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Abstract. This paper shows how to increase the power of Hausman’s (1978)

specification test as well as the difference test in a large class of models. The idea is

to impose the restrictions of the null and the alternative hypotheses when estimating

the covariance matrix. If the null hypothesis is true then the proposed test has the

same distribution as the existing ones in large samples. If the hypothesis is false then

the proposed test statistic is larger with probability approaching one as the sample

size increases in several important applications, including testing for endogeneity in

the linear model.
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1. Introduction

Specification tests are important in empirical economics and other empirical research.

Such tests help the researcher to evaluate whether the estimate of a quantity of interest

would change if the model was changed. The purpose of this paper is to derive tests

that are more powerful than the existing ones in important applications. The main idea

is to impose the restrictions of the null and alternative hypotheses when estimating the

variation of the test statistic. In particular, we impose the null and alternative hypotheses

when calculating the Hausman (1978) test and other tests that are based on the difference

between two estimators. Durbin (1954) and Wu (1973) propose such tests for the linear
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model, while Hausman (1978) considers a more general framework. These specification

tests are very popular in empirical economics and other empirical research.1 A reason

for the popularity of these specification tests is that one can make a judgement about

whether the estimates of the quantity of interest differ in a scientifically significant way

in the two (economic) models, as well as whether this difference is statistically significant.

Some tests such as score tests only yield whether a difference is statistically significant

and are less suitable for economic interpretation.

So many papers use the Hausman (1978) test that we cannot review them all, but

Zapata et al. (2012) and Adkins et al. (2012) review applications of the Hausman (1978)

test. Guggenberger (2010) considers using the Hausman test for pretesting, but this paper

is concerned with (i) testing whether two estimands are different and (ii) testing whether

an effi cient estimator differs from a robust one. A related paper is Woutersen (2016),

which shows how to improve the power of the Hansen (1982) and Sargan (1958) tests. We

extend the techniques of that paper to the Hausman (1978) test. This paper is organized

as follows: section 2 presents two examples, section 3 gives the theorem and section 4

concludes.

2. Examples

This section presents examples that show how imposing the restrictions of the null and

alternative hypotheses can yield a more powerful test.

2.1. Testing for Endogeneity. We first consider the linear model with a binary

regressor that is potentially endogenous and with a binary instrument. Suppose we observe

a random sample {Xi, Yi, Zi}, i = 1, ..., N. Let

Yi = α+ βXi + εi. (1)

Further assume that the variation of the regressor Xi is strictly positive, the variation

of the error term ε is bounded, and the instrument Zi is correlated with the regressor

Xi. The null hypothesis in Durbin (1954), Wu (1973), and Hausman (1978) is that

1For example Hausman’s (1978) article is cited 4184 times in the Web of Science Core Collection
as of the time of this writing; see also Kim, Morse, and Zingales (2006) for an earlier review. Some

examples of textbooks that review the Hausman (1978) test are Ruud (2000), Cameron and Trivedi (2005),
Wooldridge. (2010), and Greene (2012); the test is also reviewed by any other graduate econometric
textbook that we checked; Romano and Shaikh, and Wolf (2010) review tests in econometrics.
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the error term ε is homoscedastic and normally distributed, conditional on Xi and Zi,

i.e. εi|Xi, Zi ∼ N(0, σ2). In this case the least squares estimator for β is effi cient. The

alternative hypothesis in these papers is that εi has expectation zero for all Zi and is

homoscedastic given Zi. In that case, the two-stage least squares estimator is consistent

for β. Hausman (1978) observes that one can test this null versus alternative hypothesis

by testing whether γ equals zero in the following equation:

Yi = α+ βXi + γvi + ui, (2)

where vi is the residual of regressing Xi on a constant and Zi. If the null hypothesis holds,

then γ = 0, so ui and εi are identical. Thus, in that case we have that ui|Xi, Zi ∼ N(0, σ2).

