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Abstract

In a general social choice framework where the requirement of strategy-
proofness may not be sensible, we call a social choice rule fully sincere
if it never gives any individual an incentive to vote for a less-preferred
alternative over a more-preferred one and provides an incentive to vote for
an alternative if and only if it is preferred to the default option that would
result from abstaining. If the social choice rule can depend only on the
number of votes that each alternative receives, those rules satisfying full
sincerity are convex combinations of the rule that chooses each alternative
with probability equal to the proportion of the vote it receives and an
arbitrary rule that ignores voters�preferences. We note a sense in which
the natural probabilistic analog of approval voting is the fully sincere rule
that allows voters maximal �exibility in expressing their preferences and
gives these preferences maximal weight.

JEL classi�cation : D70
Keywords : Social choice theory, Voting theory, Strategy-proofness

Introduction

Much existing work on the incentive properties of economic mechanisms fo-
cusses on strategy-proofness, the property that players have dominant strate-
gies. Strategy-proof mechanisms are desirable because they induce simple,
dominance-solvable games. In the context of voting, strategy-proofness is also
one possible explication of what it is for a mechanism to induce voters to express
their preferences honestly; namely, it suggests that an honest vote is one that
is not in�uenced by others�actions. For many reasonable-seeming social choice
mechanisms, however, strategy-proofness is not well-motivated. Consider, for
example, approval voting, the rule under which each individual is allowed to vote
for any subset of the candidates and the candidate that receives the most votes

�I would like to thank Jerry Green for his invaluable advice and support throughout this
project; Salvador Barberà, John Friedman, Drew Fudenberg, Jon Kolstad, Hervé Moulin,
Andrea Wilson, Dan Wood, Muhamet Yildiz and two anonymous referees for extremely helpful
comments; and the NSF for �nancial support.
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is elected. Under approval voting, if there are three alternatives it is unclear
whether one�s dominant strategy should be to vote for one�s �rst choice alone
or for one�s top two choices. Requiring strategy-proofness may also be unduly
restrictive in principle if what is desired is never giving individuals incentives
to misrepresent their preferences; to achieve this, one need require only that
motivations to best-respond and to vote honestly coincide in every contingency,
not that a single strategy always represents both a best response and an honest
vote across all contingencies. Returning to the example of approval voting with
three alternatives, one might think that voting for one�s �rst choice alone would
be the honest expression of one�s preferences when everyone else is voting for
one�s second choice, while voting for one�s top two choices would be the honest
expression when everyone else is voting for one�s third choice. This sense of vot-
ing for an alternative as expressing a preference for it relative to the outcome
that would result from abstaining gives rise to our notion of fully sincere voting.
Recall that a mechanism is given by a strategy space and a mapping from

strategy pro�les to (lotteries over) outcomes, which we call a vote-aggregation
rule or simply an aggregation rule. We call a vote-aggregation rule fully sincere if
for any strategy space it gives each voter incentives to i) vote for the alternatives
that she prefers to the default lottery that would result from abstaining (strong
sincerity) and ii) never vote for a less-preferred alternative over a more-preferred
one (pairwise sincerity). Correspondingly, we will call a mechanism fully sincere
if its vote-aggregation rule is identical to a fully sincere vote-aggregation rule on
the mechanism�s strategy space. Strong sincerity, the more unusual component
of our de�nition of full sincerity, is like a participation constraint; we require not
only that an individual must be given an incentive to refrain from misrepresent-
ing her preferences� that is, from voting for a less-preferred alternative over a
more-preferred one� but also that she must be given an incentive to express her
preference for any and all alternatives that she prefers to a default option. One
could give this requirement a normative interpretation: voting for an alternative
expresses a preference for that alternative and therefore an honest individual
votes for those alternatives that she prefers and only those; or a positive one:
voters may face some cost to casting each vote and therefore must be given a
strict incentive to do so if the outcome is to depend on voters�preferences.
Our main result applies when the aggregation rule is constrained to be a

function only of the total number of votes that each alternative receives (vote-
total dependence), not an arbitrary function of individuals� strategies. This
constraint is very restrictive in a technical sense but we believe it is quite nat-
ural and we provide a less explicit characterization for the general case in the
appendix. We also note that this constraint may not be as restrictive as it �rst
appears, since we allow an extremely broad class of strategy spaces. In partic-
ular, we will allow the space of possible actions (or ballots) for an individual
to be an arbitrary subset of ZM+ , the set of nonnegative M -tuples of integers,
where M is the number of possible alternatives, representing the combinations
of votes that the individual is allowed to cast. Many common voting mecha-
nisms use vote-total dependent aggregation rules, including approval voting and
all scoring rules.
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Under the assumption that the aggregation rule depends only on the number
of votes each alternative receives, we present a complete characterization of all
fully sincere mechanisms. Such rules are characterized by a single parameter
and select each alternative with probability equal to a particular kind of convex
combination of the proportion of the vote that was cast for that alternative and a
noise term representing the outcome that would result if no votes were cast. The
parameter has a natural interpretation as the responsiveness of the mechanism
to individuals�preferences and, if we require that the mechanism be maximally
responsive as well as fully sincere, we are left with the aggregation rule that
selects each alternative with probability precisely equal to the proportion of
the vote it receives. In particular, no deterministic aggregation rule is fully
sincere, as deterministic aggregation rules cannot be su¢ ciently responsive for
every voter to have a strict incentive to vote for those alternatives she prefers
to the default outcome in every contingency. We also note that, when voters
use pure strategies, the natural probabilistic analog of approval voting, which
we call random approval voting, is in e¤ect the fully sincere mechanism that
allows voters the most �exibility in expressing their preferences and is maximally
responsive to these preferences.
Finally, we use our characterization of fully sincere, vote-total dependent

mechanisms to prove some simple facts about strategic behavior under fully
sincere mechanisms with particular kinds of strategy spaces. We show that if a
fully sincere mechanism is a scoring rule� that is, voters rank the alternatives,
alternatives receive "scores" that depend only on the number of voters that
rank them in each position, and the outcome depends only on these scores�
then it is weakly dominant for each voter to rank the alternatives according
to her preferences. Similarly, if strategy spaces are triangular, in that voters
can always reallocate a vote from one alternative to another, then it is weakly
dominant for each voter to cast all her votes for her most-preferred alternative
under any fully sincere aggregation rule. In the diametrically opposed case
where strategy space are rectangular, in that the number of votes that a voter
casts for one alternative has no e¤ect on the number of votes she can cast for
any other alternative, fully sincere mechanisms are generally not dominance-
solvable but they nonetheless always give each voter an incentive to vote for a
most-preferred subset of the alternatives in any pure-strategy Nash equilibrium.

Related Literature

This paper follows in the tradition of using stochastic social choice rules as an
"escape route" from the negative results of Arrow (1950, 1951) and Gibbard
(1973) and Satterthwaite (1975). The use of randomization in collective choice
is far more normatively appealing than in individual choice, where it often seems
to suggest some kind of irrationality. For example, if I want to eat at restaurant
a and you want to eat at restaurant b, �ipping a coin might be a reasonable
course of action. Gibbard (1978) made the �rst seminal contribution to this
literature, showing that in a probabilistic framework the only strategy-proof
mechanisms are those that are a mixture of a weighted random dictatorship
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and rules that restrict the ex post outcome to one of two �xed alternatives.
Hylland (1980) shows that the only strategy-proof mechanisms that always se-
lect ex post Pareto optimal alternatives are weighted random dictatorships, and
Barberà (1979) shows that the set of anonymous, neutral and strategy-proof
probabilistic decision schemes� voting mechanisms with the strategy space of
linear preference orders� are precisely those schemes that are a mixture of two
basic kinds of rules, which can be interpreted as the probabilistic counterparts
of Borda�s and Condorcet�s procedures.
More recently, Pattanaik and Peleg (1986) �nd that weighted random dic-

tatorship is the only probabilistic decision scheme satisfying the probabilistic
analogue of Arrow�s independence of irrelevant alternatives condition, ex post
Pareto-optimality, regularity� the condition that an alternative�s likelihood of
being selected cannot increase as the set of feasible alternatives expands� and
a mild technical condition. Nandeibam (1995) notes that one can replace in-
dependence of irrelevant alternatives and this technical condition by strategy-
proofness in Pattanaik and Peleg�s result, and Clark (1992) reformulates their
result in terms of social preferences rather than social choices, making the par-
allel with Arrow�s theorem even clearer. Barberà et al. (1998) extend Gibbard�s
(1978) result in the context of expected utility maximizers and also study the
smoothness properties of strategy-proof rules and, in papers that are somewhat
related to each other, Barberà et al. (2001) and Benoit (2002) show Gibbard-
Satterthwaite-like results in contexts where agents are allowed to express prefer-
ences over sets of alternatives and the social choice rule is then allowed to map
these preferences to sets of alternatives. In more restrictive contexts, Ehlers
et al. (2002) characterize strategy-proof probabilistic decision schemes under a
minor technical condition when agents have one-dimensional single-peaked pref-
erences; and Bogomolnaia et al. (2005) characterize e¢ cient, strategy-proof,
anonymous and neutral probabilistic mechanisms when agents have dichoto-
mous preferences� that is, when agents rate each alternative as either "good"
or "bad"� and these preferences are comparable across individuals.
Our research is also related to that of Brams and Fishburn (1978, 2002),

who study voting mechanisms where individuals are permitted to vote for sub-
sets of candidates and say that a voting rule is "sincere" if it never provides
an incentive to include a less-preferred but not a more-preferred alternative in
one�s vote, the condition that we refer to as pairwise sincerity. Brams and Fish-
burn�s research is similar to ours in that they study social choice mechanisms
for which strategy-proofness is not an appropriate assumption and character-
ize those mechanisms satisfying an alternative criterion of sincerity. However,
Brams and Fishburn rely on conditions on individuals�preferences and do not
consider the case where individuals may be allowed to vote more than once for
an alternative, stochastic social choice mechanisms, or the assumption of strong
sincerity, so their techniques and results are very di¤erent from ours. It is in-
teresting, nonetheless, that Brams and Fishburn �nd several senses in which
approval voting is the "most sincere" deterministic voting mechanism while we
�nd that random approval voting is in e¤ect the "most sincere" stochastic mech-
anism.
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The exposition of our results proceeds in three sections. Section I presents
the formal framework for the paper, including the formal de�nition of full sincer-
ity and some examples and preliminary results. We present our main result in
Section II. Section III then analyzes the strategic structure of fully sincere mech-
anisms with certain strategy spaces. A theorem for the general, non-vote-total
dependent case as well as most of the proofs are deferred to the appendix.

