanism; and with 
dispersed markets or islands restricting information flows, following 
Phelps (1970) and the business cycle literature (see, e.g., King 1978; 
Barro 1980; Grossman and Weiss 1980), so the "forecasting-the- 
forecasts" problem can be analyzed. Section III describes the dy- 
namic, stochastic maximization problem confronting the individual 
(representative) firm in each market and derives the best decision 
rule. Section IV describes precisely the definition of equilibrium em- 
ployed throughout the paper, a dynamic linear equilibrium with ra- 
tional but disparate expectations. Section V generates a law of motion 
for the aggregate capital stock in each market, allowing one to focus 
attention entirely on inference problems. Section VI describes a "hier- 
archical" information variant, in which one market receives price but 
not quantity information from an informationally self-contained mar- 
ket lower in the hierarchy. This hierarchical system is easily solved 
with a recursive use of Kalman filtering techniques. The important 
point is that any firm sees a filtered version of (endogenous) time 
series generated by linear laws of motion of a finite number of state 
variables. 

Section VII presents the time-series dynamics for the hierarchical 
structure with some numerical examples. Section VIII describes a 
symmetric but disparate information structure in which firms in each 
market see economy-wide average price contaminated with measure- 
ment error. Here there is a confounding of laws of motion of ob- 
served and unobserved state variables with the inference problems of 
firms. But a method of undetermined coefficients is developed, a 
nonlinear but tractable procedure (see also King 1978; Chari 1979; 
Sargent 1979; Barro 1980; Futia 1981). Moreover, two procedures 
for forecasting in this setting are described, at least on the assumption 
that there is full information after a finite number of periods. One 
procedure makes use of the entire relevant history, the other utilizes 
the distinction between moving average representations in the space 
of economic disturbances and representations in the space of distur- 
bances which are innovations relative to agents' information sets 
(motivated by Hansen and Sargent [1981]). Section IX describes the 
time-series dynamics for the symmetric structure, again with numeri- 
cal examples. Finally, Section X discusses how the model might be 
fitted to data, in principle. This section extends the techniques of 
Sargent (1978, 1981) and Hansen and Sargent (1980a, 1980b) and 
discusses the possibilities and limitations of more conventional 
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econometric procedures, as well as the procedures of Sims (1980a, 
1980b) and Kydland and Prescott (1982). 

II. The Basic Model 

Imagine an economy in which a single commodity can be produced in 
each of a set of local "islands." At the level of abstraction adopted 
here, these islands can be interpreted as local markets within an in- 
dustry, separate markets within a country, and so on. The essential 
aspect of the specification is that the commodity itself cannot be 
moved across islands or markets. Thus one may even suppose the 
commodity itself varies across islands as if there were separate indus- 
tries, with all variables expressed in common units. But information 
can flow among islands, at least to a limited extent, consistent with 
Phelps's (1970) island paradigm. 

More formally, then, suppose there is a set of markets indexed by i, 
i = 1, 2, . . , I. (Subsequently I may be either finite or infinite.) There 
is a continuum of firms (on the unit interval) in each market i, and 
each firm has a production function of the form 

y' = fok So > 0, (1) 

where yt is the output of the produced good of the (representative) 
firm in market i at time t and kt is the capital stock of the firm, chosen 
at time t - 1. Thus, output is linear in the capital stock. Summing 
over all firms in market i, let Y' and Ki denote the corresponding 
aggregates of market i. 

Each market i is confronted with an exogenous, linear demand 
schedule for the produced good, a schedule which is buffeted by 
relatively persistent shocks and completely transitory shocks. The 
transitory shocks are independent across markets and the persistent 
component is common. Thus, to the extent that the persistent compo- 
nent is unobserved, markets are informationally linked. That is, eco- 
nomnic time series in one market may contain information on the 
persistent component, information which is of interest to firms in 
another market. 

More formally, then, under market clearing, 

PIt -b, YI+ z1t, b, > , (2) 
where Pt is the price of the produced good in market i at time t and zt 
is a shock to market i demand at time t. Here z' is the sum of a 
persistent economy-wide component Ot and a completely transitory 
market-specific component Et, that is, 

Z' = Ot + E' (3) 
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The common shock Q, follows a first-order autoregressive process 

Pt 6P-p + vt, 0 < IPI < 1, (4) 

where Vt, Et are jointly normally distributed, independent among 
themselves and over time, with mean zero and covariances 2! and cr, 

respectively. 
Note that in the formulation above a trend in economic variables is 

precluded. In fact, the system as specified has a steady state with mean 
zero. In what follows, however, all variables can be interpreted more 
generously as deviations from (unspecified) mean values. 

III. Individual Firm Maximization 

The decision problem confronting each firm in market i at time 0 is to 
choose a sequence of contingent plans for capital stocks kt so as to 
maximize discounted expected profits, that is, 

maxEoZ 't[Pifo k i (k- - f2 (k1+ -k 
Ikil-L 2 (k2 --(? k~, (5) 

fo,,f2 > Ofl ? 0. 
Here E) denotes the expectation of (future) prices conditioned on 
information available to the firm in market i at time t = 0, fl); param- 
eter P3 is the discount rate, 0 < 3 < 1; the term P fk' represents 
revenue from sales at time t; the price sequence {P'}t=(1 is taken 
parametrically and is bounded in mean; the term (f,12)(kt)2 induces a 
kind of "long-run" decreasing returns to scale (constant returns to 
scale if fl = 0); and the term (f212)(kt+ I - k)2 represents a cost of 
adjustment, thereby linking the period-by-period decisions of the 
firm.9 Such adjustment cost formulations capture the idea that firms 
do not respond immediately to perceived movements in market de- 
mand, giving explicit dynamics to the "static" long-run adjustment 
stories of standard price theory (see Lucas 1967). Again, a typical firm 
in market i is to choose a sequence of contingent plans or decision 
rules, 

kt+ I = kt+I(flt), (6) 

where flt is the information available to the representative firm at time 
t in market i and includes, among other things, current and past 

Suppose there is a linear technology which maps the amount of capital adjustment 
(k,+, -k,)' into a labor requirement (f,/2)(k,+, -k,)'. Suppose also the labor can he 
hired at a fixed wvage -w in auny period t. Then (/U/22)(k,+ - k,)' is the al)l)plopriate COSt 

termn in the objective function. There is a similar interpretation for the capital mainte- 
nance termn (f 12)(k,)2 . Then, dividing through by Tv, P. can be interpreted as the relative 
price of the produced good in terms of labor. 
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market i aggregate capital stocks and current and past market i prices. 
Various versions of the model will be considered below by altering 
these information sets, fQ. Of crucial importance will be the inclusion 
of some series in other markets. 

To solve this decision problem, one can make heavy use of certainty 
equivalence, as in Holt et al. (1960), following Hansen and Sargent 
(1980a) and described in more detail in Townsend (1981). The end 
result is a decision rule of the form 

k,+ = XAk + f jIY 
0 E YE(P,++ (7) 

where EQ ft) denotes the expectation conditioned on the informa- 
tion set fQ. (Note that kt is included in fQ.) Thus, as one might expect, 
the capital stock decision of the representative firm in market i is a 
linear function of the beginning-of-period capital stock and the ex- 
pectation of all future market-specific prices. As we shall see, these 
latter expectations are often expressed in terms of a finite number of 
state variables. 

IV. A Definition of Equilibrium 

The sequence of expected future prices, which each firm in market i 
takes as given, is of course determined in an equilibrium, with mar- 
ket-clearing condition (2). Moreover, this sequence will be required to 
have the rational expectations property that the firms' expectations be 
consistent with the statistical distribution of prices which the model 
generates. Note that these expectations across markets need not be 
identical, as information sets across markets need not be identical. But 
each firm's expectations are required to be statistically correct in the 
sense of minimizing the mean square forecast error given the model. 
Thus, to accommodate rational but disparate expectations, the equi- 
librium is specified at the level of decision rules. That is, firms act as if 
they know that prices are determined at each date by market-clearing 
considerations, that the demand at each date is determined by the 
schedule (2), and that the supply at each date is determined by a law 
of motion describing the evolution of the market-wide average capital 
stock. More formally, consider then (with some repetition of earlier 
equations) the following definition. 

DEFINITION: A dynamic linear equilibrium with rational but possi- 
bly disparate expectations is a law of motion for the aggregate capital 
stock in each market i, 

K1+1 = h1K1 + h2M, i = 1, 2, . . . , I' (8) 
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where MI = E(01IfDI); a law of motion for the parameter 0, 

ot+ I = Pot + Vt+ 1; (9) 

(linear) forecasting formulas for the Ot+, in each market i, 

E(01+jf1t) = pSMI, s = 0, 1, , X, = 1, 2, . . ., I; (10) 

firm-specific laws of motion for the capital stock in each market i, 

k'+ = gl~k + g2K' + g3M', i = 1, 2,. . .I; (11) 

and a price equation in each market i, 

Pt = O?t + Et- b I foK i, 1, 2, ...,I; (12) 

such that (i) for each firm in market i, the individual law of motion 
(11) is maximizing, that is, is derived from (7) given the aggregate law 
of motion (8) and market-clearing condition (12) for i and parameter 
motion (9), under the forecasting formulas (10) for i; '0 (ii) for all firms 
in market i, the individual law of motion (11) generates the aggregate 
law (8), that is, g3 = h2, g+ ? g2 = hI; (iii) for each firm in market i, the 
forecasting formulas (10) are statistically correct, that is, based on all 
available information in market i at time t given the aggregate capital 
laws and market-clearing conditions (8) and (12) over all i and parame- 
ter law (9) and given the forecasting formulas (10) over all i. 