Let ûi, i = 1, ..., N, denote the least squares residuals of regressing Yi on a constant, Xi,

and vi. Then the following test statistic has a T-distribution with N−3 degrees of freedom

under the null hypothesis,

THausman = γLS
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where γLS denotes the least squares estimator of γ. An observation that has not been

used before is that the residuals ûi, i = 1, ..., N , may be correlated with the interaction

term XiZi under the alternative. In particular, if Xi and Zi are binary, as above, then

we have that the average value of the residual ûi given Xi = 0 is zero, but not necessarily

that the average value of ûi is zero for the sub population with Xi = Zi = 0 or other sub

populations. We can remove this correlation by regressing ûi, i = 1, ..., N, on a constant,

Xi, Zi, and XiZi, or, equivalently, by regressing Yi on these variables. Let η̂i denote

the residual of this regression. Then the following test statistic has a T-distribution with

N − 4 degrees of freedom under the null hypothesis2 ,

TNew = γLS
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Under the null hypothesis, the estimators for the variation of ui, 1
N−3

∑
i û

2
i and

1
N−4

∑
i η̂
2
i ,

are unbiased. However, 1
N−4

∑
i η̂
2
i is smaller, with probability approaching one under the

alternative hypothesis. Our simulations below illustrate this. For example, we find in our
2See the appendix for details.
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simulations that imposing the orthogonality condition can increase the power of the test

by up to 29 percentage points. The simulations control for size so that the Hausman test

uses the critical value of the TN−3 distribution while the new test uses the critical value

of the TN−4 distribution. Both numbers converge to the critical value of the standard

normal distribution, and the critical values of the TN−3 and TN−4 are very similar even

for moderate sample sizes3 and, therefore, do not have a noticeable role in the simulation

results.

Suppose we observe a random sample {Xi, Yi, Zi}, i = 1, ..., N, and that these random

variables satisfy the following conditions,

Xi, Zi ∈ {0, 1},

P (Zi = 1) = P (Zi = 0) =
1

2
, P (Xi = 1|Zi) =

2

5
+
Zi
5
,

Yi = Xi + εi, where

εi|Xi, Zi ∼ N(µi, 1), and

µi = δ · {1

3
· 1(Zi = Xi = 0)− 1

2
· 1(Zi = 0, Xi = 1)

− 1(Zi = 1, Xi = 0) +
2

3
· 1(Zi = Xi = 1)}.

Thus, for δ = 0, the conditional expectation of the error term is zero. In that case, the

least squares estimator is consistent and effi cient. The two-stage least squares estimator

is the ‘robust estimator’in Hausman’s (1978) terminology and is consistent for any value

of δ. Also, this data generating process can be written as a function of four unobserved

types4 .

The simulations below show that the proposed test improves on the Hausman test.

Table 1: 0.05 Rejection Frequencies

N δ New Test Hausman Test Ratio

200 1 0.14162 0.08453 1.67538
400 1 0.18110 0.11473 1.57849
800 1 0.25621 0.17233 1.48674
200 2 0.34411 0.12828 2.6824914
400 2 0.43576 0.18928 2.3021978
800 2 0.58675 0.31749 1.8480897

Results based on 100,000 simulations.

3We report the critical values in the appendix and these critical values are the same up to 4 digits for
our sample sizes.

4Angrist, Imbens and Rubin (1996) introduce a terminology for these four unobserved types.
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In table 1, the size of the tests is 5%, i.e. the critical value is such that the probability

of falsely rejecting the null hypothesis is 5%. In table 2, the size of the tests is reduced to

1%, and we see the same pattern as in table 1. That is, the endogeneity bias of the least

squares estimator is detected more frequently.

Table 2: 0.01 Rejection Frequencies

N δ New Test Hausman Test Ratio

200 1 0.05218 0.02268 2.30070
400 1 0.07427 0.03369 2.20452
800 1 0.11870 0.06015 1.97339
200 2 0.20891 0.040800 5.12034
400 2 0.28870 0.071180 4.05591
800 2 0.43717 0.142980 3.05756

Results based on 100,000 simulations.

We summarize this subsection by observing that the Hausman test for endogeneity has

the feature that, under the alternative hypothesis, the least squares residuals are correlated

with the instrument and interaction term while the two stage least squares residuals are

correlated with the regressor and interaction term. These simulations show that imposing

the conditions that the residuals are uncorrelated with the regressor, instrument, and

interaction term yields a more powerful test. More generally, the idea is to impose the

restrictions of the null and the alternative hypothesis when estimating the covariance

matrix. We first consider a panel data model and then present our theorem.

