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Abstract

This note characterizes the impact of adding rare stochastic mutations to an “imitation dynamic,”
meaning a process with the properties that absent strategies remain absent, and non-homogeneous
states are transient. The resulting system will spend almost all of its time at the absorbing states of
the no-mutation process. The work of Freidlin and Wentzell [Random Perturbations of Dynamical
Systems, Springer, New York, 1984] and its extensions provide a general algorithm for calculating
the limit distribution, but this algorithm can be complicated to apply. This note provides a simpler and
more intuitive algorithm. Loosely speaking, in a process with K strategies, it is sufficient to find the
invariant distribution of a K ×K Markov matrix on the K homogeneous states, where the probability
of a transit from “all play i” to “all play j” is the probability of a transition from the state “all agents
but 1 play i, 1 plays j” to the state “all play j”.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Many papers in economics and evolutionary game theory study various sorts of
“imitation dynamics,” according to which agents are more likely to adopt strategies that
are popular and/or successful. 1 We study these dynamics in a discrete-time, discrete-state
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1 See e.g. [3,8,9,25].
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Markov chain. Under the starkest version of these dynamics, it is impossible for agents
to adopt a strategy that is not currently in use, so that any “homogeneous” state where all
agents use the same strategy is absorbing. Moreover, it is typically the case that all of the
interior states are transient, so that the dynamics converges to one of the homogeneous
states. Our first result imposes these two conditions; we later relax them to allow a wider
class of imitation processes.

Although all of the homogeneous states are absorbing, this does not mean that they are all
equally plausible, as they may differ in their robustness to a small probability of mutation
or experimentation. One way to formalize the idea that some of the homogeneous states
are “more persistent” than others is to assume that a small mutation term makes the system
ergodic, and then analyze the limit, as the mutation probability goes to zero, of the invariant
distributions. It is easily seen that the resulting system will spend almost all of its time at the
absorbing states of the underlying no-mutation process; the work of Freidlin and Wentzell
[12] and its extensions provide a general algorithm for calculating the limit distribution. 2

This idea was first applied to equilibrium selection in games by Foster and Young [10,11]
in a stochastic differential equation model; Kandori et al. [15] and Young [27] are early
applications to equilibrium selection in discrete models.

As we explain below, most of our assumptions are fairly standard and are satisfied by
many models in the literature. However, existing techniques for discrete-state models have
focused on determining the support of the limit distribution by using order-of-magnitude
comparisons for the transitions between the various recurrent classes of the no-mutation
process. 3 In contrast, our assumptions imply that nearly every absorbing state can, loosely
speaking, be exited with a single mutation, so that the limit distribution may assign non-zero
probability to multiple states. Nevertheless, we are able to provide a simple and intuitive
algorithm for computing the limit distribution by computing the invariant distribution of an
embedded Markov chain on a smaller state space.

The simplest version of our result applies to the “anonymous” case, where the state is
simply the number of agents playing each strategy. Here, in a game with K strategies, it is
sufficient to find the invariant distribution of a K×K Markov matrix on the K homogeneous
states, where the probability of a transit from “all play i” to “all play j” is the probability of
a mutation from i to j times the probability (under the no-mutation dynamics) of a transition
from the state “all agents but 1 play i, 1 plays j” to the state “all play j.” 4 Although the result
was inspired by the ideas of Freidlin and Wentzell, the proof is virtually self-contained and
uses only the law of large numbers.

Under our conditions, the details of the dynamics at strictly interior points have no addi-
tional impact on the limit distribution. That is, any two processes that meet our conditions
and also behave the same way along “edges” where only two strategies are present must
lead to the same limit distribution. Intuitively, when mutations are of order �, the process

2 Duflo [4, pp. 255–258 ] gives a lucid and easy to use summary of the basic results. Kifer [20] gives a fairly
general discrete-time formulation.

3 This is true for example of Kandori et al. [15] and Young [27], and the results surveyed in Chapter 5 of
Fudenberg and Levine [14] and in Chapter 7 of Samuelson [23].

