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The Impact of Prior Decisions on Subsequent Valuations in a Costly Contemplation Model

Abstract

This paper develops and tests a model of how recall of information from past decisions affects sub-

sequent related decisions. A boundedly rational individual has to determine her willingness to pay

for a good that she previously considered purchasing at a given price, or provide valuations for a

set of goods that she previously ranked in order of preference. The individual is ex-ante uncertain

about her utility from consumption of the goods and can exert costly cognitive effort to reduce this

uncertainty. We show that incorporating information from a prior decision has three primary effects.

(a) Valuations are expected to exhibit higher variance; in particular, the spread of valuations between

the most and least preferred alternatives increases. (b) Decision makers will, in expectation, exert

more effort during the valuation phase. And (c) the relative impact of prior decisions on valuation

spread increases the more each attribute contributes to overall utility. The model predictions are then

tested in a series of controlled lab experiments.

(Sequential Decisions; Preference Uncertainty; Effort-Accuracy Tradeoff; Willingness to Pay; Recall;

Bounded Rationality)



1 Introduction

Past decisions often serve as input to subsequent related decisions. Specifically, the conclusion reached

in a previous decision can potentially shed light on how to approach the decision at hand. For

example, an individual who several weeks ago evaluated a certain bouquet of flowers and was in favor

of purchasing it at a given price now has to decide whether to buy a similar bouquet of flowers at

a higher price. A football fan who couldn’t secure a ticket for a sold-out game at regular price now

has to decide how much to bid on e-Bay for an auctioned ticket. A young professional who recently

accepted a job offer in a large city, rejecting a similar but higher paying job located in a small suburban

town, is currently deciding how much to bid on a house located in the suburbs. In all these cases, the

question arises as to how knowledge of the prior decision (willingness to purchase the bouquet at a

certain price; desire to buy the ticket at regular price; rejection of the job located in a suburban town)

affects willingness to pay for the option currently being considered (the value to assign to the new

bouquet of flowers; the amount to bid on tickets online; the amount to bid on the suburban house).

When individuals are certain of their preferences, or can establish them effortlessly, previous evalu-

ations should not influence subsequent decisions. In reality, however, individuals may face considerable

uncertainty regarding the value of a good to them, or how they should trade off different product at-

tributes. For example, in negotiating payment on a particular floral arrangement for an upcoming

dinner party, the host may wonder about the importance of bright vs. dark colors, the length of the

stems, or the type of flowers in the arrangement (tulips, orchids, etc.). The relative importance of

each floral arrangement attribute can depend on a number of aspects relevant for the consumption

occasion–such as who will be coming to the party, what activities are planned for the party, or where

the flowers will be displayed.

Given that the individual is not sure about her preferences, she may try to reduce the uncertainty

in several ways. First she can exert effort, in the form of cognitive thinking or time-consuming research,

to ascertain the influence of the different aspects. For instance, the host could reflect on the guest list

to determine how the floral arrangement under consideration might impress each of them, and she

could contemplate on how the arrangement would appear in different locations in the house. Second,

the decision-maker might invoke information from past related decisions. For example, the host may

recall her conclusion regarding a similar bouquet she saw a few weeks ago in a floral shop. In the

context of such sequences of decisions, we ask: how are the incentives to expend effort to determine
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willingness to pay affected by recalled information from a prior decision? How does incorporating

information from a previous decision affect the final valuations used to make future decisions?

The goal of this paper is to answer these questions theoretically and experimentally. We construct

a model of individual decision-making that has three central features: (a) Individuals are uncertain

about their preferences, in the sense of how much utility will be derived from consuming a good or

how much each attribute will contribute to overall utility. (b) Costly cognitive effort can be expended

to reduce the uncertainty. And (c) input from a previous decision can be incorporated. In other

words, we investigate how boundedly rational individuals use their own prior decisions as a source

of information about their utility structure when making subsequent decisions. We analyze the case

of an individual who needs to determine her willingness to pay for a single good that she previously

considered purchasing at a given price. We also examine the robustness of the primary forces at work

when two alternatives are evaluated and a prior choice between them is taken into account.

We identify the broad conditions under which three central results hold. First, we show that

incorporating recall of a prior decision outcome leads to more extreme valuations, that is, valuations

that deviate considerably from the individual’s ex-ante mean. When multiple alternatives are under

consideration, taking into account a prior decision will result in a greater spread of valuations between

the goods. Second, we find that this increased spread is more pronounced when the decision stakes

are higher (that is, when the goods are of higher ex-ante expected value). Lastly, we find that the

expected amount of effort expended in valuing alternatives is greater when prior decisions are taken

into account. This last result is especially intriguing, given that effort has already been expended on

making the previous decisions.

The main intuition giving rise to these results is that prior decisions not only convey information

about the value of the good in and of themselves, but also affect the incentives to expend effort to

gain more information in subsequent related decisions. We show that the objective function that

relates costly cognitive effort expended to the amount of variance explained, the “effort-accuracy”

relationship, is altered by past decision outcomes. Specifically, the differing outcomes of prior decisions

have an asymmetric impact on how an individual trades off current effort with the desire to arrive

at a more accurate valuation. Depending on whether a good was chosen or rejected in a previous

decision, the individual considers the good to be of greater or lesser value respectively, relative to the

ex-ante mean. In the former case (greater value), the individual perceives a very high marginal return

from effort that overshadows the lower marginal return from effort in the latter case (lesser value).
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Consequently, incorporating prior decisions is likely to yield final valuations that are more informed,

capture more of the variance associated with uncertain preference parameters, and that hence differ

considerably from their (uninformative) ex-ante mean.

We conducted a series of experiments using actual prizes in a familiar product category, dining at

local restaurants. The empirical results largely confirmed the main implications of the theory: a prior

decision increased the spread of valuations between subjects’ most and least preferred alternatives,

and, on average, subjects who made relevant prior decisions took significantly longer time than those

who had not to determine valuations. Furthermore, the impact of a prior decision on valuation spread

became more pronounced as the average value of prizes increased.

The rest of the paper is organized as follows: Section 2 relates our work to relevant literature.

Section 3 develops a theoretical framework for modeling the impact of prior decisions on subsequent

valuations. Section 4 formulates the key findings of the model as hypotheses, which are tested in a

series of controlled lab experiments. Section 5 concludes. All proofs are given in the Appendix.

2 Literature Review

In a series of papers, Fischer et al. (2000a, 2000b) posit that decision makers can be uncertain about

their preferences. Their use of random attribute weights is similar to our approach in Section 3.6.

The major difference between our work and theirs is that we allow individuals to reduce preference

uncertainty by exerting cognitive effort and by recalling relevant prior decisions. By contrast, in

Fischer et al. uncertainty is exogenously fixed. Our work is thus more in line with behavioral decision

theory, which demonstrates that individuals face “effort-accuracy” trade-offs in making decisions

(Payne et al. 1993). Moreover, we find it highly plausible that if an individual makes prior decisions

regarding an alternative, those will be taken into account in subsequent decisions.1

Hsee (1996) and Hsee et al. (1999) study a specific form of preference uncertainty, whereby an

attribute whose importance is ex-ante uncertain will receive less weight when an alternative containing

the attribute is evaluated separately than when it is evaluated jointly with another alternative. This

can lead to preference reversals across the two evaluation modes, but has only been demonstrated

between subjects. By contrast, our focus is on the implications for final valuations of the same

1Khan and Meyer (1991) have examined the issue of uncertain preference weights focusing on the framing of attribute
levels as above or below an acceptable threshold. Eliashberg and Hauser (1985) incorporate a random utility component
that is assumed to arise from the researcher’s measurement error and not from decision makers’ uncertainty about their
own preferences. These two papers as well ignore effort to reduce uncertainty and recall of past decisions.
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individual intertemporally combining information from a sequence of decisions. Hence, our analysis

is more appropriate for dynamic contexts where decisions are not a one shot task.

Although we model an individual who incorporates information from her own prior decision,

our analysis would be similar if the previous decision were made by some other individual, as long

as their preferences and incentives are identical. This links our model to the literature on social

learning (e.g., Banerjee 1992, Bikhchandani et. al 1992, Gale 1996), where each agent receives a

private and independent signal for the value of undertaking some behavior and agents’ decisions are

sequential and observable. Our analysis differs from this literature as follows. First, individuals in

that literature always face the same kind of decision while we consider two different types of related

decisions (a purchase decision at a given price and a willingness to pay assessment). Second, and

more importantly, in the social learning literature signal precision is exogenous (with all individuals

receiving equally accurate signals), while we focus on the case where the individual endogenously

determines the precision of each signal. Hence, our approach allows examining the impact of prior

decisions on the incentives to invest in the accuracy of future signals.2

In our model, individuals may recall only partial details of a past decision. Hirshleifer and Welch

(2002) show that amnesic decision makers, who recall only previous actions but not previous signals,

may follow their current signal more often than full recall individuals, who remember all previous

actions and signals.3 This happens when there is considerable environmental uncertainty that can

change an alternative’s true value. We do not incorporate such environmental uncertainty. However,

relative to our model, they treat signal accuracy as exogenously fixed, which may be a strong assump-

tion given their managerial focus. In Dow (1991), individuals sequentially search two sellers of a good

for the lowest price. Consumers partition prices into categories and remember only the category a

previously encountered price belongs to. Chen et al. (2005) go a step further by analyzing a market

in which competing firms incorporate such memory limitations in their price-setting strategies. In our

analysis, consumers are uncertain about their own valuations but not about prices encountered. Our

2 We believe that individuals who face the kind of consumption decisions modeled in this paper will likely exert effort
to reduce uncertainty. Furthermore, for the goods we consider there is typically considerable heterogeneity in consumer
tastes, making the observation of others’ behavior less relevant for own preferences. At some level, one can consider
combining our approach with that of social learning to analyze certain market phenomena, such as the patterns of bids
in successive auctions. In such cases, an individual may see the prices at which previous auctions closed (but not the
individual bids) and believe that her preferences are correlated with those of previous bidders.

