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Abstract. For a finite set of actions and a rich set of fundamentals, consider
the interim rationalizable actions on the universal type space, endowed with the
usual product topology. (1) Generically, there exists a unique rationalizable action
profile. (2) Every model can be approximately embedded in a dominance-solvable
model. (3) For any given rationalizable strategy of any finite model, there exists a

nearby finite model with common prior such that the given rationalizable strategy
is uniquely rationalizable for nearby types.
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1. Introduction

In Game Theoretical applications there are often many rationalizable strategies.
In this paper, I try to understand when and why this multiplicity occurs and how
we should address it when it occurs.

I start with the observation that Game Theoretical models of a given situation
necessarily make strong simplifying assumptions, such as common knowledge as-
sumptions, which idealize its true underlying features. These assumptions are meant
to be satisfied only approximately in the actual situation. From the point of view
of the modeler as outside observer, a model will look similar to the actual situation,
but will be an idealization of it. Such idealizations may nevertheless have signifi-
cant impact on the conclusions, as demonstrated by Kreps, Milgrom, Roberts, and
Wilson (1982).
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This paper unearths a deep connection between these idealizations and the pres-
ence of multiplicity of rationalizable outcomes. This connection was partially ex-
posed in the seminal work of Carlsson and van Damme (1993), who illustrated that
multiplicity may sometimes be a direct result of the implicit simplifying assumptions
of our models. To be concrete, consider their well-known example.

Example 1 (Carlsson and van Damme (1993)). Consider the payoff matrix

α2 β2
α1 θ, θ θ − 1, 0
β1 0, θ − 1 0, 0

where θ is a real number. Assume that θ is unknown but each player i ∈ {1, 2}
observes a noisy signal xi = θ+εηi, where (η1, η2) is independently distributed from
θ, and the support of θ contains an interval [a, b] where a < 0 < 1 < b. When ε = 0,
θ is common knowledge. If it is also the case that θ ∈ (0, 1), there exist two Nash
equilibria in pure strategies and one Nash equilibrium in mixed strategies. Under
complete information, the players are able to "coordinate" on different equilibria.
With incomplete information, this is no longer possible. Under mild conditions,
Carlsson and van Damme show that when ε is small but positive, multiplicity dis-
appears: for each signal value xi 6= 1/2, there exists a unique rationalizable action.
The rationalizable action is βi whenever xi < 1/2, and it is αi whenever xi > 1/2.

The model in which θ = θ̄ 6= 1/2 is common knowledge (i.e. ε = 0) idealizes
the situation in which incomplete information is small (i.e. ε is small but positive)
and players believe that θ is close to θ̄. We, modelers, use the idealized model of
ε = 0 as an approximation of small incomplete information, in order to simplify our
model. The simplification weakens our ability to make predictions, as there are now
new outcomes that would have been ruled out in the relaxed model. It also makes
it more difficult to generate insights about the actual situation. For example, if we
take α and β as attacking and not attacking a currency, respectively, and θ as the
vulnerability of the economy, then Example 1 predicts that attack becomes likelier
when the economy is more vulnerable (Morris and Shin (1998)), which is not clear
in the complete information case.

In this paper, I first show that this intuition of Carlsson and van Damme is quite
general. Under their assumption that each action can be dominant at some parame-
ter value, I show that, by introducing a small amount of incomplete information, we
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can always relax the implicit assumptions of a model and obtain an open set of sit-
uations in which there is a unique rationalizable outcome, which is the same across
all these situations. Therefore, without a very precise knowledge of the situation,
we cannot rule out the possibility that we could have predicted accurately what the
rationalizable outcome is by learning more about the actual situation. In contrast,
when there is a unique rationalizable outcome, slight relaxations of the assumptions
will not have any effect.

My second result characterizes the situations with multiple rationalizable out-
comes. To be concrete, consider the signal value xi = 1/2. This value can be
considered to be an idealization of two cases: (i) xi is close to 1/2 but smaller, in
which case βi is the unique outcome, and (ii) xi is close to 1/2 but larger, in which
case αi is the unique outcome. The signal value xi = 1/2 idealizes two strategi-
cally distinct situations, and both αi and βi must be rationalizable at xi = 1/2

due to upper-semicontinuity. I show that multiplicity occurs in a model precisely
for this reason. Whenever there are multiple rationalizable actions for a type, the
type simultaneously idealizes multiple strategically distinct situations, with distinct
unique rationalizable outcomes. Each rationalizable action profile a corresponds to
an open set of situations where the assumptions are slightly relaxed and a is the
only rationalizable outcome.

Given our limitations in observing the actual situation, we will always idealize
the situation to some degree. Sometimes, we may want to get insights about the
situation by considering a more detailed information structure with unique ratio-
nalizable outcome. The first result shows that, in principal, this is always possible,
and one can do it without having to rely on rigid assumptions on the information
structure. The second result suggests that, when there are multiple rationalizable
outcomes in the original model, the insights generated in this way may depend on
the information structure one considers. Sometimes, we may want to predict what
the players will do, using a refinement of rationalizability, such a particular equilib-
rium refinement. We would also want to know how our predictions would change
if we used a model with slightly relaxed assumptions. In that case, by the second
result, the set of rationalizable actions gives us invaluable information. It tells us
which predictions we would necessarily make under various information structures
where our assumptions are only approximately satisfied.

Formulating the above results for general games inherently requires topological
notions on large spaces, and interpretation of such results requires great care. In
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the rest of this introduction, I will explain and justify my formulation, describe my
formal results, and discuss their implications.

In real life, players’ incomplete information is not of the form we describe in a
usual type space. They have some (vague) beliefs about the payoffs, which are called
the first-order beliefs, some (vaguer) beliefs about the other players’ beliefs, which
are called second order beliefs, and so on. Following Harsanyi (1967), we, modelers,
use a type space and a type profile t within this space to model these beliefs. The
type profile t is such that when we compute the beliefs of t about payoffs and so on
using the type space, they are similar to the beliefs of the players we try to model.
In my formulation, I will directly consider these (coherent) belief hierarchies, each
of which corresponds to a type in some type space. The set of all such hierarchies
is called the universal type space (Mertens and Zamir (1985), Brandenburger and
Dekel (1993)). My results will apply both to the universal type space and to smaller
but sufficiently rich type spaces.

I consider a topology on belief hierarchies that mathematically captures (a) the
usual continuity notion in usual models and (b) the idea that we modelers cannot
observe the entire hierarchy of beliefs, as they may not be well-articulated in real life.
For example, in Example 1, beliefs are continuous functions of (ε, x1, x2),1 and we
would like to consider types corresponding to (ε, x1, x2) and (ε0, x01, x

0
2) close, when

(ε, x1, x2) and (ε0, x01, x
0
2) are close to each other in the usual sense.

2 We would like
to consider an open set O of such parameters to be a relaxation of the assumptions
in (ε, x1, x2)–about the parameters–when (ε, x1, x2) is on the boundary of O.

Mertens and Zamir (1985) have shown that the product topology is the topology
described above. Consider a usual model with a compact state space with any topol-
ogy, and assume that the beliefs are continuous functions of states. (In Example 1,
a state is (ε, θ, x1, x2) .) Assume that there are no two types with the same hierarchy.
Then, the function that maps the states to the corresponding belief hierarchies and
underlying payoff parameters is an isomorphism when we put the product topology

1Recall that beliefs are probability distributions, and we put the usual weak topology on prob-
ability distributions, the topology corresponding to "the convergence in distribution".
2This also requires that I do not consider whether two situations are strategically close. When

ε0 > 0 and θ̄ 6= 1/2,
¡
ε = 0, θ̄, θ̄

¢
is strategically distinct from any type

¡
ε0, θ̄, θ̄

¢
. As ε → 0, the

types with xi = θ̄ would not converge to the common knowledge case in strategic topologies, such
as that of Monderer and Samet (1989) and Dekel, Fudenberg, and Morris (2004). (In this paper, I
call two situations strategically distinct when the set of rationalizable actions are distinct, even if
the δ-rationalizable actions are similar, as the former concept turns out to be the relevant notion
for understanding multiplicity.)
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on the belief hierarchies. That is, taking limit on belief hierarchies with respect
to the product topology is equivalent to taking limit in the original space on the
corresponding states. Since I would like to be able to enlarge models in a manner in
which beliefs remain continuous functions of the states, I will then use the product
topology in the universal type space. Because of this isomorphism, my results will
be true for any such model with respect to its own topology, provided that it is
sufficiently rich.

As I will explain formally in Section 3, the open sets in product topology precisely
correspond to the sets of types consistent with our observation when we make noisy
observation about finite-order beliefs. (In the rest of the paper, I will consider only
such observations.) In this topology, openness of a set U means that if the actual
type is in U and our observation is sufficiently precise, then we would know that
actual type is in U . Similarly, denseness of a set U means that we could never rule
out the possibility that the actual case is represented by a type in U . Therefore, an
open and dense set contains all types, except for a nowhere-dense set of idealized
situations, such as ε = 0 in the above example. The nowhere-dense set is just the
boundary of the open and dense set, containing no open set. Relaxation O of a type
profile t, defined above, has now a special meaning: Even if the actual situation is as
described by t, we can never rule out the possibility that, by having a more precise
observation, we will learn that the actual situation is in O.