4 Karandikar et al. [18] use a related construction to characterize the non-degenerate limit distribution of a
model with two satisfying players and a continuum of states.
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will spend 1 − O(�) of the time at the homogeneous states, which are the vertices of the
state space, O(�) time on the edges, and o(�) time at interior points. A second implication
of our results is that the ratio of the mutation probabilities will matter, even when this ratio
is bounded away from zero and infinity; this is related to the fact that a single mutation is
enough to cause a transition from one homogeneous state to another.

The more general version of our result allows for arbitrary finite state spaces, and also
a wider class of imitation processes, where some absent strategies can be re-introduced.
The larger state space allows us to include Ellison’s [6] model of local interaction, where
the state is the vector of actions being played at each location, the wider class of processes
allows us to include best-response-type dynamics as in [24,27] in games with a dominated
strategy.

2. Anonymous populations

This section states our assumptions and conclusion for the case of an anonymous popula-
tion; Section 4 considers a more general state space. Consider a game with K pure strategies
denoted by 1, . . . , K . We fix a number N of agents, and suppose that the states in the state
space S represent the number of agents playing each strategy. Thus, S = {(x1, . . . , xK) :
xi ∈ {0, 1, . . . , N}, x1 + · · · + xK = N}. For ��0, let {X�(t) : t = 0, 1, . . .} be a homo-
geneous Markov chain with state space S and transition probabilities p�(s, s

′), s, s′ ∈ S.
The chain describes the composition of a population, which is assumed to be of constant
size. The parameter � determines the size of mutation rates, as specified below. The chain
{X0(t)} describes the evolution without mutations; it has transition probabilities p0(s, s

′).

Assumption 1. Under p0, if at any time a strategy is not played, it will remain absent.

This implies that for each i the homogeneous state in which all players use strategy i is ab-
sorbing. We will denote these states by si, where s1 = (N, 0, . . . , 0), s2 = (0, N, 0, . . . , 0),

etc.

Assumption 2. Under p0, all states in S \ {s1, . . . , sK} are transient.

Remark. Assumptions 1 and 2 are consistent with any process with the properties that (a)
extinct strategies are never re-introduced, and (b) at any state where at least two strategies
are being used, there is a positive probability of a transition to a state where the number
of agents using the most popular strategy is increased. In particular, in the presence of
Assumption 1, Assumption 2 holds if the share of every non-extinct strategy has a positive
probability of increasing. Equivalently, given Assumption 1, Assumption 2 holds if starting
at any state, there is a positive probability of eventual absorption. These two assumptions
are satisfied in the model of Kandori et al. [15] if we specify that the homogeneous states are
absorbing (which their assumptions allow) and that all agents adjust their actions in each
period (which they call the “best reply dynamic.”) Young [27] and Sandholm [24] study
variants of the best-response dynamic that satisfy Assumptions 1 and 2 in 2×2 coordination
games, but need not do so in general, because extinct strategies are re-introduced if they are
a best response to the state, and because there could be interior cycles.
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We assume that the transition probabilities p�(s, s
′) depend continuously on �, and that

for every � > 0, {X�(t)} is irreducible. Let �� = {��(s)}s∈S denote the unique invariant
distribution of {X�(t)}, � > 0. A standard argument implies that for every state s ∈ S \
{s1, . . . , sK}, lim�→0 ��(s) = 0. 5 We will show how to compute the limit distribution
lim�→0 �� by working with a Markov process on state space {s1, . . . , sK}.

For j �= i let si/j denote the almost pure state in which all players use i except for one,
which uses j.

Assumption 3. For i = 1, . . . , K ,

lim
�→0

p�(si, si/j )

�
= �ij �0, j �= i. (1)

Assumption 4. For i = 1, . . . , K ,

lim
�→0

p�(si, s)

�
= 0 for all s ∈ S \ {si, si/1, . . . , si/i−1, si/i+1, . . . , si/K}.