3Recalling finer details makes the effects we find even more pronounced (Section 3.5). We also note work by Mehta et
al. (2004) who study how consumers form successive (costless) evaluations when past evaluations are recalled imperfectly.
Our model is better suited to handle cases where the effort exerted to resolve uncertainty plays a key role in the decision.
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analysis is hence more relevant when past prices are known (e.g., when price is part of the product

description itself, or the individual took note of the prices). Moreover, there is evidence in psychology

(Engelkamp 1998, Lingle and Ostrom 1979) that individuals can reliably recall their past actions and

the decisions they faced but not the underlying reasoning that led to their actions. This suggests

that it is likely that the decision to “buy or forgo a good at a given price” is recalled but that the

informational content of aspects considered and that led to the action are less reliably recalled.

Cognitive effort in our model entails a cost, which can be relevant for a broad set of preference

formation problems (Ergin, 2003).4 Shugan (1980) offers a methodology for quantifying the thinking

cost of comparing different alternatives. In his model the individual knows her utility function and

uncertainty arises from having to examine ex-ante unknown attribute levels. Our model is more

appropriate when product attribute levels are known (e.g., the specs of a computer) but the individual

is uncertain how much each attribute or feature will contribute to her utility.

3 Model and Theoretical Results

This section presents our main theory and results. We first analyze the case of a decision maker who

considers a single good of uncertain value to her (Sections 3.1-3.4). We start by describing the model’s

characteristics. In particular, we explain the relationship between the amount of effort expended and

the information gained about the value of the good. We also describe the process through which new

information from subsequent effort is integrated. Next, we establish the optimal effort the individual

would choose to incur: a) when asked to decide between purchasing and rejecting the good at a given

price, and b) when asked to provide her monetary value for the good. Lastly, we analyze how recall of

a past decision regarding the purchase of the good would impact a subsequent valuation of the good,

in terms of the effort expended and the properties of the final valuation. In Section 3.6, we extend

our framework to examine the case of multiple goods that possess multiple attributes.

3.1 Model Setup: Single Good Case

Consider a consumer who is contemplating whether to purchase a good of ex-ante unknown value v to

her, which is offered at a given price p. The consumer can make a more informed decision by engaging

4 Zwick et al. (2003) show experimentally that including costs impacts the amount of search individuals perform
relative to the amount predicted by theory. The importance of incorporating thinking costs in decision making can also
be gleaned from experiments on strategic behavior in coordination games (e.g., Ho and Weigelt 1996).
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in introspection about her utility. Introspection reveals information on various consumption aspects

that affect her utility from the good, and can be regarded as a mental cost accompanied by disutility.5

The consumer is thus rational in that she wishes to make an optimal decision that maximizes expected

utility, but she is constrained (or bounded) by the costliness of effort needed to acquire information

relevant for resolving uncertainty about her utility.6

Given the consumer’s uncertainty about the value of the good, we treat v as a random variable

and assume without loss of generality that its expected value is E [v] = 1. The consumer may expend

effort c (measured in terms of utility) to reduce the uncertainty associated with v. If, based on the

information gained from the effort, she chooses to purchase the good at price p, her utility will be

v − p− c.

If she rejects the good after incurring effort c, her utility will be (−c).

One can envision a situation where the value v of the object is a function of many uncertain aspects

that are stochastically independent, and that the more effort the individual exerts the more aspects

she learns about. Specifically, let

v = y0y1 · · · yn · · · , (1)

where yn are independent random variables with mean 1 that reflect the uncertain aspects. By

expending effort c, the individual learns the values of some of these random variables. We write N (c)

for the set of aspects she learns, so that the individual’s information about v is v̂ =
Q

n∈N(c)
yn. Her

remaining uncertainty about v is ε =
Q

n6∈N(c)
yn, where v̂ and ε are independent. Clearly, we have

v = v̂ε. (2)

We will write F (·; c) for the cumulative distribution function (CDF) of v̂ and V (c) for the variance

of v̂. In our analysis, we assume for simplicity that information is divisible so that c can take on a

5The consumer can also expend costly resources to obtain information from external sources, such as by speaking to
friends, getting an expert opinion, or surveying relevant literature.

6Contemplation or deliberation costs are considered to be a central aspect of bounded rationality in the literature
(Rubinstein 1998, Conlisk 1996), as are issues related to uncertain preferences (March 1978). We believe that treating
decision-makers as having perfect knowledge of their preferences for all goods at all times without having to expend
any effort to figure them out is an unrealistic idealization. In this paper we propose an “as if” representation of how
individuals approach costly evaluations to determine their preferences. In this representation, individuals understand the
effort-accuracy tradeoff involved and select an optimal amount to think. Thus, we envision a world in which individuals
have prior experience regarding the procedural aspects of thinking, but the details for given situations are left to be
resolved when they arise. Otherwise, individuals must also think about the amount of thinking to do, the amount of
thinking to solve this problem and so on, leading to an infinite regress (Lipman, 1991).
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continuum of values, denoted by [0, c̄] , where c̄ is the cost of learning all the aspects. In the Appendix

we provide details on how this is consistent with the structure in (1).

Note that the means of v̂ and ε are 1, and the conditional expectation of v given v̂ is E [v|v̂] = v̂.

V ar(v̂) measures how much of the original variance is explained by v̂. The more aspects the individual

learns (i.e., the larger the set N), the greater the variance of v̂ and the lower the variance of ε. If she

does not expend any effort (c = 0) then no information is obtained, in which case v̂ captures none of

the variance and E [v|v̂] = 1 is essentially the initial expectation. If, on the other hand, she expends

maximal effort (c = c̄) and learns all the aspects, then v̂ captures all the variance in v.

V is the function that maps a given thinking effort into the amount of variance explained by the

information gained from that effort. We make the following straightforward assumptions on V .

Assumption 1 V is a strictly increasing, strictly concave, and three-times continuously differentiable

function of c.

The condition that V is increasing (V 0 > 0) implies that as the consumer exerts more cognitive

effort (or thinks longer), she generates a more precise idea about v. Indeed, in our model the individual

will try to maximize the variance of v̂ subject to the cost of doing so. Therefore, for any given cost

level c if the individual chooses the set N (c) optimally then V (c) = V ar(v̂) will be increasing in c.

The concavity of V (V 00 < 0) ensures that the first-order condition is sufficient for optimization. This

will be consistent with our restricted attention to interior solutions, in which there is some remaining

uncertainty when the individual makes her decision. Since V 00 < 0, the first derivative V 0 has an

inverse, which is denoted by h(·).

We make the following assumption regarding the CDF of v̂ resulting from effort c.

Assumption 2 The function F (·; c) is continuously differentiable, and there exists some v̄ > 0 such

that F (v̄; c) = 1 for each c ∈ [0, c̄].

The assumption that the value of the good to the consumer is bounded from above (by some v̄)

simplifies our analysis and will be consistent with our experimental setting.

3.1.1 Subsequent Effort, New Information, and the Updated Valuation of the Good

As our focus is on how prior decisions about goods influence subsequent valuations of these goods,

we need to specify how the individual combines different pieces of information arising from separate
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decisions. Through initial effort c0, the individual learns the values of some set N0 of aspects. What

she knows is summarized by v̂0 =
Q

n∈N0
yn. If she then expends c1 units of effort to learn some of the

aspects that are not already incorporated into v̂0, she will get new information v̂1 =
Q

n∈N1
yn, where

N0 ∩N1 = ∅. Writing ε1 =
Q

n6∈N0∪N1
yn for the remaining uncertainty, we have

v = v̂0v̂1ε1. (3)

Here, v̂0 and v̂1 and the remaining error ε1 are stochastically independent, but they are all dependent to

v. Note that E[v̂0] = E[v̂1] = E[ε1] = 1. Note also that V ar(v̂0) = V (c0) and V ar(v̂1) = V (c1). The

relationship in (3) implies that the conditional expectation of v given v̂0 and v̂1 is E[v|v̂0, v̂1] = v̂0v̂1,

which is clearly stochastically dependent to v̂0, but the extra information from new effort will be

stochastically independent from the original information.7

Example 1 For a concrete illustration of information acquisition and updating in our model, con-

sider an individual who is invited to a dinner party along with n + 1 other guests. The value of

attending the party clearly depends on how much she will enjoy the company of all other guests.

Assume also that there are synergies between the guests. In particular, the value of going to the party

is v = y0y1 · · · yn, where yi summarizes how the idiosyncrasies of guest i will affect her enjoyment (for

example, guest i may inspire interesting conversation, tell jokes, introduce her to new people). The

parameters y0, . . . , yn are independently distributed with mean 1. By thinking about guest i, she

gets an idea about i’s impact on the party. Imagine that by expending effort c0 she learns about the

first k0 guests. In that case, v̂0 = y0 · · · yk0 and ε0 = yk0+1 · · · yn. Suppose that upon thinking more

she now learns about guests k0 + 1,. . . , k1 by expending effort c1. She thus obtains new information

v̂1 = yk0+1 · · · yk1 . In total, she now knows the value of v̂0v̂1 = y0 · · · yk1 and has remaining uncertainty

captured by ε1 = yk1+1 · · · yn.8

Note that in this example when the individual learns about k aspects through effort c, the variance

of her information is E
£
y2i
¤k − 1. If acquiring this information costs c = Ck − 1 for some C > E

£
y2i
¤
,

then the variance can be written as V (c) = (1 + c)α − 1, where α = log
¡
E
£
y2i
¤¢
/ logC < 1. Clearly,

V is an increasing and concave function of c and satisfies all of our assumptions.9

7This specification is consistent with literature on information acquisition (e.g., McCardle 1985), where independent
signals are purchased and combined to form an estimate, and literature on forecasting (e.g., Gul and Lundholm 1995),
where the value of a project depends on combining independent signals.