I Preliminaries

We suppose that N individuals must choose one alternative from a set X of
cardinality M . Each individual i submits a ballot, si, from the space of her
possible ballots, Si. We write S for the product space of the Si�s and s for an
element of S, and refer to S as a strategy space or ballot space. Throughout, we
assume that Si is a bounded subset of ZM+ for all i, so S is a bounded subset of
(ZM+ )

N .
Thus, a strategy si is an M -tuple of integers and we will refer to the jth

coordinate of si, si;xj , as the number of votes that individual i casts for the jth
alternative. Note that we assume boundedness so that mechanisms will admit
equilibria and our requirement that voters can only cast non-negative numbers
of votes is a costless normalization.
A vote-aggregation rule f is a map from (ZM+ )

N to �(X), the space of
probability distributions over X, so if s 2 S then f(s) 2 �(X). This represents
the possibility that the social choice mechanism need not be deterministic; the
special case of a deterministic aggregation rule is when the range of f contains
only degenerate elements of �(X). We allow for stochastic aggregation rules
because, as our main result shows, no deterministic aggregation rule satis�es
our de�nition of full sincerity. We write f(x; s) for the weight that f assigns to
alternative x 2 X under strategy pro�le s. That is, f(x; s) is the probability
with which x is chosen under f if individual i selects strategy si for all i and
s = (s1; : : : ; sN ). We simply write 0 for the 0-vector in (ZM+ )

N , so f(x; 0) is the
weight assigned to x when no votes are cast. Note that a (�nite) mechanism is
simply a pair (S; f)1 .
Note that we have de�ned f over (ZM+ )

N rather than over any particular
S � (ZM+ )

N , so that f is de�ned even at infeasible strategy pro�les for any
mechanism (S; f). This approach helpfully allows us to focus attention on ag-
gregation rules and strategy spaces separately, but the properties of a mechanism
(S; f) that we consider depend only on the behavior of f at feasible strategy
pro�les s 2 S.
Outside of Appendix A, we assume that f is vote-total dependent. Let Vx(s)

be the number of votes cast for alternative x under strategy pro�le s: Vx(s) �P
i si;x where si;x is the x-coordinate of si; and let V (s) =

P
x2X Vx(s), the

total number of votes cast under strategy pro�le s.

1 I thank an anonymous referee for calling my attention to the value of explicitly discussing
mechanisms rather than only aggregation rules in this paper.
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De�nition 1 f is vote-total dependent if f(s) = f(s0) for all s, s0 such that
Vx(s) = Vx(s

0) for all x 2 X2 .

To get some sense of the import of assuming that f is vote-total dependent,
note that Condorcet�s method as it is usually described� where Si is the set of
vectors containing each integer between 0 andM�1 exactly once and f(x; s) = 1
if ji : si;x > si;yj > N

2 for all y 6= x� does not use a vote-total dependent aggre-
gation rule, as it is easy to construct a pair of strategy pro�les with the same
vote totals for each alternative but di¤erent Condorcet winners, while Borda�s
method� where Si is as in Condorcet�s method and f(x; s) = 1

jW (s)j if x 2W (s),
f(x; s) = 0 otherwise, whereW (s) = fx : Vx(s) 2 argmaxy2X Vy(s)g� does. We
discuss some other examples of vote-total dependent aggregation rules later in
this section.
For future reference, let s + x be the strategy pro�le identical to s except

that s1;x is increased by one and note that, if f is vote-total dependent, f(s+x)
is equal to f((s+ x)0) where (s+ x)0 is the strategy pro�le identical to s except
that si;x is increased by one, for any i. We de�ne s� x analogously.
We also assume throughout that each individual i has a utility function

ui : X ! R and that individuals evaluate lotteries according to expected utility.
That is, each individual i�s utility from outcome f(s) is

E [ui(f(s))] �
X
x2X

f(x; s)ui(x)

We may now formally de�ne "fully sincere" aggregation rules and mecha-
nisms. As indicated above, we �rst de�ne two independent criteria of sincerity�
strong sincerity and pairwise sincerity� and say that an aggregation rule is fully
sincere if it satis�es both of them. We de�ne strongly sincere and pairwise sin-
cere aggregation rules in terms of the incentives they provide to voters and then
characterize such rules in Lemmas 1 and 2.

De�nition 2 f satis�es strong sincerity at s if

ui(x) �
X
x02X

f(x0; s)ui(x
0)

if and only if X
x02X

f(x0; s+ x)ui(x
0) �

X
x02X

f(x0; s)ui(x
0)

for all ui(�) and x 2 X. f is strongly sincere if it satis�es strong sincerity at
every s 2 (ZM+ )N .

2An anonymous referee points out that a better term for this property might be "individual
vote distribution independence," since the de�nition requires that f does not depend on
anything other than the vote totals, not that it must vary with the vote totals. We agree
with this point but persist in call such rules "vote-total dependent" to save space, with the
understanding that "vote-total dependent" means "dependent only on vote totals."
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That is, f is strongly sincere if under f a voter is willing to cast a vote for
an alternative x if and only if she prefers x to the lottery that would result if
she abstained from casting this vote, regardless of what other votes have been
cast. Lemma 1 characterizes strongly sincere aggregation rules.

Lemma 1 f is strongly sincere if and only if

f(x; s+ x)� f(x; s)
1� f(x; s) =

f(y; s)� f(y; s+ x)
f(y; s)

> 0

for all x 6= y and s such that f(x; s) < 1 and f(y; s) > 0; f(x; s) = 1 implies
that f(x; s+ x) = 1; and f(y; s) = 0 implies that f(y; s+ x) = 0 for all x 6= y.

Proof. See Appendix B.
Bracketing the second and third conditions, Lemma 1 says that an aggrega-

tion rule is strongly sincere if and only if the fraction of the weight not placed
on an alternative x at s that is transferred to x when a vote for x is added
at s equals the fraction of the weight placed on each alternative y at s that is
transferred away from y when a vote for x is added at s. The intuition is that
if adding a vote for x changed the relative weights on two other alternatives y
and z, an individual might have an incentive to vote for x in order to manipu-
late these relative weights even if she does not actually like x, violating strong
sincerity.
Next, we de�ne pairwise sincerity.

De�nition 3 f satis�es pairwise sincerity at s if

ui(y) � ui(z)

if and only if X
x02X

f(x0; s+ y)ui(x
0) �

X
x02X

f(x0; s+ z)ui(x
0)

for all ui(�) and y; z 2 X. f is pairwise sincere if it satis�es pairwise sincerity
at every s 2 (ZM+ )N .

f is pairwise sincere if under f a voter prefers to cast a vote for y over z if and
only if she prefers y to z. Lemma 2 characterizes pairwise sincere aggregation
rules.

Lemma 2 f is pairwise sincere if and only if f(z; s + x) = f(z; s + y) and
f(x; s+ x) > f(x; s+ y) for all s, x, y 6= x, and z 6= x, y.

Proof. See Appendix B.
Thus, an aggregation rule is pairwise sincere if and only if adding a vote for

x and adding a vote for y have the same e¤ect on the weight placed on any third
alternative, z, and adding a vote for x increases the weight placed on x relative
to adding a vote for y.
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Neither strong sincerity nor pairwise sincerity imply the other. For example,
it is easy to check that the aggregation rule

f(x; s) =
Vx(s)

2P
x02X Vx0(s)

2

if s 6= 0, f(0) arbitrary, is strongly sincere but not pairwise sincere, since under
this rule a vote for one�s second-favorite alternative can be much more "e¤ective"
than a vote for one�s �rst choice, more than o¤setting the di¤erence in utilities
between the alternatives. Formally, f(z; s + x) < f(z; s + y) if Vx(s) > Vy(s),
so failure of pairwise sincerity is immediate from Lemma 2. On the other hand,
the aggregation rule

f(x; s) =
Vx(s)

2V (s)
+

1

2M

is pairwise sincere but not strongly sincere when M = 3. To see this, note that
pairwise sincerity is clear from Lemma 2 but consider the following example:
X = fa; b; cg, ui(a) = 6, ui(b) = 5, ui(c) = 0, Va(s) = 1 and Vb(s) = Vc(s) = 0.
Then f(s) =

�
2
3 ;

1
6 ;

1
6

�
and f(s+b) =

�
5
12 ;

5
12 ;

1
6

�
, so i�s expected utility from s is

29
6 , which is less than ui(b) = 5, while i�s expected utility from s+b is

55
12 , which is

less than 29
6 , violating strong sincerity. The point is that under this aggregation

rule adding a vote for b changes the relative weights on a and c, violating Lemma
1. In Section II, our main result shows that the only aggregation rules satisfying
both pairwise sincerity and strong sincerity are convex combinations of the rule
f(x; s) = Vx(s)

V (s) and �xed rules that do not depend on s. This example shows
that not every such convex combination satis�es strong sincerity.
Finally, we can formally de�ne fully sincerity:

De�nition 4 f satis�es full sincerity at s if f satis�es strong sincerity and
pairwise sincerity at s. f is fully sincere if f is strongly sincere and pairwise
sincere.

It is easy to see that the aggregation rule f(x; s) = Vx(s)
V (s) is fully sincere

3 .
Our main result shows that this is the fully sincere aggregation rule that is most
responsive to voters�preferences.
Thus far all of our de�nitions have been for aggregation rules rather than

mechanisms. The following is the natural de�nition of a fully (strongly, pairwise)
sincere mechanism:

De�nition 5 A mechanism (S; f) is fully ( strongly, pairwise) sincere if there
exists a fully (strongly, pairwise) sincere aggregation rule ef such that f(s) = ef(s)
for all s 2 S.