Combined, these assumptions imply that each transition has a well-defined limiting or-
der, that the probability that a single mutant invades a pure population is O(�), while the
probability that two or more mutants invade simultaneously is o(�). We do allow that for
some pure population states the invasion probabilities of certain mutant types are o(�). That
is, we allow that �ij = 0 for some i, j ; the precise requirements are given below in connec-
tion with the matrix �. Note that Assumptions 3 and 4 apply only to transitions from the
homogeneous states si ; there is no restriction on the rate with which p�(s, s

′) converges to
p0(s, s

′) for s ∈ S \ {s1, . . . , sK}.
In biological applications it may be natural to assume that all of the mutation probabilities

p�(si, si/j ) are of the same order, so that �ij > 0 for all i, j with i �= j . However, in the
context of learning models, where mutations may be interpreted as mistakes, certain types
of mistakes may not occur or more generally may become infinitely less likely than others.
In this case, p�(si, si/j ) = 0 for some i, j and all � > 0, and so �ij = 0.

Under the no-mutation process, absent strategies remain absent. Thus if X0(0) = si/j ,
then {X0(t)} will be absorbed in si or sj . Let �ij denote the probability that the no-mutation
process will be absorbed in sj . That is, �ij is the probability that a population of i-players
invaded by a single j-player evolves without mutations to a population of all j-players.
Define a K × K matrix � = (�ij ) by

�ij = �ij�ij , j �= i, �ii = 1 −
∑
j �=i

�ij�ij .

5 This is an implication of Theorem 4 of Young [27], but it can be shown directly with a much shorter ar-
gument. Assume there exists some state s ∈ S \ {s1, . . . , sK } such that ��(s) �→ 0 as � → 0. Then there is
a sequence (�(k))∞

k=1 ⊂ (0, ∞) with �(k) → 0 and a distribution �∗ = {�∗(s)}s∈S with �∗(s) > 0 such
that ��(k)(s) → �∗(s) for every s ∈ S. Since ��(k)(s) = ∑

r∈S ��(k)(r)p�(k)(r, s) for every k, it follows that
�∗(s) = ∑

r∈S �∗(r)p0(r, s), that is, �∗ is an invariant distribution for the limit process. But then �∗(s) > 0
implies that s̄ is recurrent under the no-mutation process (see [5, Theorem 4.5, p. 306]) which yields a contradiction.
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For i �= j , �ij is the probability that in a population of i-players a single j-mutant occurs
times the probability that this mutant takes over the whole population so that only j-players
remain. Every row sum of � is 1, and, rescaling the parameter � if necessary, we may also
assume that every diagonal entry of � is non-negative. 6 Thus � can be regarded as the
transition matrix of a Markov chain with state space {s1, . . . , sK}. The following condition
on � is the key to our result:

Assumption 5. There is a unique vector � = (�1, . . . , �K) with

�� = �, �1 + · · · + �K = 1, �1 �0, . . . , �K �0. (2)

Condition (2) means that � is an invariant distribution of the chain. In particular, if for
every pair of distinct strategies i, j , there exists a sequence i0, i1, . . . , im with i0 = i and
im = j such that �ik,ik+1 > 0 for k = 0, . . . , m − 1, then � is an irreducible matrix and
there exists a unique � satisfying (2).

An even simpler sufficient condition is the following:

Assumption 5′. For all pairs of different strategies i, j , �ij > 0 and �ij > 0.

Assumption 5 implies that there is at most one state that cannot be exited with a single
mutation. Assumption 5′ is stronger: it says that there is no such state, as a single mutation
can cause a transition from any basin to any other. This assumption is satisfied in any
imitation model where every strategy that is played by at least one agent has a positive
probability of increasing its share. In a more restricted setting, Noldeke and Samuelson
[21] show that if a state is in the support of the limit distribution, then so is any other state
in an absorbing set that can be reached with a single mutation; when � is irreducible, their
condition applies to every homogeneous state. Assumption 5 rules out the cases studied by
Kandori et al. [15] and Young [27], where �ij = 0 for all pairs i, j , and � is a diagonal
matrix.