8 Note that information cannot be acquired indefinitely as the total amount is fixed. We make parametric assumptions
under which not all the information is exhausted to ensure interior solutions for effort level (see Footnote 11).

9 If the cost were linearly proportional to k, i.e., c = Ck, then V (c) = (βc − 1), where β = E
£
y2i
¤1/C , and V would
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Remark 1 We wish to point out that our theory holds broadly in any model in which effort c0 ∈ [0, c̄]

yields information v̂0 that satisfies (2) and in which additional effort yields new information v̂1 that

satisfies (3); along with the other assumptions on V and F . The structure in (1) and Example 1 reflect

a detailed information acquisition process that can conform to the characteristics of the broader model.

In what follows, we explore the implications of our model set-up. Though we have made several

stylized assumptions, we believe our model captures the key elements of the phenomenon under

study and is well suited for the type of Bayesian analysis conducted here. In a separate Technical

Appendix (available on the journal website) we provide details of the following extensions: a) using an

additive rather than multiplicative updating process for (3), b) allowing correlation between new and

prior information, c) an alternative specification where the information gained each time is a holistic

measurement of the good’s value (as in econometric modeling).

3.2 Purchase of a Good at a Given Price

A consumer faces a decision between purchasing and rejecting a good at a given price p0. The consumer

needs to determine the amount of cognitive effort c0 to incur in making her decision. Consistent with

previous notation, upon thinking c0 units the consumer obtains information contained in v̂0. She buys

the good if and only if she finds that v̂0 ≥ p0; this happens with probability Pr(v̂0 ≥ p0). When she

finds that v̂0 < p0, the consumer forgoes purchasing the good but has still incurred the cognitive effort

c0. Therefore, her expected utility U0 from thinking c0 units is

U0(c0; p0) = E[v − p0|v̂0 ≥ p0] Pr(v̂0 ≥ p0)− c0. (4)

The consumer optimizes (4) with respect to c0. Note that the expectation operator E depends on c0

through F (·; c0). Proposition 1 establishes several characteristics of the optimal effort level.

Proposition 1 Let ĉ0 ≡ argmaxc0∈[0,c̄] U0 (c0; p0) . Then,

(1) ĉ0 is a single-peaked function of p0 and is maximized at p0 = 1 if
∂F (v;c)

∂c ≥ 0 at each v < 1, and

∂F (v;c)
∂c ≤ 0 at each v > 1;

(2) ĉ0 increases whenever both v and p0 are multiplied by a known constant λ > 1.

be a convex function of c. For V to be concave then, E
£
y2i
¤
should be sufficiently decreasing in i. In that case, if

the individual is forgetful, then she may have an incentive to contemplate on aspects she previously thought about;
introducing correlation between information from successive decisions.

9
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Proposition 1 tells us that the optimal effort (ĉ0) increases as the price p0 is closer to the expected

value E [v] = 1. This makes intuitive sense: the individual thinks more when she is ex-ante indifferent

between having the good and keeping her money; that is, when the decision is a “close call”. She

thinks less when p0 moves away from 1 in either direction, because the ex-ante dominance of the

good or the money makes the decision “easier.” The condition stated in part (1) of the proposition

ensures that as the individual exerts more effort she obtains more information (in the sense of second-

order stochastic dominance). In addition, when the incentives or stakes are higher–that is, when the

surplus (v − p0) is multiplied by some constant λ–the individual is induced to think more.

3.3 Valuation of a Good

In a valuation task, the consumer decides on the highest amount she would be willing to pay for a good.

To set the benchmark for comparison, this section analyzes such a task assuming no prior information

is available to her. The individual must first determine the amount of cognitive effort, c1, to expend.

Contemplation effort generates information v̂1, which, in the absence of additional information, is her

valuation of the good (because E [v|v̂1] = v̂1). Thinking is costly, hence the amount of effort to expend

on forming and then submitting a truthful valuation depends on how the payoff is determined. We

assume the following mechanism: after the individual submits her willingness to pay for the good, she

will face a randomly drawn price of p1 and will buy the object if the price is lower than or equal to

her submitted value. The price p1 is drawn from a uniform distribution on the interval [0,m/2] with

m/2 > v̄. This mechanism ensures that the valuation the individual provides has a real consequence,

in terms of whether the individual gets the good or keeps her money. In our experiments, we create

an identical payoff scheme using the well-known BDM mechanism proposed by Becker et al. (1964).

We will write U1 (c1) for her expected utility when she expends c1 units of effort and faces the

mechanism described above.

Proposition 2 Given any c1 ∈ [0, c̄], we have

U1 (c1) = V (c1) /m+ 1/m− c1. (5)

This proposition tells us how the individual trades off the cost of thinking with the benefit of

getting more information regarding v in a valuation task. One can interpret V (c1)/m as the benefit

of incurring c1 units of effort. The first-order condition for optimal effort that maximizes (5) is

U 01 (ĉ1) = V 0 (ĉ1) /m− 1 = 0. (6)

10

myildiz
Inserted Text
, (comma)



Since V is strictly concave, the solution to (6) is unique. Since V is also an increasing function,

the optimal cognitive effort in valuation, ĉ1, is increasing with 1/m.10 Defining the inverse function

h = (V 0)−1 , from (6) we obtain

ĉ1 ≡ arg max
c1∈[0,c̄]

U1 (c1) = h (m) . (7)

In our setup, the individual expends cognitive effort to learn about aspects that determine the value

of a good to her. She provides her best estimate for the value before learning the price, and she buys

the good if the realized price is less than this value. Clearly, this captures many important situations,

such as bidding in an auction, posting an ask price in a financial market, determining one’s upper price

limit prior to entering a bargaining negotiation (say on a used car), or instructing an agent at what

maximal price to buy a good in a spot market. In all these cases, an individual typically only has a

probability distribution for the final price (others’ bids, or others’ selling value) and this price is realized

only after her willingness to pay is determined. The specific level of cognitive effort the individual

expends will quantitatively depend on the distribution of the price. In our paper, we consider a

simple uniform distribution that leads to (5). In general, if price is distributed with density f , then

the relevant function for the benefit of thinking c units would be V f (c) = E
hR

p≤vε (v − p) f (p) dp
i
.

As long as we can specify a task in which there is a utility consequence for how close willingness to

pay estimates are to the true value, that is, accuracy matters, then our results will carry through.

3.4 Forming Valuations with Recall of a Prior Decision

How does the consumer determine her willingness to pay for a good that she has previously contem-

plated purchasing at price p0? The individual knows that when she previously considered purchasing

the good, she obtained information v̂0. We assume that she at least recalls whether v̂0 is greater or

lower than p0, because she remembers whether or not she decided that the good was worth purchas-

ing at that price. In our context, remembering whether v̂0 < p0 or v̂0 ≥ p0 represents a minimal

partition of the valuation space for v̂0 relative to the price p0. (In Section 3.5 we will show that our

main findings are even more pronounced when the individual recalls finer information). We write I

to signify the information the individual recalls about a previous decision. The individual selects an

optimal amount of effort to expend on valuation, taking into account the information I. As described
10For an intuition, suppose the individual knows that v ∈ [0, 1]. Whatever information she obtains about v will only

matter if p ∈ [0, 1]. From the uniform distribution, the price will fall in this range with probability 2/m (m > 2). Hence,
the benefit of more information is multiplied by a factor proportional to 1/m and the individual has a lower incentive
to resolve uncertainty when m is higher (because of the lower likelihood that price will fall in the relevant range).
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in Section 3.1.1, subsequent contemplation yields new information, which is now denoted by v̂I1 , that

satisfies v = v̂0v̂
I
1ε

I
1,where v̂0, v̂

I
1, and ε

I
1 are stochastically independent conditional on I. The amount

of effort expended on forming valuations when prior information is available is denoted by cI1. Note

that v̂I1 has CDF F
¡
·; cI1

¢
and variance V ar

¡
v̂I1
¢
= V

¡
cI1
¢
and that εI1 is the remaining information

she does not know. The individual’s final valuation of v, which incorporates details from the prior

decision and the new information from contemplation in the valuation phase, is

v̂01 = E[v|I, v̂I1 ] = v̂I1E[v̂0|I]. (8)

As in the proof of Proposition 2, we compute the expected utility from thinking cI1 units to be

U I
1 (c

I
1|I) = (E[v̂0|I])2

£
V
¡
cI1
¢
+ 1
¤
/m− cI1. (9)

Notice that (E[v̂0|I])2V
¡
cI1
¢
is the variance of v̂01 conditional on I. Furthermore, optimal contem-

plation in the valuation phase satisfies11

ĉI1[I] ≡ arg max
cI1∈[0,c̄]

U I
1 (c

I
1|I) = h(m/(E[v̂0|I])2). (10)

Since (E[v̂0|v̂0 ≥ p0])
2 ≥ 1 and (E[v̂0|v̂0 ≤ p0])

2 ≤ 1, we have the following relationships:

ĉI1[v̂0 ≥ p0] = h(m/(E[v̂0|v̂0 ≥ p0])
2) ≥ h(m) = ĉ1, (11a)

ĉI1[v̂0 ≤ p0] = h(m/(E[v̂0|v̂0 ≤ p0])
2) ≤ h(m) = ĉ1. (11b)

From (11a), if the individual recalls that she decided to purchase the good (v̂0 ≥ p0), she infers

that she must have found the good to be relatively valuable. Hence, the consequences of erring in the

true value of v are high, and she has a greater incentive to expend effort to make a more informed

decision. Conversely, from (11b), when the individual recalls that she rejected the good at price p0,

she infers that she must have found the good to be less valuable than her ex-ante expectation. Thus,

the consequences of erring are low, and she devotes less effort to resolving the remaining uncertainty.12

This analysis reveals an important point. The individual faces a different objective function (9)

in choosing an optimal effort level in each of the following cases: (a) no prior decision, (b) recall of

11To guarantee an interior solution for thinking effort cI1, we assume that V 0 (0)> m/(E[v|I, v̂0< p0])
2 and

V 0 (c̃)< m/(E[v|I, v̂0≥ p0])
2, where V (c̃) = V ar (ε0).