I consider a finite set of players and a finite set A of actions. Following Carlsson
and van Damme, I assume that each action becomes strictly dominant for some
parameter value. I endow the game with the universal type space T ∗ with the
product topology. Then, I prove the following.

Main Result. Generically, there exists a unique rationalizable action profile, and
it is generically continuous. That is, there exist an open, dense set U ⊂ T ∗ and a
continuous (i.e. locally constant) function s∗ : U → A, such that s∗ (t) is the unique
rationalizable action profile at t for each t ∈ U . In particular, every rationalizable
strategy is continuous on the open, dense set U .3

First, suppose that there is a unique rationalizable outcome for the actual situ-
ation we want to model. Since U is open and s∗ is locally constant, if we have a

3Here, U , the set of all type profiles with unique rationalizable action profile, is open simply be-
cause the rationalizability correspondence is upper semicontinuous (Dekel, Fudenberg, and Morris
(2003)) and the action space is finite. I show that U is dense, using a result of Mertens and Zamir
(1985) and a variant of a construction by Weinstein and Yildiz (2004), whose main idea can be
traced back to Rubinstein (1989) and Carlson and van Damme (1993).
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sufficiently precise noisy observation about finite-order beliefs, then we would know
what that outcome is. Second, suppose that there are multiple rationalizable out-
comes for the actual situation. Then, no matter how precise our observation is, we
could not rule out the possibility that, by having a more precise information, we
would come to learn that there is a unique rationalizable outcome, and we would
learn what it is. (This is the precise meaning of T ∗\U being nowhere-dense in
this topology.) In that sense, multiplicity occurs only in idealized situations, where
slight relaxation of assumptions would lead to open set of situations with unique
rationalizable outcome.

Now consider a usual model and enrich it by allowing sufficiently many types,
maintaining the compactness, continuity, and "non-redundancy" assumptions de-
scribed above. Then, according to the main result, multiplicity will occur only on a
nowhere-dense set of states in the enriched model with respect to the topology on
the model. In particular, there cannot be an open set of states at which there are
multiple rationalizable outcomes. Hence, in order to maintain an argument based
on multiplicity, one has to maintain very rigid assumptions on the set of states.
Slight relaxations of these assumptions (with respect to the topology on the model)
will lead to an open set of states with unique rationalizable outcomes. In particular,
given any finite-action game with arbitrary payoff and information structures, we
can introduce small incomplete information in such a way that the resulting game is
dominance-solvable. Moreover, the dominance-solvable model will remain so, when
further small perturbations are introduced. In contrast, even if there is a pertur-
bation that leads to multiplicity, we can introduce further perturbations to reach a
unique rationalizable outcome.

In application, we often use small type spaces, such as finite models with a com-
mon prior. Suppose that only a subset of models are considered to be possible, and
let T be the set of type profiles generated by these models. Assume that T is dense;
i.e., for each possible observation, there is a type profile t ∈ T that is consistent
with our observation. For example, finite models with common prior would be one
such set (Mertens and Zamir (1985), Lipman (2003)). Then, since U is open and
dense in T ∗, U ∩ T is dense and open in relative topology on T . Once again, within
this smaller set of models, multiplicity occurs only in idealized situations.

In general, slight relaxation of an assumption in a given model tends to reduce
the number of rationalizable actions for the perturbed types. There is a sim-
ple mathematical reason for this: the rationalizability correspondence is upper-
semicontinuous. Each type profile t has an open neighborhood, such that if an
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action profile is rationalizable for some t0 in this neighborhood, it must also be ra-
tionalizable for t. Then, when we relax an assumption–so slightly that we remain
in this neighborhood, we can only get rid of some rationalizable actions.

Why do we have multiplicity? If an action is rationalizable when an assumption
is approximately satisfied, then that action will remain rationalizable when the
assumption is exactly satisfied (by upper-semicontinuity). Now, consider two open
sets Ua and U b, where a and b are unique rationalizable actions, respectively, and
suppose that there is a type t, located on the common boundary of these sets. Then,
both a and b will be rationalizable for t, leading to multiplicity. Each of Ua and U b

describe a strategically distinct situation, and t can be considered as an idealization
of either situation. Keeping track of all such idealizations, rationalizability yields
both actions a and b as possible solutions at t.

I show that this is the only way a finite type (i.e. a type from a finite model) can
have multiple rationalizable actions. Given any type t and any rationalizable action
a for t, we can suitably relax the assumptions of t and find an open set Ua of types
for which a is uniquely rationalizable. For example, if t has rationalizable actions
a, b, and c, then t is located on the common boundary of some open sets Ua, U b,
and U c, where a, b, and c are uniquely rationalizable, respectively. That is to say
t is a simultaneous idealization of multiple strategically distinct situations. Each
rationalizable action for t represents such a situation idealized by type t. Combin-
ing this with the observation in the previous paragraph, one then uncovers a precise
reason for multiplicity: a type has multiple rationalizable actions if and only if it
represents simultaneous idealization of multiple strategically distinct situations. It
is not surprising, then, that we tend to a have a large number of rationalizable
strategies in complete-information models. Such a model idealizes all of the situ-
ations in which private information is small, which can happen in many different
information structures. The information structure may have significant impact on
the outcome even when players have small private information. (The above result
remains valid when we impose the common-prior assumption. This is due to Lipman
(2003), who shows that the common-prior assumption puts only few restrictions on
the finite-order beliefs.)

The above result is closely related to robustness results of Weinstein and Yildiz
(2004). Under a significantly weaker richness assumption, they have shown that, if a
non-empty equilibrium refinement has a prediction that remains valid when we only
know the finite-order beliefs, then the prediction must be true for all strategies that
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survive iterated elimination of actions that are never a strict best reply. A variant
of their construction plays a central role in my proofs.

Carlsson and van Damme have extended Example 1 to all two-player, two-action
supermodular games of complete information, and Morris and Shin (1998) and
Frankel, Morris, and Pauzner (2003) have extended it further to all monotone su-
permodular games of complete information (Van Zandt and Vives (2004)). These
results appear to be specific to supermodular games, in that their perturbations
need not reduce the set of rationalizable outcomes in general games, such as the
Matching-Pennies game. I show that, once we relax their assumptions on informa-
tion structure, their conclusion generalizes to all games with arbitrary information
structures.

In the next section I illustrate how one can make the Matching-Pennies game
dominance-solvable by introducing a small amount of incomplete information. In
Section 3, I introduce the model and preliminary results. The main results are
presented in Section 4. The proof of a central lemma is presented in Section 5.
Section 6 concludes.

2. Matching Pennies

The information structure of Carlsson and van Damme does not work inMatching-
Pennies game. Focusing on this difficult case, I now illustrate how one can get rid of
multiplicity by introducing incomplete information. In the Matching-Pennies game,
multiplicity arises because some players have an incentive to change their actions
when these actions are known by the players. Introducing incomplete information
will ease this tension. For, under incomplete information, players need not know the
other players’ actions even if they know the others’ strategies. In my construction,
I will first consider an intuitive belief structure without a common prior and then
obtain a belief structure with a common prior.

Example 2 (Matching Pennies–without a common prior). Consider the payoff
matrix

α2 β2
α1 θ, 0 θ − 1, θ
β1 0, 0 0, θ − 1

.

If θ is common knowledge and is in (0, 1), then there is no pure strategy equilibrium.
Take Θ = {θ0, θ1, . . . , θM−1}, where θ0 = −ε/2, θ1 = ε/2, θ2 = 3ε/2,. . . , θM−1 =
θ̄ < 1, and assume that θ is uniformly distributed on Θ. Each player i observes
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a signal xi, about which the players have different priors. Conditional on θ = θm,
each player i assigns probability 1− γ to (xi, xj) = (θm, θm−1) and probability γ to
(xi, xj) = (θm−1, θm). As in Example 1, it is common knowledge that the players’
signals are within ε-neighborhood of θ, and the game converges to the the complete-
information game as ε → 0. For ε = 0, every strategy is rationalizable. But when
0 < γ < ε/ [2 (1− ε)], the incomplete-information game is dominance-solvable, and
the unique rationalizable strategy profile is as in the following table:

xi θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 · · ·
s∗1 (x1) β1 α1 α1 β1 β1 α1 α1 β1 β1 · · ·
s∗2 (x2) α2 α2 β2 β2 α2 α2 β2 β2 α2 · · ·

(Clearly, when xi = θ0, player i assigns high probability 1 − γ to θ = θ0, when
β1 and α2 are dominant actions for players 1 and 2, respectively. When, xi = θ1,
player i assigns high probability to (θ, xj) = (θ1, θ0). Given the dominant action for
j at xj = θ0, the player i has a unique best response; it is αi. One computes s∗

iteratively in this way.)