The goal of this paper is to characterize the limit, as the mutation rate goes to zero, of the
invariant distributions of the perturbed chains. Theorem 1 says that this limit distribution
is the unique invariant distribution of Assumption 5. Thus, the limit distribution can be
computed by solving a system of K linear equalities.

Theorem 1. In the anonymous-population model, under Assumptions 1–5,

lim�→0 ��(si) = �i for i = 1, . . . , K.

Proof. This is a consequence of the more general Theorem 2. �

Note that in general multiplying one of the �ij by a positive constant, leaving the other
�′s unchanged, will change � and hence change the limit distribution. This is in contrast

6 Replacing X� with X̃� = Xc� and p� with p̃� = pc� does not change the limit behavior of the ergodic
distributions. From (1), lim�→0 p̃�(si , si/j )/� = c�ij = �̃ij and so, if c > 0 is sufficiently small, �̃ii =
1 − ∑

j �=i �̃ij �ij �0 for i = 1, . . . , K .
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to, e.g., Kandori et al. [15] where the ratio of the mutation probabilities has no effect on the
limit distribution so long as it is bounded away from 0 and infinity. 7 This dependence on
the ratio of the two sorts of mutations is a consequence of the fact that for fixed N the limit
distribution assigns positive probability to more than one point, which in turn is related
to the fact that a single mutation is enough to cause a transition from one homogeneous
state to another. The “bandwagon properties” analyzed by Kandori and Rob [17] lead to the
conclusion that it is sufficient to analyze direct transitions from one homogeneous state to
another, but their assumptions are rather different, as they impose restrictions on the payoff
matrix of the game, and do not assume that a single mutation can upset a homogeneous
steady state.

3. Examples

Example 1. Consider a game with two strategies, i.e. K = 2, and suppose �12 = �21 =
� > 0 and that �12 and �21 are strictly positive as well. Then

� =
[

1 − ��12 ��12
��21 1 − ��21

]

is irreducible, and strictly positive for small enough �. Hence, it has unique invariant dis-
tribution

� =
( �21

�12 + �21
,

�12

�12 + �21

)

and �� converges weakly to the probability measure on S that puts mass �21
�12+�21

and �12
�12+�21

on s1 and s2, respectively.

Example 2. As a less trivial example, we consider the case of three pure strategies, 1, 2, 3.
We suppose that the no-mutation process is the frequency-dependent Moran process studied
by Fudenberg et al. [13], where the payoff matrix is (aij )

3
i,j=1, and each pure strategy is

a strict Nash equilibrium. 8 Suppose the population size is N and �ij = � ∈ (0, 1
2 ) for

all i �= j . Using standard results on birth–death chains (see e.g. [19, p. 113, Exercise 4]),
Fudenberg et al. [13] show that the absorption probabilities �ji are given by

�ji = 1

1 +
N−1∑
k=1

k∏
l=1

gl(i, j)

fl(i, j)

,

7 Bergin and Lipman [2] show that allowing the ratio of mutation probabilities to converge to 0 or infinity does
change the limit distribution in the model of Kandori et al. [15].

8 Fudenberg et al. [13] compute the limit distribution of this process in general 2 × 2 games, and compute the
limit of the limit distribution as the population becomes infinite in these games and in 3 × 3 coordination games.
Taylor et al. [26] compare the absorption probabilities of the no-mutation version of the process to the benchmark
of neutral selection; Nowak et al. [22] apply that calculation to the two strategies “All D” and “Tit for Tat” in the
finitely repeated prisoner’s dilemma.
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where

fl(i, j) = aii(l − 1) + aij (N − l)

N − 1
, gl(i, j) = aji l + ajj (N − l − 1)

N − 1
,

and the simple functional form comes from the fact that the ratio of the transition probabil-
ities is simply the ratio of the prevailing payoffs f and g.

The matrix � is

� =
⎡
⎣ 1 − �(�12 + �13) ��12 ��13

��21 1 − �(�21 + �23) ��23
��31 ��32 1 − �(�31 + �32)

⎤
⎦ .