It must be remarked here that this definition remains somewhat 
imprecise until the information sets D are specified. It is assumed that 
f? contains at least (Mt, M 1, , K, K1, . , Pt. P1,. ). (Note 
here MI denotes common market i forecasts, a state variable from the 
point of view of the individual firm in market i since it describes the 
beliefs of other firms.) Equilibrium condition iii allows the possibility 
that firms in market i see prices and/or capital stocks in other markets, 
for example, so statistically correct forecasts must use the laws of 
motion of these variables. Note that these laws may involve the fore- 
casts in other markets, which, under the definition, must have the 
same statistically correct property. We shall concentrate on this simul- 
taneity in what follows and examine the extent to which it can cause 
difficulties. 

"'On the right-hand side of(7) is the sequence of expected future prices, E(P+, f1l) 
E(Pt?~ +f1) Q,)s and so on. Substituting (8) into (12) at t + 1, we get 1 01+ ? + 1 _ 
bfio(1iIKI + liM,). Thus E(P, 1 = pMt + 0 - h - b/1fIl2Vi. Similarly. 

t+2 =Ot +2? + E - bI - bjfohIhM, - bifh2,M,, 1. Noting M +I 
1(0t+ I It+ 1) E(Mt+ 1 fl,) = E(0, + 1 fl,) by the law of iterated expectations. Thus 

E (Pi S2,) = p2 Mi + 0 - b Ifo IiKt - bI/ IIhAi - biJ)h~pMAI. Substituting expres- 
sions like these into (7) delivers (11). 
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V. A Law of Motion for Market Aggregates 

The definition of an equilibrium given above may appear somewhat 
forbidding in a computational sense. But one can make use of an 
insight of Sargent (1979), that the law of motion of the aggregate 
capital stock in each market i can be derived without directly calculat- 
ing firm-specific laws of motion. Moreover, the aggregate law can be 
computed without being at all specific about the information sets and 
forecasting. The details of this procedure are described in Townsend 
(1981). The important result is 

fo-yIf PP 
Kt+1 = yKt + f - f3) M, (13) 

which has the form of (8) in the definition of equilibrium. 
Given statistically correct forecasts determining M' and the law of 

motion (13), one can work backward to compute the firm-specific 
decision rule (11). But this is never done in what follows. Instead, 
advantage is taken of the insight that statistically correct forecasts 
along with (13) completely determine an equilibrium. Having already 
computed (13), finding an equilibrium here is equivalent to finding 
statistically correct forecasts, if the resulting price sequences are 
bounded in mean. These forecasts will be functions of the informa- 
tion structure, as the following sections illustrate. 

VI. Equilibrium in a Hierarchical Information 
Structure" 

This section focuses on a highly stylized structure in order to illustrate 
the interplay of forecasts across markets. It is supposed in particular 
that there are two markets, one which is informationally self- 
contained and one which receives price but not quantity information 
from the other. As we shall see in Section VII, this structure induces a 
special kind of volatility in the second market. The present section is 
devoted to formulation-analysis issues and makes the point that Kal- 
man filtering techniques easily handle the inference problems of deci- 
sion makers when the information structure is hierarchical, even if 
observed time series are endogenous. It will also set the stage for 
understanding the difficulties which emerge later on when the infor- 
mation structure is symmetric. 

More formally, then, suppose there are just two markets, so that I 
- 2. Suppose also that the first market is informationally self- 

l That hierarchical structures should be tractable with Kalman filtering was sug- 
gested to me by Thomas Sargent. See also Prescott and Townsend (1980). 
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contained, so that fl' = (K,Kt, .., PP ,. ..,,V 1, . . . ) 
Finally, suppose for now that t = 0 is a starting date, so that histories 
extend back to t = 0, and that firms in market 1 have an initial prior 
on the parameter 00, at the beginning of date t = 0, in particular that 
00 is regarded as normally distributed with means pM 1- I and variance 
r2(0O). Thus, with prices and quantities known at the end of each 
period t, the entire history of local shocks (z4, z4, . .. I, z) is completely 
deducible at the end of each period t. And thus each firm in market 1 
can make direct use of that history to form beliefs on Q, at the end of 
period t, that is, to form the distribution of Ot conditioned on that 
history. As we shall now indicate, there are two ways to derive these 
conditional distributions. 

One way is to make direct, explicit use of the entire history at each 
date t. Note, in particular, that at the end of period t the representa- 
tive firm in market 1 has seen 

z = 0o + E? 
1 1 

ZI = P0O + V1 + EI 

1 1 

Zlt= PtOO + Pt- ll + . + PVt- I + Vt + Elt. 

Thus, the representative firm can form a posterior distribution on the 
parameter vector x' = [0o vl ... v], conditional on the vector y' = 

[zO zI ... zl], given noise vector w' = [E E ... El], via standard for- 
mulas for (conditional) means and variances of normal random vari- 
ables. That is, suppose we are given that 

y = Cx + w, y, w E R, x E R' (14) 

and that the prior normal distribution on x and w is characterized by 
means and variances 

E (x) = , E (w) = (15) 

and 

E{(x - x)(x - x)'} = 1, E{(w - W)(w - W)'} = lw, (16) 

respectively. Then the posterior distribution of x, conditional on y, 
has means and variances 

x(y) = x ? XC'(C1XC' + ? WWF (Y _ C- - W) (17) 

and 

Ey{x - i(y)][x - x(y)]'} = 1XX - XX?C (Cx + Earns) CIXX, 

(18) 
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respectively (see Bertsekas 1976). Here, then, 

x'=[PM,-, 0 . ] w'=[O 0 * ? 

u2(0o)O 7 ... O 2 o ... 0 
0 C2 ...... 0 2y 

EXX= . .* 7W= 

0 0 ....0 U2 0 . 2 

We might note in passing that in this formulation the firm is learn- 
ing about the parameter 00 at each date t - 0, and thus with more and 
more observations the posterior distribution on 00 should tend to 
become degenerate with mean 00 and variance zero. (In this regard 
the updating may be viewed as sequential, with only the most recent 
observations employed explicitly.) Similarly, the firm is learning about 
the parameter v1 at each date t : 1, and so on. Thus, in general, the 
firm should learn parameters in the arbitrarily distant past arbitrarily 
well. But the variable of interest, O J = VtJ + pt00, is constantly 
buffeted by new shocks v, which are not well understood. Indeed, the 
posterior distribution for Ot may now be computed directly, at the end 
of period t, since it is just a linear combination of a finite number of 
unknown parameters (vt, vt- 1, . . . , Oo). One might expect that poste- 
rior to have a variance which reflects the above-mentioned degree of 
uncertainty and a mean which moves around with the realized history 
of the shocks vt. 

Finally, we might note that in substituting for y in (17) from (14) it 
becomes clear that the mean forecast of x, x(y), is a linear function of 
the random variables, x and w. In the application here, then, the 
mean forecast of the parameter vt is a linear function of the random 
variables (vt, vt- 1, . . .I, vl) and (Et, Et l,.. ., E\). It is already apparent, 
then, that this learning mechanism is the cause of some persistence. It 
converts serially uncorrelated economic shocks, the vt and the Elt, into 
serially correlated forecasts of the shocks vt. That is, E (vt fll) is cor- 
related with E (v1 lQ - 1), as both contain vt- 1, for example, except 
in the special case of full information, a' = 0. By the same token, 
then, one anticipates that the mean forecasts of the variables, Or- say, 
E(Ot Dfi), E (0t-1 I I t - I), and so on-will be serially correlated with a 
persistence over and above that present in Ot itself.That is, the fore- 
cast error [E (Ot I f4l) - 01] will be serially correlated, a moving average 
of past random variables vt and E'. This will be made clear in a 
moment. 

