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Abstract

This paper provides a quick survey of results on the classic SIR model and variants allowing for
heterogeneity in contact rates. It notes that calibrating the classic model to data generated by a
heterogeneous model can lead to forecasts that are biased in several ways and to understatement
of the forecast uncertainty. Among the biases are that we may underestimate how quickly herd
immunity might be reached, underestimate differences across regions, and have biased estimates of
the impact of endogenous and policy-driven social distancing.

1 Introduction

The economic literature on the COVID-19 epidemic has developed at a remarkable pace. A number

of recent economics papers build on the classic Susceptible-Infectious-Recovered (SIR) model to study

how the epidemic may progress and how it may be affected by various policies.1 In this note I review

some results from the epidemiological literature on an SIR extension that economists have mostly not

yet adopted, incorporating heterogeneity in the activity rates of different subpopulations, and note

ways in which analyses based on classic SIR models can potentially yield misleading views.

The classic SIR model of Kermack and McKendrick (1927) has been a foundational model in

epidemiology for nearly a century. It illustrates basic tradeoffs and provides a simple framework

that can be easily built on. Subsequent work in epidemiological theory has extended the model in

various ways, and modern epidemiological forecasts typically work with variants that are more flexible

∗I thank Daron Acemoglu, Chris Avery, Victor Chernozhukov, Adam Clark, Jonathan Dushoff, Sara Fisher Ellison,
Jim Stock, and Ivan Werning for helpful conversations and comments and Chris Ackerman and Bryan Kim for research
assistance.
†Department of Economics, Massachusetts Institute of Technology, Cambridge MA 02139 and NBER, e-mail: gelli-

son@mit.edu
1See among others Acemoglu et al. (2020), Baqaee et al. (2020), Eichenbaum, Rebelo, and Trabandt (2020), Farboodi,

Jarosch, and Shimer (2020), Fernández-Villaverde and Jones (2020), Jones, Philippon, and Venkateswaran (2020), Lippi,
Alvarez, and Argente (2020), and Rowthorn and Toxvaerd (2012)
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in a number of dimensions.2 In this paper I focus on some theoretical extensions developed in the

1980’s and 1990’s that seem quite relevant to the COVID-19 epidemic. Specifically, I discuss two

classic models that focus on heterogeneity in the frequency with which different individuals engage in

interactions that risk spreading the disease. Given the current understanding about how COVID-19

seems to be transmitted, it is easy to think of a number of subpopulations who will have many more

risky interactions than average: those living in overcrowded urban apartments, frequenting bars and

nightclubs, using public transportation, attending crowded religious services, working in a nursing

home, etc. Others, e.g. farmers and those who are retired or work from home, should be relatively

safe.

Section 2 reviews of the classic SIR model and extensions. Each extension discussed is a mul-

tipopulation SIR model that supposes that the subpopulations differ in their “activity” levels. As

with the classic SIR model, the differential equations describing the rates at which members of each

subpopulation transition from the susceptible to the infectious state can be motivated by a process

in which agents are randomly matched in continuous time with each interaction between susceptible

and infectious agents potentially leading to a new infection. One version assumes “uniform” matching

in which the probability that any two agents are randomly matched is proportional to the product

of their activity levels. The other assumes “homophilic” matching in which agents are more likely

to interact with others in their own subpopulation. Each model behaves much like the classic SIR

model. Small infections initially grow at an exponential rate if a composite parameter analogous to R0

is greater than one and new infections slow (and eventually die out) once the fraction with acquired

immunity passes a “herd immunity” threshold. The composite R0 and the herd immunity thresholds

depend on the characteristics of the various subpopulations, and I review results from prior work to

illustrate important principles about how epidemics spread in heterogeneous populations.

Sections 3 and 4 then draw out implications of these models for our analyses of COVID-19. Section

3 emphasizes that thinking about heterogeneity in contact patterns suggests that making predictions

about the course of the COVID-19 epidemic and the impacts of reopening policies is inherently difficult.

Heterogeneous models have more parameters that need to be calibrated. Long run outcomes can be

sensitive to activity levels of the less active, and it is difficult to calibrate these parameters early

in an epidemic when there are few cases in less-active communities. This is particularly true when

one contemplates removing restrictions and thereby increasing activity among the currently inactive.

2See, for example, Champredon et al. (2018), Unwin et al. (2020), and Viboud et al. (2018).
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Predictions based on classic SIR models that do not allow for heterogeneity may be overconfident.

Section 4 then focuses on ways in which conclusions drawn from applying homogeneous SIR models

to a world that may be like a heterogeneous SIR model can be misleading. One observation, also found

in Gomes et al. (2020) and Britton, Ball, and Trapman (2020), is that homogeneous SIR models may

substantially overstate the fraction of the population that must be infected in order to achieve herd

immunity. Intuitively, if a small high-contact group plays a central role in spreading the disease, then

incidence will much higher in this group, and once many in this group have acquired immunity the

epidemic may die out. Less obvious but still relevant effects are present with less extreme heterogeneity.

A second related observation is that (targeted) lockdown polices can also be more cost effective in

heterogeneous populations. There can be substantial gains either from taking permanent measures to

reduce spread among the highly active or from temporarily locking down less active groups to minimize

overshooting of herd immunity thresholds. The differences in dynamics also imply that time-series

estimates of policy impacts may be biased. In each case, effects depend both on the magnitude of the

heterogeneity that it present and on the degree of homophily in matching. The discussions attempt

to bring out comparative statics and plausible magnitudes of effects.

The final section of the paper discusses some practical implications of the results. The message that

we may be missing information for assessing reopening plans is troublesome when reopening is already

upon us. But the models suggest fairly easy ways in which economists could extend their models

and also point to data opportunities that might reduce the critical uncertainties. The messages that

controlling the epidemic may not be as hard as it appears in some models and that herd immunity

might not be as far off might be näıvely predicted said also give room for optimism.

This paper is related to a number of others in epidemiology and economics. The discussion of het-

eogeneous SIR models is a review of a literature in epidemiology that dates back to the late 1980s and

mid 1990s, with the particular formulations drawing heavily on Dushoff and Levin (1995). Empirical

epidemiologists have also for quite some time been interested in multipopulation SIR models both

examine to interactions between age groups (important for other reasons for childhood diseases) and

groups, e.g. health care workers in the Ebola epidemic, who play an important role in transmission.3

Two very recent working papers in epidemiology have made observations similar to the observation

in section 4.1 that herd immunity thresholds can be substantially lower in heterogeneous SIR models

than in homogeneous SIR models. Gomes et al. (2020) graphs the herd immunity threshold as a func-

3See, for example, Britton (1998), Champredon et al. (2018), Demiris and O’Neill (2005), and Lloyd-Smith et al.
(2005).
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tion of the coefficient of variatiion in contact rates in a heterogeneous SEIR model, noting estimates

of the coefficients of variation that have been previously reported for other diseases. Britton, Ball,

and Trapman (2020) give herd immunity thresholds for an 18-group model calibrated to estimated

interactions across 6 age groups with assumed low-activity and high-activity individuals assumed to

have activity levels that are half and twice the average activity levels and discuss partial lockdown

policies that hold the infection to this level. Recent papers in epidemiology are also broadly related

in that their observations motivate examining heterogeneous transmission. Worobey et al. (2020)

concludes that early imported cases formerly thought to have triggered epidemics in Washington and

Italy appear to not be related to the subsequent epidemics there, suggesting that the communities in

which they occurred had low enough R0 so that the epidemics they started died out. Miller et al.