3We have not de�ned f(0) here. Carefully speaking, any aggregation rule satisfying

f(x; s) =
Vx(s)
V (s)

for all s 6= 0 is fully sincere. We continue to refer to f(x; s) = Vx(s)
V (s)

as an ag-

gregation rule for ease of reading, but this should be interpreted everywhere as f(x; s) = Vx(s)
V (s)

if s 6= 0 and f(0) an arbitrary element of �(X).
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It would not be appropriate to use the alternative de�nition "(S; f) is fully
sincere if f is fully sincere" as then the sincerity of (S; f) would depend on
the behavior of f outside of S which is irrelevant for the mechanism (S; f)4 .
Nevertheless, if f is fully sincere then (S; f) is fully sincere for any S. Our
characterization of fully sincere aggregation rules in Section II leads to a simple
characterization of fully sincere mechanisms.
It is worth observing that the statement "(S; f) is fully sincere" is very

di¤erent from "f satis�es full sincerity at s for all s 2 S." The former means
that, as far as the mechanism is concerned, f is identical to some fully sincere
aggregation rule; that is, if f is not fully sincere it is because of "problematic"
behavior at some s =2 S. On the other hand, the latter means only that f is
well-behaved in terms of local deviations from all s 2 S, not that its behavior at
all s 2 S is consistent with (global) full sincerity. For example, if f(x; s) = Vx(s)

V (s)

for all s 2 S but f(x; s+ x) = 0 for some s 2 S, s+ x =2 S, then (S; f) is fully
sincere but f does not satisfy full sincerity at all s 2 S. Conversely, if N = 1,
X = fa; bg, S = S1 = f(0; 0); (1; 0); (4; 0)g, then it is easy to check that the
aggregation rule f(x; s) = Vx(s)

V (s) if Va(s) � 2, f(x; s) =
1
2+Vx(s)

1+V (s) if Va(s) � 3, is
fully sincere at all s 2 S but cannot be extended to a fully sincere aggregation
rule over all of Z2: while this aggregation rule is well-behaved in terms of local
deviations from (0; 0), (1; 0) and (4; 0), the change in the outcome from (1; 0) to
(4; 0) is inconsistent with full sincerity, because f (a; (1; 0)) > f (a; (4; 0)) and
Lemma 1 gives that, under any strongly sincere aggregation rule, the weight
placed on an alternative must be weakly increasing in the number of votes it
receives.
Let us present an example to illustrate the distinction between full sincerity

and strategy-proofness and to simultaneously introduce random approval voting,
our leading example of a fully sincere mechanism. Under random approval each
voter can "approve" as many alternatives as she wishes and each alternative is
selected with probability equal to the proportion of the "approvals" it receives.
Formally:

De�nition 6 Random approval voting is the mechanism given by
Si =

�
si 2 ZM : si;x 2 f0; 1g for all x

	
and f(x; s) = Vx(s)

V (s) .

As we have claimed, f(x; s) = Vx(s)
V (s) is fully sincere, so random approval

voting is a fully sincere mechanism. The speci�cation of f(s) when V (s) = 0 is
arbitrary here.
Now suppose that N = 2, X = fa; b; c; dg, u1(a) = 5, u1(b) = 2, u1(c) =

u1(d) = 0, u2(a) = u2(b) = 0, u2(c) = 2, u2(d) = 5 and consider random
approval voting. We claim that there are two pure-strategy Nash equilibria
of this mechanism� one where each player votes for her favorite alternative
only and another where each player votes for her two favorite alternatives. To
see that these are Nash equilibria, �rst note that s1 = fag, s2 = fdg yields
payo¤ 5

2 to both players while either players� best deviation� adding a vote

4 I thank an anonymous referee for pointing this out.
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for her second-favorite alternative� yields only 7
3 for the deviator. Similarly,

s1 = fa; bg, s2 = fc; dg gives each player payo¤ 7
4 but a players�best deviation�

dropping her second-favorite alternative from her ballot� gives the deviator only
5
3 . It is easy to check that there are no other pure-strategy Nash equilibria.
Note that neither player has a dominant strategy under this mechanism. We
observe that the pure-strategy Nash equilibria in this example are strict, involve
voting only for most-preferred sets of alternatives, and are Pareto-ranked. We
investigate the generality of these observations in Section III.

II Characterization of Fully Sincere Aggrega-
tion Rules and Mechanisms

We are now ready to present our main result:

Theorem 1 If M = 2, f is fully sincere if and only if f(x; s+ x) � f(x; s) for
all s and x, with strict inequality if f(x; s) < 1. If M � 3, f is fully sincere if
and only if there exists g 2 (0; 1] such that

f(x; s) =
(1� g)f(x; 0) + gVx(s)

1� g + gV (s) (1)

for all s and x.

Proof. See Appendix B.
When there are three or more alternatives, Theorem 1 says that an aggrega-

tion rule is fully sincere if and only if it is a special kind of convex combination
of the rule f(x; s) = Vx(s)

V (s) and the rule f(x; s) = f(x; 0)
5 . The weight given to

each rule is parametrized by g; note that f is fully sincere only if g is strictly
positive. g has a natural interpretation as the responsiveness of f to voters�pref-
erences, as a higher g corresponds to less weight on the rule f(x; s) = f(x; 0),
which does not depend on s at all. An immediate consequence of Theorem 1
is that all fully sincere aggregation rules are stochastic. We also point out an
easy corollary, which says that g = 1 de�nes the only fully sincere rule that can
ever select an alternative deterministically at any strategy pro�le if it was not
already chosen deterministically before any votes were cast:

Corollary 1 Suppose that M � 3. If f is fully sincere and there exist an

alternative x and strategy pro�le s such that f(x; 0) < 1 and f(x; s) = 1, then
f(x; s) = Vx(s)

V (s) .

5To see this, observe that

(1� g)f(x; 0) + gVx(s)
1� g + gV (s)

=

0@ 1�g
V (s)

1�g
V (s)

+ g

1A f(x; 0) +
0@ g

1�g
V (s)

+ g

1A Vx(s)

V (s)

So, if M � 3, a fully sincere aggregation rule is a convex combination of f(x; 0) and Vx(s)
V (s)

where the weight on f(x; 0) is decreasing in V (s).
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Proof. Suppose g < 1 and f(x; 0) < 1. Then g > 0 and V (s) � Vx(s) imply
that the numerator of equation (1) is strictly less than the denominator. So
f(x; s) < 1.
Theorem 1 provides an easy method of checking whether or not a mechanism

(S; f) is fully sincere; one must simply check whether or not there exist an
f(0) 2 �(X) and g 2 (0; 1] such that f(x; s) is given by equation (1) for all
s 2 S. If 0 =2 S, this problem is equivalent to determining whether a system
of M � jSj + 1 equations, f(x; s) = (1�g)f(x;0)+gVx(s)

1�g+gV (s) for all x 2 X and s 2 S
and

P
x2X f(x; 0) = 1; and M +1 unknowns, f(x; 0) for all x 2 X and g, has a

solution. If 0 2 S, this is equivalent to the even simpler problem of determining
whether a system of M � (jSj � 1) equations and a single unknown, g, has a
solution, as in this case f(0) is given.
Theorem 1 is nevertheless a result about aggregation rules only and does

not refer to players�strategy spaces. In particular, Theorem 1 applies equally
whether or not the mechanism is anonymous or neutral. For example, consider
the election of corporate o¢ cers, where it is natural to give more votes to those
individuals who own more stock in the company; or a referendum in which
policymakers want to give an advantage to the status quo alternative. If issues
like these are to be decided using a fully sincere rule, and if that rule is to be
as responsive to voters� preferences as possible, they must be settled by the
aggregation rule that chooses each alternative with probability equal to the
proportion of the vote it receives.

III Strategic Analysis of Some Fully SincereMech-

anisms

While fully sincere mechanisms need not be strategy-proof, equilibria of fully
sincere mechanisms nonetheless have several appealing properties if we impose
additional assumptions on the strategy space. It should not be surprising that
not all fully sincere mechanisms induce well-behaved games, as thus far we
have assumed very little about the strategy spaces; if Si consists of a small
number of disparate points in ZM , player i�s best response correspondence may
jump unpredictably among these points as her opponents� strategies change.
Therefore, we assume in this section that each player�s strategy space is either
scoring, in that her only decision is how to ordinally rank the alternatives;
triangular, in that she is given a certain number of votes to allocate in any way
she chooses among the alternatives; or rectangular, in that the number of votes
she casts for one alternative does not a¤ect how many votes she may cast for
the others.

De�nition 7 S is scoring if for every i there exist positive integers ki;1 � ki;2 �
: : : � ki;M such that Si = fsi : there exists a permutation � on f1; : : : ;Mg such
that si;xj = ki;�(j)g.
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Note that a scoring rule is a vote-total dependent mechanism with a scoring
strategy space.

De�nition 8 S is triangular if for every i there exists a positive integer ki such
that Si =

�
si :

P
x2X si;x � ki

	
.

Pairwise sincerity immediately implies that voters have dominant strategies
under fully sincere mechanisms with scoring or triangular strategy spaces:

Proposition 1 Assume without loss of generality that ui(x1) � ui(x2) � : : : �
ui(xM ), and assume that (S; f) is pairwise sincere. If S is scoring, then the
strategy si given by si;xj = ki;j is weakly dominant for i under (S; f). If S is
triangular, then the strategy si given by si;x1 = ki, si;xj = 0 for all j 6= 1 is
weakly dominant for i under (S; f).

Proof. See Appendix B.
Proposition 1 shows that pairwise sincerity (and therefore full sincerity) has

little to o¤er relative to strategy-proofness when strategy spaces are scoring or
triangular. The following restriction on strategy spaces is more interesting:

De�nition 9 S is rectangular if for every i and x 2 X there exist �nite sets
Si;x � Z+ such that Si = �x2XSi;x.

The strategy space in random approval voting is rectangular, for example.
We present three simple facts about strategic behavior under fully sincere mech-
anisms with rectangular strategy spaces. For the remainder of this section, con-
tinue to assume without loss of generality that ui(x1) � ui(x2) � ::: � ui(xM ).

De�nition 10 A strategy si is m-dichotomous if si;xj = max
�
Si;xj

	
for all

j � m and si;xj = min
�
Si;xj

	
for all j > m. A strategy si is dichotomous

if it is m-dichotomous for some m. A strategy si is weakly m-dichotomous if
si;x = max fSi;xg for all x such that ui(x) > ui(xm) and si;x = min fSi;xg for
all x such that ui(x) < ui(xm). A strategy si is weakly dichotomous if it is
weakly m-dichotomous for some m.