A distinct disadvantage of the method described above for comput- 
ing the conditional distribution of Ot is that the state vector x, increases 
in dimension with the length of history (back to t = 0)-there are 
more and more innovations. An alternative way to compute the con- 
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ditional distribution of 0, exploits a recursive algorithm developed by 
Kalman (1960). That is, suppose we have under consideration a finite 
dimensional state vector x, following linear law of motion 

Xt+ I= Axt + vt+i, Vt, Xt E R n (19) 

with period-by-period observations 

yt = Cxt + wt, wt, yt E R'. (20) 

Thus, the information set fit is (yo, yl, ... , y,). Suppose also that 

E(vt) = 0, E(wt) = 0, E[vv'] = M, E[wtw'] = N, (21) 

with w, and vt independent normal random variables. Then, by using 
the fact that 

E(xIfl,) = E(xtIlfl,) + Ejxt[y, - E(ytIQtI)]}, (22) 

standard formulas for conditional means and variances of normal 
random variables, like (17)-(18), deliver a law of motion for condi- 
tional forecasts 

E(xtlfl,) = AE(xtI1ftI) + 1tjC'N 1[yt - CAE(xt,11Qt-1)] 

(23) 
and law of motion for variance-covariance matrix 

l- 1 - EI[xt - E(xtlIt- l)][xt -E(xtlt- 1)] Ift- 1} 

namely, 

It+ 1t = A[Itt-I - 1-tjt1C'(Ctt_ 1 C' + N)-'Cltt-,1]A' + M. 
(24) 

The matrix Itlt in (23) is defined by 

Itlt E [xt - E(xtlflt)][xt - E(xtlnt)]' Qt} (25) 

= tlt- 1 - 1tjt- lC'(C~tjt- C' + N)- ClCtlt- 1. 
Moreover, under specified regularity conditions, the variance- 
covariance matrix Itlt- I in (24) converges to some constant I inde- 
pendent of the variance of the initial prior. In this case we can define 
a constant matrix I from (25) by substituting I for Itlt- 1, and thus 
coefficients in the linear law of motion (23) are no longer time depen- 
dent. Moreover, one can interpret this solution as having supposed an 
infinite history so that the steady state has been obtained at t = 0. This 
supposition is useful for analytic and econometric purposes. To reit- 
erate, then, under the Kalman filtering algorithm, contemporary 
mean beliefs may be updated from past mean beliefs and the contem- 
porary observation yt alone-mean beliefs capture all that is neces- 
sary for forecasting from the infinite history. 



FORECASTING 559 

Returning to the present application, the inference problem faced 
by firms in the first market, note again that 

Z' = ot + et (26) 

and 

t+ I= P0t + Vt+1. (27) 

Thus let xt = Ot, yt = zt, A = p, C = 1, M = cr V, and N = orE. So, with 
appropriate substitutions and manipulations, (23) yields 

Ml = 
ctoMtI- 

+ lztl, (28) 

where coo = p[l (Vol)] and ol = (Vu2). (Note here that the 
coefficients uO and ox I can be expressed entirely in terms of p and 
variances cr2, Co2.) 

Now we may note also that, with an infinite past, 

M = E(Otlf') = ? t 
d tIEt (29) 

(1 - xotL)(1 - pL) (1 - aoL) 

and 

Ot?IVt + _IEVt [E( 4 - ] 
=(1 - xoL)(I - pL) + (1 - aOL) (1 - pL) 

(30) 

Thus the forecast error of Ot is a linear combination of current and 
past vt and E I and is serially correlated, as was anticipated above. 

With this artillery we now turn to the inference problem of firms in 
a second market. Suppose in particular that firms in some market 2 
see price in market 1, pP 1, in addition to the shock to their own market, 
z2. That is, suppose 42 = (Ky2, K . P2, P2 M2, M 2 

* , P1', P I, ). Thus, firms in market 2 do not see the aggregate 
capital stock (output) in the first market and thus do not get a second 
direct observation on Ot. But firms in market 2 do see a filtered ver- 
sion of the vector of state variables in market 1: the shock 0,; the mean 
forecast in market 1, M '; and the capital stock in market 1, KJ1. That 
is, letting x; = [K 1 MJ1 ot], note that 

-K tl+ 1 hh h2 0 0 

t+ I= 0 x o K P Mtl + Ot lVt+l + OtlEt+ (31) 

or 

xt+ = Axt + vt+ 1. (32) 
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Then firms in market 2 see 

Zt 0f 0 1 Ef 0 

t ~~~~~(33) 

00~~~~~~~ 

or 

Yt = Cxt + W?. (34) 

The point is that (34) and (32) represent a system to which the Kal- 
man filtering algorithm may again be applied directly. In this applica- 
tion, then, firms in market 2 attempt to keep track of the capital stock 
and mean forecasts in the first market, as well as the persistent shock 
Ot. Again, all these variables are unobserved. 

Now, in this case a less trivial Kalman filtering theorem'2 ensures 
the convergence of the variance-covariance matrix of the conditional 
distribution of the state vector xt, defined in (31) and (32), with means 
satisfying the recursive relationship of (23) or 

-'Ktl K-K 

E( IMf2+I) = (A - EC'N'-CA)E( MI JD2) 

(35) 

+ ?UN-1( t+l 
Z21 

12 This theorem (see Kwakernaak and Sivan 1972, p. 535) requires that the variance- 
covariance matrix M be written M = GM*G', where M* cI, N ? PI, M* positive 
definite, where (x, P are positive constants, and the rows of 

C] 

CA 

_CA2 

and columns of (C,, AG, A2G, A"- G) span the i-dimensional space. For the 
application here, let G and M* be defined by 

G<1 0 M* = 

w r , , I (ad m7i (text 

where CJ, A, and N are defined implicitly in the text. 
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(Note that here the matrices of coefficients weighting the prior mean 
and the current observation depend on the parameters of technology 
and demand, through the definitions of A and C in [31]-[32] and 
[33]-[34], respectively.) Substituting (33) at t + 1 and then (31) into 
(35) yields 

E( Mtl+ l 2+ 1) = (A - C'N- 1CA)E( MI (362) 

+C'N-iCA Ml + !C'N-'Cv?+l + YC'N-lw? 

Moreover, substitution of (31)-(32) into (36) and the obvious manipu- 
lation yield 

E ( Mtl |12)- Ml 

Lot Lot (37) 

= [I - (A - YC'N-'CA)L]'l[5C'N' CA(I - AL)- lv?1 

? UC'N -'Cv? + 5C'N - 'w?] - (I -AL) - 1vo 

This is the market 2 analogue of (30), and it is again apparent that the 
forecast error in market 2 will be serially correlated as a moving 
average of shocks El, E , and vt. Note also that forecast errors will be 
serially correlated across markets 1 and 2 due to the influence of the v1 
and the El terms. 

In summary, then, this economy with two markets has laws of 
motion 

K 2 h I (O 0 h2) 0 

E (Ktl+l fj2+ 

E(M'+ 2+l)= 0 A - 5C'N-'CA !C'N-'CA 

t+l (38) 

t1O O 0 0 A 

ot+ 1 
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E" (K' 1/2) 

1 (1XI'|S?) + X '( C'N v/,I + SUN -'w1 +I 

Al 

0~ 

The recursive manner in which this hierarchical system is determined 
is apparent from (38): apart from the shocks, motion in the first 
market determines beliefs in the second market which determine mo- 
tion in the second market. Note also that this system is stable because 
the matrices along the diagonal are stable. So all variables are 
bounded in mean. Thus, prices in each market are bounded in mean, 
and the existence of an equilibrium is established. 

VII. Time-Series Dynamics for the Hierarchical 
Structure 

Now suppose an econometrician were given time series of capital 
stocks and prices in both markets. We might ask what implications the 
theory has for these series, at least for various possible parameter 
values. One way to answer that question is to look at the implied 
covariance structure of the data, and indeed that route will be taken 
in the discussion of formal estimation in Section X. Here we wish to 
characterize the data, perhaps in a more revealing way, by examining 
the response of the system from an initial steady state (of zero) to a 
positive, one-standard-deviation impulse in specified economic shocks 
at date 1, holding all other economic shocks at zero, following the 
suggestions of Lucas (1975) and Sims (1980a, 1980b). 

Consider first the capital stock series in the first market. Note in 
particular that (31) can be written after repeated substitutions as 

(1 - pL)(I - hL)(1 -otxL)Kt+1 

- h2cvl1oyvt + 
h21(1I( 

- pL)OEE* (39) 

where the * shocks are normalized to have unit variance. Equation 
(39) completely describes the statistical properties of the capital stock 



FORECASTING 563 

1 .92 - 

1 .73 - 

_ 
I54 

Market 2 

1.34 - 

I .15- 

~'0.96- 
a 0 77 i/ X k~~~~~~~aret I 
0.77 --1 

o 0.58 - 

0.38 - 

0.19 _ 

0.00- 
0 a 4 6 8 10 12 14 16 18 20 22 24 26 28 

Time - 

FIG. 1.-Hierarchical structure response to persistent common shock (high adjust- 
ment costs). 

in market 1. These properties become especially clear when a com- 
parison is made to the model with no learning (full information), 
namely, 

(1 - pL)(I - h1L)K1+1 = 
h2CrvV 

(40) 

In both (39) and (40), intrinsic persistence will be higher and the 
capital stock series will be smoother the higher is the serial correlation 
parameter p in the driving stochastic process 01, since demand stays 
high longer, and the higher is the ratio of adjustment costs to revenue 
(high h, is associated with highf2/fo) because it is costly to adjust more 
quickly. And the effects of economic shocks can not only persist in 
(39) and (40), they can also cumulate in the sense of Lucas (1975). 
That is, the full effect of the shock is not immediate-there can be a 
rising portion in the response function (see fig. 1). But we might note 
that in (39), relative to (40), there is additional persistence induced by 
the learning, persistence which varies directly with the noise in cur- 
rent observations (high ratio of variances cre/Uv is associated with high 
at). On the other hand, (39) allows a response to entirely transitory 
shocks, the E', as these are partially mistaken for relatively persistent 
shocks v. This adds more volatility to the capital stock series. 