This matrix is irreducible, and its unique invariant distribution is � = [�1 + �2 + �3]−1

(�1, �2, �3), where

�1 = �21�31 + �21�32 + �31�23,

�2 = �31�12 + �12�32 + �32�13,

�3 = �21�13 + �12�23 + �13�23.

We conclude that the ergodic distribution �� converges weakly to the distribution on S that
puts mass �i at si , i = 1, 2, 3. Thus when the mutation probabilities are small, X� spends
time at the states s1, s2, s3 roughly in proportions �1 : �2 : �3 and almost no time at other
states.

Consider the pay-off matrix

A =
⎛
⎝ 1.0 1.0 2.0

0.1 2.5 1.0
0.1 1.0 4.0

⎞
⎠

and suppose �ij = 0.1 for all i �= j . Using the above expression for �, we obtain that
for N = 10, � = (0.716, 0.061, 0.223), whereas for N = 50, � = (0.082, 0.0, 0.918).
Suppose now that mutations correspond to mistakes and that players of strategy 2 are less
likely to make mistakes. For instance, suppose that �21 = �23 = 0.001 and that the other
�ij remain unchanged. Then, for N = 10, � = (0.101, 0.867, 0.032), but for N = 50,
� = (0.082, 0.004, 0.914).

4. General imitation processes

We now extend our result to cases where not all homogeneous states are absorbing, and to
larger state spaces that allow e.g. the state to encode the location of each agent. To motivate
this latter extension, consider the following example.

Example 3. Specialize the local interaction model of Ellison [6] to the case where each
agent only interacts with his two closest neighbors. (This paper studies the myopic best
reply dynamics, but this is a form of imitation dynamics in coordination games.) If there
is an odd number of agents, the homogeneous states are the only recurrent classes of the
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no-mutation process. 9 However, this example is not covered by Theorem 1, since the state
space tracks the strategy played at each location, so a single mutation can send the state “all
A” to any one of N different configurations.

To allow for the system to depend on the location or identity of the agents playing each
strategy, we now consider an arbitrary finite state space S, and a family of homogeneous
Markov chains {X�(t) : t = 0, 1, . . .} on S with transition probabilities p�(s, s

′), s, s′ ∈ S.
As before, the chain {X0(t)} describes the evolution without mutations; it has transition
probabilities p0(s, s

′).

Assumption 6. Under p0, there exists at least one absorbing state.

This parallels Assumption 1, but is weaker, even with the state space of Section 2, as it
allows some homogeneous states not to be absorbing. This might be the case if there was
immigration of some strategies even when they are extinct, perhaps because these strategies
are being played by agents in a different but connected population.

Denote by si , i = 1, . . . , K , the states that are absorbing under p0.

Assumption 7. All states in S \ {s1, . . . , sK} are transient under p0.

This parallels Assumption 2; in that section the absorbing states were the homogeneous
states. Assume that the transition probabilities p�(s, s

′) depend continuously on �, and that
for every � > 0, {X�(t)} is irreducible. Let �� = {��(s)}s∈S denote the unique invariant
distribution of {X�(t)}, � > 0. Again, lim�→0 ��(s) = 0 for every s ∈ S \ {s1, . . . , sK}.

Assumption 8. For every i = 1, . . . , K and every s ∈ S \ {si}, �is = lim�→0
p�(si ,s)

�
exists.

Let Si denote the set of states s in S \ {si} such that �is > 0; these are the states that
can be reached from si “with one mutation.” In the model of Section 2, these were a subset
of the states si/j where all agents but 1 play i. Thus Assumptions 3 and 4 together imply
Assumption 8, and also give additional structure on the sets Si . Working on an arbitrary
state space, we do not have much a priori idea of what the absorbing states or the sets Si

might look like; and instead define them from the limit of the transition probabilities, so
Assumption 8 does not imply Assumptions 3 and 4.