Proposition 2 If (S; f) is fully sincere and S is rectangular then:

1. For any i and s�i, every best response of i to s�i is weakly dichotomous,
and i has a dichotomous best response to s�i.

2. For every s�i, if there exist alternatives x0 and x00 such that Vs�i(x
0) > 0,

Vs�i(x
00) > 0 and ui(x0) > ui(x00), then for any " > 0 there exists a utility

function u0i(�) such that ju0i(x) � ui(x)j < " for all x 2 X and i has a
unique best response to s�i if she is given utility function u0i(�).

Proof. See Appendix B.
Proposition 2 shows that, generically, a voter under a fully sincere mechanism

with a rectangular strategy space will have a unique best response to every pure
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strategy pro�le of her opponents. Furthermore, this best response will consist
of her voting as much as possible for a "high" subset of alternatives and voting
as little as possible for the remaining alternatives, where a subset of alternatives
is high if every element it contains is preferred to every element it excludes, as
in Brams and Fishburn (1978).
Next, note that with a rectangular strategy space a voter casts more votes

when her opponents add votes for alternatives that she dislikes and casts fewer
votes when her opponents add votes for alternatives that she likes:

Proposition 3 If (S; f) is fully sincere, S is rectangular, i has a unique and
m-dichotomous best response si to s�i and a unique and m0-dichotomous best
response s0i to s�i+x

06 , and jSi;xm j,
��Si;x0m �� � 2; then m � m0 if ui(x0) � ui(xm)

and m � m0 if ui(x0) � ui(xm).

Proof. See Appendix B.
Taken together, Propositions 2 and 3 present a fairly detailed picture of

strategic behavior under fully sincere mechanisms with rectangular strategy
spaces: voters vote as much as they can for some high subset of the alternatives,
starting with their favorite alternative and adding further alternatives if and
only if they prefer them to the lottery that would result if they did not add
them. When one�s opponents�votes are unfavorable, one casts more votes, as
these votes take weight away from an unfavorable default lottery; conversely,
one casts fewer votes when one�s opponents�votes are favorable. Thus, voters do
not have dominant strategies and in general they may require much information
about others�strategies to compute their best responses.
Recall that a mechanism is anonymous if it is invariant to permutations of

the voters� names and neutral if it is invariant to permutations of the alter-
natives�names, so in particular an anonymous and neutral mechanism (S; f)
with S rectangular has Si;x = Sj;y for all i, j and all x, y 2 X. That is, an
anonymous, neutral and rectangular ballot space is described by a single �nite
set Sx � Z+, the set of numbers of votes that each voter may case for each al-
ternative. Proposition 2 gives that, generically, voters will vote as much as they
can for a high subset of alternatives and as little as they can for all others so, if
0 2 S, jSj > 1 and f is fully sincere with g = 1, then for generic payo¤s the set
of points in �(X) which are pure-strategy Nash equilibrium outcomes of (S; f)
will not depend on Sx as long as S is anonymous, neutral and rectangular. The
intuition is that f(x; s) = Vx(s)

V (s) and changing S simply scales the equilibrium
values of Vx(s) and V (s) by the same constant without changing the equilibrium
values of f(x; s). Formally, we have the following result:

Proposition 4 Assume thatM � 3, f is fully sincere with g = 1, and S and S0
are anonymous, neutral and rectangular, with 0 2 S; S0 and jSj; jS0j > 1. Then
for any utility functions fui(�)g and any " > 0 there exist utility functions fu0i(�)g
such that ju0i(x)�ui(x)j < " for all x 2 X and all i and, when payo¤s are given by

6Part 1 of Proposition 2 implies that if a voter has a unique best response, it must be
m-dichotomous for some m.
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fu0i(�)g, the set of pure-strategy Nash equilibrium outcomes of (S; f) is the same
as the set of pure-strategy Nash equilibrium outcomes of (S0; f). Furthermore,
when payo¤s are given by fu0i(�)g, if s is a pure-strategy Nash equilibrium of

(S; f) with f(s) nondegenerate, then s
�
s0i;x
si;x

�
is a pure-strategy Nash equilibrium

of (S0; f); and if s0 is a pure-strategy Nash equilibrium of (S0; f) with f(s0)

nondegenerate, then s0
�
sx
s0x

�
is a pure-strategy Nash equilibrium of (S; f); where

si;x � max fSxg and s0i;x � max fS0xg.

Proof. See Appendix B.
Recalling that random approval voting is the mechanism given by f(x; s) =

Vx(s)
V (s) and S the unique anonymous, neutral, rectangular ballot space with 0 2 S
and si;x = 1, the following immediate corollary of Proposition 4 provides a
sense in which random approval voting is equivalent to any other fully sincere
mechanism with an anonymous, neutral and rectangular ballot space containing
0 and at least one other element:

Corollary 2 Assume that M � 3, f is fully sincere with g = 1, and S0 is
anonymous, neutral and rectangular, with 0 2 S0 and jS0j > 1. Then for any
utility functions fui(�)g and any " > 0 there exist utility functions fu0i(�)g such
that ju0i(x) � ui(x)j < " for all x 2 X and all i and, when payo¤s are given by
fu0i(�)g, the set of pure-strategy Nash equilibrium outcomes of (S0; f) is the same
as the set of pure-strategy Nash equilibrium outcomes of random approval voting.
Furthermore, when payo¤s are given by fu0i(�)g, if s is a pure-strategy Nash
equilibrium of random approval voting with f(s) nondegenerate, then s

�
s0i;x

�
is a pure-strategy Nash equilibrium of (S0; f); and if s0 is a pure-strategy Nash

equilibrium of (S0; f) with f(s0) nondegenerate, then s0
�

1

s0i;x

�
is a pure-strategy

Nash equilibrium of random approval voting.

Proof. Corollary 2 is a special case of Proposition 4.
We conclude this section with an example that shows that, unlike the prop-

erties that pure-strategy Nash equilibria are strict and that voters vote for high
sets of alternatives, the property of the example at the end of Section I that
pure-strategy Nash equilibria are Pareto-ranked is not very general: let N = 2,
X = fa; b; c; dg, u1(a) = 9, u1(b) = 8, u1(c) = 6, u1(d) = 0, u2(a) = 6,
u2(b) = 0, u2(c) = 9 and u3(d) = 8 and consider the game induced by random
approval voting. It is easy to check, along the lines of the example at the end
of Section I, that s1 = fa; b; cg, s2 = fc; dg and s1 = fa; bg, s2 = fa; c; dg are
the only pure-strategy Nash equilibria of this game, and that player 1 prefers
the second equilibrium while player 2 prefers the �rst. Furthermore, prefer-
ences in this example are both single-peaked and single-crossing with respect
to the order (d; c; a; b). The equilibria of this game are not Pareto-ranked be-
cause, since each player�s third-favorite alternative is the other player�s favorite
alternative, adding a vote for one�s third-favorite alternative discourages one�s
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opponent from voting for her third-favorite alternative by making her better
o¤, so whichever player is fortunate enough to have her opponent vote for three
alternatives does better in equilibrium. Finally, note that both pure-strategy
Nash equilibria of this game are Pareto-dominated, for example by the lottery
that puts weight 12 on each of a and c. This shows that fully sincere mechanisms
need not be Pareto-e¢ cient.

Conclusion

In this paper we introduce a new concept of sincere voting, based on the idea
that it is sincere for an individual to vote for an alternative if and only if she
prefers that alternative to the default outcome that would result if she declined
to cast that vote and to never vote for a less-preferred alternative over a more-
preferred one. We suggest that a voting mechanism that induces sincere voting
in this sense should not be said to be vulnerable to strategic misrepresentation of
preferences, even though it is not strategy-proof. For while it is clearly a problem
for voters to have con�icting impulses to vote strategically and sincerely, it is
not clearly a problem for strategic and sincere concerns to point to di¤erent
strategies in di¤erent contingencies, so long as in each contingency they point
to the same one as each other.
We show that the only social choice functions that induce fully sincere voting

in all contingencies are those that are a convex combination of the rule that
selects each alternative with probability equal to the proportion of the vote it
receives and a rule that selects an alternative arbitrarily. In particular, the fully
sincere aggregation rule that is most responsive to voters� preferences is the
rule under which an alternative that receives a certain proportion of the vote
is chosen that proportion of the time. If this aggregation rule is adopted, the
only remaining question in designing fully sincere mechanisms is that of what
ballots to allow individuals to submit. The only �nite, anonymous and neutral
ballot spaces that do not require voters to trade o¤ voting for one alternative
against voting for another allow each individual to cast between 0 and k votes
for each alternative, for k a positive integer, regardless of how many votes she
casts for any other alternative. But under any fully sincere aggregation rule an
individual then never has an incentive to cast any number other than 0 or k votes
for an alternative when her opponents use pure strategies. Therefore, the pure-
strategy equilibria of this rule are equivalent to those in the case where k = 1:
random approval voting. So, when voters use pure strategies, random approval
voting is in e¤ect the voting mechanism with a rectangular ballot space that
induces fully sincere voting and is maximally responsive to voters�preferences.

Appendix A: The Non-Vote-Total Dependent Case

In this appendix, we present an analog of Theorem 1 for the case where f need
not be vote-total dependent. Our characterization for this more general case is
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much less explicit than Theorem 1, as in general the "in�uence" of an individual
i�s vote given s�i can depend on the way in which the votes in s�i are distributed
across i�s opponents and on i�s identity without violating full sincerity.
If f is not vote-total dependent, f(si + x; s�i) 6= f(sj + x; s�j) if i 6= j,

in general, so we can no longer de�ne full sincerity in terms of f(s + x).
Therefore, we must modify our de�nitions for the vote-total dependent case
as follows: In this appendix, we say that f satis�es strong sincerity at s if
ui(x) �

P
x02X f(x

0; s)ui(x
0) if and only if

P
x02X f(x

0; si + x; s�i)ui(x
0) �P

x02X f(x
0; s)ui(x

0) for all ui(�) and x 2 X; and f satis�es pairwise sin-
cerity at s if ui(y) � ui(z) if and only if

P
x02X f(x

0; si + y; s�i)ui(x
0) �P

x02X f(x
0; si + z; s�i)ui(x

0) for all ui(�) and y 6= z 2 X. The de�nitions
of strong sincerity, pairwise sincerity and full sincerity of aggregation rules and
mechanisms for the non-vote-total dependent case build on these de�nitions ex-
actly as in Section I. The following result is the analog of Theorem 1 in this
setting:

Theorem 2 If M = 2, f is fully sincere if and only if f(x; si + x; s�i) �
f(x; si; s�i) for all i, x and s, with strict inequality if f(x; s) < 1. If M � 3, f
is fully sincere if and only if

f(x; si + x; s�i)� f(x; s)
1� f(x; s) =

f(y; s)� f(y; si + x; s�i)
f(y; s)

> 0 (2)

for all i, x 6= y and s such that f(x; s) < 1; f(x; s) = 1 implies that f(x; si +
x; s�i) = 1 for all i, x and s; and

f(x; si + x; s�i)� f(x; s)
1� f(x; s) =

f(y; si + y; s�i)� f(y; s)
1� f(y; s) (3)

for all i, x 6= y and s such that f(x; s) < 1 and f(y; s) < 1.