12 The following example illustrates these points. Let the expected value of v, conditional on the prior decision
implying that v̂0 ≥ p0, be 100. If the final estimator is then determined with a remaining 10 percent error, this could
lead to a potential mistake of up to $10. If, however, the expected value of v conditional on the prior decision implying
that v̂0 < p0 is 20, a 10 percent error would lead to a potential mistake of only $2.

12



a prior decision to purchase the good at a given price, and (c) recall of a prior decision to reject the

good. In other words, the effort-accuracy trade-off that the individual faces itself varies depending

on the nature of the information available from a prior decision. This is vividly apparent in Figure 1:

when recall of a prior decision implies that the good would be purchased (v̂0 ≥ p0), the incentives to

invest effort in the subsequent valuation phase are high because the variance captured by integrating

new information as a function of effort expended has a higher slope than with no prior decision (∀c).

The reverse is true if the individual recalls a prior decision to reject the good (v̂0 < p0).

The multiplicative noise structure (3) does play a role here. In general, the results in (11a)-(11b)

will be true whenever v is a supermodular function of v̂ and ε, such as the multiplicative specification.

When this does not hold, for example under the additive specification v = v̂0+ v̂1+ ε, the effort level

for v̂1 will be independent of prior decisions (we formalize this in the Technical Appendix).

Remark 2 (Consistency and Preference Reversals) When the individual recalls a previous pur-

chase decision, her final valuation will reflect a “preference for consistency” in the following sense.

From (8), knowing that she previously decided to purchase the good, the individual scales up new in-

formation obtained (v̂I1) by E[v̂0|v̂0 ≥ p0] ≥ 1 in formulating her final valuation for v. Similarly, when

she recalls that she decided to reject the good, she scales down new information by E[v̂0|v̂0 < p0] ≤ 1.

Even so, preference reversals are possible when contemplation in the valuation phase (cI1) yields new

information v̂I1 that sharply contradicts the results of the previous decision. For example, let the

individual recall that v̂0 ≥ p0. If v̂I1 < p0/E[v̂0|v̂0 ≥ p0] then v̂01 [v̂0 ≥ p0] < p0 and the individ-

ual will now refuse to purchase the good even at some price p < p0. The probability of this event

is F
¡
p0/E[v̂0|v̂0 ≥ p0]; ĉ

I
1[v̂0 ≥ p0]

¢
. Similarly, when the individual recalls that v̂0 < p0, but finds

v̂I1 > p0/E[v̂0|v̂0 < p0], then v̂01 [v̂0 < p0] > p0. These reversals do not reflect a systematic bias; they

are due to the likelihood that contradictory new information is encountered. Using the above logic,

we can analyze how more than two decisions interact (see the Technical Appendix for an illustration).

Remark 3 In our analysis we assume that, conditional on I, v̂I1 is independent of v̂0. Under broad

conditions, this assumption is implied by the optimality of information acquisition when the individual

knows which information she contemplated in the past. In particular, if the individual knows that

in a prior decision she considered the aspects contained in v̂0 she will subsequently choose to learn

different aspects contained in v̂I1. For instance, in Example 1 take v̂0 = y0 and I is what she later

recalls about v̂0 (e.g., that she should go to the dinner party). In a subsequent contemplation about

13



the party, the individual knows that she has thought about guest y0, but not necessarily y0 itself. If I

provides sufficiently precise information about v̂0, then it would be wasteful to think about y0 again,

and she would rather expend effort to learn about y1. In general, she would prefer to learn the value of

y1 rather than y0 if E
£
y21
¤
≥ E

£
y20|I

¤
/E [y0|I]2. One can easily check that this condition is satisfied

for most distributions, such as the uniform, exponential, and power distributions. In that case, she

will have an incentive to acquire information that is independent of v̂0.

3.4.1 The Impact of Prior Decisions on the Variance of the Final Valuation

We now examine how prior decisions affect the variance of the final valuation for the good, namely

v̂01. Recall that V is the function that maps a given cognitive effort into the amount of variance

explained by the information obtained from that specific effort. Here, −V 00/V 0 measures the local

concavity of V . Treating V as a VNM utility function from effort, −V 00/V 0 can be regarded as the

degree of absolute risk aversion. We will focus on the case in which −V 00/V 0 is nonincreasing.13

For convenience, let us write x for the conditional expectation of v̂0 given the information recalled

from the previous decision, such that: x = E[v̂0|v̂0 ≥ p0] when the individual recalls that she decided

to purchase the good at p0; x = E[v̂0| v̂0 < p0] when she recalls that she decided to reject the good;

and x = 1 when there was no prior decision. From (7) and (10), one can then express the solution for

optimal thinking effort during valuation as ĉ = h
¡
m/x2

¢
, with CDF F

¡
·;h
¡
m/x2

¢¢
. It is convenient

to denote the variance of the final valuation the individual has for the good as Ψ, where from (8)

Ψ (x) = V ar (v̂01|I) = (E[v̂0|I])2V
¡
cI1
¢
= x2V

¡
h
¡
m/x2

¢¢
,∀x > 0. (12)

When no prior decision has taken place, Ψ (1) = V ar(v̂1). If the individual recalls that she would

purchase the good at price p0, Ψ(E[v̂0|v̂0 ≥ p0]) = V ar(v̂01|v̂0 ≥ p0), and so on. It is useful to

note from (12) that a prior decision affects the variance of v̂01 in two ways. First, the information

embodied in the prior decision directly scales up or down the variance of new information gained in the

valuation phase, as reflected in the x2 multiplying term. Second, a prior decision affects the solution

to the optimal effort in the valuation decision, as reflected in the argument of the term h
¡
m/x2

¢
.

If the individual recalls that she previously rejected the good, then x2 = (E[v̂0|v̂0 < p0])
2 is small

(less than 1). We also know from (11b) that the individual thinks less than if no previous decision had

taken place. As a result, her final valuation explains less of the variance, is less accurate, and tends

13This property is common in microeconomic analysis and much work has involved utility functions with constant
(CARA) and decreasing (DARA) absolute risk aversion (such as 1−e−αc with α > 0, log (1 + βc), and cµ with 0 < µ < 1).
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to rely more heavily on the prior mean. By contrast, when the individual recalls that she previously

decided to purchase the good, v̂0 ≥ p0, x2 is large and she is prompted to think more according to

(11a). In this case, her final valuation explains more variance, is more accurate, and tends to rely less

on the prior mean. Mathematically, we write:

V ar(v̂01|v̂0 < p0) = Ψ(E[v̂0|v̂0 < p0]) < Ψ (1) = V ar(v̂1), (13)

V ar(v̂01|v̂0 ≥ p0) = Ψ(E[v̂0|v̂0 ≥ p0]) ≥ Ψ (1) = V ar(v̂1).

So far we have shown that a prior decision can have divergent effects depending on the recalled

outcome. The more substantive question is whether we can make a general ex-ante statement about

the final valuation for the good. To put it differently, should we anticipate an increase or decrease in

the unconditional variance of the final valuation, namely V ar(v̂01), if it is preceded by a decision on

whether or not to purchase the good? The following proposition addresses this question.

Proposition 3 Whenever −V 00/V 0 is nonincreasing, we have V ar(v̂01) ≥ V ar(v̂1).

The inequality states that the variance of willingness to pay is expected to be higher when informa-

tion about a previous decision is available. The intuition for this result is as follows. When −V 00/V 0

is non-increasing, the marginal benefit from additional effort does not decrease steeply (i.e., V is not

“too concave”). Under this condition, when the individual recalls that v̂0 ≥ p0 she is prompted to

expend substantial effort to figure out the true value of v and to scale up the variance of new infor-

mation gained by x2 = E[v̂0|v̂0 ≥ p0]
2, to an extent that overshadows the lower effort she expends

when she knows that v̂0 < p0. Because the total amount of information the individual has about v

is greater with recall of a prior decision, there is a higher likelihood that the individual will form a

final valuation that is further away from the initial uninformative expectation. Consequently, final

valuations that incorporate recall of a prior decision (v̂01) are expected to have higher variance.14

As explained, Proposition 3 implies that incorporating a past purchase decision is likely to yield

final valuations that stray considerably from the ex-ante mean of E(v) = 1. Hence, we should expect

valuations determined by taking into account prior decisions to be more extreme. Indeed, a canonical

example developed in the Technical Appendix shows that recall of prior choices will lead to more

subsequent purchases at very high or very low prices. Moreover, in the multiple-good case (Section

14 If recall of a prior decision had no impact on the amount of effort expended in the valuation phase, the finding
in Proposition 3 would not have required any condition on the function V . In such a case, a prior decision would
unequivocally add information to that gained from subsequent contemplation and the final valuation would always have
greater variance. In our case, this is not true because prior decisions do affect the effort expended (per 11a-11b).
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3.6) we show that because incorporating prior decisions increases the variance of final valuations, this

will lead to a greater dispersion of monetary valuations between two goods (Corollary 1).

3.4.2 Increasing the Decision Stakes

One might expect the effects of bounded rationality to diminish as the stakes get higher. We examine

this issue by multiplying both v and p by some constant λ > 1, so that the agent’s utility is λ (v − p)−c.

This is meaningful if we consider a greater quantity of the same good, or if the type of good is of

higher ex-ante expected value. The superscript λ will indicate payoffs that are multiplied by λ.

Proposition 4 [V ar(v̂λ01)− V ar(v̂λ1 )] increases with λ when (i) −V 00/V 0 is nonincreasing,

(ii) −V 0
¡
h
¡
1/x2

¢¢
/V 00

¡
h
¡
1/x2

¢¢
is convex in x, and (iii) the condition stated in Proposition 1 holds.