Let �sj denote the probability that starting at s the no-mutation process will be absorbed
in sj . (With this notation, the absorption probabilities �ij used in Section 2 are denoted
by �si/j ,j .) Define a K × K matrix � = (�ij ) by �ij = ∑

s∈Si
�is�sj for i �= j and

�ii = 1 − ∑
j �=i �ij . As before, every row sum of � is 1, and, rescaling the parame-

ter � if necessary, we may also assume that every diagonal entry of � is non-negative.
Thus, � can be regarded as the transition matrix of a Markov chain with state space
{s1, . . . , sK}.

9 With an even number of players, there is also a two-cycle.
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Assumption 9. There is a unique vector � = (�1, . . . , �K) with

�� = �, �1 + · · · + �K = 1, �1 �0, . . . , �K �0.

Note that Assumption 9 reduces to Assumption 5 for the model of Section 2.
As with Theorem 1, Theorem 2 says that the limit distribution is the invariant distribution

corresponding to �. The first part of the proof shows that it is sufficient to compute the
invariant distribution of the embedded Markov chain on the homogeneous states, the second
part of the proof calculates what this distribution is. Theorem 4 of Young [27] determines
which states belong to the support of the limit distribution by analyzing the first-order terms
in the invariant distribution of the embedded chain. 10 Our theorem provides a simple means
to directly calculate the limit distribution for processes that meet our conditions.

Theorem 2. In the general imitation model, under Assumptions 6–9,

lim
�→0

��(si) = �i for i = 1, . . . , K.

Proof. For ��0, let {Y �(t)} be the Markov chain obtained from observing {X�(t)} only
when it is in {s1, . . . , sK}. Specifically, Y �(t) = X�(��

t ), t = 0, 1, . . . , where

��
0 = min{u�0 : X�(u) ∈ {s1, . . . , sK}},

��
t+1 = min{u > ��

t : X�(u) ∈ {s1, . . . , sK}}, t �0.

Note that P {��
t < ∞} = 1 for every t �0. For � > 0, {X�(t)} is irreducible, and so {Y �(t)} is

irreducible as well. Let �� = (��(s1), . . . , ��(sK)) denote the ergodic distribution of {Y �(t)}.
According to the strong law of large numbers for Markov chains (see e.g. [5, Theorems 4.6
and 5.1, p. 307 and 312]), for i = 1, . . . , K ,

lim
T →∞

#{t �T : X�(t) = si}
T + 1

= ��(si), lim
T →∞

#{t �T : Y �(t) = si}
T + 1

= ��(si),

where #A denotes the number of elements of the set A. For every T,

#{t �T : X�(t) = si}�#{t �T : Y �(t) = si},
and so

��(si)���(si), i = 1, . . . , K, � > 0.

Since
∑K

i=1 ��(si) → 1 as � → 0, it follows that if ��(s1), . . . , ��(sK) converge as � → 0,
then so do ��(s1), . . . , ��(sK) and the respective limits must coincide. It remains to show
that �� → �.

10 See Kandori and Rob [16] for a simpler version of the argument. The result is the discrete-time, discrete-state
version of Freidlin and Wentzell’s continuous-time, continuum-state analysis; Kifer [20] treats the case of discrete-
time and a continuum of states. Ellison [7] gives a fairly general sufficient condition for the limit distribution to
be concentrated on a single point.
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To determine the limit behavior of the transition probabilities q�(si, sj ) of the embedded
chain {Y �(t)} note first that

q�(si, sj ) = P
{
X�(��

1) = sj |X�(0) = si
}

=
∑
s∈S

p�(si, s)P
{
X�(��

0) = sj |X�(0) = s
}
. (3)

Consider the case i �= j . Then

P
{
X�(��

0) = sj |X�(0) = si
} = P

{
X�(0) = sj |X�(0) = si

} = 0.