Proof. See Appendix B.
The �rst two conditions in Theorem 2 simply restate Lemma 1. The third

condition (equation (3)) says that the proportion of the weight not placed on
an alternative x at s that is transferred to x when a vote for x is added at s by
some individual i must equal the proportion of the weight not placed on another
alternative y at s that is transferred to y when a vote for y is added at s by
individual i. Equation (3) follows from combining strong sincerity and pairwise
sincerity. Theorem 2 cannot be made more explicit because, in general, the
proportion described above can depend on the distribution of the votes in s�i
as well as on the identity of voter i. These kinds of dependence are, of course,
ruled out by vote-total dependence, which is what allows Theorem 1 to be so
much cleaner than Theorem 2.
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Appendix B: Proofs of Results

Proof of Lemma 1

First, note that the �rst two conditions in the Lemma�

f(x; s+ x)� f(x; s)
1� f(x; s) =

f(y; s)� f(y; s+ x)
f(y; s)

> 0

for all x 6= y and s such that f(x; s) < 1 and f(y; s) > 0, and f(x; s + x) = 1
if f(x; s) = 1� jointly imply the third condition, f(y; s + x) = 0 if f(y; s) = 0.
This is obvious if f(x; s) = 1, and follows if f(x; s) < 1 because

f(x; s+ x) +
X
y 6=x:

f(y;s)>0

f(y; s+ x) = f(x; s+ x) +
X
y 6=x:

f(y;s)>0

f(y; s)

�
1� f(x; s+ x)� f(x; s)

1� f(x; s)

�

= f(x; s+ x) + (1� f(x; s))
�
1� f(x; s+ x)
1� f(x; s)

�
= 1

where the second equality uses the fact that f(x; s)+
P

y 6=x:f(y;s)>0 f(y; s) = 1.
Therefore, the "only if" direction is Step 1 of the proof of Theorem 1, which
shows that strong sincerity implies the �rst two conditions in the Lemma.
We also rely heavily on Step 1 of the proof of Theorem 1 for the "if" direction:

Suppose that f(x; s) < 1 and that f(x;s+x)�f(x;s)1�f(x;s) = f(y;s)�f(y;s+x)
f(y;s) for all y 6= x

such that f(y; s) > 0. For any utility function ui such that
P

y 6=x f(y; s)ui(y) 6=
0, this implies thatP

y 6=x(f(y; s)� f(y; s+ x))ui(y)P
y 6=x f(y; s)ui(y)

=

P
y 6=x

�
f(x;s+x)�f(x;s)

1�f(x;s)

�
f(y; s)ui(y)P

y 6=x f(y; s)ui(y)

=
f(x; s+ x)� f(x; s)

1� f(x; s)

for all x. This condition is the second-to-last displayed equation in Step 1 of the
proof of Theorem 1, so the argument contained there gives that this condition
implies that f satis�es strong sincerity at s with respect to x, in that

ui(x) �
X
x02X

f(x0; s)ui(x
0)

if and only if X
x02X

f(x0; s+ x)ui(x
0) �

X
x02X

f(x0; s)ui(x
0)

for all ui(�).
Now suppose that f(x; s) = 1 and that f(x; s + x) = 1. Then f satis�es

strong sincerity at s with respect to x trivially, because both of the above
inequalities hold mechanically for any ui(�).
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Therefore, regardless of the value of f(x; s), f satis�es strong sincerity at s
with respect to x, so f satis�es strong sincerity at s with respect to all x; that
is, f satis�es strong sincerity at s. This holds for all s, so f is strongly sincere.

Proof of Lemma 2

Suppose that f is pairwise sincere. First, let ui(x) = 1, ui(y) = 0 for all
y 6= x. Then if there exists y 6= x such that f(x; s+ x) � f(x; s+ y) individual
i strictly prefers x to y but is willing to add a vote for y rather than x at
s, contradicting pairwise sincerity. Next, suppose that there exists z 6= x; y
such that f(z; s + x) 6= f(z; s + y). Without loss of generality assume that
f(z; s + x) > f(z; s + y). Let ui(z) = 1, ui(z0) = 0 for all z0 6= z. Then
individual i weakly prefers y to x but is unwilling to vote for y rather than x at
s, again contradicting pairwise sincerity.
Conversely, suppose that f(z; s+x) = f(z; s+y) and f(x; s+x) > f(x; s+y)

for all s, x, y and z 6= x, y. First, suppose that ui(y) � ui(z). ThenP
x02X f(x

0; s + y)ui(x
0) �

P
x02X f(x

0; s + z)ui(x
0) if and only if f(y; s +

y)ui(y)+f(z; s+y)ui(z) � f(y; s+z)ui(y)+f(z; s+z)ui(z), which holds because
f(y; s+y)+f(z; s+y)must equal f(y; s+z)+f(z; s+z) and f(y; s+y) > f(y; s+
z). Next, suppose that

P
x02X f(x

0; s + y)ui(x
0) �

P
x02X f(x

0; s + z)ui(x
0).

Then f(y; s + y)ui(y) + f(z; s + y)ui(z) � f(y; s + z)ui(y) + f(z; s + z)ui(z)
which implies (f(y; s+ y)� f(y; s+ z))ui(y) � (f(z; s+ z)� f(z; s+ y))ui(z).
This then implies that ui(y) � ui(z) since f(y; s + y) + f(z; s + y) = f(y; s +
z) + f(z; s+ z) and f(y; s+ y)� f(y; s+ z) > 0.

Proof of Theorem 1

M = 2 case:
Lemma 1 implies that f is strongly sincere if and only if f(x; s+x) � f(x; s)

with strict inequality if f(x; s) < 1. Lemma 2 shows that all such rules are also
pairwise sincere, completing the proof.

"Only if" direction for the M � 3 case:
The proof of this direction proceeds in four steps. Suppose that M � 3 and

let

g(x; s) � f(x; s+ x)� f(x; s)
1� f(x; s)

so that g(x; s) is the proportion of the weight not placed on x at s that is
transferred to x when a vote for x is added at s, when this is well-de�ned. In
Step 1 of the proof, we show that the di¤erence between f(s) and f(s + x)
is entirely determined by g(x; s) for any strongly sincere aggregation rule. In
Step 2, we show that if f is also pairwise sincere then g(x; s) is independent
of which alternative is added; that is, we show that g(x; s) = g(y; s) for all
x; y 2 X, so that we can just write g(s). In Step 3, we show that if V (s) = V (s0)
then g(s) = g(s0), so that we can write g(V ). In Step 4, we show that g(V ) is
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completely determined by a single variable, g(0) � g, and explicitly characterize
all fully sincere aggregation rules in terms of g.

Step 1 :
We �rst show that strong sincerity implies that

g(x; s) =
f(y; s)� f(y; s+ x)

f(y; s)
> 0 (4)

for all x, y and s such that f(y; s) > 0, and that f(x; s) = 1 implies that
f(x; s+ x) = 1 for all x and s.
To see this, �rst note that

P
x02X f(x

0; s + x)ui(x
0) �

P
x02X f(x

0; s)ui(x
0)

if and only if ui(x)(f(x; s+x)�f(x; s)) �
P

y 6=x(f(y; s)�f(y; s+x))ui(y). We
have two possible cases. If f(x; s+x)�f(x; s) = 0, then the second inequality in
the de�nition of strong sincerity does not depend on ui(x). Since the equivalence
in the de�nition must hold for all values of ui(x), this implies that the upper
inequality in the de�nition must not depend on ui(x), either. And this occurs
if and only if f(x; s) = 1. So we have that f(x; s+ x)� f(x; s) = 0 if and only
if f(x; s) = 1.
If f(x; s + x) � f(x; s) 6= 0, we can divide by this term, yielding ui(x) �

1
f(x;s+x)�f(x;s)

P
y 6=x(f(y; s)� f(y; s+ x))ui(y).

Next, note that ui(x) �
P

x02X f(x
0; s)ui(x

0) if and only if ui(x)(1�f(x; s)) �P
y 6=x f(y; s)ui(y). So we have ui(x) � 1

1�f(x;s)
P

y0 6=x f(y; s)ui(y).
We now have that, as long as f(x; s) 6= 1, the assumption that f is strongly

sincere at s with respect to x (in the sense de�ned in the proof of Lemma 1) is
equivalent to the assumption that

ui(x) �
1

f(x; s+ x)� f(x; s)
X
y 6=x
(f(y; s)� f(y; s+ x))ui(y)

if and only if

ui(x) �
1

1� f(x; s)
X
y 6=x

f(y; s)ui(y)

for all ui(�). Since this must hold for all values of ui(x), which appears only on
the left hand side of both of these inequalities, this is equivalent toP

y 6=x(f(y; s)� f(y; s+ x))ui(y)
f(x; s+ x)� f(x; s) =

P
y 6=x f(y; s)ui(y)

1� f(x; s)

which in turn is equivalent the condition that

f(x; s+ x)� f(x; s)
1� f(x; s) =

P
y 6=x(f(y; s)� f(y; s+ x))ui(y)P

y 6=x f(y; s)ui(y)

whenever
P

y 6=x f(y; s)ui(y) 6= 0. Note that this last equivalence follows because
if
P

y 6=x f(y; s)ui(y) = 0, then
P

y 6=x f(y; s+x)ui(y) = 0 as well, since the de�n-
ition of g(x; s) yields

P
y 6=x f(y; s+x)ui(y) =

P
y 6=x f(y; s) (1� g(x; s))ui(y) =
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(1� g(x; s))
P

y 6=x f(y; s)ui(y) = 0, so the former displayed equation holds triv-
ially.
Now suppose ui(y) = 1 for any given y, ui(x0) = 0 for all x0 6= y. Then this

equation reduces to

g(x; s) =
f(y; s)� f(y; s+ x)

f(y; s)

the �rst part of equation (4). Note that this must hold for all x, y 6= x, and s.
Furthermore, strong sincerity implies that f(x; s+x) > f(x; s) if f(x; s) < 1.