In this example the players do not have a common prior. This is not crucial. The
elimination process in this game stops at the Mth round, and hence the rationaliz-
ability depends only on the first M orders of beliefs (Dekel, Fudenberg, and Morris
(2003)). Using Lipman’s (2003) method, we can then construct an incomplete-
information game with a common prior and with types whose first M orders of
beliefs are as in the original game. These types will have unique rationalizable
actions, as in the following example.

Example 3 (Matching Pennies–with a common prior). In the previous example,
assume that, in addition to xi, each player i observes a noisy signal yi about a
random variable k that is correlated with θ and takes values in {1, 2, . . . , 2K} for
some integer K > M . Player 1 observes the value y1 (k) of the smallest odd number
y with y ≥ k; e.g., y1 (1) = 1, y1 (2) = 3, y1 (3) = 3, etc. Player 2 observes the value
y2 (k) of the smallest even number y with y ≥ k, e.g., y2 (1) = 2, y2 (2) = 2, etc. Now,
the players have a common prior µ̄ about (θ, x1, x2, k) as follows. Let µi (θ, x1, x2)
be the prior probability of (θ, x1, x2) according to player i in the previous example,
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e.g., µ1 (θ1, θ1, θ0) = (1− γ)2 /M and µ1 (θ1, θ0, θ1) = γ2/M . Define µ̄ iteratively by

µ̄ (θ, x1, x2, 1) = αµ1 (θ, x1, x2)

µ̄ (θ, x1, x2, k) = Lk−1αµik (θ, x1, x2)−
X
l<k

µ̄ (θ, x1, x2, l)

for each (θ, x1, x2) and k ∈ {2, 3, . . . , 2K} where L > (1− γ) /γ, α = 1/L2K−1, and
ik is 1 if k is odd and 2 if k is even. Once again, it is common knowledge that, in
addition to yi, each player observes a signal xi that is within ε-neighborhood of θ.
As ε→ 0, the belief hierarchy of each type with (xi, yi (k)) converges to that of the
common knowledge of θ = xi. Lipman (2003) shows that

(2.1) µ̄ ((θ, x1, x2) |xi, yi (k)) = µi ((θ, x1, x2) |xi)

for each yi (k) ≤ 2K. That is, the posterior beliefs in the new model are identical to
those of previous example, except for the case that player 1 observes that y1 (k) =
2K + 1. It follows from (2.1) that, for each (xi, yi (k)) with yi (k) ≤ 2K −m and
xi = θm, there exists a unique rationalizable action

ŝi (xi, yi (k)) = s∗i (xi) ,

where s∗i is the unique rationalizable strategy of i in the previous example.
4 In

particular, the types with (xi, yi (1)), which approximate the complete-information
model, will have unique rationalizable actions.

Notice that, in this example, the types whose belief hierarchies are far away from
those of original model may have multiple rationalizable actions; for an example
consider the types with yi (k) > 2K −m and xi = θm for some m.

3. Model

Consider a game with finite set of players N = {1, 2, . . . , n}, finite set A = A1 ×
· · ·×An of action profiles a = (a1, a2, . . . , an), and utility functions ui : Θ∗×A→ R,
i ∈ N , where Θ∗ is a compact metric space of payoff-relevant parameters θ, and
ui is continuous in θ. The finite set A is endowed with the discrete topology. The

4Use induction on m to check this. For m = 0, by (2.1), s∗i (θm) is dominant action for each
(θm, yi (k)) with yi (k) ≤ 2K. Assuming the statement is true for m− 1, consider any (θm, yi (k))
with yi (k) ≤ 2K −m. Player i knows that yj (k) ≤ 2K −m+1, and assigns very high probability
on {θ = θm, xj = θm−1}. By assumption, he must assign high probability on j playing s∗j (θm−1),

against which the only best response is s∗i (θm).
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game is endowed with the universal type space. A type of a player i is an infinite
hierarchy of beliefs

ti =
¡
t1i , t

2
i , . . .

¢
where t1i ∈ ∆ (Θ∗) is a probability distribution on Θ∗, representing the beliefs of i
about θ, t2i ∈ ∆ (Θ∗ ×∆ (Θ∗)n) is a probability distribution for (θ, t11, t

1
2, . . . , , t

1
n),

representing the beliefs of i about θ and the other players’ first-order beliefs, and so
on. Here, ∆ (X) is the space of all probability distributions on X, endowed with the
weak* topology. I assume that it is common knowledge that the beliefs are coherent
(i.e., each player knows his beliefs and his beliefs at different orders are consistent
with each other). The set of all such types are denoted by T ∗i ; T

∗ = T ∗1 × · · · × T ∗n
denotes the set of all type profiles t = (t1, . . . , tn), and T ∗−i =

Q
j 6=i T

∗
j is the set of

profiles of types t−i for players other than i. Each T ∗i is endowed with the product
topology, so that a sequence of types ti,m converges to a type ti, denoted by ti,m → ti,
if and only if tki,m → tki for each k. A sequence of type profiles t (m) = (t1,m, . . . , tn,m)
converges to t iff ti,m → ti for each i. For each type ti, let κti ∈ ∆

¡
Θ∗ × T ∗−i

¢
be

the unique probability distribution that represents the beliefs of ti about (θ, t−i).
Mertens and Zamir (1985) have shown that the mapping ti 7→ κti is an isomorphism.
That is, it is one-to-one, and κti,m → κti if and only if ti,m → ti.

The product topology captures the idea that we cannot observe infinite hierarchy
of beliefs. Suppose that we consider only a set of models as possible, and let T
be the set of belief hierarchies generated by these models. Suppose also that we
have made some noisy observation about some first k orders of beliefs, and for each
k0 ≤ k, we find an open set of beliefs possible (w.r.t the weak topology on probability
distributions). Then, the set of types that we find possible are those types in T whose
first k orders of beliefs are in these open sets. The product topology relative to T

is the smallest topology under which all of such sets of types are open.

Remark 1. In my formulation, it is common knowledge that the payoffs are given
by a fixed continuous function of parameters. This assumption is without loss of
generality because we can take a parameter to be simply the function that maps
action profiles to the payoff profiles. For example, we can take Θ∗ = Θ∗1 × · · · ×Θ∗n
where Θ∗i = [0, 1]

A for each i, and let ui (θ, a) = θi (a) for each (i, a, θ). This model
allows all possible payoff functions, and here θ is simply an index for the profile of
the payoff functions. This model clearly satisfies the following richness assumption,
which is also made by Carlsson and van Damme (1993).



12 MUHAMET YILDIZ

Assumption 1 (Richness Assumption). For each i and each ai, there exists θai ∈ Θ∗

such that

ui (θ
ai , ai, a−i) > ui (θ

ai , a0i, a−i) (∀a0i 6= ai,∀a−i) .

That is, the space of possible payoff structures is rich enough so that each action
can be strictly dominant for some parameter value. When there are no a priori re-
strictions on the domain of payoff structures and the actions represent the strategies
in a static game, Assumption 1 is automatically satisfied. When actions represent
the strategies in a dynamic game, one needs to introduce trembles and use a reduced
form to satisfy this assumption.

A strategy of a player i is any function si : T ∗i → Ai.5 For each i ∈ N and for each
belief π ∈ ∆ (Θ∗ ×A−i), BRi (π) denotes the set of actions ai ∈ Ai that maximize
the expected value of ui (θ, ai, a−i) under the probability distribution π.

Interim Correlated Rationalizability. For each i and ti, set S0i [ti] = Ai, and
define sets Sk

i [ti] for k > 0 iteratively, by letting ai ∈ Sk
i [ti] if and only if ai ∈

BRi

¡
margΘ∗×A−iπ

¢
for some π ∈ ∆

¡
Θ∗ × T ∗−i ×A−i

¢
such that margΘ∗×T∗−iπ = κti

and π
¡
a−i ∈ Sk−1

−i [t−i]
¢
= 1. That is, ai is a best response to a belief of ti that puts

positive probability only to the actions that survive the elimination in round k− 1.
I write Sk−1

−i [t−i] =
Q

j 6=i S
k−1
j [tj] and Sk [t] = Sk

1 [t1] × · · · × Sk
n [tn]. The set of all

rationalizable actions for player i (with type ti) is

S∞i [ti] =
∞\
k=0

Sk
i [ti] .

A strategy si : T ∗i → Ai is said to be rationalizable iff si (ti) ∈ S∞i [ti] for each ti.

Remark 2. The interim correlated rationalizability (Battigalli (2003), Battigalli
and Siniscalchi (2003) and Dekel, Fudenberg, and Morris (2003)) is the weakest
among the known notions of rationalizability. Dekel, Fudenberg, and Morris (2003)
show that, for arbitrary type space and independent of whether correlations are
allowed, if an action ai is rationalizable for a type with belief hierarchy ti, then ai
is interim correlated rationalizable for ti. Using such a weak notion of rationaliz-
ability strengthens my results; they will remain valid under any stronger notion of
rationalizability.