The statistical process for price in the first market is linearly related 
to the statistical process for the capital stock via the market-clearing 
hypothesis. There is in addition a stochastic intercept, representing 
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the period-by-period shocks to demand. That is, 

PI= E ,_t + El - b f(Klf (41) 
= 0 

The statistical process for the capital stock in the second market is 
more complicated than in (39) since, as noted, (41) is taken into ac- 
count in the inference problems of firms in the second market."t It 
may be noted again that firms in the second market will respond to 
the relatively persistent shocks vt as well as to the transitory shocks elt 

and Et in both markets. In this sense, the second market is more 
volatile than the first. But possessing more observations, firms in the 
second market are relatively better informed. Thus market 2 re- 
sponds more readily to persistent common shocks (see table 1 and fig. 
1) and less readily to transitory local shocks in the first market (see 
table 3 and fig. 3). In this sense, then, the statistical process for Kt 
moves away from the limited information system (39) toward the full- 
information system (40). 

There are, however, some interesting dynamics in the second mar- 
ket which have no parallel in either the full-information system (40) 
or the self-contained system with learning (39). Consider the response 
of the second market to transitory shocks in the first market. Under 
high adjustment costs (see table 2), the best forecast in the second 
market of the parameter 0/ (which remains zero) first increases, then 
goes negative, then becomes positive again, and then seems to de- 
crease toward zero. Thus, forecast errors on 0, display (sharply) 
damped oscillations around the steady state. This "volatility" may be 
contrasted with the usual exponential decay of forecast errors in the 
first market under (39). Clearly, firms in the second market are draw- 
ing inferences from the price in the first market, which is first positive 
and then negative. However, the negative inferences are eventually 
corrected. (Recall that all variables should be interpreted as variations 
from steady-state values.) 

When adjustment costs are low (see table 3), one again observes the 
strikingly different behavior forecasts in the two markets (see fig. 2). 
Here forecasts in the second market remain negative enough to pull 
the capital stock in the second market below its steady-state value (see 
fig. 3). 

As between tables 2 and 3, the qualitatively different nature of the 
response to a transitory shock, for high and low adjustment costs, 
respectively, may be attributed in part to the different steady-state 

'3 From system (35), let D = A - !C'N 'CA and F = IC'N- '. Then M = E(O, I ) 
is determined by the third row of (35), namely, E(xIfl2) = (I - DL) - 'F(P' z,)'. The law 
of motion (13) for K 2 then completes the picture. 
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TABLE 1 

HIERARCHICAL STRUCTURE RESPONSE TO PERSISTENT COMMON SHOCK 

(High Adjustment Costs) 

MEAN BELIEFS CAPITAL STOCK 

PRICE IN 

TIME In Island 1 In Island 2 In Island 1 In Island 2 ISLAND 1 

1 .597406781 .723919251 .000000000 .000000000 1.000000000 
2 .754126830 .830056978 .344032644 .416888227 .831193471 
3 .757145206 .815213292 .715557441 .818848934 .666888512 
4 .709848917 .786750604 1.021045993 1.138934858 .524790801 
5 .649160913 .759951506 1.243569749 1.384238931 .407386050 
6 .587975734 .734319136 1.390551374 1.569361062 .312379725 
7 .530529996 .708619299 1.475485134 1.705951679 .236343973 
8 .477966812 .682456960 1.511843409 1.802825166 .175928218 
9 .430347608 .655889972 1.511299207 1.866960475 .128207369 

10 .387377153 .629113683 1.483431489 1.904096755 .090734191 
11 .348662738 .602335458 1.435901784 1.919038704 .061498083 
12 .313804907 .575738991 1.374747835 1.915833951 .038861029 
13 .282427475 .549478622 1.304675924 1.897897531 .021494352 
14 .254185836 .523681405 1.229317171 1.868110381 .008323149 
15 .228767654 .498450495 1.151441842 1.828901060 - .001520444 
16 .205891034 .473868351 1.073134982 1.782314506 - .008735864 
17 .185301983 .449999559 .995938937 1.730070100 - .013885769 
18 .166771804 .426893300 .920968428 1.673610764 - .017421869 
19 .150094631 .404585512 .849003123 1.614144522 - .019705989 
20 .135085170 .383100788 .780561909 1.552679721 - .021027210 
21 .121576654 .362454051 .715962309 1.490054926 - .021615807 
22 .109418989 .342652015 .655367885 1.426964325 - .021654588 
23 .098477090 .323694470 .598825928 1.363979332 - .021288095 
24 .088629381 .305575409 .546297307 1.301567008 - .020630080 
25 .079766443 .288284008 .497680019 1.240105746 - .019769561 
26 .071789799 .271805480 .452827655 1.179898682 - .018775732 
27 .064610819 .256121823 .411563805 1.121185137 -.017701942 
28 .058149737 .241212463 .373693200 1.064150407 - .016588903 
29 .052334763 .227054816 .339010256 1.008934138 - .015467288 
30 .047101287 .213624767 .307305551 .955637496 - .014359000 

NoTE.-Assigned parameters: p = .900, bl = 1.000, f3 = .960, () = .200, fl = .00,12 = .800, oJ = 1.(00, oe 
= 1.000, a2 = 1.000. Computed parameters: h, = .818, h2 = .576, c(x = .362, c(x = .597. 

E matrix (island 1) E matrix (island 2) 

.597406781 1.362374115 .312149664 .169669081 
.312149664 .616612548 .265536615 
.169669081 .265536615 .378926534 

covariatuce matrix of the conditional distribution of beliefs in the sec- 
ouid market, reported in the tables as the sigma (E) matrix, a matrix 
which is quite sensitive to the adjustment cost parametersf() and ft. In 
neither case, however, are there any zero entries in that matrix. In 
particular, under the assumed parameter specifications, firms in mar- 
ket 2 never learn with certainty the capital stock in market 1. This is 
what generates the interesting dynamics. That is, the space spanned 
by current and past prices in market 1 is not equivalent with the space 
spanned by current and past market 1 shocks, the zt. 
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TABLE 2 

HIERARCHICAL STRUCTURE RESPONSE TO TRANSITORY MARKET 1 SHOCK 

(High Adjustment Costs) 

MEAN BELIEFS CAPITAL STOCK 

-~ ~ PRICE IN 

TIME In Island 1 In Island 2 In Island I In Island 2 ISLAND 1 

1 .597403342 .344998702 .000000000 .000000000 1.000000000 
2 .216461330 .064259251 .344030663 .198676713 - .068806133 
3 .078431947 .005355471 .405926789 .199439029 -.081185358 
4 .028418796 - .002231772 .377043768 .166140967 - .075408754 
5 .010297181 - .001425525 .324628249 .134547903 - .064925650 
6 .003731050 - .000429915 .271338681 .109182420 - .054267736 
7 .001351897 .000000616 .223989043 .089017519 - .044797809 
8 .000489842 .000131948 .183906943 .072779082 - .036781389 
9 .000177488 .000157482 .150640280 .059578531 - .030128056 

10 .000064310 .000153722 .123262325 .048800761 - .024652465 
11 .000023302 .000143964 .100813547 .039986932 -.020162709 
12 .000008443 .000133894 .082436314 .032775325 - .016487263 
13 .000003059 .000124516 .067402943 .026873477 - .013480589 
14 .000001108 .000115860 .055108896 .022042857 -.011021779 
15 .000000402 .000107841 .045056436 .018088467 -.009011287 
16 .000000146 .000100389 .036837362 .014850828 - .007367472 
17 .000000053 .000093456 .030117485 .012199516 -.006023497 
18 .000000019 .000087002 .024623410 .010027870 - .004924682 
19 .000000007 .000080994 .020131559 .008248664 - .004026312 
20 .000000003 .000075401 .016459115 .006790565 -.003291823 
21 .000000001 .000070194 .013456605 .005595235 - .002691321 
22 .000000000 .000065346 .011001819 .004614961 -.002200364 
23 .000000000 .000060834 .008994840 .003810720 - .001798968 
24 .000000000 .000056633 .007353980 .003150592 - .001470796 
25 .000000000 .000052722 .006012449 .002608467 - .001202490 
26 .0(0000000 .000049081 .004915643 .002162985 - .000983129 
27 .000000000 .000045691 .004018920 .001796672 - .000803784 
28 .000000000 .000042536 .003285779 .001495232 - .000657156 
29 .00000(000 .000039599 .002686379 .001246963 - .000537276 
30 .000000000 .000036864 .002196323 .001042293 - .004392646 

NOTE.-Assigned parameters: p = .900, b= 1.000, N .960,f(o = .200,fX .000,12 = .800, u E, = 1.000, o= 
1.000, oS = 1.000. Computed parameters: h1 = .818, h2 = .576, cto = .362, (xl = .597. 