(2020) examine transmission in Israel using full genome sequence and conclude that there are “high

levels of transmission heterogeneity . . . with between 1-10% of infected individuals resulting in 80% of

secondary infections.

As noted earlier, the primary motivation for the paper is the large recent literature in economics

that builds on SIR models. In this literature, Avery et al. (2020) informally discuss the potential

relevance of transmission heterogeneity. Most closely related are several very recent papers, including

Acemoglu et al. (2020), Baqaee et al. (2020), Favero, Ichino, and Rustichini (2020), and Rampini

(2020), that use calibrated multipopulation SIR models to examine the impact of COVID-19 mitigation

policies, and in the case of Acemoglu et al. (2020) to identify optimal policies from a broad class.

These papers use age-defined group structures to illustrate the substantial gains from age-targeted

policies due to how dramatically death rates vary with age. They do not focus on the impact of

contact heterogeneity, nor do most of the calibrations include within-age-group heterogeneity, which

is presumably much larger than cross-age group heterogeneity, but three of them do include some

heterogeneity in contact rates. Baqaee et al. (2020) calibrate a five by five matrix of age group to

age group contact rates using both general contact survey data and a workplace proximity survey

to reflect differences in occupational mixes across age groups. Acemoglu et al. (2020) use uniform

mixing in their main analyses, but also calibrate a three by three age group contact matrix to data

from another contact survey. The groups in Favero, Ichino, and Rustichini (2020) are age × activity

based with medium- and high-activity individuals assumed to be 12% and 18% more active than the

low-activity group.
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2 Heterogeneous SIR Models

In this section I’ll quickly review the standard SIR model and then spend more time on two hetero-

geneous versions drawing on previous results.

2.1 The standard homogeneous SIR model

A number of recent economic analyses of the COVID-19 epidemic build on a standard homogeneous

SIR model.

Consider a population of unit mass. Assume that at each time t each member of the population

is in one of three states: Susceptible, Infectious, or Recovered. Write S(t), I(t), and R(t) for the

fractions in each state at time t. Assume that the dynamics of these fractions are:

İ(t) = S(t)I(t)R0γ − γI(t)

Ṙ(t) = γI(t)

Ṡ(t) = −S(t)I(t)R0γ

One way to motivate the model is to suppose that agents are being uniformly randomly matched in

continuous time. Each agent meets another with probability R0γdt in a dt time interval. A susceptible

agent matched with an infectious agent becomes infectious. Agents transition from the Infectious state

to the Recovered state at Poisson rate γ. These transitions reflect both true recoveries and deaths

from the disease.

The parameter R0 can be thought of as the expected number of people that a newly infected

person will directly infect in a population where everyone is susceptible. It is the critical determinant

of the behavior of the model. Three important facts are:

1. If R0 > 1, then the equilibrium (S, I,R) = (1, 0, 0) is locally unstable. Adding a small number

of infected agents leads to contagious growth in I. Equilibria with I = 0 are locally stable if

R0 < 1. A small infection dies out.

2. The model has a “herd immunity” threshold of S ≡ 1 − 1/R0. Any state (S, 0, 0) with S < S

is a stable steady state, so a small infection introduced into such a population will not spread.

This does not, however, mean that epidemics will not infect more than a fraction 1 − S of the

population. When the herd immunity threshold is first reached we have İ(S, I,R) = 0. This
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means that the infectious rate is (locally) constant with new infections occurring as fast as people

are recovering. If the herd immunity threshold is reached at a point when I is large (which it

typically is in models with R0 large), then there can be substantial “overshooting” and many

more than 1− S people can eventually be infected.

3. Define the growth rate of the infectious population by g(t) = d
dt log(I(t)). Then, g(t) =

γ(R0S(t)− 1).

In the initial phase of an epidemic when S(t) ≈ 1, the third fact says that the growth rate of the

infectious population is approximately γ(R0 − 1). One can think of this as a cumulative growth rate

of R0 − 1 over the 1/γ average duration of an infection.

Investigations of whether restrictions are “flattening the curve” often graph the log of cumulative

infections, i.e. log(1−S(t)), versus time. This curve will be approximately linear with slope γ(R0−1)

as long as the ever-infected fraction of the population remains small, e.g. when the US has had 10

million cases. Attempts to infer R0 from such curves are common given the desire to assess where the

herd immunity threshold might be.

One other relevant feature of SIR models is that for many values of R0 the time-path of new

infections (and of deaths) has a shape that is fairly symmetric about its peak and looks somewhat

like a normal density. For example, figure 1 below reproduces Figure 1A from Ferguson et al. (2020)

illustrating the predictions of an SIR-like model for Great Britain the US.

Epidemiologists commonly work with extensions of the SIR model. Among the standard additions

are an additional state E of agents who are infected but not yet infectious, more flexible recovery

processes that allow non-exponential infectious durations, an explicit death state, and population

inflows/outflows. Some economic models also incorporate some of these elements. To simplify the

discussion I will not incorporate any of these features here, but similar conclusions should apply.

2.2 A heterogeneous SIR model with uniform matching

In practice, some individuals are more interactive than others. For example, supermarket cashiers will

be in the vicinity of many more people in a typical day than will retirees. Epidemiologists have also

analyzed models that allow for such heterogeneity.4

4See Andreasen and Christiansen (1989), Diekmann, Heesterbeek, and Metz (1990), Dushoff and Levin (1995), Het-
hcote (2000), Jacquez, Simon, and Koopman (1995), May and Anderson (1989), and Van den Driessche and Watmough
(2002). The exposition below draws heavily on Dushoff and Levin (1995).
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Figure 1: Figure reproduced from Ferguson et al. (2020) Figure 1A: “Unmitigated epidemic scenarios
for GB and the US. (A) Projected deaths per day per 100,000 population in GB and US.”

A tractable version is motivated by uniform matching in a population consisting of N equally sized

subpopulations indexed by i = 1, 2, . . . , N . Suppose that members of group i are randomly matched

with probabilityR0iγdt in each dt time interval. Order the populations so thatR01 > R02 > . . . > R0N .

Assume that the matchings are uniform so that the probability that a matched agent from group i

meets a group j agent is R0j/
∑

k R0k. Suppose any matching between a susceptible and an infectious

agent results in the susceptible agent becoming infectious. Write Si(t), Ii(t), and Ri(t) for the fraction

of agents in group i who are susceptible, infectious, and recovered at time t, and S(t), I(t), and R(t)

for the vectors with these terms as components.

With the same recovery process as before, this matching process motivates analyzing a system of

differential equations:

İi(t) = Si(t)
∑
j

βijIj(t)− γIi(t)

Ṡi(t) = −Si(t)
∑
j

βijIj(t)

Ṙi(t) = γIi(t)

with βij ≡ γR0i
R0j∑
k R0k

.
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With the assumption that the population size remains constant, the state is fully described by S(t)

and I(t) and we will usually omit R(t) from the state vector. For any vector S0 giving the fraction

of susceptibles in each group, the disease free state (S, I) = (S0, 0) is a steady state. To analyze the

stability of such a steady state and the behavior of the system in a neighborhood thereof, we linearize

the system around the steady state. Note also that all derivatives ∂İi
∂Sj

are equal to zero when evaluated

at a state with I = 0. Hence, the behavior of I in a neighborhood of (S0, 0) in the full 2N-dimensional

system has the same first-order approximation as that of I in the N-dimensional system

İ = AS0
I,

where AS0
is the partial derivative matrix with ijth element

aij =
∂İi
∂Ij

∣∣∣∣∣
(S0,0)

=

{
S0
i βij − γ if j = i
S0
i βij if j 6= i.