5I do not restrict the strategies to be measurable. Measurability restriction could lead to a
non-existence problem, which can be avoided in the present interim framework (Simon, 2003).
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Mathematical Definitions and Preliminary Results.

Definition 1 (Genericity). The closure of a set T ⊆ T ∗, denoted by T , is the
smallest closed set that contains T . A set T is dense (in T ∗) iff T = T ∗, i.e., for
each t ∈ T ∗, there exists a sequence of type profiles t (m) ∈ T such that t (m)→ t.
A set T is said to be nowhere-dense iff the interior of T is empty, i.e., T does not
contain any open set. A statement is said to be generically true if it is true on an
open, dense set of type profiles.

An open and dense set T ⊆ T ∗ is large in the sense that its complement, T ∗\T , is
nowhere-dense. That is, we can approximate each t̃ ∈ T\T ∗ by type profiles t ∈ T ∗,
and we cannot approximate any t ∈ T ∗ by type profiles t̃ ∈ T\T ∗. In that case,
T ∗\T is simply the boundary of T , denoted by ∂T . Clearly, topological notions of
genericity may widely differ from measure theoretical notions of genericity, which
are about how commonly an event occurs, but these notions are related (Oxtoby
(1980)). This paper uses a strong topological notion of genericity with respect to a
canonical topology. However, the results may not be true under other topologies or
under measure theoretical notions of genericity. Hence, one should not interpret the
results of this paper as saying that there are few types with multiple rationalizable
actions.

Definition 2 (Finite Types, Models). A subset T ⊆ T ∗ is said to be belief-closed
iff for each ti ∈ Ti, κti (Θ

∗ × T−i) = 1. A model is a subset Θ× T ⊆ Θ∗ × T ∗ such
that κti (Θ× T−i) = 1 for each ti ∈ Ti. When it does not lead to a confusion, I
will use the terms model and belief-closed subset of T ∗ interchangeably. A model
Θ× T (or T ) is said to be finite iff |Θ× T | < ∞. Let T̂ be the union of all finite,
belief-closed subspaces T ⊂ T ∗. Members of T̂ are referred to as finite types.

In general, the image of a model in the universal type space need not be a product
set Θ× T , but one can enlarge it to a product set by adding new states. By a well-
known theorem of Mertens and Zamir, the beliefs κti of players will be continuous
functions of states (θ, t).

Lemma 1 (Mertens and Zamir (1985)). T̂ is dense, i.e., T̂ = T ∗.
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Definition 3 (Dominance-Solvability). A model T ⊆ T ∗ is said to be dominance-
solvable if and only if |S∞ [t]| = 1 for each t ∈ T .

Definition 4 (Common Prior). A model Θ× T ⊆ T ∗ is said to admit a common
prior (with full support) if and only if there exists a probability distribution p ∈
∆ (Θ× T ) such that κti = p (·|Θ∗ × {ti} × T−i) for each ti ∈ Ti.

The set of all type profiles that comes from a model with a common prior is
denoted by TCPA; formally,

TCPA
i = {ti|ti ∈ Ti for some Θ× T with a common prior}.

Lipman (2003) shows that, in finite models, the common-prior assumption does not
put any restriction on finite-order beliefs other than full support (see also Feinberg
(2000)), proving following useful result.

Lemma 2 (Lipman (2003)). T̂ ∩ TCPA is dense in the universal type space.

Definition 5 (Continuity). A strategy si is said to be continuous (or locally-
constant) at ti iff si is constant on an open neighborhood of ti. A (bounded) cor-
respondence F : T ∗ → 2A is said to be upper-semicontinuous if its graph is closed
in the product topology of T ∗ × A. Since A is finite, F is upper-semicontinuous iff
each t has a neighborhood η with F [t0] ⊆ F [t] for each t0 ∈ η.

Lemma 3 (Dekel, Fudenberg, and Morris (2004)). S∞ is non-empty and upper-
semicontinuous.

Dekel, Fudenberg, and Morris (2004) prove upper-semicontinuity of interim cor-
related rationalizability in their framework. Since my framework is slightly different
(e.g. Θ∗ may be infinite), for the sake of completeness, I provide a proof in the
appendix. Together with the observations in the following lemma, this lemma will
provide a main step in the proof of the main result.

Lemma 4. Given any non-empty, upper-semicontinuous F , let UF = {t| |F [t]| = 1}.
Then, UF is open, and there exists a continuous function f∗ : UF → A such that
F [t] = {f∗ (t)} for each t ∈ UF .
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Proof. Define f∗ : UF → A by F [t] = {f∗ (t)}, t ∈ UF . By upper-semicontinuity of
F , each t ∈ UF has a neighborhood η with F [t0] ⊆ F [t] = {f∗ (t)} for each t0 ∈ η.
Since F [t0] 6= ∅, this implies that F [t0] = {f∗ (t)} for each t0 ∈ η, so that η ⊂ UF .
Therefore, UF is open. By definition, f∗ (t0) = f∗ (t) for each t0 ∈ η, and hence f∗ is
continuous. ¤

Lemmas 3 and 4 imply the following useful fact.

Lemma 5. For any t with S∞ [t] = {a}, there exists a neighborhood η of t such that
S∞ [t0] = {a} for each t0 ∈ η.

4. Results

In this section, I show that, generically, there exists a unique rationalizable action,
and for any model, there is a perturbation that leads to a dominance-solvable model.
Moreover, for each rationalizable strategy of any finite model, I show that there
exists a perturbation that leads to a finite model with common prior and such that
the given strategy of the original model is uniquely rationalizable for the perturbed
types. The next result will be the main tool for this analysis.

Lemma 6. Under Assumption 1, for any t̂ ∈ T̂ , and any a ∈ S∞
£
t̂
¤
, there exists

a sequence of finite, dominance-solvable models Tm with type profiles t̃ (m) ∈ Tm,
such that t̃ (m)→ t̂ as m→∞ and S∞

£
t̃ (m)

¤
= {a} for each m.

That is, given any type and any rationalizable action ai for that type, one can
find a nearby finite type for which ai is uniquely rationalizable. Since the proof of
this result is somewhat involved, I will present the proof in Section 5, after exploring
the important implications of the lemma for this paper.

4.1. Genericity of Uniqueness. Let

U = {t ∈ T ∗| |S∞ [t]| = 1}

be the set of type profiles with unique rationalizable actions. Together with Lemma
1, Lemma 6 implies that U is dense in universal type space. Since S∞ is upper-
semicontinuous, U is also open. This yields the first main result of the paper: if
one excludes a nowhere-dense set of types, there is a unique rationalizable action
for each remaining type, which must be continuous in player’s belief hierarchy.
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Proposition 1. Generically, there exists a unique rationalizable action, and it is
generically continuous. That is, there exist an open, dense set U and a continuous
function s∗ : U → A, such that S∞ [t] = {s∗ (t)} for each t ∈ U . In particular, every
rationalizable strategy is continuous on the open and dense set U .

Proof. Since S∞ [t] is upper-semicontinuous, by Lemma 4, U is open, and there
exists a continuous function s∗ : U → A with S∞ [t] = {s∗ (t)} for each t ∈ U . To
show that U is dense, first observe that, by Lemma 6, for any t̂ ∈ T̂ , there exists
a sequence t̃ (m) → t̂ with S∞

£
t̃ (m)

¤
= {a} for some a ∈ S∞

£
t̂
¤
. By definition,

t̃ (m) ∈ U for each m. Hence, Ū ⊇ T̂ . But T̂ = T ∗ by Lemma 1. Therefore,

Ū ⊇ T̂ = T ∗, showing that U is dense. ¤

By Proposition 1, we can partition the universal type space to an open and dense
set U and its nowhere-dense boundary T ∗\U . On U , each type has a unique rational-
izable action, and every rationalizable strategy is continuous. On the boundary, each
type profile has multiple rationalizable action profiles. Assumption 1 is not super-
fluous. For example, a complete-information game can be modeled with |Θ∗| = 1,
when T ∗ consists of a single common-knowledge type profile. When the original
game is not dominance-solvable, U = ∅.

One may wonder if the genericity result above applies to smaller type spaces of
interest, such as the space of finite types and space of types consistent with common
prior assumption. The next result shows that the same genericity result is true for
any dense type space, including the mentioned spaces.

Corollary 1. For any dense model T ⊆ T ∗, the set U ∩T is dense and open with
respect to the relative topology on T . In particular, U ∩ (T̂ ∩ TCPA) is dense and
open with respect to the relative topology on T̂ ∩ TCPA.