E matrix (island 1) E matrix (island 2) 
.597403342 1.361775834 .312092067 .169608920 

.312092067 .616601903 .265529661 

.169608920 .265529661 .378920486 

VIII. Equilibrium in a Symmetric Information 
Structure with Confounding 

In the hierarchical structure, firms in the second market are forming 
inferences on the basis of an endogenous time series, prices in the first 
market. These prices depend on the aggregate capital stock in the 
first market, which the firms do not see. The law of motion of this 
capital stock is known, however, though it depends on beliefs in the 
first market, which the firms in the second market do not see. The law 
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TABLE 3 
HIERARCHICAL STRUCTURE RESPONSE TO TRANSITORY MARKET 1 SHOCK 

(Low Adjustment Costs) 

MEAN BELIEFS CAPITAL STOCK 

PRICE IN 

TIME In Island 1 In Island 2 In Island 1 In Island 2 ISLAND 1 

1 .597406781 .275942299 .000000000 .00000(,()00 1.0(0000000 
2 .216460727 - .029342976 .486052485 .224507730 - .388841988 
3 .078431059 - .012405283 .276674876 .022575855 - .221339901 
4 .028418231 - .005139347 .121054325 - .005422166 - .096843460 
5 .010296888 - .004498733 .048166658 - .005303209 - .038533326 
6 .003730912 - .003886124 .018343005 - .004757391 - .014674404 
7 .001351836 - .003262932 .006830551 - .004146043 - .005464441 
8 .000489816 - .002739521 .002513062 - .003512528 - .002010450 
9 .000177477 - .002301869 .000918455 - .002955607 - .000734764 

10 .000064306 - .001934158 .000334419 - .002484308 - .000267535 
11 .000023300 -.001625151 .000121509 -.002087628 -.000097207 
12 .000008442 - .001365512 .000044097 - .001754148 - .000035277 
13 .000003059 -.001147354 .000015992 -.001473909 -.000012794 
14 .000001108 -.000964049 .000005797 -.001238435 -.000004638 
15 .000000402 - .000810030 .000002101 - .001040580 - .000001681 
16 .000000146 - .000680617 .000000761 - .000874334 - .000000609 
17 .000000053 - .000571880 .000000276 - .000734648 - .000000221 
18 .000000019 - .000480515 .000000100 - .000617278 - .000000080 
19 .000000007 - .000403747 .000000036 - .000518660 - .000000029 
20 .000000003 -.000339243 .000000013 -.000435798 -.000000011 
21 .000000001 - .000285044 .000000005 - .000366173 - .000000004 
22 .000000000 - .000239505 .000000002 - .000307673 - .000000001 
23 .000000000 - .000201241 .000000001 - .000258518 - .000000000 
24 .000000000 - .000169090 .000000000 - .000217216 - .000000000 
25 .000000000 - .000142076 .000000000 - .000182513 - .000000000 
26 .000000000 -.000119377 .000000000 -.000153354 -.000000000 
27 .000000000 - .000100305 .000000000 - .000128854 - .000000000 
28 .000000000 - .000084280 .000000000 - .000108268 - .000000000 
29 .000000000 - .000070815 .000000000 - .000090971 - .(((00(0000 
30 .000000000 - .000059502 .000000000 - .000076437 - .000000000 

NOTE.-Assigned parameters: p = .900, b1 = 1.000,3 = .960,/( = .80.J = .(),/9 = .200, u' = 1.((0, Ua = 

1.000, (oS = 1.000. computed parameters: hl = .207, h2 = .814, a.( .362, al = .597. 

E matrix (island 1) l matrix (island 2) 

.59740678 1 .490756468 .3 16838956 .21 102 1629 
.316838956 .689790614 .347483817 
.211021629 .347483817 .444759602 

of motion of these beliefs is known, however, and depends on the 
underlying demand shock O0, with known law of motion. In summary, 
firms in the second market are forming expectations on the expecta- 
tions in the first market, but the laws of motion of the market 1 
expectations are well defined and can be expressed in terms of a finite 
number of state variables. Thus, the Kalman filter can be applied. In 
fact, we could well add on another layer to the hierarchical informa- 
tion structure, supposing that firms in some third market see prices in 
the second market and so on, building on system (38). 
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One might well ask, though, what would happen in a symmetric 
information structure rather than a hierarchical one. Thus, suppose 
firms in market 1 (firms 1) see P". Then to make inferences, firms 1 
must have expectations on M s, Say, El (M2). But firms in market 2 
(firms 2) see P,' also. So firms 2 must have expectations on AIt. But M' 
is related to El (M2). Thus firms 2 need to have expectations on M' and 
E' (M2), say, E 2(M ) and E 2E' (MS ). Returning to market 1, it becomes 
apparent that there is an infinite regress problem here (see also 
Townsend 1978). In the space of mean beliefs, at least, we seem to 
have need of an infinite number of state variables, but then it is no 
longer possible to make use of standard Kalman filtering formulas. 
This section of the paper is devoted to a discussion of this problem 
and possible solutions. 

The infinite regress problem emerges also in a model with an 
infinity of markets where it is somewhat easier to analyze. Suppose 
firms in each market see economy-wide average price Pt with error -t, 
that is, see P, = P + -r where P, limi = (P/I) and m is distrib- 
uted normally with mean zero and variance ar, independent of' , and 
of Et, for all i. Of' course, averaging over markets, P= - bl f)Kt + Ot 
where economy-wide average capital stock is K, = lim b=ZV I (KtI) 
and the economy-wide average local shock is zero, that is, 
limbeI= I (El'I) = 0 by the law of large numbers. Then firms in each 
market i attempt to make inferences about the economy-wide com- 
mon demand shock 0, on the basis of' noisy economy-wide price data 
P, and the market-specific shocks z. But to do this they must in effect 
make inferences about the economy-wide average capital stock (out- 
put), which they do not see. The law of motion of the latter is known 
to depend on economy-wide average mean beliefs. So firms in each 
market would need to make inferences aboutasuch beliefs, and the 
infinite regress is started. 

The general problem is that laws of' motion are needed for the 
inference problems, but the inferences in turn determine the laws of 
motion. This section captures this simultaneity by returning to the 
space of contemporary and past economic innovations. The model is 
then written down in the form of moving-average representations, 
and the method of undetermined coefficients is used to handle the 
simultaneity. 

To begin, let M, = lime 1= I (M/I) denote economy-wide average 
mean beliefs. Now suppose economy-wide average mean beliefs fol- 
low 

M, = C(L)v, + D(L),q,, (42) 

where C(L) and D(L) are polynomials in the lag operator with 
coefficients yet to be determined. These polynomials need not be of 
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finite order. Then, averaging across markets, the law of motion for 
the economy-wide average capital stock is 

Kt= hjKtj + h2MA1. (43) 

Substitution of (42) at t- 1 into (43) and the obvious manipulation 
yield 

- h2C(L)L h2D (L)L 

on the assumption of an infinite past. And thus one may write the 
observations of firms in market i at time t as 

z + E' ~~~~~~~~(45) 
' 1 - pL t 

-[l 1 bifoh2C(L)L l+ Li bfoh2D(L)L 1 '46 
pL 1- h-L - 1 - hlL fit 

As in Section VI, one might hope to make use of the observer equa- 
tions (45)-(46) at t, t - 1, and so on with formulas for conditional 
means and variances of normal random variables to form posterior 
distributions at date t on the innovations vt, Vt- 1, . . ., with means 
E(vtIf), E(v,- IK) . . . and so on. These means might in turn be 
expressed in terms of current and past economic innovations vt, vt- 1, 

..., a, a,,..., , ,, .... Then these means might be used to 

form conditional mean forecasts of Ot at time t, that is, M' = E(Ot|I,) 
- Z1=0p'E(v, fQf). One might then average over markets i and de- 
liver an equation of the form (42). One might then hope the 
coefficients in C(L) and D(L) could be determined. 

A potential problem with this approach is the appearance of an 
infinite number of innovations. To circumvent that problem, one 
might suppose an initial starting date, an initial prior distribution, and 
an appropriate (and possible time-dependent) specification of (42). 
But that approach is awkward at best, and there remains the problem 
of increasing dimensionality over time, as in Section VI. 

An alternative approach, which keeps the dimensionality finite but 
allows the advantage of an infinite past, is to alter the information 
structure somewhat. Suppose that all economic innovations dated t - 
j and backward are known at date t (see also Chari 1979). For ex- 
ample, supposed = 2. Then, 

= {P, p. KK1. Pt,Pt- . . . Qt = { t. t- 1, ** , t, t- 1, ** ,Mt. t- 1, *** t t ,*** 

11t-2, 11t-3, Vt-2, Vt-3, Et-2, Et3, * * *} 

Then there are a finite number of observation variables in market i at 
date t containing information on the unknown innovations, namely, 
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zt= Vt + PVt-I + Et, (47) 

;-= Vt- 
1 + et (48) 

t = Vt + pvti - bjfoh2DotI - bifoh2Covt-I +nt, (49) 

Pt-I = vt-1 + nt-1, (50) 

where the * and ** variables on the left-hand side of (47)-(50) are 
defined implicitly and include all past known innovations. (Note here 
from [43] that Kt l1 and Kt-2 are known at time t.) Thus one can make 
use of the standard formulas for conditional means and variances. 14 

In (17)-(18), for example, let 

X= [Vt Vt-] '= [O 0] 

f= [4* 4i1* P7 P ] w' = [I e-l m - b1foh2D0qt-i 't'], 

and so on. Then (17) delivers E(vt IQft) and E(vt - Ift) as linear func- 
tions of Vt, VtI, E, Et- 1I t, and qt- 1t That is, 

M' = E(vtIfl) + pE(vtQ) + ZpJVtfJ, (51) 
j 2 

which takes on the form 

M t = tpoVt + 'PIVt-I + folNt + IVt t-I 
00 (52) 

+ A e + Ale 1 + ZWVt-j 

I=2 

Averaging over markets i then yields 
00 

Mt = 4boVt + lilVt- + 40o-t + lrIqt-I + ZVt,. (53) 
j=2 

This is of the same form as (42), so one can hope to match coefficients. 
Namely, 

kpo = CO, '0o = Do. (54) 

We shall return to (54) momentarily. 
Of course, the procedure just described can be applied to any finite, 

full-information lag specification, that is, with economic innovations 
dated t - j and backward known at date t, j finite. But it is also 
apparent that the dimensionality problem begins to reemerge as j 
increases; a matrix of dimension 2j must be inverted. 