Hence, the impact of incorporating a previous decision on the variance of the final valuation is

in fact more pronounced as the decision stakes increase. To understand the intuition, note that an

increase in λ increases [V ar(v̂λ01) − V ar(v̂λ1 )] in two ways. First, by Proposition 1, as λ increases

the individual will have exerted more prior effort to decide whether to purchase at price p0. This

makes the individual treat v̂0 as more informative, and results in more extreme scaling of the new

information embodied in v̂1. This phenomenon tends to increase V ar(v̂λ01) from (12), while V ar(v̂λ1 )

is unaffected. Second, an increase in λ induces the individual to exert more effort in the valuation

stage too. This increases both V ar(v̂λ01) and V ar(v̂λ1 ). Under (ii), it impacts V ar(v̂
λ
01) more heavily.

3.4.3 Impact of a Prior Decision on Subsequent Effort Expended

We have seen that recall of a previous decision affects optimal effort in the valuation stage. According

to (11), the individual thinks less if the prior decision deemed the value of the good low (v̂0 < p0) and

vice-versa if the value was deemed high (v̂0 ≥ p0). It is not clear, however, which effect dominates–

specifically, whether the unconditional amount of expected effort is higher or lower when a prior

decision is taken into account. The following proposition addresses this issue.

Proposition 5 Expected optimal effort in valuation satisfies E
£
ĉI1
¤
≥ ĉ1 if −

V 00(h(1/x2))
V 0(h(1/x2)) x is a non-

increasing function of x.

Proposition 5 states that recall of a prior purchase decision prompts more effort (in expectation)

when subsequently determining a valuation for the same good. The condition in the proposition
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once again relates to the curvature (or local concavity) of V as a function of effort. Here, however,

it is closely tied to the notion of relative risk aversion due to the multiplication by x. Thus, and

somewhat counterintuitively, this result tells us that even though effort has already been expended in

the previous purchase decision, we can expect the effort expended in a subsequent valuation decision

to be higher.15

3.5 When the Individual Recalls Finer Details from a Prior Decision

Consider a partition P = {P1, P2, . . .} of [0,∞), where P1, P2, . . . are disjoint subsets with [0,∞) =

P1 ∪P2 ∪ · · · . Assume that the individual recalls in which set Pk her previous estimate v̂0 belongs to.

In our model, when the individual recalls whether she would purchase the good or not, the relevant

partition has two sets P1 = [0, p0) and P2 = [p0,∞) and the individual only knows whether v̂0 belongs

in P1 or P2. A partition P = {P1, P2, . . .} is finer than a partition Q = {Q1, Q2, . . .} if each Qk can be

written as a union of some of the sets in P . A finer partition means that the individual recalls more.

Proposition 6 Let P be a finite partition that is finer than Q, and let v̂01 [P ], v̂01 [Q], ĉI1 [P ], and

ĉI1 [Q] denote the final valuations and effort levels under these partitions. We have

V ar(v̂01 [P ]) ≥ V ar(v̂01 [Q]) if − V 00/V 0 is nonincreasing, and

E
£
ĉI1 [P ]

¤
≥ E

£
ĉI1 [Q]

¤
if −

V 00
¡
h
¡
1/x2

¢¢
V 0 (h (1/x2))

x is a nonincreasing function of x.

That is, the effects stated in Propositions 3 and 5 become more pronounced when the individual

recalls finer details. Note that we can obtain Q by taking a union of two sets in P one by one. But

every time we compare to such a union, V ar(v̂01) and ĉI1 increase in expectation by Propositions 3 and

5 respectively. It is this inductive logic that forms the intuition for Proposition 6 and that we formally

use in the proof. In sum, our theory applies to the broader case in which the individual recalls more

details than whether she decided the object was worth purchasing, and it could also apply to the case

in which the previous decision task was to explicitly provide an assessment of the value of the object.

3.6 The Multiple-Good, Multiattribute Case

We extend our analysis to a two-good multiattribute context, where an individual recalls a rank

ordering of the goods and then determines her willingness to pay for each.16 Consider two goods, X
15The multiplicative specification plays a role in this result. Under an additive specification we would have E

£
ĉI1
¤
= ĉ1.

16 The relationship to the single-good case can be gleaned by treating the money the individual would have to pay (=
the price) as the second good, and the value (v) of the good as a single attribute which is uncertain (the “money” good
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and Y, defined in terms of multiple attributes ajX and a
j
Y for j = 1, 2, 3, . . ., which yield utilities uX =P

j δ
jwj

³
ajX

´
and uY =

P
j δ

jwj

³
ajY

´
from consuming each of the goods X and Y respectively. The

parameters δj are independently distributed random variables. Here, wj are functions that transform

levels of attribute j into utility. The individual knows attribute levels ajX and ajY and the functions

wj , but she does not know δj . Hence, the individual is uncertain about the relative importance of each

attribute to overall utility. The individual can expend effort levels cj and obtain information about

δj , to be denoted δ̂
j
, such that δj = δ̂

j
εj and all

n
δ̂
j
, εj , j = 1, 2, . . .

o
are independently distributed.

The total cost of these effort levels to the individual is
P

j c
j ; the CDF of each δ̂

j
is Fj

¡
·; cj

¢
and its

variance is Vj
¡
cj
¢
, where Vj satisfies the same properties as V defined in Section 3.1.

Ranking. In comparing goods X and Y to determine her preference ranking, the individual gets

information δ̂
j
0 by exerting effort ĉ

j
0. Her valuations for the goods are ûX =

P
j δ̂

j
0wj

³
ajX

´
and

ûY =
P

j δ̂
j
0wj

³
ajY

´
, and she prefers good X iff ûX ≥ ûY .

Valuation. In a valuation decision the individual provides valuations ûX and ûY so that if confronted

with prices pX and pY she will purchase good X iff ûX ≥ pX and good Y iff ûY ≥ pY . These prices

are independently drawn from a uniform distribution on the interval [0,m/2]. This setup is consistent

with the BDM mechanism (Becker et. al, 1964) used in our experiments.

We write −→c 1 =
¡
c11, c

2
1, . . .

¢
for the vector of effort levels in a valuation decision and U1 (

−→c 1) for

the expected utility from incurring effort −→c 1 when no prior ranking taking has place; a superscript I

indicates that prior ranking is recalled. Because we can apply our previous analysis from the single-

good case to each attribute aj separately, we have E
h
ĉj,I1

i
≥ ĉj1 whenever the coefficient of relative

risk aversion (−xV 00j
¡
h
¡
1/x2

¢¢
/V 0j

¡
h
¡
1/x2

¢¢
is nonincreasing ∀j, as in Proposition 5. Therefore, the

sum
P

j E
h
ĉj,I1

i
will be at least as high as the total effort without prior ranking,

P
j ĉ

j
1. In analogy to

(12), we can define a function Ψj (x) = x2Vj

³
hj

³
1

Ajx2

´´
,∀x > 0. If −V 00j /V 0j is nonincreasing, then

Ψj is convex, yielding V ar(δ̂
j
01) ≥ V ar(δ̂

j
1) ∀j. We write û1X , û1Y , û01X , and û01Y for the expectations of

uX and uY induced by using δ̂
j
1 and δ̂

j
01 respectively (δ̂

j
01 = E[δj |I, δ̂j,I1 ]).17 We obtain the following

corollary regarding the dispersion of valuations between the two goods:

Corollary 1 When −V 00j /V 0j is nonincreasing, E
£
(û01X − û01Y )

2
¤
≥ E

£
(û1X − û1Y )

2
¤
.

This is a testable result that we wish to highlight. The expected squared difference between the

has zero level on this attribute, while the physical good has zero level on the price dimension).
17For example, if the individual recalls that she preferred good X to Y, δ̂

j

01 = E[δj |δ̂j,I1 , δ̂
j

0{X º Y }] ∀j.
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valuations of two goods increases when there is information about a previous preference ordering.18

Intuitively, this happens because recall of a prior ranking will result in final valuations that contain

greater variance and that more likely differ from the ex-ante mean. In turn, this will increase the

valuation spread. Using Proposition 4, we can show that multiplying each wj by λ > 1 increases the

impact of a prior decision on final valuation spread–even when the spread is normalized by λ2:

Corollary 2 Under the conditions of Proposition 4 for each Vj and Fj, we have that

E
h
(û01,λX − û01,λY )2

i
/λ2 −E

h
(û1,λX − û1,λY )2

i
/λ2 is increasing in λ. (14)

Therefore, all of our results could be generalized to a model with uncertainty about multiple

attributes and a prior rank ordering or choice between two goods.

4 Testing Model Implications

We now present a series of experiments designed to examine our model’s predictions in actual decision-

making situations. We first state the primary hypotheses we wish to test.

With regard to how recall of a prior decision affects the amount of effort individuals expend in

a subsequent valuation, we have predicted asymmetric effort levels depending on the outcome of the

prior decision (see (11a-11b)). This is captured in the following hypothesis:

H1More effort will be expended when recall implies selection of the good than when it implies rejection

of the good.

We have further shown that, unconditional on the outcome, a prior decision will lead to greater

effort in expectation. (See Proposition 5.) We therefore state the following hypothesis:

H2 Recall of a prior decision when determining valuations will result in greater effort.

Our theory has made predictions about the impact of prior decisions on the variance of valuations

and about the effects of increasing the decision stakes. Because one needs multiple observations

within the same decision to meaningfully capture such effects, we focus on the implications for the

multiple-good case.19 Based on Corollaries 1 and 2, we can state the following hypotheses:

H3 Recall of a prior decision will increase the spread between the monetary values for two goods.