Proof. Since U is open and dense and T is dense, U ∩ T is dense. Since U is open,
U ∩ T is open with respect to the relative topology on T–by its definition. ¤

Remark 3 (Redundant Types). When there are distinct types with identical belief
hierarchies in a model, there are different ways to define rationalizability (see e.g. Ely
and Peski (2004)), and S∞ is the largest among them (Dekel, Fudenberg, and Morris
(2003)). Proposition 1 establishes that, generically, |S∞i [ti]| = 1, and hence for types
with generic belief hierarchies, all these rationalizability concepts are equivalent, and
all give the same unique solution.
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4.2. Nearby dominance-solvable models. Since U is dense, for any usual game
with a large set of rationalizable strategy profiles, there is a model such that if a
player’s interim beliefs and payoffs are similar to that of a player in the original
game, then he has a unique rationalizable action. I will now show a stronger fact.
Given any model, one can find a nearby dominance-solvable model, where every
type has a unique rationalizable action.

Proposition 2. Under Assumption 1, for any model T ⊆ T ∗, and any integer m,
there exist a dominance-solvable model Tm and a mapping τ (·,m) : T → Tm such
that τ (t,m)→ t as m→∞.

Proof. First, take any t ∈ T ∗. By Lemma 1, there exists a sequence of type profiles
t̂ (m) ∈ T̂ with t̂ (m) → t. By Lemma 6, for all integers m and k, there exists a
dominance-solvable model Tm,k with member t̃ (m, k) such that t̃ (m, k)→ t̂ (m) as
k → ∞. Define T t,m ≡ Tm,m and τ (t,m) ≡ t̃ (m,m). Clearly, τ (t,m) → t. Now,
define Tm by

Tm
i =

S
t∈T

T t,m
i .

Since each T t,m is dominance-solvable, so is Tm. For each t ∈ T , τ (t,m) ∈ Tm. ¤

Proposition 2 extends the result of Carlsson and van Damme to arbitrary games.
It states that, given any model, we can perturb the model by introducing a small
noise in players’ perceptions of the payoffs in such a way that the new model is
dominance-solvable. Moreover, since U is open, the perturbed model will remain
dominance-solvable when we introduce new small perturbations.

I will now turn to question of whether one can enlarge a model continuously so
that the multiplicity occurs only on a nowhere-dense set of states. By Proposition 1,
one can always embed any model Θ×T in a larger model, namely Θ∗×T ∗, in which
multiplicity occur only on a nowhere-dense set. Since the latter model is large, the
nowhere-dense set may be large, too. Using Proposition 2, I next show that we can
pick the enlarged model so that the new types all have unique rationalizable actions.
The enlarged model will be "small" whenever Θ× T is "small".

Corollary 2. For any model Θ × T , there exists a model Θ0 × T 0 such that
multiplicities can occur only in a nowhere-dense subset Θ0 × T 00 with respect to the
relative topology on Θ0×T 0 where T 00 ⊆ T . Moreover, whenever Θ×T is countable,
so is Θ0 × T 0.
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Proof. For each t ∈ T and integer m, there is a finite, dominance-solvable model
Θt,m× T t,m as in the proof of Proposition 2. Define Θ0× T 0 by Θ0 = (∪t,mΘt,m)∪Θ
and T 0i =

¡
∪t,mT t,m

i

¢
∪ Ti. Let T 00 be the set of all type profiles t ∈ T 0 with multiple

rationalizable actions. By construction, T 00 ⊆ T . As in Proposition 2, for each
(θ, t) ∈ Θ0×T 00, there exists τ (t) ∈ T 0\T 00, converging to t, so that (θ, τ (t))→ (θ, t).
Hence, Θ0×T 00 has empty interior with respect to the topology onΘ0×T 0. Moreover,
T 0\T 00 = U ∩T 0 is open (and hence T 00 is closed) w.r.t. the relative topology. Hence,
Θ0 × T 00 is closed in this topology. Therefore, Θ0 × T 00 is nowhere-dense. Since each
Θt,m × T t,m is finite, whenever Θ× T is countable, Θ0 × T 0 is also countable, for it
is then a countable union of finite sets. ¤

I will now turn to the main question of why we have multiple rationalizable actions
at the first place. Focusing on finite models, the upcoming proposition, which is the
second main result of this paper, provides an answer to this question. It states that,
for each finite model and for each rationalizable strategy profile sT in this model, we
can perturb the beliefs and find a newmodel such that sT is the unique rationalizable
strategy profile for the perturbed types. We can pick the new model with a common
prior. In this proposition, there are two perturbations. The first perturbation leads
to a finite, dominance-solvable model T sT ,m where the unique rationalizable actions
of perturbed types τ (·, sT ,m) agree with sT . The second perturbation leads to
a finite model T̃ sT ,m that admits a common prior, which may not be dominance-
solvable, but the perturbed types τ̃ (t, sT ,m) have all unique rationalizable actions,
and these actions agree with sT .

Proposition 3. Let T ⊆ T̂ be any finite model and sT : T → A be any rationaliz-
able strategy profile, with sT (t) ∈ S∞ [t] for each t ∈ T . Then, under Assumption
1, there exist sequences of finite models T sT ,m and T̃ sT ,m and one-to-one mappings
τ (·, sT ,m) : T → T sT ,m and τ̃ (·, sT ,m) : T → T̃ sT ,m such that

(1) T sT ,m is dominance-solvable, and T̃ sT ,m admits a common prior,
(2) S∞ [τ (t, sT ,m)] = S∞ [τ̃ (t, sT ,m)] = {sT (t)}, and
(3) τ (t, sT ,m)→ t and τ̃ (t, sT ,m)→ t as m→∞ for each t ∈ T .

Proof. By Lemma 6, for each t ∈ T and m, there exists a finite, dominance-solvable
model T t,sT ,m with τ (t, sT ,m) ∈ T t,sT ,m as in the proposition. As in the proof of
Proposition 2, define the finite model T sT ,m by

T sT ,m
i =

S
t∈T

T t,sT ,m
i .
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Since τ (t, sT ,m)→ t for each t ∈ T and T is finite, there exists m̄ such that, for any
distinct t, t0 and any m > m̄, we have τ (t, sT ,m) 6= τ (t0, sT ,m). Hence, τ (·, sT ,m)
is one-to-one for m > m̄. (Consider only m > m̄.)

I will now construct a finite model T̃ sT ,m that admits a common prior with full
support and has the desired properties. For transparency, I will use elementary
techniques. Since T̂ ∩ TCPA is dense, for each τ (t, sT ,m), there exists a sequence
of finite models T t,m,k with common priors pt,m,k (with full support) and members
τ̄ (t,m, k) such that τ̄ (t,m, k)→ τ (t, sT ,m) as k →∞. By Lemma 5, there exists
a k̄ such that for each k > k̄, S∞ [τ̄ (t,m, k)] = S∞ [τ (t,m, k)] = {sT (t)}. Hence,
without loss of generality, pick each τ̄ (t,m, k) with

(4.1) S∞ [τ̄ (t,m, k)] = {sT (t)} .

For each ε ∈ [0, 1], I will now construct a usual finite type space Tm,k,ε in which the
types are denoted by integers. For each i, let τ̂ i be any one-to-one mapping that
maps types t̃i, t̃i ∈ T t,m,k

i , t ∈ T , to integers. (Recall that there are only finitely
many such types.) Define

Tm,k,ε
i =

n
τ̂ i
¡
t̃i
¢
|t̃i ∈ T t,m,k

i , t ∈ T
o

(i ∈ N) .

LetΘ be the set of all θ ∈ Θ∗ on which some type t̃i ∈ T t,m,k
i puts positive probability.

I will now define a common prior pm,k,ε on Θ× Tm,k,ε with full support. Since each
pt,m,k has full support, given any t and t0, either T t,m,k = T t0,m,k or T t,m,k ∩T t0,m,k =

∅. Let K be the number of disjoint sets T t,m,k and L =
¯̄
Θ× Tm,k,ε

¯̄
. Define pm,k,ε

by setting

pm,k,ε (θ, t̄) =

(
ε/L+ (1− ε) pt,m,k

¡
θ, t̃
¢
/K if t̄ =

¡
τ̂ 1
¡
t̃1
¢
, . . . , τ̂n

¡
t̃n
¢¢
for some t̃ ∈ T t,m,k and t,

ε/L otherwise

at each (θ, t̄) ∈ Θ×Tm,k,ε. According to pm,k,ε, with probability ε, we have a uniform
distribution onΘ×Tm,k,ε, and with probability (1− ε) one of the type spaces T t,m,k is
selected, each with equal probability. Let hi

¡
τ̂ i
¡
t̃i
¢
;m, k, ε

¢
be the belief hierarchy

of τ̂ i
¡
t̃i
¢
under pm,k,ε. By a well-known result of Mertens and Zamir, hi (·;m, k, ε) is

continuous, and as ε → 0, hi
¡
τ̂ i
¡
t̃i
¢
;m, k, ε

¢
→ hi

¡
τ̂ i
¡
t̃i
¢
;m, k, 0

¢
in the product

topology for each τ̂ i
¡
t̃i
¢
. Moreover, hi

¡
τ̂ i
¡
t̃i
¢
;m, k, 0

¢
= t̃i by construction. (A

type’s belief hierarchy cannot change when we add an exante stage to choose between
type spaces.) Therefore, hi