14 This procedure was suggested to me by Ian Bain and Edward C. Prescott as an 
alternative to the procedure described below. The entire paper is now written in a way, I 
hope, which makes the present procedure obvious and straightforward. 
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This observation alone might motivate the search for an alternative, 
more recursive procedure. And as it turns out, there exists an alterna- 
tive procedure which is of intrinsic interest given the topic of this 
paper, since it makes clear and exploits the distinction between shocks 
to driving stochastic processes, the economic shocks, and shocks 
which are innovations relative to decision makers' information sets. 

To begin to describe the alternative procedure, suppose one had 
under consideration a system of the form 

Yt = M(L)gt, (55) 

where M(L) is a polynomial which is one-sided in nonnegative powers 
of L. Then the observation variables yt are just moving averages of 
past, observable shocks it (the it are assumed to be serially uncor- 
related and have an identity variance-covariance matrix). Then one 
makes use of the powerful Weiner-Kolmogorov prediction formulas, 
namely, 

Et(yt+ ) M (L) (56) 
L + 

and 

E() =~ M(L) 
Et(yt+2) = t (57) 

and so on, where + means ignore negative powers of L. Clearly, these 
predictions are easily calculated. 

Returning to equations (47) and (49) and supposing full informa- 
tion at t - 2, for example, one may write 

Vt- L 2 0 0 ] [At 

zt = (1 + pL) 1 0 et (58) 

Lt(1 L 
+ o L) 0 (1 - 8L) It 

where ax = p - b foh2Co and 8 = blfoh2Do. System (58) is similar in 
appearance to (55), that is, it can be written as yt = M(L) i, but there 
is an obvious problem: the shocks on the right-hand side of (58) are 
not observable or deducible (note that in [58], M[L] does not have an 
inverse which is one-sided in nonnegative powers of L). Equivalently, 
the moving-average system (58) is not fundamental relative to the 
information sets of firms in market i. To make use of the Weiner- 
Kolmogorov prediction formulas, one must express the variables on 
the right-hand side of (58) in terms of observable or deducible 
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shocks.15 That is, one must find a representation which is fundamen- 
tal relative to the information sets of firms. 

To motivate the search for this fundamental moving-average rep- 
resentation, consider the covariance generating function for the yt in 
(58), namely, g(z) = E ,y(h)zh, where y(h) = E[yt y+h], a function 
which thus describes the entire variance-covariance structure of the 
observables yt. On the assumption of unit variances, u2 = = = 

1, which is not essential, and following Sargent (1979), the function 
g(z) may be written 

g(z) = M WM (z - l (59) 

or, alternatively, 

g(z) = M(z)WB(z)WB(z)B(z ')'VV'B(z')'W'M(z')', (60) 

where 

B(z)B (z = I, WW' = I, and WW' I. (61) 

Here B (z) is the Blaschke factor discussed in Hansen and Sargent 
(1981). Thus the variance-covariance structure of the data does not 
pin down a unique moving-average representation. The idea, then, 
from (60) is to convert the representation (58) to a fundamental 
representation 

Yt = M*(L)*, (62) 

that is, with known innovation gt where 

M**(L) = M(L)WB(L)WB(L), (63) 

et = B(L -)'W'BB(L -)'W'ft. (64) 

The reader is referred to Appendix A for details of the calculations. 

f5 I would like to thank Lars Hansen for suggesting systems like (58) and the use of 
Weiner-Kolmogorov prediction formulas, and for teaching me about Blaschke factors 
(see below). Since rpt-2 is in the information set of firms at time t, it may appear that 
system (58) should be augmented to include 1t-2 in the vector on the left-hand side. 
But the procedure described in the text below can be applied to the augmented system 
with the result that the predictions of v, and vt I remain unaltered. It might also seem 
that parameter 8 must be less than unity to justify the procedure described in the text, 
but the augmented system makes clear that this need not be the case. (I am indebted to 
Lars Hansen for this insight.) 
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Again, the Weinaer-Kolmogorov prediction formulas are 

Vt-I 

E( = L M 'L 1 a (65) 

E( F ~ 2 = L M*(L) (66) 

P *t+ 2_ 

for the one-step-ahead and two-step-ahead forecasts. So, to forecast vt 
and vt- 1, one needs only the first row of M**(z): 

1 + ~2z 4712+2z2 2z2 f W3 + VV21 Z IV12 + , W22 - W23. 

Thus, 

= 2VV21 + W12* + 2VV22 ** 

+ 223 ** 

and 

E (vt |IQ) = 2W 2t + 23 * (68) 

These prediction formulas are linear in the ** with coefficients linear 
in the Wjj's. 

To search for the undetermined coefficients Co and Do, (67) and 
(68) must be cast in terms of the economic innovations, vt, mt, and Et. 

The relationship is expressed in (64). For example, 

(lt = ( vV21L + 1 L 2Vt 

*It* W1L ~ TW2L-_ W ' 
+ 

77 W31L + 77 W21L - WI ILE It (69) 

1 +A 1 1 L2 qt + +- ,5 W31L + W21L - 7 WL WI t 

One can thus see how the information set innovations are linear functions of 
current and past economic shocks. Substituting expressions like (69) into 
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(67) and (68) yields the forecasts E(v, ljfl) and E(vt|Iff) as linear 
functions of vt, vet I, Et,- Et t, and qt 1, with coefficients which are 
quadratic in the Wij's. This again solves the forecasting problem.'6 

We turn now to the problem of finding the undetermined C0 and 
Do from equation (54). We might note in particular that Co and Do 
enter on the left-hand side of (54) in the parameters 4'o and Po. That 
is, parameters Co and Do were taken as given by the firms in solving 
their inference problems. But these inferences in turn determine the 
law of motion in (42) and thus affect the parameters f(P and 4(o. This is 
the confounding problem. One may note, moreover, the fundamen- 
tally nonlinear nature of this problem. The parameters Co and Do 
determine (in part) the coefficients Wij, and 4'o and +0 are quadratic 
functions of the latter. Still, equations (54) turn out to be not all that 
awesome. Existence and uniqueness of solutions are established in 
Appendix B, making use of the Blaschke procedure. 

The mapping described in Appendix B also suggests a scheme for 
computing solutions to (54): the method of successive approxima- 
tions. And though there is no formal basis for supposing that solu- 
tions can be computed by this method-that is, the mapping is not 
shown to be a contraction-in practice this method generates the 
solution quickly for a broad range of initial parameter values (e.g., 
accurate to eight decimal places after 10 iterations). The economics 
behind this method is somewhat reassuring. Suppose firms were to 
take as given some (arbitrary) moving-average representation for 
economy-wide average forecasts of the common demand shock. Then 
the inference problem in each market becomes well defined and pro- 
duces a best forecast in each market of the common shock. Averaging 
over markets, one arrives at a new moving-average representation. 
Repeating the process, there is convergence to a situation in which 
average forecasts in the population are consistent with best forecasts 
based on that average.'7 (This is reminiscent of a convergence result 
in Lucas [1978].) 

In concluding this section, it should be noted from (52) that the 
response of Mt+ to innovations mt, E', and vt is determined entirely by 
the coefficient pJ on vt after periods forj sufficiently large. Thus, M' 

16 As Subramanian (1982) has established, the Blaschke procedure described above is 
numerically tractable for any finite, full-information lag system, with innovations 
known at t - j. (Lags up toJ = 50 have been computed.) The dimension of the matrices 
remains at 2 + 1 = 3 and does not increase with j. Of course, the Blaschke algorithm 
requires more and more iterations; that is, more and more matrices W, IV, and so on 
must be computed. But there is a sense in which the procedure is recursive, as is 
apparent from (63) and (64). The reader is urged to consult Subramanian for a more 
detailed account. 

17 Subramanian (1982) has established that this procedure converges, and converges 
to apparently unique solutions, for arbitrarily large information lagj systems. 
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is stable, and so K' and Pt are stable and therefore bounded in mean. 
Thus the existence of an equilibrium has been established. 

IX. Time-Series Dynamics for the Symmetric 
Structure 

Now suppose an econometrician were to observe economy-wide aver- 
age capital stock and price series for the economy of Section VIII. To 
characterize the restrictions which the theory puts on these series, we 
shall examine responses to measurement errors and to innovations in 
economic shocks at date 1 for various possible parameter values. 