To see this, consider the utility function given by ui(x) = 0, ui(y) = 1 8y 6= x
and suppose that there were some strategy pro�le s such that f(x; s + x) �
f(x; s) and f(x; s) < 1. Then ui(x) = 0 < 1�f(x; s) =

P
x02X f(x

0; s)ui(x
0) butP

x02X f(x
0; s+ x)ui(x

0) = 1� f(x; s+ x) � 1� f(x; s) =
P

x02X f(x
0; s)ui(x),

contradicting strong sincerity. Recalling the de�nition of g(x; s), this implies
that g(x; s) > 0 if f(x; s) < 1.

Step 2 :
The next step in our proof is to show that, when M � 3, strong sincerity

and pairwise sincerity imply that g(y; s) = g(z; s) for all y, z and s such that
f(y; s), f(z; s) < 1.
To see this, assume towards a contradiction that there exist some s, y and

z such that g(y; s)� g(z; s) = � > 0.
First, consider the case where f(y; s) + f(z; s) < 1 � � for some � > 0. Let

ui(z) = 1, ui(y) = 1� ��, and ui(x) = 0 8x 6= y; z.
We claim that strong sincerity implies that voter i�s expected utility when

she adds a vote for y at s is E [ui(f(s))(1� g(y; s))] + ui(y)g(y; s). To derive
this equation, �rst note that

P
x02X f(x

0; s+ x)ui(x
0) =

P
x02X f(x

0; s)ui(x
0) +P

x02X(f(x
0; s+x)�f(x0; s))ui(x0). Now equation (4) gives f(y; s+x)�f(y; s) =

�f(y; s)g(x; s) for y 6= x, and f(x; s+x)� f(x; s) = (1� f(x; s))g(x; s) by de�-
nition of g(x; s), so

P
x02X f(x

0; s)ui(x
0)+

P
x02X(f(x

0; s+x)�f(x0; s))ui(x0) =
E[ui(f(s))]�

P
x02X f(x

0; s)g(x; s)ui(x
0)+g(x; s)ui(x) = E[ui(f(s))(1�g(x; s))]+

ui(x)g(x; s). Similarly, i�s expected utility when she adds a vote for z at s is
E[ui(f(s))](1�g(z; s))+ui(z)g(z; s). The di¤erence between these is �(g(y; s)�
g(z; s))E[ui(f(s))]+g(y; s)ui(y)�g(z; s)ui(z). Substituting g(z; s) = g(y; s)��,
ui(z) = 1 and ui(y) = 1� �� reduces this to ��E[ui(f(s))] + �� ��g(y; s). Now
f(y; s) + f(z; s) < 1 � � implies that E[ui(f(s))] < 1 � �, as we have as-
sumed that i gets utility weakly less than 1 from each alternative in X. So
��E[ui(f(s))] + � � ��g(y; s) > ��(1 � �) + � � ��g(y; s) = ��(1 � g(y; s)) � 0,
since g(y; s) � 1 by de�nition of g. Thus, we see that voter i would rather add
a vote for y than for z at s, even though i strictly prefers z to y, contradicting
pairwise sincerity.
The case where f(y; s) + f(z; s) = 1 now follows easily. For so long as

f(y; s); f(z; s) 6= 1 and M � 3, we can choose a third alternative x and repeat
the above argument successively �rst for y and x and then for z and x, which
shows that g(y) = g(x) = g(z), as desired.

Step 3 :
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We now show that f(x; s) depends on s only through Vx(s) and V (s). First,
suppose that f(x; s) = 1 for some x. We claim that this can occur only if
Vx(s) = V (s), that is only if x receives all votes cast. For suppose that s includes
a vote for some alternative y 6= x. Towards a contradiction, we will show that
f(s� y) = f(s). First, note that f(y; s) = 0 implies that f(y; s� y) = 0, since
f(y; s) = f(y; s�y+y) � f(y; s�y) by strong sincerity. Now equation (4) gives
g(y; s) = f(z;s�y)�f(z;s)

f(z;s�y) = 0 for all z 6= y such that f(z; s � y) > 0. If z 6= x,

then f(z; s) = 0, so f(z;s�y)�f(z;s)
f(z;s�y) = 0 cannot hold if f(z; s � y) > 0. This

implies that f(z; s� y) = 0 for all z 6= x; y. Since the weights on all alternatives
must sum to one, we obtain f(x; s � y) = 1 and therefore f(s) = f(s � y). So
an individual i is always willing to add a vote for y at pro�le s � y, even if
ui(y) < ui(x), which contradicts strong sincerity. So f(x; s) = 1 implies that
Vx(s) = V (s), so if f(x; s) = 1 and strategy pro�le s0 satis�es Vx(s0) = Vx(s)
and V (s0) = V (s), then s = s0 so the result is trivial in this case.
Now suppose that f(x; s) < 1, and consider two pro�les s0 and s00 such that

Vx(s
0) = Vx(s

00) and V (s0) = V (s00). Note that we can construct a chain of
pro�les from s0 to s00 changing one vote from some y 6= x to some z 6= x at each
step. Now we have seen that strong sincerity gives that the e¤ect on x of adding
a vote for y to any s is completely determined by g(y; s) (equation (4)), and we
have from pairwise sincerity that g(y; s) = g(z; s) for all y, z, s (Step 2). So the
weight placed on x at two pro�les that di¤er only in a switch of one vote from y
to z must be identical, as this is the same as saying that the weight on x must
be the same whether we add a vote for y or for z to the pro�le without either
of the votes that we are switching. So we have f(x; s0) = f(x; s00), which yields
our claim.
We now extend our de�nition of g(x; s) to the case where f(x; s) = 1, by

stipulating that g(x; s) = g(y; s) for any y 6= x when f(x; s) = 1. This is well-
de�ned because f(x; s) = 1 implies that f(y; s) 6= 1 for all y 6= x, and then Step
2 gives that g(y; s) = g(z; s) for all y; z 6= x. We claim that with this convention,
g(x; s) actually depends only on V (s). To see this, note that g(x; s) = g(y; s)
for all x, y and s, by Step 2 in the case where g(x; s); g(y; s) < 1 and by this
de�nition of g(x; s) in the case where one of these equals one. Now, by the
preceding argument, f(x; s) and f(x; s+x) can only depend on V (s) and Vx(s),
so g(x; s) can only depend on V (s) and Vx(s) as well, so we can write g(x; s) =
g(x; Vx(s); V (s)). We must show that g(x; Vx(s); V (s)) = g(x; Vx(s0); V (s0)) for
any pro�les s and s0 such that V (s) = V (s0).
Without loss of generality, we can assume that s and s0 di¤er only in that one

vote switches between x and some y 6= x as we move from s to s0, for otherwise
we can construct a chain of pro�les from s to s0 each di¤ering by precisely
one such switch and show the result for adjacent pro�les in the chain. Since
M � 3, there exists a z 6= x such that Vz(s) = Vz(s0). Let V = V (s) = V (s0).
Then g(x; Vx(s); V ) = g(z; Vz(s); V ) by Step 2, g(z; Vz(s); V ) = g(z; Vz(s

0); V )
as Vz(s) = Vz(s0), and g(z; Vz(s0); V ) = g(x; Vx(s0); V ) again by Step 2. So we
have g(x; Vx(s); V ) = g(x; Vx(s

0); V ), as desired. So we can write g(V (s)) for
g(x; s).
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Step 4 :
Finally, we apply the fact that adding a vote for x and then a vote for some

alternative y 6= x must yield the same outcome as adding a vote for y and then
a vote for x. In particular, the �nal weight placed on x must be the same under
both of these scenarios. Note that f(x; s + x) = f(x; s) + (1� f(x; s)) g(V (s))
and f(x; s+ y) = f(x; s)� f(x; s)g(V (s)), so adding a vote for x followed by a
vote for y at s yields

f(x; s+x+y) = f(x; s)+(1�f(x; s))g(V (s))�(f(x; s)+(1�f(x; s))g(V (s)))g(V (s)+1)

while adding a vote for y followed by a vote for x at s yields

f(x; s+x+y) = f(x; s)�f(x; s)g(V (s))+(1�f(x; s)+f(x; s)g(V (s)))g(V (s)+1)

Subtracting the latter equation from the former and rearranging gives g(V (s)) =
g(V (s) + 1)(1 + g(V (s))). This equation holds for all V (s), so we have

g(V (s)) =
g(V (s)� 1)

1 + g(V (s)� 1) =
g(V (s)�2)
1+g(V (s)�2)

1 + g(V (s)�2)
1+g(V (s)�2)

=
g(V (s)� 2)

1 + 2g(V (s)� 2) = : : : =
g(0)

1 + V (s)g(0)

So we see that f is entirely characterized by g(0), the proportion of the
weight previously shared among the otherM �1 alternatives that is transferred
to an alternative x under the pro�le where x receives one vote and no other
votes are cast. We write g � g(0), and will now show that, for any fully sincere
f ,

f(x; s) =
(1� g)f(x; 0) + gK
1 + g(K + J � 1)

where f(x; 0) is the weight placed on x when no votes have been cast, K � Vx(s),
and J � V (s)� Vx(s).
First, let Kx denote the pro�le with K votes for x and no votes for any

other alternative. By the de�nition of g(x; s),

f(x;Kx) = f(x; (K � 1)x)(1� g(K � 1)) + g(K � 1)

= f(x; (K � 1)x)
�
1� g

1 + (K � 1)g

�
+

g

1 + (K � 1)g

=

�
f(x; (K � 2)x)