H4 The impact on valuation spread of recalling a prior decision is increasing in the decision stakes.
18We use the squaring operator to control for the sign of the difference (good X preferred to Y or vice versa).
19To test our results on variance with respect to a single good, we would either need each individual’s ex-ante mean

valuation for the good or multiple observations per subject for the same good.
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4.1 Experimental Design and Method

To test the hypotheses, we conducted a series of experiments that presented individuals with decisions

about dining at restaurants. The restaurants were described in terms of two or three attributes. The

set of possible attributes included location (different areas in Cambridge, Massachusetts), type of food

(Asian, Indian, seafood), service level, food quality, and decor. (Descriptions of each restaurant and

sample instructions appear in the Technical Appendix. Restaurant names were not given.) Dining

at a given restaurant was described to include an appetizer, main course, and dessert. Stimuli were

presented via a computer interface, and subjects’ responses were recorded via the same interface. The

subjects included students (undergraduate and graduate) and nonstudents. Subjects were promised

a minimum of $10 and a chance to earn more in cash or prizes, as explained below.

4.2 Single Good

Experiments 1 and 2 were designed to test our hypotheses on effort expended within a single good

context. Experiment 1 uses the amount of time that subjects spent to determine their valuations

as the measure of cognitive effort. Experiment 2 uses the amount of time that subjects explicitly

specified they would need for each subsequent valuation task.

4.2.1 Experiment 1

Subjects were randomly assigned to one of two conditions: “choice and subsequent valuation” (CV)

or “valuation only” (VO). The CV condition (N=63) consisted of two stages. In stage I, participants

were asked to choose between a dinner-for-one voucher at a specific restaurant or a voucher for any

regular-priced CD at a well-known music-store chain. In each decision the restaurant was different,

but it was always chosen or rejected against a regular-priced CD. Subjects made five such choices, one

at a time. Subsequently, in stage II the same subjects provided their maximum willingness to pay in

dollars for a meal at each of the restaurants presented in stage I. Subjects were reminded each time of

their stage-I decision (the reminder was provided below the restaurant’s description).

In the VO condition (N=61), subjects made five irrelevant (filler) decisions in stage I.20 In stage II,

subjects were asked to state their maximum willingness to pay for the same five restaurants employed

in the CV condition. Thus, a stage II valuation in the VO condition did not entail recall of a previous

decision about the restaurant in question.

20 The filler task equated the number of decisions across conditions. We thank Al Roth for suggesting this.
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Subjects were told the following about how prizes would be awarded at the end of the experiment:

The computer would randomly select one of their decisions. If a stage I decision was selected, the

subject would receive a dinner-for-one or CD voucher, depending on the choice indicated in that

decision. If a stage II decision was selected, the computer would then randomly draw a number.

If the dollar value the individual assigned to the restaurant in that decision was greater than the

randomly drawn number, the individual would receive a dinner-for-one voucher at that restaurant.

Otherwise, the individual would receive the random number in dollars. This procedure induces truth-

telling and is consistent with the BDM mechanism. Participants were presented with several examples

before stage II to familiarize them with the mechanism. The random number was drawn from the

range [0-30], which was pretested with 32 subjects to be the upper bound of their valuations.

Results The computer recorded the amount of time that subjects spent determining their will-

ingness to pay for each restaurant (for average times see Table 1 in the appropriate columns for

Experiment 1). To examine H1, we focused on the time subjects spent on valuation in the CV condi-

tion. When a restaurant was preferred in stage I, H1 predicts more effort to have been expended in

determining valuation for that restaurant in stage II than when a CD was preferred. We estimated

the following regression model on stage II data from the CV condition:

TCV = θ0 + θjdj + θRREST + e, (15)

where TCV is the time that subjects spent determining a restaurant’s dollar value in the CV condition,

θ0 is an intercept term, dj , j ∈ [1, 2, ..., 4] are dummy variables to control for the specific decision,21

REST = 1 if the subject chose the restaurant in stage I (and 0 if the CD was chosen), and e is a

standard normal error term.22 Regression analysis yields a parameter estimate of θR=6.41 (p = 0.079).

Thus, we find support for the asymmetric prediction in H1. Recalling a prior preference for a restaurant

over a CD increased the amount of time spent to determine a restaurant’s value by 6.41 seconds.

We estimated the following regression model to examine the unconditional effect of a prior decision

21 In all the regressions reported in the paper we included dummies to control for the specificities of each decision.
The need to do so is justified by the appropriate F-test for pooling across decisions (Greene, 2003). In most cases,
though our findings qualitatively hold without controlling for pooling, we find that a null hypothesis of: {all decision
dummy coefficients=0} is rejected. Therefore, statistically we need to include the decision dummies. We report the full
estimation results with and without dummies, and the F-test for each regression, in the Technical Appendix.
22 In our regressions we use a variable related to the prior decision as a regressor. If there are unobserved factors

(unrelated to our theory) that affect subjects’ responses, the measured prior decision variable can be correlated with the
model’s disturbance (e) due to these factors (see Greene 2003 pages 84-85). In this case, our estimated parameters may
be attenuated relative to their true value.
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on the effort expended in determining valuations:

T = γ0 + γjdj + γCVCHOICE + e, (16)

where T is the time that subjects spent in stage II determining a valuation for any given restaurant,

γ0 is an intercept term, dj are as in (15), and CHOICE designates whether a prior decision about

the restaurant vs. the CD had taken place (i.e., CV condition). We obtain a parameter estimate of

γCV = 7.42 (p = 0.0019), which confirms H2. Note from Table 1 that recall of a prior choice increased

the average amount of time that subjects spent on valuation by over 30 percent.23

We also checked the correlation between a good’s valuation and the time spent in the VO condition.

This correlation was found to be small (0.0533) and nonsignificant (p = 0.354). Hence, our results

on the impact of prior decisions cannot be explained by positing that inherently better options are

allocated more time. When in (16) we included a variable to capture the dollar value given to each

restaurant, we still get a significant result for the impact of a prior decision (γCV = 7.98, p = 0.007).

4.2.2 Experiment 2

In Experiment 1 we used subjects’ decision time as our measure of effort. This presumes that the

incentives to expend cognitive effort in a given decision are reflected in the amount of time actually

taken to make that decision, and is consistent with prior literature (Payne et al. 1993). We wanted to

examine our most basic result on the incentives to expend effort (per H1) with a more direct measure.

To achieve this, we ran a similar study to the CV condition in Experiment 1 (N=50), except that in

stage II there was the following additional step. Before being shown each restaurant, subjects were

asked how many seconds they wanted to have available for determining their valuation, with every two

seconds costing them one cent.24 Subjects were told whether the restaurant about to be shown would

be one that they chose or rejected (relative to a CD) in stage I. On the next screen subjects saw the

details of the restaurant for which they were to provide a dollar value, and a clock placed on the right

hand side showed the number of seconds remaining. If the time they had requested expired before a

dollar value was entered, the computer randomly selected a value and the next decision appeared.

23 In one of the five decisions (Decision 2) we get that the average time in the VO condition is slightly higher than
in the CV condition. However, this difference is not significant (p=0.67). Furthermore, the median time spent in this
decision is actually 3 seconds higher in the CV condition; in accordance with our theory. Hence, a number of outliers in
the VO condition are likely skewing the average in this decision.
24Various costs were pretested with a set of 38 subjects. The cost used is roughly equal to the money worth of time

(subjects expected to participate for one and a half hours and the expected total payment was $25).
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Results The average times requested for each decision are presented in Table 2, broken out by

whether a Restaurant or CD was preferred. Subjects explicitly requested more time when they knew

they were about to face a restaurant that they had previously preferred to the CD than vice versa

(by 28% on average). Running regression model (15) on this data yielded γCV = 1.95 (p =0.0012).

It should be pointed out that making subjects conscious of time issues and tagging a cost (even

though small), seems to have reduced their general desire to expend effort (irrespective of what they

preferred). Nonetheless, the results support H1.

4.3 Multiple Goods

Experiments 3-4 were designed to test our hypotheses on valuation spread and the decision stakes

(H3-H4) and to replicate some of our findings on effort expended in a two-good context.

4.3.1 Experiment 3

In this experiment subjects made five decisions about pairs of restaurants. Subjects were randomly

assigned either to a “ranking and subsequent valuation” condition (RV) or to a “valuation only”

condition (VO). In stage I of the RV condition (N=39), subjects were presented with two restaurants

in each decision and asked to rank them by designating their preferred restaurant as ‘1’ and their less

preferred restaurant as ‘2’. In stage II of the RV condition, subjects were sequentially shown the same

five pairs of restaurants and asked to state their maximum willingness to pay for a dinner-for-one at

each; that is, subjects provided two valuations in each decision. Subjects were reminded of their stage I

ranking designations. In the VO condition (N=37), stage I consisted of five irrelevant (filler) decisions.

In stage II of the VO condition, subjects stated their maximum willingness to pay for the same five

restaurant pairs used in the RV condition. The mechanism for determining payoffs at the end of this

experiment was similar to that in Experiment 1. In this case, if a stage I decision was drawn in the

RV condition, a subject would get a voucher for his/her preferred restaurant (designated with a ‘1’).

If a stage II decision was selected, the computer would randomly choose one of the restaurants from

that decision and the BDM truth-telling mechanism explained earlier would be employed.

Results As is evident from Table 1, the average time devoted in Experiment 3 to valuation deci-

sions was 50 percent higher in the RV condition than in the VO condition (32.62 vs. 21.72 seconds

respectively). A regression analysis similar to (16), with a dummy variable for prior ranking, yields
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γRV=10.9 (p < 0.01). Thus, a prior ranking of the alternatives significantly increased the amount

of time spent determining willingness to pay, compared to when no such ranking had taken place;

reconfirming H2 for the two-good case.25

In accordance with Corollary 1, we tested whether a prior preference ranking affected the squared

spread of valuations using the following regression model:

(ûA − ûB)2 = α0 + αjdj + αRVRANK + e, (17)

where ûA and ûB are the valuations that subjects provided for each restaurant in a given pair, α0 is

an intercept term, dj , j ∈ [1, 2, ..., 4] are decision dummies, and RANK is a dummy variable denoting

whether prior ranking took place. The results yield a parameter estimate of αRV = 6.25 (p = 0.10),

which marginally supports H3 that prior ranking leads to a greater spread. It can be gleaned from

Table 3 that the average absolute valuation spread between alternatives (across all pairs) was $3.26 in

the VO condition and $4.05 in the RV condition (a 24 percent difference). If in regression model (17)

we use the absolute difference between valuations instead of the squared difference as the dependent

variable, we again find support for H3 (at a greater significance level, p = 0.01).