To begin, note from (42) and the law of motion for economy-wide 
average capital stock that 

(1 - hL)Kt+ = h2[C(L)vt + D(L),rj (70) 

with economy-wide average price determined by 

Pt = -blfoKt + >Ivt-1. (71) 
.=O 

The response of the system (70)-(71) to shocks vt in the common 
demand component is very much as expected with the extent of 
cumulation and persistence varying directly with the magnitude of 
the autocorrelation parameter p and the degree of costly capital ad- 
justmentf2/fo. More interesting experiments concern the response of 
the system to measurement errors t. Though there are no oscillations 
in forecast errors (or output), a somewhat surprising feature is the 
magnitude and extent of the response to such bogus shocks, as dis- 
played in figure 4. For the case of relatively high adjustment costs, the 
capital stock cumulates and takes considerable time to slide back to- 
ward its steady-state value. And this is so even if firms are given full 
information after two periods (j = 2). In fact the response patterns 
are not much different for the case of the longer information lags; the 
case j = 20 is computed here using Subramanian's (1982) program 
and displayed in figure 4. For the case of relatively low adjustment 
costs, the response patterns again are not much different. There is 
more persistence when the lag to full information increases, the j = 
20 case (see fig. 5). But the initial response to the measurement error 
in the j = 20 case is now slightly less than in the j = 2 case, though 
firms have relatively less information overall. Again the steady-state 
variance-covariance matrix of beliefs is sensitive to the adjustment 
cost parameters fo and f2. 
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X. Fitting the Theory to Data (in Principle) 

We now ask if an econometrician could determine in principle 
whether the theories with learning and somewhat sophisticated ex- 
pectation formation being proposed in this paper are consistent with 
actual data. One way one might hope to do this, consistent with the 
time-series dynamics already presented and with the work of Sims 
(1980a, 1980b), is to look in the data for patterns of response to 
economic shocks or innovations and to try to match these with re- 
sponse patterns predicted by the theory. We shall comment on this 
procedure at the end of this section. But for now we merely note that 
these response patterns are a convenient way, but not the only way, of 
describing the variance-covariance structure of the variables observed 
by the econometrician. Formal estimation or "fitting" procedures try 
to match directly the variance-covariance structure of observables 
with the variance-covariance structure of corresponding variables of 
the theory. 

To be more precise, we shall adopt here, with suitable modifica- 
tions, a technique of Sargent (1978, 1981) and Hansen and Sargent 
(1980a, 1980b), a technique which lets the theory deliver the entire 
econometric model, including the error term. The econometric 
model is not exact, because the econometrician treats both forecasts 
and underlying economic shocks as unobservable, latent variables. 
And here, as in the Hansen-Sargent papers, the theory implies cer- 
tain cross-equation restrictions on the coefficients of the econometric 
model and certain lag (zero) restrictions on its error terms as well. 
One then uses these restrictions to estimate and identify the underly- 
ing parameters of the theory, the parameters of preferences, technol- 
ogy, and driving stochastic processes. There follows a caveat on the 
"exact" nature of such error term models. This will provoke a discus- 
sion of the possibilities and limitations of more standard econometric 
procedures, on the one hand, and to a suggestion of Kydland and 
Prescott (1982), on the other. As noted, this section concludes with 
some comments on Sims's suggestion for summarizing data and a 
caveat on that method. 

To begin, suppose an econometrician had available time series on 
the capital stock and price in the first market in the hierarchical struc- 
ture of Section VI. (We shall focus on the first market alone in order 
to concentrate on method.) Suppose, however, that the underlying 
shocks, v, and Ij, are unobserved by the econometrician. Thus, mar- 
ket beliefs Ml and these shocks play the role of unobserved variables 
and, following Hansen and Sargent, deliver the error term in the 
vector time series, a mixed autoregressive moving-average process: 
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(I - pL)(1 - hL)(1 - aoL) 0 Kt+ 7 

0 (1 - pL)(1 - hIL)(1 - otoL) Pi 

[h2at lv (72) 
-[(I- hL)(1 - ooL)- bfoh2t LIL]us 

[h2(x 1( l - pL)]uc~ 1 St 
[(1 - hiL)(1 - pL)( - ot0L) - b1foh2 *1L(1 

- 
[v)11 

[h~~~a1(1 - pL)]cr0E LI -pL)rTJ -EtJ 

System (72) is the econometric model. One notes immediately the 
various zero restrictions on the coefficients of the lag structure and 
the cross-equations restrictions on coefficients in terms of the parame- 
ters of the model:fofIf2, p, I, 3, o2 U2, bI. (Note that these parameters 
determine h1, h2, a0, and ax1.) 

Now suppose an econometrician were given data over T periods, 
K'(T)' = [K1K' . . . K' ] and P'(T)' = [PoP1 . . . P -1I]. On the 
assumption (consistent with the theory) that these data are generated 
from a normal distribution, the likelihood function is 

1(T) - -1/2(2T) log 2a 1/2 log det [F(T)] 

- 1/2[K 1 (T)'P 1 (T)']F(T) - 
1 

[ 
T 

1 (73) 

where 

F(T) = ELi(TU 1[K1(T)'P (T)'] 

is the variance-covariance matrix and is determined by the theory and 
the parameters of the model. Maximum-likelihood estimates are de- 
rived by maximizing l(T) with respect to various feasible values for 
these parameters. 

It is instructive to see how F(T) is determined by theory and the 
parameters of the model. For convenience, system (72) may be rewrit- 
ten as 

Hl(L) PI H2 (L) ' I . (74) 

Now note that F(T) is completely determined under this stationary 
structure by the covariance matrices 

'Y(h) = ELPf +'[K +1+hP +] ,h = 0 +1, ?2,... 
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and the -y(h) are completely determined by the covariance generat- 
ing function g(z) = E y _(h)z/", where g(z) = H. (z)-- 'H2 (z) X 
H2(Z- ')'H. (z -)I As noted, the matrices of coefficients in H. (z), 
H2(z) have already been determined by theory and can be expressed 
in terms of the underlying parameters of the model. 

It is of interest to ask whether these underlying parameters can be 
identified, that is, whether there is any indeterminacy in the estimates 
for large (infinite) samples. Suppose one were armed with the true 
variance-covariance structure of the bivariate process K + i, Pt' so that 
the -y(h) and hence g(z) were actually known. We ask first whether the 
coefficients in the matrices of HI (z), H2(z) would be known and then 
whether the underlying parameters can be determined from these 
coefficients. 

The first question can be posed another way. Given some H, (z), 
H2(z) pair, is there another HI (z), H2(z) pair consistent with the same 
g(z)? Writing g(z) = HI(z)- 'H2(z)B(z)B(z- ')'H2(Z ')'H(z- ')- ", 

where B(z) is orthogonal, that is, B(z)B(z- 1)' = I, it seems the answer 
may be no; apparently H2(z) is only unique up to orthogonal matrices 
B (z). Here again, B (z) is the Blaschke factor discussed in Section VIII. 
But now invoke the restrictions implied by theory on the matrices of 
H9(z), in particular the zero restrictions. It can be shown that HI (z) 
and H9)(z) are indeed identified.'8 

The second part of the identification question is whether one can 
uncover the underlying parameters from the coefficients in HI (z) and 
H2(z). It is claimed that this can be done if the econometrician has 
prior knowledge of the discount rate, P, making use of the cross- 
equation restrictions. 1) Thus, the vector time series from the first 
market will effectively reveal all parameter values.20 

8 The argument is due to Lars Hansen, and is available from me on request. 
19 From the second-row, first-column and second-column elements of H2(L), it is 

evident that o, and ae are determined. From the first-row, second-column element of 
H2(L), h2rscr, and ph21tlc, are determined, so p is known. Then Y can be computed 
from (24) and (25), and thus a( and (xl are determined. Thus, from h.,o1, h, is deter- 
mined. From H1(L), the three parameters hl, o(, and p are known up to labeling. But 
with p and o0 known, hl is determined. So from the second-row, first-column element, 
bif( is determined. Now recall from (13) that hl = Ad h12 = (fOhY1P)/f.2(l - syrup)]. 
With -yI, f3, and p known, f(/f2 is determined. Then, since YIY2 =113 YI + _Y2 = (fl/f2) 
+ [(1 + ,)/,3] + (bjof(1/f.), fJif2 is determined. Thus the parameters of technol- 
ogy are determined up to some normalization, say f2 = 1, as expected since multi- 
plying the objective function through by a constant cannot change the implications of 
the theory. Withf2 = 1,f(,f, and b, are determined. 

2(0 Perhaps a more interesting question to ask is whether identification would be 
possible if parameter values of technology and demand were allowed to vary across 
markets. Data from the first market would allow one to determine the coefficients in the 
matrices C, A, M, and N, and thus S would be determined. These might then be used to 
identify the parameters in the second market from the analogue of system (72). The 
point is that the recursive structure can be exploited. 