�
1� g

1 + (K � 2)g

�
+

g

1 + (K � 2)g

��
1� g

1 + (K � 1)g

�
+

g

1 + (K � 1)g
= : : :

= f(x; 0)(1�g)
�
1� g

1 + g

�
� � �
�
1� g

1 + (K � 1)g

�
+g

�
1� g

1 + g

�
� � �
�
1� g

1 + (K � 1)g

�
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+
g

1 + g

�
1� g

1 + 2g

�
� � �
�
1� g

1 + (K � 1)g

�
+

g

1 + 2g

�
1� g

1 + 3g

�
� � �
�
1� g

1 + (K � 1)g

�
+ : : :+

g

1 + (K � 1)g
Now

K�1Y
n=k

�
1� g

1 + ng

�
=

K�1Y
n=k

�
1 + (n� 1)g
1 + ng

�
=
1 + (k � 1)g
1 + (K � 1)g

so

f(x;Kx) = f(x; 0)

�
1� g

1 + (K � 1)g

�
+g

�
1

1 + (K � 1)g

�
+

g

1 + g

�
1 + g

1 + (K � 1)g

�

+
g

1 + 2g

�
1 + 2g

1 + (K � 1)g

�
+ : : :+

g

1 + (K � 1)g =
f(x; 0)(1� g) +Kg
1 + (K � 1)g

Next, let Kx + Jy denote the pro�le with K votes for x and J votes for
other alternatives. Recall that we can assume that these J votes are all cast for
a single alternative y 6= x, as f(x; s) depends only on Vx(s) and V (s). So

f(x;Kx+ Jy) =

�
1� g

1 + (K + J � 1)g

�
f(x;Kx+ (J � 1)y)

=

�
1� g

1 + (K + J � 1)g

��
1� g

1 + (K + J � 2)g

�
f(x; s+ (J � 2)y) = : : :

=
K+J�1Y
n=K

�
1� g

1 + ng

�
f(x;Kx) =

1 + (K � 1)g
1 + (K + J � 1)g f(x;Kx)

=
(1� g)f(x; 0) + gK
1 + g(K + J � 1) =

(1� g)f(x; 0) + gVx(s)
1� g + gV (s)

"If" direction for the M � 3 case:
For the converse in the M � 3 case, showing pairwise sincerity is straight-

forward: If f(x; s) = (1�g)f(x;0)+gVx(s)
1�g+gV (s) with g > 0, then f(z; s+x) = f(z; s+y)

and f(x; s + x) > f(x; s + y) for all x, y, z and s, so Lemma 2 immediately
yields pairwise sincerity. Strong sincerity is also direct, but requires some com-
putation. To simplify notation in this part of the proof, we write Vx for Vx(s)
and V for V (s) when doing so can cause no confusion. First, note that f(x; s+
x)� f(x; s) = (1�g)f(x;0)+g(Vx+1)

1�g+g(V+1) � (1�g)f(x;0)+gVx
1�g+gV = g((1�g)(1�f(x;0))+g(V�Vx))

(1+gV )(1+g(V�1))

and, for any y 6= x, f(y; s + x) � f(y; s) = (1�g)f(y;0)+gVy
1+gV � (1�g)f(y;0)+gVy

1+g(V�1) =
�g((1�g)f(y;0)+gVy)
(1+gV )(1+g(V�1)) . Since the denominators in both of these equations are pos-
itive, we have

P
x02X f(x

0; s + x)ui(x
0) �

P
x02X f(x

0; s)ui(x
0) if and only if

g((1� g)(1� f(x; 0)) + g(V � Vx))ui(x) �
P

y 6=x g((1� g)f(y; 0) + gVy)ui(y).

23



Next, note that 1
1�f(x;s) =

1+g(V�1)
(1�g)(1�f(x;0))+g(V�Vx) and then

f(y;s)
1�f(x;s) =

(1�g)f(y;0)+gVy
(1�g)(1�f(x;0))+g(V�Vx) . So we have

P
x02X f(x

0; s+x)ui(x
0) �

P
x02X f(x

0; s)ui(x
0)

if and only if ui(x) � 1
1�f(x;s)

P
y 6=x f(y; s)ui(y). This is equivalent to the de-

�nition of strong sincerity if f(x; s) < 1, and strong sincerity is immediate if
f(x; s) = 1.

Proof of Proposition 1

Suppose that S is scoring, and consider the strategy si given by si;xj = ki;j .
Suppose that there exist s0i and s�i such that E [ui(f(s

0
i; s�i))] > E [ui(f(s))]

and s0i is a best response to s�i. Since (S; f) is pairwise sincere, there exists
a pairwise sincere aggregation rule ef such that f(s) = ef(s) for all s 2 S, so
in particular E

h
ui( ef(s0i; s�i))i > E

h
ui( ef(s))i. Since s0i 6= si, there exist x,

y 2 X and k > k0 such that s0i;x = k0 and s0i;y = k but ui(x) � ui(y). If
ui(x) > ui(y) for any such x and y, then applying Lemma 2 k � k0 times at
the strategy pro�le (s�i ; s�i), where s

�
i is given by s

�
i;z = s0i;z for all z 6= x, y,

s�i;x = s
�
i;y = k

0 implies that E
h
ui( ef(s00i ; s�i))i > E hui( ef(s0i; s�i))i where s00i is

given by s00i;z = s0i;z for all z 6= x, y, s00i;x = k and s00i;y = k0, contradicting the
hypothesis that s0i is a best response to s�i. If ui(x) = ui(y) for all such x and
y, then one can construct a chain of strategies leading from s0i to si such that
adjacent strategies in the chain di¤er only in that they switch the ranking of
two alternatives x and y satisfying ui(x) = ui(y). Lemma 2 implies that i must
be indi¤erent between any two adjacent strategies in such a chain, which yields

E
h
ui( ef(s0i; s�i))i = E

h
ui( ef(s))i by transitivity, another contradiction. So si

must be a best response to any pure-strategy pro�le of i�s opponents, s�i. So
si is weakly dominant.
Now suppose that S is triangular, and consider the strategy si given by

si;x1 = ki, si;xj = 0 for all j 6= 1. Since (S; f) is pairwise sincere, there exists a
pairwise sincere aggregation rule ef such that f(s) = ef(s) for all s 2 S. Applying
pairwise sincerity, E

h
ui( ef(si; s�i))i � E

h
ui( ef(s0i; s�i))i for all s0i such that

s0i;x1 = ki � 1 and all s�i 2 S�i. Applying pairwise sincerity a second time
yields E

h
ui( ef(si; s�i))i � E hui( ef(s00i ; s�i))i for all s00i such that s00i;x1 = ki � 2

and all s�i 2 S�i, and continuing in this manner shows that si is a best response
to any opposing pure-strategy pro�le s�i, so si is weakly dominant.

Proof of Proposition 2

By Lemma 1, i strictly prefers to add a vote for x at s if ui(x) > E[ui(f(s))];
strictly prefers to remove a vote for x if ui(x) < E[ui(f(s))]; and is indi¤erent
between adding and removing a vote for x at s if ui(x) = E[ui(f(s))]. Since S
is rectangular, i may add a vote for x at s if si;x < max fSi;xg and may remove
a vote for x at s if si;x > min fSi;xg. So if si is a best response to s�i it must
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be the case that, for any x, either ui(x) > E[ui(f(s))] and si;x = max fSi;xg;
ui(x) < E[ui(f(s))] and si;x = min fSi;xg; or ui(x) = E[ui(f(s))]. This shows
that every best response of i to s�i is weakly dichotomous. And setting si;x =
max fSi;xg whenever ui(x) = E[ui(f(s))] yields a dichotomous best response for
i to s�i.
To prove the second part, note that Theorem 1 implies that f(x0; s0i; s�i) > 0

and f(x00; s0i; s�i) > 0 for all s
0
i 2 Si whenever Vs�i(x0) > 0 and Vs�i(x00) > 0,

so f(s0i; s�i) is nondegenerate whenever Vs�i(x
0) > 0 and Vs�i(x

00) > 0. We
claim that for any " > 0 and for any utility function ui(�), there exists a util-
ity function u0i(�) such that ju0i(x) � ui(x)j < " for all x 2 X and u0i(x) 6=
E [u0i(f(s))] for all x and all s 2 S for which f(s) is nondegenerate. We pro-
ceed by induction on M . If M = 2, then any u0i(�) such that u0i(x1) 6= u0i(x2)
satis�es the conditions of the claim. Now suppose that the claim holds for
M � 1. Then there exist u0i(x1); : : : ; u0i(xM�1) such that ju0i(xj) � ui(xj)j < "
for all j < M and u0i(xj) 6= E [u0i(f(s))] for all j < M and all s 2 S for
which f(s) is nondegenerate and f(xM ; s) = 0. To prove the claim, it su¢ ces
to show that there exists a value u0i(xM ) such that ju0i(xM ) � ui(xM )j < ",
u0i(xM ) 6= E [u0i(f(s))] for all s 2 S for which f(s) is nondegenerate, and
u0i(xj) 6= E [u0i(f(s))] for all j < M and all s 2 S for which f(s) is nonde-
generate and f(xM ; s) > 0. If f(xM ; s) > 0, then u0i(xj) 6= E [u0i(f(s))] for
j < M if and only if u0i(xM ) 6= 1

f(xM ;s)

�
u0i(xj)�

P
k<M f(xk; s)u

0
i(xk)

�
; and

if f(s) is nondegenerate, then u0i(xM ) 6= E [u0i(f(s))] if and only if u
0
i(xM ) 6=

1
1�f(xM ;s)

P
k<M f(xk; s)u

0
i(xk). Since S is �nite, these inequalities hold for all

but �nitely many values for u0i(xM ), and there are also only �nitely many val-
ues for u0i(xM ) such that u

0
i(xj) = E [u

0
i(f(s))] for some j and s 2 S with f(s)

nondegenerate. Therefore, there exists a value for u0i(xM ) such that u
0
i(xj) 6=

E [u0i(f(s))] for all j and all s 2 S for which f(s) is nondegenerate, and ju0i(xM )�
ui(xM )j < ", which proves the claim.
Let i have the utility function u0i (�) constructed above. By the proof of the

�rst part of the proposition, si;xj = max
�
Si;xj

	
if u0i(xj) > E[u0i(f(s))] and

si;xj = min
�
Si;xj

	
if u0i(xj) < E[u

0
i(f(s))], if si is a best response to s�i. When

i has utility function u0i(�), u0i(xj) 6= E[u0i(f(s))] for all xj and all s 2 S, so i has
a unique best response to s�i.