¡
τ̂ i
¡
t̃i
¢
;m, k, ε

¢
→ t̃i for each t̃i. Since types t̃i are all

distinct hierarchies (by the disjointness above and no redundancy in T t,m,k), this
implies that, for some ε̄ > 0, there will be no redundant types under pm,k,ε whenever
ε < ε̄. It also implies by Lemma 5 and (4.1) that, for each (t,m, k), there exists
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εt,m,k < ε̄ such that S∞ [h (τ̂ (τ̄ (t,m, k)) ,m, k, ε)] = {sT (t)} whenever ε < εt,m,k.
Fix ε < mint∈T ε

t,m,k and set T̃ sT ,m = h
¡
Tm,m,ε/m;m,m, ε/m

¢
. For each t and

m, set also τ̃ (t, sT ,m) = h (τ̂ (τ̄ (t,m,m)) ,m,m, ε/m). By construction, Tm,m,ε/m

under pm,m,ε/m does not have any redundant types; S∞ [τ̃ (t, sT ,m)] = {sT (t)} for
each (t,m), and τ̃ (t, sT ,m)→ t as m→∞. ¤

Building on a result of Weinstein and Yildiz (2004), Proposition 3 uncovers a
striking structure of rationalizability on the set T̂ of finite types. This structure
remains intact when one imposes the common-prior assumption (i.e. on T̂ ∩TCPA).
One can divide T̂ into finitely many open sets

Ua =
n
t̂ ∈ T̂ |S∞

£
t̂
¤
= {a}

o
(a ∈ A),

and their boundaries ∂Ua ≡ Ua\Ua, where Ua is the closure of Ua, all with respect
to the relative topology on T̂ . The open sets form a partition of an open, dense set
U ∩ T̂ , while their boundaries cover the boundary of U ∩ T̂ , i.e., T̂\U =

S
a∈A ∂U

a,
which is a nowhere-dense set with respect to the relative topology. On each open set
Ua, a is the unique rationalizable action profile. Since S∞ is upper-semicontinuous,
a ∈ S∞

£
t̂
¤
for each t̂ ∈ ∂Ua. Hence, at any t̂ ∈ ∂Ua ∩ ∂Ua0 with distinct a and a0,

both a and a0 are rationalizable. Here, there are multiple rationalizable actions a
and a0 because t̂ can be thought of idealization of two strategically distinct relaxed
assumptions, under which a and a0 are unique solutions respectively, and the set of
rationalizable actions reflects this fact. Proposition 3 shows that the converse is also
true:

t̂ ∈
\

a∈S∞[t̂]

Ua
³
∀t̂ ∈ T̂

´
.

That is, the set S∞
£
t̂
¤
tells us which actions could be uniquely rationalizable when

we slightly relax the assumptions of t̂ using various information structures. When t̂

has multiple rationalizable actions, it cannot be in the interior of any of these sets,
and hence

t̂ ∈
\

a∈S∞[t̂]

∂Ua.

That is, whenever there are multiple rationalizable actions at t̂, t̂ embodies an
idealization of some relaxed assumptions with distinct strategic implications. Each
rationalizable action a represent such a relaxed assumption, which leads to a as the
unique solution. Therefore, there are multiple rationalizable actions at t̂ if and only
if t̂ embodies an idealization of two strategically distinct situations. As a solution
concept, rationalizability leads to a generically unique and locally constant theory
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that yields multiple solutions when, and only when, the theory changes its prescribed
behavior for players.

Proposition 3 also provides a new perspective on refining rationalizability. It
implies that a finite model summarizes various dominance-solvable situations by
abstracting away from the details that would have mattered mostly for computing
the beliefs at very high orders. By specifying these details appropriately, any ratio-
nalizable strategy could have been made uniquely rationalizable. But then, refining
rationalizability tantamount to ruling out some of these nearby models as the true
model. Hence, selection of a refinement is tied to which information structures one
finds more reasonable–more so than which epistemic arguments make more sense on
what beliefs players should form on other players’ strategies. Weinstein and Yildiz
(2004) have proved a similar result by considering only equilibrium refinements and
"strictly rationalizable" actions.

Upper-semicontinuity is a desirable property of solution concepts, as it allows one
to keep track of idealizations one makes. It is customary to check whether a solution
concept is upper-semicontinuous. Proposition 3 immediately yields a very useful fact
about upper-semicontinuity of general solution concepts with respect to the types. It
shows that any solution concept that is stronger than the correlated rationalizability
on the set of finite models necessarily fails upper-semicontinuity. Therefore, almost
none of the known solution concepts is upper-semicontinuous with respect to the
types. In other words, correlated rationalizability is a very strong solution concept,
in that it does not have any proper refinement that is upper-semicontinuous.

Corollary 3. Let R : T̂ ∩ TCPA → 2A be any non-empty, upper-semicontinuous
correspondence with R (t) ⊆ S∞ [t] for each t ∈ T̂ ∩ TCPA. Then, R = S∞.

Proof. Suppose that R 6= S∞. Then, there exists t̂ with a ∈ S∞
£
t̂
¤
such that

a 6∈ R
¡
t̂
¢
. By Proposition 3, there exists a sequence t (m) ∈ T̂ ∩ TCPA such that

t (m) → t̂ and for each m, S∞ [t (m)] = {a}, i.e., a ∈ R (t (m)). Then, by upper-
semicontinuity of R, a ∈ R

¡
t̂
¢
–a contradiction. ¤

5. Proof of Lemma 6

Now, I will prove Lemma 6. A substantial part of the proof utilizes the following
stronger notion of rationalizability, analyzed by Weinstein and Yildiz (2004).
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Strict Interim Rationalizability. Let W 0
i [ti] = Ai and, for each k > 0, let ai ∈

W k
i [ti] if and only if BRi

¡
margΘ∗×A−iπ

¢
= {ai} for some π ∈ ∆

¡
Θ∗ × T ∗−i ×A−i

¢
such that margΘ∗×T∗−iπ = κti and π

¡
a−i ∈ Sk−1

−i [t−i]
¢
= 1. Finally, let

W∞
i [ti] =

∞\
k=0

W k
i [ti]

be the set of all strictly rationalizable actions for ti. Notice that an action is elimi-
nated if it is not a strict best-response to any belief on the remaining strategies of
the other players. Clearly, W k

i ⊆ Sk
i , and W k

i [ti] may be empty.

Lemma 7. Given any belief-closed T , consider any family Vi [ti] ⊆ Ai, ti ∈ Ti, i ∈ N ,
such that each ai ∈ Vi [ti] is a strict best reply to a belief π ∈ ∆ (Θ∗ × T−i ×A−i)

of ti with π (a−i ∈ V−i [t−i]) = 1. Then, Vi [ti] ⊆W∞
i [ti] for each ti.

Proof. It follows from the fact that no ai ∈ Vi [ti] is ever eliminated for ti. ¤

The proof of Lemma 6 has two main steps, which are presented as the following
two lemmas. The first step (namely, Lemma 8) shows that, when we focus on strictly
rationalizable strategies, Lemma 6 is true for each ti ∈ T̂i. The second step (namely,
Lemma 9) will state that for any finite type and any rationalizable action, there is
a nearby finite type for which the action is strictly rationalizable. Combining these
two steps immediately yields Lemma 6.

The following lemma is similar to Proposition 1 of Weinstein and Yildiz (2004).
They show that if ai ∈W k

i [ti], one can change the beliefs at order k+1 and higher
so that ai is played by the new type in equilibrium. The lemma states that one
can select the new type t̃i so that ai is the only member of Sk+1

i

£
t̃i
¤
. To prove this

lemma, I use their construction but make sure that the new type t̃i assigns positive
probability only on types t−i that come from finite models that are solved by k

rounds of iterated dominance (i.e., Sk is singleton-valued on these models). In that
case, I show that t̃i also comes from a finite model that is solved by k+1 rounds of
iterated dominance.

Lemma 8. Under Assumption 1, for each i, k, for each t̂i ∈ T̂i, and for each ai ∈
W k

i [ti], there exists t̃i such that (i) t̃
l
i = t̂li for each l ≤ k, (ii)

Sk+1
i

£
t̃i
¤
= {ai} ,
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and t̃i ∈ T t̃i
i for some finite model T

t̃i = T t̃i
1 × · · · × T t̃i

1 such that
¯̄
Sk+1 [t]

¯̄
= 1 for

each t ∈ T t̃i. For any ai ∈ W∞
i

£
t̂i
¤
and integer m, there exists a finite, dominance-

solvable model Tm with type ti,m ∈ Tm
i , such that S

∞
i [ti,m] = {ai} and ti,m → t̂i as

m→∞.

Proof. For k = 0, let t̃ be the type profile according to which it is common knowledge
that each j assigns probability 1 to {θ = θaj}, where θaj is as defined in Assumption
1. By Assumption 1, S1i

£
t̃i
¤
= {ai}, and it is vacuously true that t̃li = t̂li for each

l ≤ k. Clearly, the type space
©
t̃
ª
is belief-closed.