4.3.2 Experiment 4

Our main goal was to examine how an increase in the decision stakes affects valuation spread. The

design was similar to that of Experiment 3, except that a different set of subjects now evaluated

dinner-for-two vouchers (N=44 in each condition) and the random number drawn by the computer

for the payoff mechanism was between 0-55 (pretested with 16 subjects to be an upper bound).

Results We first ran regression (17) on the dinner-for-two data. The results yield a parameter

estimate of αRV = 44.90 (p < 0.01), which strongly supports H3. To test for the effect of increasing

the decision stakes, we computed the following variable for each pair of restaurants in a given decision

yi,j =
(ûAi,j − ûBi,j)

2

(ûAi,j + ûBi,j)
2
, (18)

where ûAi,j and ûBi,j are the valuations provided by subject i in decision j for restaurants A and B

respectively. We calculated the same variable for each pair of restaurants for each decision and subject

in Experiment 3. The normalization by the factor of (ûAi,j + ûBi,j)
2 is what allows us to compare the

25We measured the time that subjects spent determining valuations for both restaurants on the same screen. Hence,
we could not separate out the time spent on the preferred vs. less preferred restaurant to test H1.
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data from the two experiments to see if indeed increasing the stakes has a proportionately greater

effect on the dispersion of valuations.26 We estimate the following regression equation:

y = β0 + βjdj + βRV1RV ∗D1 + βRV2RV ∗D2 + βV O2V 0 ∗D2 + e, (19)

where β0 is an intercept term, dj , j ∈ [1, 2, ..., 4] are decision dummies, RV and V O are dummies for

the experimental condition, and D1,D2 are dinner-for-one and dinner-for-two indicators respectively.

The estimation yields β̂RV2 = 0.15 (p < 0.01) while β̂RV1 = 0.04 (p = 0.35), thus supporting H4. Table

3 shows that, for dinner-for-two decisions, the average absolute valuation spread between alternatives

(across all pairs) was $4.78 in the VO condition and $7.39 in the RV condition (a 55 percent difference).

4.4 Limitations of the Experiments

Though we have found support for the implications of our model per hypotheses H1-H4, the exper-

iments we conducted have limitations with respect to the link with the model structure. We have

demonstrated that the amount of effort expended in a decision is affected by the directional outcome

of a prior decision. This is consistent with our model structure for a multiplicative (or more generally

supermodular) relationship between information uncovered in separate contemplation occasions (see

Section 3.1.1) and would not be consistent with other relationships, for example additive. However,

we have not directly tested for this updating process. One could design an experiment where in the

first stage, subjects would be asked to write down a valuation for a good based on a specific set of

aspects. In a later stage, they would be directed to consider other aspects that might affect their

utility and write down a new valuation, and in the last stage, subjects would be reminded of the two

separate valuations and asked to form one last valuation. This could allow a direct testing of the

relationship between the two separate valuations.

In our model development, we assumed independence of new information gained in a subsequent

decision. Though we discuss relaxing this assumption in the Technical Appendix, in our experiments

we did not directly manipulate or control for this issue. To check for the incentive to gain new

information that is independent rather than correlated with previous information (see also Remark

??), one could conduct an experiment along the following lines. Each subject would act as an agent

that is asked to make an optimal purchase decision on behalf of a principal, whose preferences are
26Corollary 2 calls for normalizing each individual’s squared spread of valuations by λ2i,j . Given that we do not observe

λi,j , we use (ûAi,j+û
B
i,j)

2 as a proxy. To see why this works, assume that subject i values a dinner-for two voucher twice as
much as a corresponding dinner-for-one voucher. If the impact of prior choice on valuation spread is non-increasing in the

decision stakes then yi,j(D1) =
(ûAi,j−û

B
i,j)

2

(ûAi,j+û
B
i,j)

2 =
(2ûAi,j−2û

B
i,j)

2

(2ûAi,j+2û
B
i,j)

2 = yi,j(D2). To confirm H4 we expect yi,j(D1) < yi,j(D2).
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unknown at the outset. In stage I, the agent would be given the option to uncover costly information

regarding the principal’s utility function (e.g., about attribute importance weights) by selecting specific

items to learn about. In stage II, the agent would need to enter a bid for a good on behalf of the

principal and could choose to learn more costly items; subjects would be given examples of how related

items may reveal correlated information. A subject’s final payment is based on the utility the principal

derives from the outcome minus the cost of information uncovered. One could then examine to what

extent the individual chooses to learn new information that is correlated with previous information.

We also acknowledge several limitations of our results in support of H1 and H2. First, if know-

ing that a restaurant was previously preferred serves as a signal that spending time reveals useful

information (which is equivalent to the subject perceiving that the cost of effort is itself lower if the

restaurant was preferred), this might also explain the pattern in Table 2. Second, each time sub-

jects in the CV condition made a stage II valuation decision they were reminded of their previous

decision. This raises a concern that subjects spent more time in the CV condition because they had

to process additional information. To rule out this alternative explanation, we ran a variant of the

VO condition of Experiment 1 in which subjects were reminded in the valuation stage of irrelevant

prior decisions they made regarding office supplies (e.g., a choice between a blue and a black pen).

Running regression model (16) with this new data yields γCV = 16.71 (p < 0.001). Lastly, we note

from Table 1 that subjects spent less time on each successive decision. This is true in both conditions

and may be expected given subjects’ increasing familiarity (or boredom) with the task as they made

more decisions, or their growing desire to complete the study as they approached the final decision

(and is consistent with prior research: Lenk et al. 1996; Slovic et al. 1965). Note though that our

inclusion of decision dummies should partially tease out this effect and that the support for H2 was

found in both Experiments 1 and 3. It is possible that had we used fewer decisions (say only three)

and more subjects to compensate for less data points this issue would be less acute.

5 Conclusion

Many decision contexts surface relevant past decisions made by the same individual. When the decision

at hand calls for costly effort to resolve uncertain aspects of utility, these past related decisions are

likely to be invoked. In this paper, we have examined how prior decisions about single or multiple

goods affect subsequent valuations using a simple model that incorporates features of both rational

optimizing behavior and bounded rationality.
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It may also be plausible to model individuals’ behavior when making sequential decisions using

some anomalous preference relation, such as an inherent preference for consistency. However, our

theory predicts certain patterns of behavior that could not possibly be accounted for by such anom-

alous preference relations. For example, readily available information about a past choice increases

the expected valuation spread between two goods. Furthermore, in expectation, an individual ex-

pends more effort on a decision when informed about a past decision. Subjects in our controlled lab

experiments did, in fact, exhibit such behavior. Moreover, as the stakes increase, certain patterns of

behavior generated by bounded rationality become even more pronounced both in theory and in our

experiments. These findings suggest that models that take into account contemplation or thinking

costs and recall of prior decisions may yield valuable insights about consumer behavior.

We believe our findings to have important implications for many business and managerial contexts.

Salespeople often use a two-stage process that potentially affects final payment. For example, car

dealers often refuse to discuss the final price of a vehicle before they have taken the consumer around

the lot and prompted her to rank the set of relevant cars. Consistent with our findings, encouraging

a ranking of alternatives (mainly on nonprice attributes) may work to the dealer’s advantage in

subsequent price negotiations on the buyer’s most preferred car. The growing pervasiveness of Internet

commerce has made the relevance of prior decisions all the more pronounced. In electronic auctions,

for example, a consumer is typically shown a listing of relevant products. The consumer must decide

which item(s) to bid on and in which order. She must then decide on her valuation for a given

item when entering a bid. Our results imply that the bid entered for any item will be affected by

integrating information about that item’s preference ranking relative to the remaining alternatives

in the set. Consider also a typical management approach when formulating a product development

roadmap. It is common practice to begin by rank-ordering the various R&D projects to be funded,

and only then to determine the exact allocation of resources to each (Parnell 2001). Our findings

suggest that such a process would result in more time spent on determining the funding of the top

ranked project and more variance in the resource allocations to all projects than if prior ranking had

not taken place.
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Appendix
A Parametric Specification for Information Acquisition. To see how all of our assump-

tions fit together, let the set of all aspects be N, the set of natural numbers. Take any strictly increasing,

continuous function g with g (0) = 0. Let the cost of learning the set N ⊂ N of aspects be g
¡P

n∈N 1/2
n
¢
.

Then, for any c ∈ [0, g (2)], there will exist a set N (c) ⊆ N of aspects that costs exactly c to learn. (Note

that N (c) corresponds to the digits with a “1” in the binary expansion of g−1 (c).) Hence, effort level

can be chosen from a continuum, as in our model. To find a specific V that satisfies all our assump-

tions, including Assumption 1, take g (x) = Cx − 1 and E
£
y2n
¤
= D1/2n for some C > D > 1. Then,

V (c)= V ar
³Q

n∈N(c) yn
´
= D

P
n∈N(c) 1/2

n

−1 = (1 + c)α−1, where α = log (D) / log (C) ∈ (0, 1), for

c = C

P
n∈N(c)

1/2n−1. Assumption 2 on F is satisfied when there exists a sequence (bn) such that |yn − 1| < bn

for all n and
Q∞

n=0 (1 + bn) <∞, which is consistent with the above specification. Finally, given any two sets

N and N 0 of aspects, V ar
¡Q

n∈N yn
¢
= V ar

¡Q
n∈N 0 yn

¢
whenever it costs the same to learn the aspects in

either of the sets. Hence, as explained in Remark 3, under most distributions, the individual will optimally

choose to learn about a new set of aspects that she has not thought about before, as in our model.