In particular, the equilibrium is locally stable if all eigenvalues of this matrix have negative real parts,

and unstable if any eigenvalue has a positive real part.

The AS0
matrix has positive off-diagonal elements, so the eigenvalue with the largest real part is

real, and corresponds to a strictly positive eigenvector. This eigenvector gives the relative prevalence

of the infected across groups for which the total number infected grows most rapidly. The special

structure of this matrix allows one to easily find this eigenvector. It is v1 = (S0
1R01, . . . , S

0
NR0N ),

i.e. prevalence is proportional to the product of the susceptible fraction and the contact rate. The

eigenvalue corresponding to this eigenvector is

λ1 = γ

(∑
i S

0
iR

2
0i∑

iR0i
− 1

)
.

Two important implications of this are:

1. The equilibrium (S0, 0) is locally stable if
∑
i S

0
i R

2
0i∑

iR0i
< 1 and locally unstable if

∑
i S

0
i R

2
0i∑

iR0i
> 1.

2. For small δ, the growth rate of the log of the total infected population at the state (S0, δv1) is

approximately γ
(∑

i S
0
i R

2
0i∑

iR0i
− 1
)

.

Note that if we start from any state with a very small fraction δ infected, then the initial cases will

initially grow at different rates in the different groups in a way that makes the distribution of cases
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across groups aligned with the principal eigenvector v1.
5 Hence, provided that this alignment has

already occurred by the time the epidemic starts to be measured, the early growth of a heterogeneous-

SIR epidemic with activity vector R0 will resemble the early growth of a homogeneous-SIR epidemic

with parameter R0 ≡
∑
iR

2
0i∑

iR0i
.

Two ways of rewriting this expression are informative. First,

R0 =

∑
iR

2
0i∑

iR0i
=
∑
i

R0i∑
k R0k

R0i.

This formula makes clear that growth rates depend on a weighted average of group-level R0i’s, with

the weights being proportional to the activity level in each group. This weighted average can be

substantially higher than the unweighted mean. The relation to the unweighted average is made

clearer by a second rewriting:

R0 =

∑
iR

2
0i∑

iR0i
=
NE(R2

0i)

NE(R0i)
= E(R0i) +

Var(R0i)

E(R0i)
.

This equality indicates that growth rate is the sum of the unweighted average of the R0i and the

ratio of the variance of the R0i across groups to the mean. The latter can easily be quite important

quantitatively.

2.3 A heterogeneous SIR model with homophily

While supermarket cashiers may interact with a fairly representative sample of the population, some

other highly active groups disproportionately interact with others in their group. For example, those

who frequent nightclubs, take public transportation, attend crowded religious services, or live in a

working class neighborhood with overcrowded housing disproportionately interact with others who do

the same things. Those who live in rural areas will disproportionately interact with others who live

in the same rural area.

Heterogeneous SIR models with homophilic matching are more difficult to analyze, but epidemi-

ologists have also derived insightful characterizations of some such models, referred to sometimes as

models with “preferred mixing” or “like-with-like preference”. To motivate one such model, consider

an N group model as in the previous subsection, but suppose that when an agent from group i is

5Suppose the initial population infected is δv with v =
∑
aivi where the vi are the eigenvectors of A. In a neighborhood

of this point we will have I(t) ≈
∑
aie

λitvi, which becomes aligned with vi.
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randomly matched the probability that the person with whom they are matched is in group j is

pij =

{
h+ (1− h)

R0j∑
k R0k

if j = i

(1− h)
R0j∑
k R0k

if j 6= i.

Such a matching process would lead to an SIR model nearly identical to that in the previous

subsection with

İi(t) = Si(t)
∑
j

βhijIj(t)− γIi(t),

where

βhij =

{
γR0i(h+ (1− h)

R0j∑
k R0k

) if j = i

γR0i(1− h)
R0j∑
k R0k

if j 6= i.

Once again, any (S0, 0) is a steady state of the system and we can analyze the stability of this

steady state by looking at a linearized N -dimensional system:

İ = AS0hI,

where AS0h is the partial derivative matrix with ijth element

ahij =
∂İi
∂Ij

∣∣∣∣∣
(S0,0)

=

{
S0
i β

h
ij − γ if j = i

S0
i β

h
ij if j 6= i.

The off-diagonal elements of this matrix are again positive, so the eigenvector with the largest real

part is again unique and corresponds to a positive eigenvector. It is no longer easy to give an explicit

formula for the eigenvalue, but as noted by Diekmann, Heesterbeek, and Metz (1990) and Dushoff and

Levin (1995) we can give explicit necessary and sufficient conditions for the equilibrium to be stable.

1. If S0
i hR0i > 1 for any i, then (S0, 0) is unstable. This is obvious: the number of infected in

population i will increase solely from within-group contacts, and cross-group contacts only add

to the growth.

2. If S0
i hR0i < 1 for all i, then (S0, 0) is unstable if

∑
i

R0i∑
k R0k

1
1−hS0

i R0i
(S0

iR0i − 1) > 0 and stable

if
∑

i
R0i∑
k R0k

1
1−hS0

i R0i
(S0

iR0i − 1) < 0.

Note that when h = 0 the stability condition in the part 2. simplifies to a version of expression

we gave earlier for the uniform model:
∑

i
R0i∑
k R0k

(S0
iR0i− 1) < 0. For a disease-free equilibrium to be

stable in a model with h > 0 it must satisfy the additional constraints in 1. that S0
i hR0i < 1 for all i
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as well as the modified inequality given in 2. Note that the summation in this inequality differs from

the summation for h = 0 in that we multiply the ith term by 1
1−hS0R0i

. These multiplicative factors

are positive for all terms, and they are larger for the terms with S0
iR0i larger. Hence, we can think

of the sum as proportional to a reweighting of the h = 0 sum that puts greater weight on the terms

with S0
iR0i large and less weight on the terms with S0

iR0i small. As a result, if the model with h = 0

is unstable, then the model with h > 0 is unstable as well.6

The argument above extends easily to a full monotonicity theorem: if a disease-free equilibrium is

unstable for some value of h, then it is unstable for any value h′ > h. Hence, a clear intuition one can

take away from this model is that homophilic matching is an obstacle to the stability of disease free

states.

Note that homophily on its own does not affect the dynamics of an epidemic. If we consider a

model in which the R0i are identical across groups, then as long as h is not extremely close to one,

a small infection introduced into any one population will soon equalize across populations. With

equal fractions infected in each population, the dynamics of the homophilic multipopulation model

are identical to the h = 0 model. Hence, all of the effects of homophily discussed above should be

understood as the effects of the combination of homophily and contact heterogeneity.

3 Challenges Inherent in Analyzing Heterogeneous Population Epi-
demics

In this section and the one that follows I turn to the task of drawing out implications of the above

models for analyses of COVID-19. This section stresses a cautionary implication: it can be difficult to

provide policy advice in epidemics that are well described by heterogeneous population SIR models.

In particular, with currently available data it is challenging to estimate activity rates in less active

populations, and important outcomes can be sensitive to these hard-to-estimate parameters.