Now fix any k > 0 and any i. Write each t−i as t−i = (l, h) where l =
¡
t1−i, t

2
−i, . . . , t

k−1
−i
¢

and h =
¡
tk−i, t

k+1
−i , . . .

¢
are the lower and higher-order beliefs, respectively. Let

L =
©
l|∃h : (l, h) ∈ T ∗−i

ª
. The inductive hypothesis is that for each finite t−i = (l, h)

and each a−i ∈W k−1
−i [t−i], there exists finite t̃−i [a−i] =

³
l, h̃ [l, a−i]

´
∈ T

t̃−i[a−i]
−i such

that

(IH) Sk
−i
£
t̃−i [a−i]

¤
= {a−i} ,

and T t̃−i[a−i] = T
t̃−i[a−i]
1 × · · · × T

t̃−i[a−i]
n is a finite model with

¯̄
Sk [t]

¯̄
= 1 for each

t ∈ T t̃−i[a−i]. Take any ai ∈ W k
i

£
t̂i
¤
. I will construct a type t̃i as in the lemma. By

definition, BRi

¡
margΘ∗×A−iπ

¢
= {ai} for some π ∈ ∆

¡
Θ∗ × T ∗−i ×A−i

¢
such that

margΘ∗×T∗−iπ = κti and π
¡
a−i ∈W k−1

−i [t−i]
¢
= 1. Using the inductive hypothesis,

define mapping µ : supp
¡
margΘ∗×L×A−iπ

¢
→ Θ∗ × T ∗−i, by

(5.1) µ : (θ, l, a−i) 7→
³
θ, l, h̃ [l, a−i]

´
,

where type t̃−i [a−i] =
³
l, h̃ [l, a−i]

´
is as in (IH). Define t̃i by

κt̃i ≡
¡
margΘ∗×L×A−iπ

¢
◦ µ−1 = π ◦ proj−1Θ∗×L×A−i ◦ µ

−1,

where projX denotes the projection mapping to X. Notice that projΘ∗×L ◦ µ ◦
projΘ∗×L×A−i = projΘ∗×L. Then, margΘ∗×Lκt̃i = margΘ∗×Lκti, and hence the first
k orders beliefs will be identical under ti and t̃i (see Weinstein and Yildiz (2004)
for a detailed derivation). Moreover, by (IH), each (θ, t−i) ∈ supp

¡
κt̃i
¢
, which

is of the form
³
θ, l, h̃ [l, a−i]

´
, has a unique action a−i ∈ Sk−1

−i
£
t̃−i [a−i]

¤
. Thus,

there exists a unique π̃ ∈ ∆
¡
Θ∗ × T ∗−i ×A−i

¢
such that margΘ∗×T∗−iπ = κt̃i and

π
¡
a−i ∈ Sk−1

−i [t−i]
¢
= 1; it is π̃ = κt̃i ◦ γ−1 = π ◦ proj−1Θ∗×L×A−i ◦ µ

−1 ◦ γ−1 where γ :³
θ, l, h̃ [l, a−i]

´
7→
³
θ, l, h̃ [l, a−i] , a−i

´
. Clearly, projΘ∗×A−i◦γ◦µ◦projΘ∗×L×A−i =projΘ∗×A−i.

Hence, margΘ∗×A−iπ̃ =margΘ∗×A−iπ. But ai is the only best reply to this belief.
Therefore, Sk+1

i

£
t̃i
¤
= {ai}.
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Now, I will define T t̃i as in the lemma. Define

T t̃i
i =

©
t̃i
ª
∪

⎛⎝ S
(θ,t−i[a−i])∈ supp(κt̃i)

T
t−i[a−i]
i

⎞⎠ ,

T t̃i
j =

S
(θ,t−i[a−i])∈ supp(κt̃i)

T
t−i[a−i]
j (j 6= i) .

Since supp
¡
margΘ∗×L×A−iπ

¢
⊆ supp

¡
κt̂i
¢
× A−i is finite, the range of µ is finite,

rendering supp
¡
κt̃i
¢
finite. Hence, T t̃i is finite. For any tj ∈ T t̃i

j \
©
t̃i
ª
, tj ∈ T

t−i[a−i]
j

for some t−i [a−i], and since T t−i[a−i] is belief-closed, supp
¡
κtj
¢
⊆ Θ∗ × T

t−i[a−i]
−j ⊆

Θ∗ × T t̃i
−j. On the other hand, supp

¡
κt̃i
¢
⊆ Θ∗ × T t̃i

−i, as t−i [a−i] ∈ T
t−i[a−i]
−i for each

(θ, t−i [a−i]) ∈ supp
¡
κt̃i
¢
. Hence, T t̃i is belief-closed. Finally, since Sk+1

i

£
t̃i
¤
= {ai},¯̄

Sk+1
i

£
t̃i
¤¯̄
= 1, and by construction, for each tj ∈ T t̃i

j \
©
t̃i
ª
,
¯̄
Sk+1 [tj]

¯̄
=
¯̄
Sk [tj]

¯̄
=

1.

To prove the last statement in the lemma, take any ai ∈ W∞
i

£
t̂i
¤
. For each m,

since ai ∈ W∞
i

£
t̂i
¤
⊆ Wm

i

£
t̂i
¤
, by the first part of the lemma, there exists ti,m such

that tli,m = t̂li for each l ≤ m and Sm+1
i [ti,m] = S∞i [ti,m] = {ai}. Clearly, for any

fixed k, tki,m = t̂ki for each m > k, showing that tki,m → t̂ki as m → ∞. By the first
part, ti,m ∈ T

ti,m
i for some finite model T ti,m with |S∞ [t]| = |Sm+1 [t]| = 1 for each

t ∈ T ti,m. Pick Tm = T ti,m as the dominance-solvable model in the lemma. ¤

The next lemma states that any rationalizable strategy of a finite model is strictly
rationalizable for nearby types in a nearby finite model.

Lemma 9. Under Assumption 1, for any finite model T ⊆ T̂ and any integer m,
there exist a finite model Tm and a one-to-one and onto mapping τ (·,m) that maps
each (t, a) with a ∈ S∞ [t] and t ∈ T to τ (t, a,m) = (τ 1 (t1, a1,m) , . . . , τn (tn, an,m)) ∈
Tm such that (i) a ∈ W∞ [τ (t, a,m)] for each (t, a,m), and (ii) τ (t, a,m) → t as
m→∞ for each (t, a).

Proof. The new type space Tm will consist of types τ i (ti, ai,m), for i ∈ N , ti ∈ Ti,
and ai ∈ S∞i [ti]. Let δx denote the probability distribution that puts probability 1
on {x} and Θ0 be the finite set of all parameter values that some type tj ∈ Tj assigns
positive probability. I will define τ (·,m) by simultaneously defining the beliefs of
each τ i (ti, ai,m) about θ and the others’ types τ−i (t−i, a−i,m).6 Now, since ai ∈
6Notice that I am simply defining a finite type space. Hence, it suffices to define the belief of

each type about θ and the other players’ types. At the end of the proof, I will show that there are
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S∞i [ti], there exists a belief π
ti,ai ∈ ∆ (Θ0 × T−i ×A−i) with finite support and such

that ai ∈ BRi

¡
margΘ0×A−iπ

ti,ai
¢
, πti,ai

¡
a−i ∈ S∞−i [t−i]

¢
= 1, and margΘ∗×T∗−iπ

ti,ai =

κti, where we also view πti,ai as a probability distribution on Θ∗×T ∗−i×A−i. Define
τ i (ti, ai,m) by

κτ i(ti,ai,m) =
1

m
δ(θai ,τ−i(t̃−i,ã−i,m)) +

µ
1− 1

m

¶
πti,ai ◦ τ̂−1−i,m

where τ−i
¡
t̃−i, ã−i,m

¢
is some fixed type profile in the new type space, and τ̂−i,m :

(θ, t−i, a−i) 7→ (θ, τ−i (t−i, a−i,m)). The beliefs of τ i (ti, ai,m) correspond to a mix-
ture: with probability 1−1/m, each (θ, τ−i (t−i, a−i,m)) occurs with the probability
of (θ, t−i, a−i) according to πti,ai, and with probability 1/m there is a point mass at¡
θai , τ−i

¡
t̃−i, ã−i,m

¢¢
. For each new type τ i (ti, ai,m), define the belief

π̃ = κτ i(ti,ai,m) ◦ γ−1 ∈ ∆
¡
Θ∗ × T ∗−i ×A−i

¢
where γ : (θ, τ−i (t−i, a−i,m)) 7→ (θ, τ−i (t−i, a−i,m) , a−i). This belief is generated
by κτ i(ti,ai,m) and the pure strategy profile s−i with s−i (τ−i (t−i, a−i,m)) = a−i at
each (θ, τ−i (t−i, a−i,m)). Clearly, projΘ∗×A−i ◦ γ ◦ τ̂−i,m = projΘ∗×A−i. Hence,

margΘ∗×A−iπ̃ =
1

m
δ(θai ,ã−i) +

µ
1− 1

m

¶
margΘ∗×A−iπ

ti,ai .