Proof of Proposition 1. To prove the first statement, we compute that

∂

∂p0
U0 (c0; p0) =

∂

∂p0

∙Z v̄

p0

(v̂0 − p0) f (v̂0; c0) dv̂0 − c0

¸
= −

Z v̄

p0

f (v̂0; c0) dv̂0 = F (p0; c0)− 1,

where f is the PDF of F (·; c0). Hence, ∂
2U0(c0;p0)
∂c0∂p0

= ∂F (p0;c0)
∂c0

. Then, by the condition stated in the proposition,

for any p0 > 1, we have
∂2U0(c0;p0)
∂c0∂p0

= ∂F (p0;c0)
∂c0

< 0. Therefore, argmaxc0∈[0,c̄] U0 (c0; p0) is decreasing with p0,

when p0 > 1. Similarly, for any p0 < 1, ∂2U0(c0;p0)
∂c0∂p0

> 0, and argmaxc0∈[0,c̄] U0 (c0; p0) is increasing with p0 in

this region. To prove the second statement note that when v and p0 are multiplied by λ, the expected payoff

is proportional to

U0 (c0; p0) /λ = E[v − p0|v̂0 ≥ p0] Pr(v̂0 ≥ p0)− c0/λ.

Since ∂2 [U0 (c0; p0) /λ] /∂λ∂c0 = 1/λ
2 > 0, the optimal effort is increasing in λ.

Proof of Proposition 2. According to the mechanism for determining payoffs

U1 (c1) + c1 = E

"
2

m

Z v̂1

0

(v − p) dp

#
= E

£¡
2v̂1v − v̂21

¢
/m
¤
= E

£
v̂21
¤
E [2ε− 1] /m = E

£
v̂21
¤
/m,

where the penultimate equality is due to the facts that v = v̂1ε and v̂1 and ε are independent. Since V (c1) =

V ar (v̂1) = E
£
v̂21
¤
− 1, this yields (5).

Proof of Proposition 3. In this proof we will omit the arguments of the functions V , V 0, V 00, and

V 000, which will always be h
¡
m/x2

¢
. Since V 00 < 0 by assumption,

Ψ0 (x) = 2xV + x2 · (V 0) ·
¡
h
¡
m/x2

¢¢0
= 2xV − 2m

x3V 00 > 0.

Thus Ψ is increasing in x. Toward showing that Ψ is convex in x, we can further compute that

Ψ00 (x) = 2V + 2x · (V 0) ·
¡
h
¡
m/x2

¢¢0
+m ·

¡
h
¡
m/x2

¢¢00
= 2

"
V +

(V 0)2

V 00

µ
1− 2V

000 · V 0

(V 00)2

¶#
. (20)
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Since V ≥ 0 and V 00 < 0, this implies that Ψ00 > 0 whenever V 000 ≥ (V
00)2

2V 0 . But when −V 00/V 0 is nonincreasing,

V 000 ≥ (V 00)
2

V 0 ≥ (V 00)
2

2V 0 , that is, Ψ is convex. Write I for the set of all information the individual recalls,

minimally including the events [v̂0 ≥ p0] and [v̂0 < p0]. If Ψ is convex, then

V ar(v̂01) =

Z
I∈I

V ar(v̂01|I)dPr (I) =
Z
I∈I
Ψ(E[v̂0|I])dPr (I)

≥ Ψ

µZ
I∈I

E[v̂0|I]dPr (I)
¶
= Ψ (E [v̂0]) = Ψ (1) = V ar(v̂1),

where the inequality is due to the convexity of Ψ and Jensen’s inequality.

Proof of Proposition 4. Define φ (λ;m) = E
£
Ψ(v̂λ0 ;m)

¤
−Ψ (1;m) , so that

φ (λ;m/λ) = V ar(v̂λ01)− V ar(v̂λ1 ). First note that

E
£
Ψ(v̂λ0 ;m)

¤
= Pr

¡
v̂λ0 < p0

¢
Ψ
¡
E
£
v̂λ0 |v̂λ0 < p0

¤
;m
¢
+Pr

¡
v̂λ0 ≥ p0

¢
Ψ
¡
E
£
v̂λ0 |v̂λ0 ≥ p0

¤
;m
¢
, and

Pr
¡
v̂λ0 < p0

¢
E
£
v̂λ0 |v̂λ0 < p0

¤
+Pr

¡
v̂λ0 ≥ p0

¢
E
£
v̂λ0 |v̂λ0 ≥ p0

¤
= 1. (21)

When λ increases, identity (21) remains intact and ĉ0 increases (by Proposition 1). This results inE
£
v̂λ0 |v̂λ0 < p0

¤
decreasing and E

£
v̂λ0 |v̂λ0 ≥ p0

¤
increasing in λ. Since Ψ is convex, E

£
Ψ(v̂λ0 ;m)

¤
increases and therefore φ (λ;m)

is increasing in λ. Second, φ is decreasing in m. To see this, compute that ∂Ψ(x;m)
∂m =

V 0(h(m/x2))
V 00(h(m/x2)) , and hence

∂φ
∂m = E

h
V 0
³
h
³
m/

¡
v̂λ0
¢2´´

/V 00
³
h
³
m/

¡
v̂λ0
¢2´´i − V 0(h(m))

V 00(h(m)) . Since
V 0(h(1/z2))
V 00(h(1/z2)) is concave in z, by Jensen’s

inequality, we have ∂φ/∂m ≤ 0. Now, given any λ and λ0 with λ ≤ λ0, we have

V ar(v̂λ
0

01)− V ar(v̂λ
0

1 ) = φ
¡
λ0;m/λ0

¢
≥ φ

¡
λ;m/λ0

¢
≥ φ (λ;m/λ) = V ar(v̂λ01)− V ar(v̂λ1 ).

Proof of Proposition 5. The unconditional expected effort in the valuation stage with information

from a prior decision is E
£
ĉI1
¤
=
R
I∈I h(m/(E[v|I])2)dPr (I) , where I is the set of all information recalled.

On the other hand, ĉ1 = h (m) = h
³
m/E [v]

2
´
. It is straightforward to establish that when −V 00(h(1/x2))

V 0(h(1/x2)) x is

nonincreasing in x, then h
¡
1/x2

¢
is convex in x. This proves the proposition by Jensen’s inequality.

Proof of Proposition 6. We will use induction on n = |P | − |Q| to show that V ar(v̂01 [P ] |Qk) ≥

V ar(v̂01 [Q] |Qk) and E
£
ĉI1 [P ] |Qk

¤
≥ E

£
ĉI1 [Q] |Qk

¤
for each k, where the expectations are taken as conditional

on v̂0 ∈ Qk. For n = 0, we have P = Q, and the statements are trivially true. Assume that the statements are

true for n− 1. Let P 0 be a partition that is finer than Q but coarser than P , and that satisfies |P |− |P 0| = 1,

so that |P 0| − |Q| = n − 1. Then, by the induction hypothesis V ar(v̂01 [P
0] |Qk) ≥ V ar(v̂01 [Q] |Qk) and

E
£
ĉI1 [P

0] |Qk

¤
≥ E

£
ĉI1 [Q] |Qk

¤
for each k. Since |P | − |P 0| = 1, there exist k∗ with Pk∗ = P 0k0 ∪ P 0l and

Pk = P 0k for each k 6= k∗. For any k 6= k∗, V ar(v̂01 [P ] |Qk) = V ar(v̂01 [P
0] |Qk) ≥ V ar(v̂01 [Q] |Qk) and

E
£
ĉI1 [P ] |Qk

¤
= E

£
ĉI1 [P

0] |Qk

¤
≥ E

£
ĉI1 [Q] |Qk

¤
. For k∗, by Proposition 3, we have V ar(v̂01 [P ] |Qk∗) ≥

V ar(v̂01 [P
0] |Qk∗) ≥ V ar(v̂01 [Q] |Qk∗). Similarly, by Proposition 5, E

£
ĉI1 [P ] |Qk∗

¤
≥ E

£
ĉI1 [Q] |Qk∗

¤
.

Proof of Corollary 1. Let ∆j = wj

³
ajX

´
−wj

³
ajY

´
. We obtain E

£
(û01X − û01Y )

2
¤
= E

∙³P
j ∆j δ̂

j

01

´2¸
=
P

j ∆
2
jE

∙³
δ̂
j

01

´2¸
+K =

P
j ∆

2
j

³
V ar

³
δ̂
j

01

´
+ 1
´
+K, where K =

P
i6=j ∆i∆j . When −V 00

j /V
0
j is nonin-

creasing, since V ar(δ̂
j

01) ≥ V ar(δ̂
j

1) for each j the corollary immediately holds. The proof of Corollary 2 follows

by dividing each squared valuation spread by λ2 and taking the derivative with respect to λ.
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Table 1 Time Spent on Valuation

Experiment 1 (single good) Experiment 3 (two goods)

Decision VO CV VO RV

(N=61) (N=63) (N=37) (N=39)

1 31.77 54.86 27.41 53.46

2 29.38 27.17 17.78 35.13

3 16.16 25.24 20.78 23.33

4 21.18 26.65 20.89 31.46

5 23.33 24.98 21.73 19.70

Average 24.36 31.78 21.72 32.62
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Table 2 Time Requested for Valuation in Experiment 2 (N=50)

Subject’s Choice in Stage I

Decision Restaurant CD

1 9.62 7.68

2 10.64 6.39

3 8.43 7.07

4 8.36 6.92

5 7.48 6.84

Average 8.91 6.98

Table 3 Mean Absolute Difference in Valuations (in Dollars)

Experiment 3 Experiment 4

(dinner for one) (dinner for two)

Decision Pair VO Condition RV Condition VO Condition RV Condition

(N=37) (N=39) (N=44) (N=44)

1 2.97 4.10 4.02 7.75

2 2.97 4.00 4.59 6.91

3 3.23 4.31 4.84 7.59

4 3.40 3.54 4.36 6.23

5 3.75 4.31 6.11 8.48

Average $3.26 $4.05 $ 4.78 $ 7.39

Figure 1: Effort-Accuracy Tradeoff Depending on Information from a Prior Decision
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