3.1 Difficulty in calibrating models

Early in the COVID-19 epidemic several authors noted that it is difficult to calibrate critical parameters

of homogeneous SIR model in the initial phase of an epidemic.7 In the initial phase we may not have

reliable data on anything but deaths. The fact that deaths in the model increase at an exponential

6Mathematically, this is a classic Chebyshev inequality argument: if ai and bi are monotone increasing, then
∑
i aibi >

1
N

∑
i ai

∑
i bi.

7See Atkeson (2020), Fernández-Villaverde and Jones (2020), Korolev (2020), and Stock (2020).
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rate makes it fairly easy to estimate R0. But when many cases go unreported it is hard to calibrate

the death rate. Different death rates would lead to dramatically different future paths of the epidemic.

This weak identification problem goes away when we get some other piece of information that lets us

estimate the death rate. Some potential sources for this are random serology tests to estimate the

fraction that have ever been infected, fatality data from locations, e.g. South Korea or the Diamond

Princess, where we think almost all cases have been identified, or seeing an epidemic peak, which is

informative about S.8

As more information has become available many economists have analyzed SIR models with cali-

brated R0 and death rate parameters. The state of the art, in fact, has already moved well beyond this

with a few recent working papers analyzing calibrated multipopulation SIR models that allow death

rates and contacts to vary by age group.9 The contact rate calibrations in these papers rely on three

survey datasets. POLYMOD (Mossong et al. (2020)) and the BBC Pandemic Project (Klepac et al.

(2020)) are survey datasets which asked respondents to list those with which they had contact in the

previous 24 hours. And employment website O*Net asked workers in a large number of occupations

to report how physically close to others they worked on a 5 point scale. One can also now capture

some changes in activity over time using movement data available from firms with phone-tracking

capabilities.

Heterogeneous SIR models that allow for idiosyncratic variation in contact rates by breaking a

population (or each age group or other cell) into subpopulations that differ in activity levels have

more parameters than do SIR models that do not consider such divisions. The fact that predictions

can be dramatically affected by heterogeneity in R0 suggests that it is important to try to capture

some of the heterogeneity that surely exist within the cells that economists have been using with these

extra parameters.

One approach to calibrating the extra parameters might be to use data on the variance of reported

contacts in contact surveys. Although the surveys mentioned above have been used to estimate the

relative prevalence of different age-group to age-group contacts, they seem less compelling as a source

for estimating contact heterogeneity. For one thing, the way that contacts were defined, e.g. in the

BBC survey contacts were defined as those whom one had physically touched or had a face-to-face

conversation of at least three words with, leaves out many contacts that may be important in spreading

8Fernández-Villaverde and Jones (2020) note that more complex SIR models fit under a variety of assumptions about
accessory parameters make very similar predictions about the future course of epidemics in locations where epidemics
have peaked.

9See Acemoglu et al. (2020), Baqaee et al. (2020), and Favero, Ichino, and Rustichini (2020).

12



COVID-19: singing near someone in a choir practice, standing near someone in a crowded bar, riding

on the same subway train, being served by a cruise ship waiter, etc. The obvious heterogeneities in

the frequency of such unrecorded contacts may mostly cancel out when one computes means for a

large group, but we would definitely want to capture them to calibrate a model of contact hetero-

geneity. Another limitation of the main contact surveys is that they record contacts on a single day.

Hence, recorded cross-subject variation confounds differences is cross-sectional means and time-series

variation.

Another approach might be to calibrate the model to the path of the epidemic to-date. The initial

growth rate of an epidemic should let us estimate the parameter composite R0 mentioned earlier.

However, in a heterogeneous population SIR model, there is a weak identification problem when one

tries to get more than this: it can be very difficult to obtain estimates of the activity rates in the

less-active populations even after there has been substantial spread of the infection. Intuitively, when

there is substantial heterogeneity in the R0i, there will be a substantial number of infections when the

epidemic surges in the highest R0i subpopulations. At that point, there may still be few infections in

many of the less-active groups, particularly if matching is homophilic. This can make it very difficult

to estimate activity parameters for the low infection groups from aggregate infection data.

While it is hard to have any confidence in a calibration, I know that many economist readers will

want to know if the differences between heterogeneous and homogeneous SIR models are salient for

plausible parameters. Accordingly, I will at times discuss a simple numeric example in which the mean

and variance of activity levels across groups has been chosen to be in the plausible range. Specifically,

I will sometimes discuss a population with five equally-sized subpopulations having activity rates 3.5,

1.5, 1, 0.5, 0.5. With uniform matching the model has R0 ≈ 2.3 which roughly matches the the growth

rates assumed by Ferguson et al. (2020) and Acemoglu et al. (2020).10 The coefficient of variation

of the cross-group differences, 0.8, roughly matches the variation in reported contacts in the BBC

Pandemic Project data.

3.2 Difficulty in predicting future epidemic paths

The fact that some parameters of the heterogeneous SIR model are difficult to calibrate would not be

troubling if the hard-to-estimate parameters of the model did not affect model predictions that we care

about. Unfortunately, this is not true for the heterogeneous SIR model. One reason is that activity

10This is also consistent with some of the more sophisticated recent estimates growth rates such as that of Miller et al.
(2020).
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levels in the relatively low activity groups can have a substantial impact on the long run course of the

epidemic. As an illustration, Figure 2 graphs new daily cases for two heterogeneous SIR models.11

The parameters of the two models were chosen so that new cases take off at about the same time,

rise to a peak at about the same rate, and peak at about the same level. Despite the nearly identical

behavior up to the point when the epidemics peak, however, the epidemics proceed very differently on

the way back down. In the end, one epidemic eventually infects more than twice as many people as

the other, 58% vs. 28% of the population. The fraction who will eventually be infected under a given

constant policy is obviously highly policy-relevant, and this example indicates that it will sometimes

be very difficult to predict even when an epidemic is sufficiently far along as to have already reached

its peak.

Intuitively, the way in which the example was constructed is that the two models each have fairly

homophilic matching (h = 0.7) and feature a highly-active subpopulation in which the epidemic peaks

before many in the less active subpopulations have been extensively infected. The models differ in the

activity levels of the less-active. In one population, corresponding the dashed red line, seven of the ten

subpopulations have R0i = 0.4. The epidemic never really takes off in these groups and this results

in the fairly rapid decline in infection rates once the epidemic has burned through the highly active

groups. In the other population, corresponding to the solid blue simulation, nine of the ten groups

have R0i equal to 1.5 or 1.0. The infections coming out of the most active group set off a spread in

these groups that goes on for quite some time. This produces an asymmetric peak with a decline that

is much more gradual than the run up. Most of the total infections occur post-peak.

Analyses that do not consider the possibility that there may be heterogeneity in contact rates can

report confidence intervals that are too narrow for this reason. For example, while the US remains

quite far from the no-social-distancing herd immunity threshold, many states (and countries) are well

beyond their peaks, which means that SIR-based models will make highly confident predictions about

the future course of the epidemic presuming that individual behaviors and government policies remain

fixed. For example, the April 29th update of the widely discussed IHME model gave its confidence

interval for August 1st Massachusetts COVID-19 deaths as just 0 to 2.