Hence, by (3) and Assumption 8,

lim
�→0

q�(si, sj )

�
= lim

�→0

∑
s∈S\{si }

p�(si, s)

�
P

{
X�(��

0) = sj |X�(0) = s
}

= lim
�→0

∑
s∈S\{si }

�isP
{
X�(��

0) = sj |X�(0) = s
}

= lim
�→0

∑
s∈Si

�isP
{
X�(��

0) = sj |X�(0) = s
}
. (4)

For every s∗ ∈ Si ,

lim
�→0

P
{
X�(��

0) = sj |X�(0) = s∗}

= lim
�→0

∞∑
t=0

P
{
X�(t) = sj , �

�
0 = t |X�(0) = s∗} . (5)

Assumption 7, that all states in S \ {s1, . . . , sK} are transient for {X0(t)}, implies that there
exist T < ∞ and 	 > 0 such that P {�0

0 < T |X0(0) = s} > 2	 for all s ∈ S \ {s1, . . . , sK}.
The exit probability P {��

0 < T |X�(0) = s} can be expressed as a finite sum of finite products
of one-step transition probabilities, and since the transition probabilities are continuous
functions of �, so is the exit probability.

Therefore, for some �0 > 0, P {��
0 < T |X�(0) = s} > 	 for all s ∈ S \ {s1, . . . , sK} and

all 0����0. Consequently, P {��
0 �mT |X�(0) = s}�(1−	)m for all s ∈ S \{s1, . . . , sK},

m = 0, 1, . . . , and all 0����0. In particular, if �t/T 	 denotes the largest integer less than
or equal to t/T ,

P
{
X�(t) = sj , �

�
0 = t |X�(0) = s∗} � P

{
��

0 � �t/T 	 T |X�(0) = s∗}
� (1 − 	)�t/T 	 �(1 − 	)−1+t/T

for every t = 0, 1, . . . and 0����0. Thus, by the Weierstrass M-test, the series in (5)
converges uniformly on [0, �0], so that we can interchange limit and infinite sum, see
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e.g. Apostol [1], Theorems 9.6 and 9.7, p. 223. Hence,

lim
�→0

P
{
X�(��

0) = sj |X�(0) = s∗} =
∞∑
t=0

lim
�→0

P
{
X�(t) = sj , �

�
0 = t |X�(0) = s∗}

=
∞∑
t=0

P
{
X0(t) = sj , �

0
0 = t |X0(0) = s∗}

= P
{
X0(�0

0) = sj |X0(0) = s∗}
= �s∗j .

Inserting this into (4) we obtain that

lim
�→0

q�(si, sj )

�
=

∑
s∈Si

�is�sj = �ij , i �= j.

Therefore, since
∑n

j=1 q�(si, sj ) = 1,

lim
�→0

q�(si, si) − 1

�
= lim

�→0

∑
j �=i

−q�(si, sj )

�
= −

∑
j �=i

�ij = �ii − 1.

In matrix notation,

lim
�→0

1

�
[Q� − In] = � − In.

For every � > 0, �� is the unique non-negative solution to

��
1

�
[Q� − In] = 0, ��(s1) + · · · + ��(sK) = 1,

and, by Assumption 9, � is the unique non-negative solution to

�[� − In] = 0, �1 + · · · + �K = 1.

It is now obvious that �� → �. �

Example 3 (revisited). The absorbing states are the homogeneous points s1 (all play A)
and s2 (all play B); the states in S1 and S2 are those with N − 1 A′s and N − 1 B ′s,
respectively. Suppose that strategy A is risk-dominant. In a 2 × 2 game with 2 neighbors,
a single mutation is not enough to leave the basin of the risk-dominant equilibrium, that is
�s1 = 1 for all s ∈ S1, so �12 = ∑

s∈S1
�1s�s2 = 0. Moreover, �s1 = 1 for all s ∈ S2, so

�21 > 0, and

� =
[

1 0
�21 1 − �21

]

has a unique invariant distribution, namely (1,0). Thus, we recover Ellison’s conclusion that
the limit distribution assigns probability 1 to the risk-dominant equilibrium. Moreover, the
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same conclusion obtains provided that �s1 > 0 for some s ∈ S2, while the limit distribution
gives positive probability to both absorbing states if �s1 < 1 for some s ∈ S1 and �s1 > 0
for some s ∈ S2.
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