Proof of Proposition 3

Suppose towards a contradiction that ui(x0) � ui(xm) and m < m0. Since��Si;xm0

�� � 2, s0i;xm0 = max
�
Si;xm0

	
6= min

�
Si;xm0

	
, so ui(xm0) � E[ui(f(s0i; s�i+

x0))] by strong sincerity. Since s0i is i�s unique best response to s�i + x
0 by as-

sumption, E[ui(f(s0i; s�i+x
0))] > E[ui(f(si; s�i+x

0))]. Furthermore, ui(xm) �
E[ui(f(s))], again by strong sincerity, which implies that ui(x0) � E[ui(f(s))].
So by strong sincerity E[ui(f(si; s�i+x0))] � E[ui(f(s))] and therefore ui(xm0) >
E[ui(f(s))] by a chain of inequalities. But strong sincerity then implies that
E[ui(f(si+ xm0 ; s�i))] � E[ui(f(s))], which contradicts the assumption that si
is i�s unique best response to s�i. A similar argument shows that if ui(x0) �
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ui(xm) then m � m0.

Proof of Proposition 4

Since S [ S� is �nite, the argument in the second paragraph of the proof of
Proposition 2 with S [S� in place of S shows that for any " > 0 and any utility
function ui(�), there exists a utility function u0i(�) such that ju0i(x)� ui(x)j < "
and u0i(x) 6= E [u0i(f(s))] for all x 2 X and all s 2 S [ S� for which f(s) is
nondegenerate. Applying this fact to each voter, we have that for any " > 0
and any fui(�)g, there exist fu0i(�)g such that, for all i, ju0i(x) � ui(x)j < "
and u0i(x) 6= E [u0i(f(s))] for all x 2 X and all s 2 S [ S� for which f(s) is
nondegenerate. Let voters�utility functions be given by fu0i(�)g. If f is fully
sincere with g = 1, then f(x; s) = Vx(s)

V (s) if V (s) > 0. Therefore, the second part
of the proposition implies that the set of nondegenerate pure-strategy Nash
equilibrium outcomes of (S; f) is the same as the set of nondegenerate pure-
strategy Nash equilibrium outcomes of (S0; f). We �rst show that the set of
degenerate pure-strategy Nash equilibrium outcomes is the same for (S; f) and
(S0; f) and then prove the second part of the proposition.
Suppose that s is a degenerate pure-strategy Nash equilibrium of (S; f) and

denote by x the element satisfying f(s; x) = 1. Because S is anonymous, neutral
and rectangular and satis�es 0 2 S and jSj > 1, each voter may add a vote for
any alternative other than x at s. Since f(x; s) = Vx(s)

V (s) if V (s) > 0, at s a voter
will add a vote for any alternative y that she prefers to x, so since s is a Nash
equilibrium it must be that x is each voter�s (weakly) most-preferred alternative.
Consider the strategy pro�le s0 given by si;x = 1, si;y = 0 for all y 6= x and all
i. s0 2 S0 by our assumptions on S0, and, since x is each voter�s most-preferred
alternative, s0 is a Nash equilibrium of S0. f(s0; x) = 1, so any degenerate pure-
strategy Nash equilibrium outcome of (S; f) is also a degenerate pure-strategy
Nash equilibrium outcome of (S0; f). The same argument goes through with
S and S0 switched, so the set of degenerate pure-strategy Nash equilibrium
outcomes is the same for (S; f) and (S0; f).
Now suppose that s is a pure-strategy Nash equilibrium of S with f(s) nonde-

generate. Since S is rectangular, f is strongly sincere, and u0i(x) 6= E [u0i(f(s))]
for all x, the proof of part 1 of Proposition 2 yields that i has a unique best
response to s�i which is mi-dichotomous with mi uniquely determined by the
inequalities ui(xmi

) > E [u0i(f(s))] and ui(xmi+1) < E [u0i(f(s))]. Since 0 2 S
and S is anonymous and neutral, this implies that under s each voter casts

either 0 or si;x votes for every alternative. Let s0 = s

�
s0i;x
si;x

�
, which is well-

de�ned because jSj > 1 implies that si;x � 1. Under s0, each voter casts
either 0 or s0i;x votes for every alternative, so s

0 2 S0 by our assumptions on
S0. Since f(x; s) = Vx(s)

V (s) if V (s) > 0, f(x; s) = f(x; s0). Now the proof of
part 1 of Proposition 2 implies that each voter i has a unique best response
to s0�i which is m

0
i-dichotomous with m

0
i uniquely determined by the inequal-

ities ui(xm0
i
) > E [u0i(f(s

0))] and ui(xm0
i+1
) < E [u0i(f(s

0))], so the fact that
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f(x; s) = f(x; s0) implies that m0
i = mi. And s0i is precisely the mi-dichotomous

strategy in S0, so s0 is a pure-strategy Nash equilibrium of (S0; f). The same
argument with S and S0 switched shows that if s0 is a pure-strategy Nash equi-

librium of (S0; f) with f(s0) nondegenerate, then s0
�
sx
s0x

�
is a pure-strategy Nash

equilibrium of (S; f).

Proof of Theorem 2

The "only if" direction of this theorem is a straightforward corollary to Theorem
1: The proof of M = 2 case is immediate from the proof of Theorem 1 and the
proof of theM � 3 case follows steps 1 and 2 in the proof of Theorem 1 directly.
For the "if" direction, the M = 2 case is trivial but the M � 3 case

is not quite as straightforward as in the more restrictive context of Theo-
rem 1. For M � 3, we �rst show strong sincerity. Strong sincerity with
respect to alternative x at s follows immediately if f(x; s) = 1. So sup-
pose that f(x; s) < 1 and ui(x) �

P
x02X f(x

0; s)ui(x
0), which implies that

ui(x) � 1
1�f(x;s)

P
y 6=x f(y; s)ui(y). ThenX

x02X
f(x0; si + x; s�i)ui(x

0)�
X
x02X

f(x0; s)ui(x
0)

= ((f(x; si + x; s�i)� f(x; s))ui(x)�
X
y 6=x
(f(y; s)� f(y; si + x; s�i))ui(y)

�
X
y 6=x

�
f(x; si + x; s�i)� f(x; s)

1� f(x; s) f(y; s)� (f(y; s)� f(y; si + x; s�i))
�
ui(y)

Now for all y 6= x, equation (2) yields�
f(x; si + x; s�i)� f(x; s)

1� f(x; s)

�
f(y; s)� (f(y; s)� f(y; si + x; s�i))

= (f(y; s)� f(y; si + x; s�i))
�
f(y; s)

f(y; s)
� 1
�
= 0

So the sum over y of these terms equals 0 as well, so we have
P

x02X f(x
0; si +

x; s�i)ui(x
0) �

P
x02X f(x

0; s)ui(x
0) as desired.

Conversely, suppose that
P

x02X f(x
0; si+x; s�i)ui(x

0) �
P

x02X f(x
0; s)ui(x

0).
Then ((f(x; si+x; s�i)�f(x; s))ui(x) �

P
y 6=x(f(y; s)�f(y; si+x; s�i))ui(y), so

by equation (2) either f(y; s) = 0 or(1 � f(x; s))
�
f(y;s))�f(y;si+x;s�i)

f(y;s)

�
ui(x) �P

y 6=x(f(y; s)� f(y; si + x; s�i))ui(y), where we recall that
f(y;s))�f(y;si+x;s�i)

f(y;s)

does not depend on y, by equation (2). Note that if f(y; s)�f(y; si+x; s�i) = 0,
then equation (3) yields f(s) = f(si + x; s�i) which by equation (2) is possible
if and only if f(x; s) = 1, whence equation (2) gives f(x; si+ x; s�i) = 1, so the
result is immediate in this case. If f(y; s)� f(y; si + x; s�i) 6= 0, we have (1�
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f(x; s))ui(x) �
P

y 6=x(
f(y;s)

f(y;s)�f(y;si+x;s�i) )(f(yi; s) � f(y; si + x; s�i))ui(y), so
ui(x) � 1

1�f(x;s)
P

y 6=x f(y; s)ui(y) and �nally ui(x) �
P

x02X f(x
0; si; si)ui(x).

It remains only to show pairwise sincerity. First, suppose that ui(y) � ui(z)
and that f(y; s), f(z; s) < 1. Then for all x 6= y; z, equations (2) and (3) give
f(x;s)�f(x;si+y;s�i)

f(x;s) = f(x;s)�f(y;si+z;s�i)
f(x;s) . So for all x 6= y; z we have f(x; si +

y; s�i) = f(x; si + z; s�i) or f(x; s) = 0. Now note that if f(x; s) = 0 then
f(x; si+y; s�i) = f(x; si+z; s�i) = 0 as well by strong sincerity, which we have
already shown. This follows from considering, for example, ui(x) = 1, ui(x0) = 0
for all x0 6= x. So we have f(x; si + y; s�i) = f(x; si + z; s�i) for all x 6= y; z,
and therefore

P
x02X f(x

0; si + y; s�i)ui(x
0) �

P
x02X f(x

0; si + z; s�i)ui(x
0) =

(f(y; si+y; s�i)�f(y; si+z; s�i))ui(y)�(f(z; si+z; s�i)�f(z; si+y; s�i))ui(z).
Now f(y; si+y; s�i)�f(y; si+z; s�i) = f(z; si+z; s�i)�f(z; si+y; s�i), since
the sum of the weights on all alternatives must equal one at every pro�le. So
ui(y) � ui(z) implies that

P
x02X f(x

0; si + y; s�i)ui(x
0) �

P
x02X f(x

0; si +
z; s�i)ui(x

0) � 0.
Finally, we must consider the cases where f(y; s) = 1 or f(z; s) = 1. Strong

sincerity, which we have shown is implied by equations (2) and (3), gives that
f(x; s) = 0 implies f(x; si + z; s�i) = f(x; si + y; s�i) = 0, so in these cases
voting for y as opposed to z can only weakly transfer weight from z to y, so
pairwise sincerity is immediate.
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