That is, the belief of τ i (ti, ai,m) about Θ∗×A−i is also a mixture. With probability
(1− 1/m), τ i (ti, ai,m) faces the same uncertainty as ti does when ti holds the belief
πti,ai, in which case ai is a best reply. With probability 1/m, the equality θ = θai

holds, in which case ai is the unique best reply. Then, by the Sure-thing Principle,
ai is a strict best reply, i.e., BRi

¡
margΘ∗×A−iπ̃

¢
= {ai}. Hence, by Lemma 7,

ai ∈W∞
i [τ i (ti, ai,m)] for each τ i (ti, ai,m).

I will use induction to show that τ i (ti, ai,m) → ti, i.e., each kth order belief
τki (ti, ai,m) converges to t

k
i , as m→∞. Firstly, the first-order belief is

τ 1i (ti, ai,m) = margΘ∗κτ i(ti,ai,m) =
1

m
δθai +

µ
1− 1

m

¶
margΘ∗π

ti,ai ,

which converges to

margΘ∗π
ti,ai = margΘ∗κti = t1i

no redundant types in the constructed type space, so that it can be represented as a subspace of
the universal type space.
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as m→∞. Now, fix some k > 0. Let L be the set of all beliefs tk−1−i at order k− 1,
and assume that τk−1j (tj, aj,m)→ tk−1j for each (tj, aj) ∈ Tj ×Aj. Then,

τki (ti, ai,m) =
1

m
δ(θai ,τk−1i (ti,ai,m),τ

k−1
−i (t̃−i,ã−i,m))

+

µ
1− 1

m

¶
δτk−1i (ti,ai,m)

×margΘ∗×Lπti,ai◦τ̂−1−i,m.

As m→∞, the right-hand side converges to

lim
m→∞

δτk−1i (ti,ai,m)
×margΘ∗×Lπti,ai ◦ τ̂−1−i,m = lim

m→∞
δτk−1i (ti,ai,m)

× πti,ai ◦ τ̂−1−i,m ◦ proj−1Θ∗×L
= δtk−1i

×margΘ∗×Lπti,ai = tki .

[To obtain the penultimate equality, observe that projΘ∗×L (τ̂−i,m (θ, t−i, a−i)) =
projΘ∗×L (θ, τ−i (t−i, a−i,m)) =

¡
θ, τk−1−i (t−i, a−i,m)

¢
, which converges to

¡
θ, tk−1−i

¢
.

That is, projΘ∗×L ◦ τ̂−i,m point-wise converges to projΘ∗×L. Then, π
ti,ai ◦ τ̂−1−i,m ◦

proj−1Θ∗×L converges to π
ti,ai ◦ proj−1Θ∗×L = margΘ∗×Lπti,ai in weak topology.]

Finally, one can choose m large enough so that τ (·,m) is one-to-one, in which
case Tm does not have redundant types, as I will show now. For any two distinct
ai and a0i, by definition, θ

ai 6= θa
0
i, rendering τ i (ti, ai,m) 6= τ i (ti, a

0
i,m) for each ti

and m. On the other hand, for any distinct ti and t0i, since τ i (ti, ai,m) → ti and
τ i (t

0
i, a

0
i,m)→ t0i, there exists some m̄ such that τ i (ti, ai,m) 6= τ i (t

0
i, a

0
i,m) for each

(ai, a
0
i) and each m > m̄. Since there are only finitely many types, one can choose

m̄ uniformly. (Hence, by changing the index m, we can take m̄ = 0 without loss of
generality.) ¤

Proof of Lemma 6. Take any t̂ ∈ T̂ , and any a ∈ S∞
£
t̂
¤
. By Lemma 9, for each m,

there exists t̄ (m) ∈ T̂ such that a ∈ W∞ [t̄ (m)] and t̄ (m)→ t̂ as m→∞. But by
Lemma 8, since a ∈W∞ [t̄ (m)], for each m and k, there exists a finite, dominance-
solvable model Tm,k with a type profile t (m, k), such that S∞ [t (m, k)] = {a} and
t (m, k)→ t̄ (m) as k →∞. Set t̃ (m) = t (m,m) and Tm = Tm,m, which satisfy the
desired properties. ¤

6. Conclusion

In complete-information games, typically, there are many rationalizable strate-
gies. This paper tries to understand why this is the case and how we should address
this multiplicity. Firstly, it shows that for an open and dense set of types there is
a unique rationalizable action, which is continuous with respect to players’ beliefs.
Multiplicity occurs only on the boundary of this set. Then, whenever we have only
partial information about a strategic situation, we could not rule out the possibility
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that we could have found exactly what the unique rationalizable outcome is by hav-
ing a more precise observation. This suggests that multiplicity is a property of these
games, rather than an inherent property of rationalizability. The paper provides a
characterization of rationalizable actions that uncovers a precise, intuitive reason
for multiplicity. In defining a type, we often make idealized assumptions, which are
meant to be approximately true. If our assumption can be thought of a simultaneous
idealization of multiple strategically distinct situations, then rationalizability must
yield the solutions at these non-idealized situations as possible solutions to the ide-
alized case–due to upper-semicontinuity. This paper shows that multiplicity occurs
only in such cases, and each rationalizable action represents such an idealization of
an open set of situations in which the action is the unique solution. Therefore, we
should consider the set of rationalizable actions as the summary of which idealiza-
tions we have made and what our results would have been if we have not made such
idealized assumptions. Then, when we try to refine rationalizability, it is imperative
to think about which information structures are more reasonable descriptions of the
actual situation, rather than invoking seemingly compelling epistemic arguments.
This is because any refinement is a selection among the information structures.

Appendix A. Proof of Lemma 3

Definition 6. For any correspondence F : X → 2Y , Gr (F ) = {(x, y) |y ∈ F [x]} denotes
the graph of F . For each k, define Bk

i : ∆
³
Θ∗ ×Gr

³
Sk−1−i

´´
→ 2Ai by

Bk
i (π) = argmax

a0i
Eπ

£
ui
¡
a0i, a−i, θ

¢¤
= argmax

a0i
BRi

³
margΘ∗×A−iπ

´
.

For k = 0, Sk
i is upper-semicontinuous and non-empty by definition. Towards an

induction, fix a k > 0, and assume that Sk−1
−i is upper-semicontinuous and non-empty.

I will show that Gr
¡
Sk
i

¢
is closed. By the inductive hypothesis, Θ∗ × Gr

³
Sk−1
−i

´
⊆

Θ∗×T ∗−i×A−i is closed and non-empty. Since Θ∗×T ∗−i×A−i is compact, Θ∗×Gr
³
Sk−1
−i

´
is also compact. Thus, ∆

³
Θ∗ ×Gr

³
Sk−1
−i

´´
is compact. Moreover, ui is continuous and

bounded (by compactness ofΘ∗×A), so that Eπ [ui (ai, a−i, θ)] is a continuous function of π
(by definition of weak convergence). Therefore, by Berge’s Maximum Theorem, Gr

¡
Bk
i

¢
⊆

∆
³
Θ∗ ×Gr

³
Sk−1
−i

´´
×Ai is closed. Since ∆

³
Θ∗ ×Gr

³
Sk−1
−i

´´
×Ai is compact, Gr

¡
Bk
i

¢
is also compact. Now, by definition of weak convergence, margΘ∗×T∗−iπ is a continuous
function of π. Since T ∗i is isomorphic to ∆

¡
Θ∗ × T ∗−i

¢
(Mertens and Zamir (1985)), there

also exists a continuous function φ : ∆
¡
Θ∗ × T ∗−i

¢
→ T ∗i , such that φ (κti) = ti for each

ti. Consider the continuous mapping ψ : (π, ai) 7→
³
φ
³
margΘ∗×T∗−iπ

´
, ai

´
. By definition,
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Gr
¡
Sk
i

¢
= ψ

¡
Gr
¡
Bk
i

¢¢
. But, since Gr

¡
Bk
i

¢
is compact and ψ is continuous, ψ

¡
Gr
¡
Bk
i

¢¢
is closed. Moreover, since Θ∗ × Gr

³
Sk−1
−i

´
is closed (and A−i is finite), for each ti, one

can easily construct a π ∈ ∆
³
Θ∗ ×Gr

³
Sk−1
−i

´´
such that margΘ∗×T∗−iπ = κti , so that

Sk
i [ti] is non-empty.

Finally, since Sk
i [ti] is non-empty for each k <∞ andAi is finite, S∞i [ti] =

T
k<∞ Sk

i [ti] 6=
∅. Moreover, since Gr

¡
Sk
i

¢
is closed for each k <∞, Gr (S∞i ) =

T
k<∞Gr

¡
Sk
i

¢
is closed.
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