11Both models have ten equally-sized subpopulations with h = 0.7. The population with the long-lasting epi-
demic has R0 = (5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1, 1, 1). The population with the shorter-lived epidemic has R0 =
(5.4, 2.6, 0.6, 0.4, . . . , 0.4) and a lower fraction initially infected.
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Figure 2: Example illustrating the difficulty in predicting the long-run course of a heterogeneous-
population epidemic given the path of infection rates up to the point when the infection peaks. New
daily cases are graphed for two ten population heterogeneous SIR models with h = 0.7. Model 1 has
R0 = (5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1, 1, 1). Model 2 has R0 = (5.4, 2.6, 0.6, 0.4, . . . , 0.4)

3.3 Difficulty in predicting policy impacts

As reopening has become salient, a number of economic analyses have modeled the effects that relax-

ations of restrictions may have.12 Thinking about heterogeneous models, however, suggests that it will

be challenging to confidently make such predictions. Uncertainty about activity levels in low-activity

populations can become even more important when considering policies relax social distancing. Intu-

itively, if we are far from the herd-immunity region (given the new policy), then the relaxation will

set off a substantial second wave. If we are already close to or in the herd-immunity region, then the

second wave will be smaller or nonexistent. Where we are relative to the herd immunity threshold

depends on the full set of R0i, including the hard-to-estimate activity levels in populations that have

seen few infections while activity is tightly restricted.

Figure 3 provides a numerical illustration. It shows the time paths that an epidemic would follow

under the same nonconstant policy path in two heterogeneous SIR populations. The policy involves

a severe lockdown, reducing activity levels by 65%, imposed gradually over a two-week period just as

12See, for example, Baqaee et al. (2020).
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the epidemic is taking off, and a partial relaxation about a month later that allows activity levels to

return to 70% of their pre-lockdown values. The left panel plots new daily cases. The right panel plots

cumulative cases to date. The vertical lines mark the dates when the initial lockdown starts its phase

in and the date on which it is relaxed. The epidemics rise at very similar rates in the two populations

prior to the lockdown. They have similar declines once the initial severe lockdown is imposed. Indeed,

in the right panel it is very hard to see any difference in the courses of the two epidemics up through

the date at which the relaxation occurs.

Despite this similarity in the initial run up and through the lockdown, the two epidemics follow very

different paths following the relaxation. As in the previous example, this reflects that the parameters

were chosen so that activity levels in the less active subpopulations differ. In one population, whose

outcomes correspond to the solid blue line, the relatively low activity populations have R0i = 1.5.

When we relax distancing rules, a large second wave takes off in these groups, infecting nearly three

times as many people as had the first wave. In the other population, corresponding to the dotted

red line, the low-activity populations have R0i = 0.7 and this makes the second wave much smaller.

Difficulty in distinguishing the blue from the red population at the point when the relaxation is

occurring will make it difficult to predict which future course we should anticipate.
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Figure 3: Example of epidemics that diverge after a policy relaxation. The figure graphs new daily
cases and cumulative cases for heterogeneous SIR models with h = 0.7 under a policy intervention
involving a severe lockdown and a partial relaxation. Model 3 has R0 = (3.63, 3.63, 1.5, . . . , 1.5). Model
4 has R0 = (3.55, 3.55, 0.7, . . . , 0.7).
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4 Potential Biases From Ignoring Heterogeneity

Many economic analyses of the COVID-19 epidemic build on the simpler homogeneous SIR model,

even though heterogeneous models seem more natural. This section notes several ways in which

ignoring or understating heterogeneity in contact rates may bias the conclusions these analyses reach.

4.1 Overstatement of the damage incurred in reaching herd immunity

COVID-19 may remain widespread until after we pass a herd immunity threshold. Understanding how

many cases must occur before herd immunity is reached is critical to assessing policies that lead to herd

immunity.13 An influential paper by Ferguson et al. (2020) suggested that deaths with uncontained

spread could be very high and Greenstone and Nigam (2020) note that they correspond to extremely

high economic costs under standard value-of-life assumptions. Two critiques of these calculations are

that deaths may not be as high as the models suggest even without a government response due to

endogenous social distancing, and that fatality rates could be lower due to asymptomatic cases. We

note here another reason: models with heterogeneous activity suggest that herd immunity thresholds

may be lower than näıve calculations based on homogeneous SIR models suggest.

In the homogeneous SIR model herd immunity is reached when S = 1/R0, implying that the

fraction of the population infected on the path to herd immunity must be at least 1 − 1/R0. If the

system is instead described by the heterogeneous SIR model with uniform matching, then the näıve

estimation of an R0 parameter may lead us to misestimate the herd immunity threshold as

Ŝ =
1

R0

=

∑
iR0i∑
iR

2
0i

.

This is indeed the threshold at which herd immunity is reached if the susceptible fraction is equal

in all groups, but we can reach herd immunity with fewer infected by concentrating infections in the

more active populations, and infections will naturally concentrate in the more active populations.

If R0i > 1 for all i, then one state that obviously achieves herd immunity is to set Si = 1/R0i for

all i. The fraction susceptible is 1
N

∑
i 1/R0i. That this is always greater than Ŝ can be seen via an

elegant two-step argument comparing both expressions to the reciprocal of the arithmetic mean of the

13Also critical to such calculations are an assessment of the extent to which we will overshoot herd immunity and the
excess deaths that may occur due to exceeding hospital capacity.
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R0i,
1

N

∑
i

1/R0i =
1

1/
(

1
N

∑
i

1
R0i

) ≥ 1
1
N

∑
iR0i

≥
1
N

∑
iR0i

1
N

∑
iR

2
0i

= Ŝ,

with the two inequalities coming from the two parts of the root mean square-arithmetic-harmonic

mean inequality. More important than the elegance is that the difference can be quite large in practical

terms. For example, in our loosely calibrated five-population example with R0 = (3.5, 1.5, 1, 0.5, 0.5),

the näıve homogeneous SIR calculation gives Ŝ = 7/16 ≈ 0.44, suggesting that 56% of the population

must be infected before herd immunity is reached. However, the Si = 1/R0i state is in the herd

immunity region and has just 21% of the population infected.

More generally, the maximum fraction that can remain uninfected at the herd immunity point is

calculated by solving

max
S1,...,SN

∑
i

Si

s.t. ∑
i

R0i∑
k R0k

SiR0i ≤ 1.

The linearity of the objective function and constraint make clear that the optimal solution involves

concentrating the infections in the highest activity groups, i.e. Si equal to zero in the highest-activity

groups, Si equal to one in the lowest activity groups, with Si perhaps at an intermediate level in some

marginal group to make the constraint hold with equality.14 This will require even fewer infections than

the Si = 1/R0i state. In the five-population example above, we can achieve herd immunity with just

14% of the population infected by fully concentrating infections in the highest-activity subpopulation.

While the example is clearly very loosely calibrated, the fact that the true level of infection needed to

reach herd immunity is just one-fourth of what a näıve homogeneous-SIR based calculation indicates

that contact heterogeneity is potentially a very important consideration.

For another example that may provide additional intuition, consider the spread of an epidemic in a

less-developed country that lacks adequate personal protective equipment for its health care workers.

In such an environment, transmissions from COVID-infected patients to health care workers to patients

who are in hospitals for other reasons could play a major role in disease transmission. Suppose that

this transmission resembled that in a ten-group uniform matching model with R0 = (6, 1, . . . , 1). The

most-active group in this model could represent the health care workers. In the early stages of the

14Acemoglu et al. (2020) also include a discussion of targeting which point in the herd immunity region the system
reaches.
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epidemic any non-health care worker who is infected will infect on average one other, 0.4 health care

workers and 0.6 non-health care workers. An infected health care worker will in turn infect six others,

again with 40%-60% split between health care workers and others. If a homogeneous SIR model is fit to

early growth of such an epidemic one would estimate R̂0 = R0 = (62 +12 + . . .+12)/(6+1+ . . .+1) =

45/15 = 3 and infer that herd immunity will not be reached until two-thirds of the population is

infected. In fact, herd immunity can be reached much more easily. The key is to stop the within-

hospital transmission. If five-sixths of the health care workers are immune, then each new infection

will lead to just one other. The health care workers are just one-tenth of the population, so we can

reach herd immunity with just 8.3% of the population having been infected.