To proceed with more formal econometrics for the symmetric information struc- 
ture, system (70)-(71) can be expressed as an ARMA process, and thus maximum- 
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The technique described above for estimation and identification 
assumes that the data really are generated by the model of the theory. 
Note, for example, that the error term in a vector autoregression of 
price and capital stock in the first market is a linear combination of 
current and past unobserved economic shocks which constitute part 
of the model itself; in the model these shocks have effects on observ- 
ables either directly, as on contemporary prices, or indirectly through 
their effect on decision makers' forecasts. Thus, movement in the 
error term plays a key role in identifying the underlying parameters 
of the model. And the variance of the error term is not necessarily 
small relative to the variance of' observables. Consider the model of 
capital stock movements in the econometric model (72). There is no 
reason a priori to believe that uncertainty is not a fundamental part of 
the problem confronting decision makers (as it would be if both cr 
and cr2 were small) or that current observations are unimportant in 
learning (as they would be if o l were small). 

Unfortunately, though, this wedding of theory and econometrics is 
not without difficulties. The above-mentioned technique leaves no 
room for errors which result from theory as an abstraction or approx- 
imation. That is, all the rich detail of the data is forced on the free 
parameters of the model. Viewed as an observable-unobservable in- 
dex model-as described, for example, in Sargent and Sims (1977)- 
the model is exact; there are no own error terms (with, we hope, small 
variances). 

This leads us to a discussion of perhaps a more standard 
econometric procedure, deriving an exact model from theory and 
tacking on error terms as dictated by discretion and by the data. We 
shall now examine in what sense this is or is not possible if agents of' 
the model themselves have incomplete information on exogenous 
driving processes and thus are engaged in learning. 

Suppose, first, that the econometrician has direct observations, 
along with the agents of the model, on the stochastic processes being 
forecast. Then the econometrician could potentially estimate the pa- 
rameters of those stochastic processes, and, with guesses about agents' 
initial priors, the Kalman filtering algorithm could be used to com- 
pute agents' forecasts period by period. With these constructed fore- 
cast series and the other observables, part of the theoretical model 

likelihood techniques of Hansen and Sargent may again be used for estimation. Under 
such techniques the parameters C', D, must be computed, say, by successive approxima- 
tions. But, these computations are no more burdensome than those used in solving the 
recursive eq. (24) of the Kalman filter. And, needless to say, numerical methods must 
be used in any event under any estimation procedure. One caveat is in order, though: 
here identification of the parameters in technology and demand miiay be a problem 
because there is no recursive way to attack the cross-equation restrictions, as in the two- 
market hierarchical structure. This is left as an open question. 
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may be exact. Thus, one might consider tacking on error terms for 
purposes of estimation. This is virtually the procedure adopted by 
Crawford (1979); it could be applied here to the model of the first 
market if the econometrician were to get direct observations on zt. 

Without such direct observations, though, this recursive procedure 
cannot be applied. With data on the capital stock and price only, the 
pricing equation in the first market alone will not yield the parameters 
p, U2, and uE; that is, the parameter b must be estimated jointly. But to 
do this consistently, one needs to make explicit use of the evolution of 
the capital stock series. Thus, even if the econometrician and the 
agents of the model see the same time series, the agents, knowing the 
structure, can deduce more period by period. Thus, from the point of 
view of the econometrician, the model delivered by theory is not 
exact. This leads us back toward the first estimation strategy of Han- 
sen and Sargent discussed above. 

In some contexts it may be possible to loosen the Hansen-Sargent 
procedure directly by tacking error terms onto the econometric 
model derived from theory. This is especially true if the model from 
theory displays stochastic singularities, as the one here apparently 
does. Then one might hope to retain identification. In general, 
though, identification becomes an open question. 

Another approach which takes theory seriously and which avoids 
tacking on error terms is that of Kydland and Prescott (1982). Rather 
than asking theory to explain the entire variance-covariance structure 
of the data, as in maximum-likelihood techniques, those authors con- 
centrate on key moments or "on certain statistics for which the noise 
introduced by approximations and measurement errors is likely to be 
small relative to the statistic." Under this approach, one tries to match 
specified sample moments from runs of the model under various 
possible parameter specifications with the specified moments from 
actual data. Thus, one again makes direct use of the Kalman filtering 
algorithm in computing agents' forecasts. 

If one is unable or unwilling to focus on a subset of moments, then 
one is again faced with the problem of fitting the theory to the entire 
variance-covariance structure of the data. Sims (1980a, 1980b) has 
suggested that a nice way to summarize this structure is to estimate 
the coefficients in relatively unrestricted vector autoregressions and 
examine the response of the system to innovations in the error terms 
of these regressions. This brings us back to the response to economic 
shocks in Section VII as one way to summarize the implications of the 
theory. A caveat is in order here, however: the error term in the 
theoretical model (72), for example, has no natural economic inter- 
pretation, as it is a linear combination of current and past economic 
shocks. That is, the theoretical model (72) can be inconsistent with the 
assumptions Sims makes on error terms in his vector autoregressions 



FORECASTING 

(in other models, of course) and with his interpretation of error terms 
as surprises or forecast errors. Putting this another way, the error 
term in a vector autoregression can be sensitive to the assumed infor- 
mation structure for decision makers in the model itself. The error 
term in the full-information model (40) has a ready interpretation as a 
permanent shock. The error term in the learning model (39) is some 
mongrel. The full implication of this for (highly desirable) explor- 
atory data analysis is left as a subject for future research. 

Appendix A 

An Algorithm for Uncovering the Fundamental Moving-Average 
Representation 

Note first that the matrix M(z) is lower triangular and hence has a determi- 
nant of z2( 1 - z) with two zeros at z = 0. Thus M(z) has two zeros inside the 
unit circle, and this is precisely why M(z) does not have a one-sided inverse in 
nonnegative powers of L. We shall search for matrices W, W, and B (z) consis- 
tent with the orthogonality conditions (61) which "flip" these zeros outside the 
unit circle. 

The algorithm is as follows. First, evaluate the matrix M(z) at z = 0. Next, 
postmultiply by some matrix W in such a way as to put zeros in the first 
column of the product matrix. In this case 

1 2 0 

i3 _6 

-& 6 /12 

Next, get rid of the zeros in the first column by use of the Blaschke matrix, 

,Z-1 O O 

B (z) = 1 0 

That is, let M*(z) = M(z)WB(z), so that 

M*(z) = 

z 2z2 

(1 + pz - _ 1_Z- (1+pz)2 + 1 1 
/S /V V / 6_6 i6 /2 

I__ ___ _t 

Z 

_I_____ 

( 

1 
+ oz)2 

1 

I 
- 

_____(I _____ ~~_3 ~ J 16 6 v/2- 
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We have, in effect, flipped one of the zeros outside the unit circle. But note 
that the determinant of M*(z) still has a zero at z = 0. So, apply the same 
procedure, again starting from M*(z). This time the matrix analogue of W is 
W defined by terms like 

- 18 + k2 + 3k)2 

and so on, where k= p + ox + 8 and k2 = p - -8, so that the W,, are 
nonlinear functions of ox and 8. The relevant Blaschke matrix is the same B (z) 
as before. This procedure yields M**(z) = M*(z)WB(z). Thus, the fundamen- 
tal moving-average representation has been achieved with moving-average 
coefficients M**(z) as defined in (63) and with innovations i, as defined in 
(64). 

Appendix B 

Existence and Uniqueness of Solutions for the Undetermined 
Coefficients 

Consider first the following mapping. Start with arbitrary parameters Co and 
Do. These determine numbers ox and 8, and these in turn determine numbers 
ki and k,. The numbers k1 and kg determine the W5j's, but it is important to 
note that the matrix W must be orthogonal. Thus, each Wi is bounded in 
absolute value by unity, for all initial parameters Co and Do. And, from system 
(54), the computed Co, Do values on the left-hand side of (54) must satisfy 

G 2W') 2W2: 2pW12Wi 2 
D( W3 + = -- + + 

+ P 18 - W2 2 

2W2 (1 V9 -a 12 )+2 ( W - 12 B) 

Thus, computed Co and Do take on values in a nonempty, compact, convex 
space. Moreover, the mapping defined above is well defined, assuming p i 0, 
and continuous oin this space. So, by the Brouwer fixed-point theorem, there 
exists a solution to equations (54). 

It remains to formally establish the uniqueness of solutions to (54). Sub- 
stitution into (B1) and cancellation of like sterns yield 

12 + 4p2 - 2pbjfr)h2,(CO - Do) + 2(blf()h12)2(C() -D')) (B2) 
4p2 - 4pbljf)h(C()C- Do) + 4(blJfh2))2(C() - Do)2 + 18 

6 + 2p' - 2pbjfJ)h/(C() - Do) + 2(blJf)h )2 (Co - Do) 

4p2 - 4pbfJ)h>(CO - Do) + 4(blJ4)h )2(C() - Do )2 + 18 

and 

4P~ - 4pbl~t/)/t2(C() - Do) + 4(bl/f)h9) (C0 - Do)) + 18 
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right side of (B.4) 

p infetin \ 

CO- Do 

FIG. 6 

Plotting the right-hand side of equation (B4) in figure 6, we see clearly that 
there is a unique solution to (B4) in (C(-D() space. Then Co and Do are 
determined fronm (B2) and (B3), respectively. (Unfortunately, attempts to 
sign the slope of the function in fig. 6 have been unsuccessful, foiling attempts 
to formally establish why computing solutions by the method of successive 
approximations works.) 
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