In the model with homophilic matching we achieve herd immunity by choosing S1, . . . , SN such

that hSiR0i < 1 for all i and so that∑
i

R0i∑
k R0k

SiR0i − 1

1− hSiR0i
≤ 0.

Here, the herd-immunity point with the lowest total number infected again involves having a lower

fraction susceptible in the more active groups, but the solution will typically not be to fully concentrate

the infected. Although the initial change in the constraint from reducing Si away from one is largest in

the most active group, the marginal benefit of reducing the fraction susceptible decreases as the fraction

susceptible in a group is reduced, which may make the solution interior in multiple populations.

Achieving herd immunity with homophilic matching is more difficult than achieving herd immunity

with uniform matching. This follows directly from the contrapositive of the result noted at the end

of section 2.3: if a disease free state is stable for any h′, then it must also be stable for all h < h′.

This implies that the herd immunity region for a model with homophily parameter h′, i.e. the set of

S0 for which (S0, 0) is stable, is a subset of the herd immunity region for a model with parameter h.

The minimum fraction of the population that must have been infected to achieve herd immunity is

therefore monotonically increasing in h. Finding the minimum threshold is very easy in the h = 1 case:

the model is essentially a set of separate homogeneous SIR models so the solution is simply to set Si =

Min(1, 1/R0i) in each subpopulation. In our five-population example with R0 = (3.5, 1.5, 1, 0.5, 0.5)

this involves infecting 2/7 of those in subpopulation 1, 1/3 of those in subpopulation 2, and no others,

which is the 21% of the total population mentioned earlier. For intermediate h one needs to solve the

maximization problem described above, but we know the threshold increases continuously from 14%

to 21% as h goes from 0 to 1. For h = 0.5 it is 15.5%.
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An important factor to keep in mind when thinking about implications of results on herd immunity

is that heterogeneous SIR models, like homogeneous SIR models, always “overshoot” their herd im-

munity thresholds in an uncontrolled epidemic. In the homogeneous SIR model, overshooting occurs

because many are infected when herd immunity is reached and the infection is then reproducing at an

approximately contant rate. For example, a homogenous SIR model with R0 = 16/7 ≈ 2.3 reaches its

herd immunity threshold when just 1− 7/16 ≈ 56% of the population has been infected but the infec-

tion will eventually hit about 87% of the population in an uncontrolled epidemic. In heterogeneous

SIR models, uncontrolled spread infects more people than are infected in the minimal herd immunity

state for two reasons: the same overshooting effect as before, and because the path of the infection

does not concentrate infections in the high-activity population to as great a degree as does a path

that enters the herd immunity region at the minimal-infection point. This additional source of excess

infections can be extremely potent. For example, whereas the five-population uniform-matching SIR

model with R0 = (3.5, 1.5, 1, 0.5, 0.5) (which has R0 = 16/7) can be in the herd-immunity region

with as little as 14% of the population infected, an infection starting from a small evenly distributed

mass of infected will not reach the herd immunity region until 33% of the population is infected, and

overshooting will result in 54% eventually being infected.

While I noted above that the minimal-infection herd immunity point entails more infections when

matching is more homophilic, overshooting can be less extreme in homophilic models and when epi-

demics spread in an uncontrolled manner this can more than offset the difference in the herd immunity

thresholds. For example, with the same R0 vector as above, the fraction eventually infected is 46%

with h = 0.5, 42% with h = 0.75, and just 31% with h = 1.

4.2 Overestimation of the difficulty of controlling an epidemic

While heterogeneous population models suggest that reaching herd immunity need not involve nearly

as many infections as homogeneous SIR models suggest, they also suggest that avoiding herd immunity

via selective lockdown policies may not be as difficult as homogeneous SIR models suggest.

Several recent papers have discussed optimal policies using frameworks in which transmission rates

constant at time t can be reduced to R0(1− xt) by “locking down” a fraction xt of the population.15

This can reduce the fraction infected before a vaccine is developed, and reduce excess deaths from

exceeding hospital capacity. In a homogeneous SIR model, lockdown policies that keep the population

15See Acemoglu et al. (2020), Lippi, Alvarez, and Argente (2020), and Rowthorn and Toxvaerd (2012).
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from reaching herd immunity incur large economic costs because the fraction infected will grow unless

we keep the initial x0 large enough so that 1− x0 is below the herd immunity threshold. As a result,

some optimal-policy simulations suggest that we may mostly want to use lockdowns just to temporarily

slow the epidemic when hospitals would otherwise be overwhelmed.

The lower herd immunity thresholds of homogeneous models imply that targeted permanent lock-

downs could keep the fraction infected from ever expanding by locking down a smaller fraction of the

population. For example, in the R0 = (3, 1.5, 1.0, 0.5, 0.5) example discussed in the herd immunity

section, the problem of determining the minimum fraction the population that must be permanently

locked down to keep the epidemic from ever expanding is mathematically equivalent to earlier calcu-

lation of the minimal herd-immunity threshold. Hence, the epidemic can be stopped by permanently

locking down 14% of the population in the uniform matching case or at most 21% of the population

in the homophilic model.

Temporary lockdowns can also be appealing in heterogeneous population models because they can

serve as a means to guide the system toward a more desirable part of the herd-immunity region and/or

reduce overshooting For example, to prevent the dramatic overshooting noted in the previous section,

one could lock down all members of the lowest-activity populations once prevalence there reached

a fraction of a percent, keep them locked down as the infection spreads through the most active

populations, and then release them from lockdown once the population is close to herd immunity.

Figure 4 provides a numerical illustration. The solid blue series is the time path of new daily cases

in a homogeneous population with R0 = 16/7 ≈ 2.3. The dashed red line is the time path of new daily

cases in a heterogeneous uniform matching population with R0 = (3.5, 1.5, 1.0, 0.5, 0.5). Recall that

the heterogeneous population has R̂0 = 16/7 and indeed the two series initially look identical. The

infection in the heterogeneous population reaches herd immunity sooner and many fewer people are

eventually infected than in the homogeneous population. But the lower damage absent a lockdown

does not mean that the incremental benefit from a temporary lockdown is lower. The gray dashed

line shows the path of the infection under a temporary targeted lockdown: we reduce activity by 20%

in the highest activity populations and by 60% in the lower activity populations for a 60 day period.

This reduces overshooting in the highest-activity population and reduces the number of low-activity

people who are infected by members of the high-activity population as it is going through its peak.

In the numeric example, it reduces the fraction who are ever infected from 54% to 38%.16

16In the homogeneous model, implementing the same policy would make cases decline during the lockdown period,
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4.3 Overestimation of the impact of social distancing policies and endogenous
behavioral responses

Cumulative US COVID-19 deaths grew roughly exponentially throughout March, passing 5000 on

April 1st. Growth subsequently slowed dramatically. Many have noted that both government-

mandated policies and endogenous individual reactions would be expected to contribute to the

change.17 Understanding the causal impact of each factor is critical to forecasting the impact of reopen-

ings. A third effect also contributes to slowing growth in SIR models—the growth rate γ(R0S(t)− 1)

decreases as S(t) declines—but this effect will be small in homogeneous SIR models calibrated to cur-

rent conditions because S(t) remains close to one.18 In heterogeneous SIR models, however, this third

effect can be nontrivial even in the early stages of an epidemic, particularly if matching is homophilic.

The effect is easiest to quantify in the uniform matching model. If the susceptible fraction has

been reduced to S and the infection is still small, the growth of the infection will resemble that of a

homogeneous SIR model with parameter R0(S) =
∑

i
R0i∑
k R0k

SiR0i. Writing S for the average fraction

susceptible, the dominant eigenvector implies that the relative frequencies in the early infected popu-

lation will be roughly proportional to their activity levels so Si ≈ 1−N R0i∑
k R0k

(1−S). Differentiating

with respect to S we find dR0(S)

dS
= N

∑
iw

2
iR0i, where we have written wi ≡ R0i∑

k R0k
for the fraction

of early infections which are in population i. Focusing just on the effect due to reductions in the most

active group we have

d logR0(S)

dS
=
N
∑

iw
2
iR0i∑

iwiR0i
≥ Nw2

1R01∑
iwiR0i

= w1 ·
w1R01/

∑
iwiR0i

1/N
.

Note that the first term in the product is population 1’s share of early infections and the second

is the ratio of population 1’s contribution to R0 to its share of the total population. In extreme

examples where almost all early infections are in one small subpopulation, this effect can be very

large. For example, w1 ≈ 1 in a model in which population 1 is just 1/N of the total population we

have d logR0(S)

dS
≈ N , i.e. the apparent R will have been reduced by about N% by the time 1% of the

population has been infected. (In a homogeneous SIR model, the reduction in the apparent R0 would

but there would be a massive second wave after the policy is lifted and the eventual total infected would only be reduced
by about ten percentage points.

17See Baqaee et al. (2020), Farboodi, Jarosch, and Shimer (2020), Fernández-Villaverde and Jones (2020), Jones,
Philippon, and Venkateswaran (2020), and Kudlyak, Smith, and Wilson (2020). Epidemiological estimates of changes in
growth rates include Miller et al. (2020) and Unwin et al. (2020).

18A recent study in Sweden indicated that despite their embrace of herd immunity the fraction with antibodies is just
7% in Stockholm.
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be 1%.) The effect is smaller in uniform-matching models with less extreme heterogeneity in R0i. For

example, in the R0 = (3.5, 1.5, 1.0, 0.5, 0.5) example I have used frequently, w1 = 1
2 , w1R01∑

i wiR0i
≈ 3

4 , and

1/N = 0.2, so d logR0(S)

dS
≈ 2. This suggests that the apparent R0 will have been reduced by about 10%

when cumulative infections have reached 5%. This is larger than the 5% prediction of a homogenous

SIR model, but is not a dramatic difference.

The reduction in the apparent R0 can be much larger in models with homophilic matching because

infections and loss of susceptibility are both more concentrated in the highest activity groups. For a

simple illustration, think of a model with h ≈ 1. Here, the power of exponential growth means that

if we start from a tiny fraction infected in each group we will soon have almost all of the infected

in the highest-activity group. As a result, we can perceive the growth process early in the epidemic

to be close to R01 growth. If the infection peaks and declines in population 1 before it reaches a

substantial size in population 2, the apparent growth rate can temporarily fall to well below one even

though the epidemic is still in its early stages. Growth will then rise back to look like R02 growth

in a second wave, and so on. Such nonmonotonic growth rates only occur when h is very close to

one, but the fairly rapid early decline in the apparent growth rate as the epidemic burns itself out in

the highest-activity population is a feature that persists well away from the h = 1 limit. If we take

h = 0.7 in the R0 = (3.5, 1.5, 1.0, 0.5, 0.5) example, growth that looks like R0 ≈ 3 growth early in the

epidemic will slow to what looks like R0 ≈ 2.5 growth by the time 5% of the population has been

infected. Almost 20% of the highest-activity population is no longer susceptible at this point, and this

substantially reduces the epidemic growth rate.

The slowdown of an epidemic continues as it approaches and passes the herd immunity threshold.

Hence, viewing an epidemic in light of a homogeneous SIR model can both lead one to to mistakenly

conclude that initial behavior changes were more effective than they were at slowing the epidemic and

that later reopenings caused less acceleration than they did.

4.4 Underestimation of heterogeneity in R0 across regions

The SIR parameter R0 reflects both the contagiousness of a disease and the frequency and closeness of

interactions in a population. It seems natural that R0 should be larger in some countries or states than

in others. For example, we might expect it to be larger in more densely populated and highly urbanized

Belgium than in Sweden. But few economic analyses incorporate heterogeneity in R0 across regions.

This presumably reflects at least in part that the early epidemiological literature did not provide clear
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evidence of cross-country or cross-region differences. For example, Flaxman et al. (2020) provided

estimates for 11 European countries from the period before lockdowns went into effect, and the 50%

credible interval for Sweden (roughly 3.7–4.3) overlaps with the 50% credible intervals for 9 of the

other 10 countries including Belgium.19

The limited heterogeneity in reported R0 parameters could reflect what is estimated when one

applies a homogeneous SIR model to a heterogeneous world with homphilic matching. As an illustra-

tion, suppose that the differences between two countries lie not in differences between activity vectors

(R01, R02, . . . , R0N ), but in the fact that country a has a higher fraction of its population in the high

activity groups than does country b. For example, it may be that both countries have working class

subpopulations living in crowded urban housing and riding public transportation to jobs where they

work in close proximity to others and rural populations with much lower contact rates, with the pri-

mary cross-country difference being in the relative fractions in each group. In an extreme homophilic

model with h ≈ 1, an estimation of R0 would yield identical estimates of R̂0 = R01 in both countries,

regardless of whether important differences in the population compositions were present.

Again, these differences persist well away from the h = 1 limit. For example, with h = 0.5 a

model with five equal sized populations with R0 = (3.5, 1.5, 1.0, 0.5, 0.5) will resemble R0 ≈ 2.75

growth early in the epidemic, whereas a model with he same R0 vector, but in which the three most

active populations are each 10% of the population rather than 20% will resemble R̂0 = 2.5 growth.

Homogeneous SIR epidemics with R0 = 2.75 and R0 = 2.5 follow similar paths – herd immunity is

reached when 64% are infected in one model vs. 60% in the other and with overshooting the epidemics

eventually infect 93% and 90%. It would be natural to not bother to incorporate such differences in an

economic analysis of homogeneous SIR-based models. But the two heterogeneous models follow quite

different paths with one eventually infecting 49% of the population and the other eventually infecting

29%. Accounting for the potential impacts of such differences seems much more important.

4.5 Misestimation of when epidemics start

A number of early papers fitting SIR models produced estimates of when epidemics started. In addition

to satisfying intellectual curiosity, one motivation for such an exercise is that it may provide evidence

on the size of the asympotomatic population. Features of the heterogeneous SIR model suggest that it

19Unwin et al. (2020) estimates a more flexible model with more recent data and reports much more substantial
heterogeneity across US states, as do Fernández-Villaverde and Jones (2020). There is also a substantial range in early
estimates of the rate at which COVID-19 spread in China.
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will be very difficult to produce reliable estimates via such a method. Specifically, while I emphasized

earlier that a heterogeneous SIR model will appear to grow at a rapid pace R0 from quite early on,

this is not true at the very, very beginning. The infection only starts to grow at a rate related to the

largest eigenvalue once the pattern of the distribution of infections across the populations is aligned

with the principal eigenvector. Before this occurs, the growth rate can be very different depending on

whether the initial infections are in a low- or high-activity population. This makes early growth rates

unpredictable, and makes inferences about when an epidemic started very imprecise.

One of the most influential and inaccurate early papers on the COVID-19 epidemic may have

misled in part this reason. Lourenço et al. (2020) calibrated an SIR model to estimate the fraction

of the UK and Italy populations who were already infected as of March 19. In the three primary

scenarios included in Figure 1, they estimate that the start of the UK epidemic occurred about 30

days before the first reported death, and then project forward to estimate that between 36% and 67%

of the UK population was already infected as of March 19. One reason for the inaccuracy is that the

analysis assumed that the death rate was much lower than now appears to be the case. Another source

of the inaccuracy, however, may be another pair of assumptions—that deaths do not occur until well

after infection and that the time series of infections followed an SIR path with R0 equal to 2.25 or

2.75 from the very beginning.

In addition to being imprecise, homogeneous SIR-based inferences about epidemic origins may be

biased. Growth rates were probably lower in the very early days than they were by the time the

epidemic grew to the size where estimates of R0 were first made. This difference may help reconcile

why the fraction that antibody tests indicate have ever been infected is not larger, despite revelations

that there was a case in France in late December and a death in California on February 6.20 It may

also help account for why some models, e.g. that shown in Figure 3 of Baqaee et al. (2020), find it

difficult to match data on deaths from very early in the epidemic.21

5 Implications and Conclusions

The most basic message of this paper is that thinking about an epidemic in terms of homogeneous

SIR models can lead to mistaken conclusions if the interactions are better described by a model with

20Worobey et al. (2020) provide genome-based evidence that later early cases were not part of the main epidemics in
Washington and Italy.

21Data inaccuracies may, of course, also be relevant here, so it is possible that the model predictions are closer to the
truth than are the data.
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heterogeneous contact rates. Incorporating at least some heterogeneity need not be so difficult—in

many cases what is being done with a single population model could be done quite similarly in a

multipopulation model. But the remarkable pace at which the economics literature on COVID-19 has

been progressing makes keeping up with the state of the art sufficiently difficult that my primary hope

is that others will take the “heterogeneity matters” message to heart and incorporate it in their work.

Early in any epidemic, there is a great deal of scientific uncertainty about the disease transmission

process. This paper’s most important message about the COVID-19 epidemic itself is that to the

extent that the epidemiological literature is suggesting that heterogeneity in transmission may be

important, economists should be cognizant that we may still not understand its dynamics very well.

Estimates of R0 derived from observations in the early days of the epidemic may not reflect how the

epidemic would spread now absent restrictive policies, and it is particularly difficult to estimate the

parameters describing how the virus is spreading in less active communities. These parameters are

critical to understanding how the epidemic may progress as restrictions are loosened. As questions

about the impact of reopening policies become most salient, recognizing our limitations and doing

our best to estimate the hard-to-estimate parameters is important. The greater speed with which

the apparent R0 can decline in heterogeneous models, particularly when matching is homophilic, also

suggests that there may be more uncertainty than has been assumed in estimates of the impact both

of distancing policies and of reopenings. The natural directions of bias are that we may overstate

the impact that initial shutdown policies had in slowing the spread of COVID-19 and underestimate

the extent to which the partial relaxations have accelerated the spread. It is particularly important

to keep these biases in mind when estimates obtained in some region are used to provide advice to

others.

A more optimistic implication of heterogeneous SIR models is that the COVID-19 epidemic may

not be as bad as some models suggest. Models using growth rates estimated in the early days of the

epidemic may overstate how rapidly the epidemic would have spread absent government intervention

even if people had not taken it upon themselves to socially distance. And it is possible that epidemic

growth can be slowed by herd immunity effects at prevalence levels substantially lower than näıve

models suggest. If so, the option of reaching herd immunity, becomes less unattractive, particularly

if the herd immunity level being contemplated is that which applies when cost-effective mitigation

measures, such as universal mask wearing, are maintained, and if extensive efforts are made to keep

infections out of vulnerable populations along the path. The possibility that the impact of restrictive

policies may have been overestimated also suggests that some partial reopenings may be less damaging
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than anticipated.

Another important conclusion, however, is that the optimistic message that reaching herd immunity

may not be as damaging as feared should not be taken to imply that trying to reach herd immunity is

more advisable than earlier analyses suggest. Models with heterogeneity also suggest that controlling

the spread of COVID-19 may be easier than thought. For one thing, benefits similar to those which

herd immunity provides can be obtained by implementing targeted measures to prevent high-contact

people, e.g. health care and nursing home workers, those riding public transportation, etc., from ever

being infected. This makes measures such as ensuring nursing home workers have adequate personal

protective equipment even more powerful and cost-effective. And heterogeneous models also suggest

that both permanent and temporary targeted lockdowns may be more effective as a means to limit the

spread of the epidemic than homogeneous SIR models suggest. The good news on both sides of the

equation makes it possible that correctly accounting for heterogeneity in the epidemic process could

bolster the case for keeping in place policies that shut down high spread activities. Obviously, it would

be valuable to know more about the nature of contact heterogeneity (and about the long-run health

consequences of COVID-19 for survivors) to make this assessment.

I also noted that estimating SIR models on data early in an epidemic may lead one to underestimate

the extent to which critical parameters of the epidemic process differ across regions. The changes in

the course of epidemics in the aftermath of severe lockdown policies indicate that in aggregate policies

and behavioral changes had a very large impact on R0. It seems likely that to avoid a resurgence

during the reopening process, we will need to retain some restrictions. The limits to what is safe,

however, could be very different in different locations and at different times. It would be valuable to

have tailored guidance so that we do not simply have to rely on trying to infer the effect of each set

of incremental changes.

The recent economics literature includes several papers examining multipopulation SIR models in-

cluding Acemoglu et al. (2020), Baqaee et al. (2020), and Favero, Ichino, and Rustichini (2020). While

the analyses in these papers have not been calibrated to fully capture within age-group heterogeneity

in contact rates, they certainly could move in this direction. Baqaee et al. (2020), for example, could

in theory have “simply” used age × occupation groups instead of age groups as the basis of their

model, replacing 5 × 5 matrices with 330 × 330 matrices, to capture contact heterogeneity across

those working in each of the sectors they consider. This still, however, would not have captured

within-occupation heterogeneity.

In addition to the computational challenges, a factor that will limit our ability to calibrate more
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complex models is the limited data that is available on heterogeneity in contact rates. Just as serology

data has helped compensate for the weak identification of asymptomatic cases in regular SIR models,

more data may also provide the solution to the weak identification problem noted here. Although

several firms have already made location tracking data available to researchers, privacy concerns have

limited public releases to means within various cells. One simple step that could potentially greatly

enhance the value of this data is to also release within-cell variances and within-individual time series

correlations. While those developing apps that use Bluetooth interactions to track phone-to-phone

proximity are rightly being careful with privacy, they could potentially provide an even more valuable

source of information on contact distributions. Epidemiologists are also able to exploit variation in

virus genomes to provide more micro-based estimates of disease-transmission.22 While economists are

unlikely to have the expertise to take advantage of genomic data, keeping current on insights coming

out of these analyses will be important.

22See, for example, Miller et al. (2020) and Worobey et al. (2020).
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