2.2. Panel Data. In panel data we observe an individual more than once. An ad-

vantage of panel data is that we can test whether the regressors are exogenous, just as in

the last section. However, with panel data we can test the exogeneity assumption against

the alternative that the regressor is exogenous after we condition on an individual effect5 .

The following example illustrates this issue and shows how to apply our method. Consider

the linear panel data model. The first estimator is the least squares estimator, and this

estimator is consistent under the null hypothesis that the error term is randomly distrib-

uted. The second estimator is the individual (or fixed) effect least squares estimator. This

estimator allows for time invariant heterogeneity that can depend on the regressors. Thus,

the individual effect least squares estimator is consistent under the alternative hypothesis

5A motivation why it may be important to condition on an individual effect is that these regressors
could be chosen by the firm or the individual and, therefore, would depend on the individual effect;
Wooldridge (2010) gives an overview of panel data econometrics.
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that allows for such dependence.

In the last example, we used the fact that under the alternative hypothesis, the least

squares residuals are correlated with the instrument and the interaction term while the

two-stage least squares residuals are correlated with the regressor. Here, we use that

the residuals of the least squares (or random effects) estimator are correlated with the

regressors. We can thus impose the null hypothesis of no correlation and improve the

power of the Hausman (1978) test.

We now specify the data generating process for the panel data example. Suppose

we observe {Xit, Yit}, i = 1, ..., N, t = 1, 2, and that these variables satisfy the following

conditions,

Yit = α+ βXit + εit, (5)

εit|Xi1, Xi2 ∼ N(µi, σ
2), t = 1, 2 where

µi = δ · {1

4
+

3

2
Xi1 −

5

4
Xi2}.

Also, let the error term εit|Xi1, Xi2 be uncorrelated across time, t = 1, 2, and let it

not depend on regressors or error terms of other individuals. Let Xi1 = Xi2 = 0 for

i = 1, 4, 7, ..., let Xi1 = 0 and Xi2 = 1 for i = 2, 5, 8, ..., and let Xi1 = Xi2 = 1 for

i = 3, 6, 9, ...etc. Note that for δ = 0, the conditional expectation of the error term is

zero. In that case, the least squares estimator with a common intercept is consistent and

effi cient, while the least squares estimator with individual effects is the ‘robust estimator’

in Hausman’s (1978) terminology. One way to implement the Hausman test is to take the

difference between these two estimators. Another way that is very popular in empirical

work is to test whether the parameter γ equals zero in the following regression. These two

versions of the Hausman test are equivalent, see for example Wooldridge (2010). Consider

Yit = α+ βXit + γX̄i + uit,

where X̄i = Xi1+Xi2

2 . Let ûit denote the residual from this regression. The effi ciency of the

estimator under the null implies that the errors are uncorrelated with all regressors. We

impose this by regressing Yit on a constant, Xit, Xi1, and Xi2. Let η̂it denote the residual

of this regression. We then construct an estimate of the variation using ûit and η̂it. The
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Hausman test, based on ûit, has an T-distribution with NT − 3 degrees of freedom while

the proposed test has an T-distribution with NT − 4 degrees of freedom.

We use the following parameter values for our simulation, α = β = 0, δ has the value

3
4 , or

3
2 depending on the simulation. The simulations below show that the proposed test

is more powerful than the Hausman test. The null hypothesis is violated in every case

in the simulations shown here so that it is desirable to have high rejection frequencies.

In the appendix we show that the tests have correct size and we show simulation results

when the test is done at the 99% confidence level. For that case, the results are stronger

than for the 95% confidence test shown below.

Table 3: 0.05 Rejection Frequencies; H0: Common Intercept

N δ New Test Hausman Test Ratio

300 3/4 0.19660 0.13930 1.41134
600 3/4 0.33450 0.26040 1.28456
1200 3/4 0.57800 0.49210 1.17455
300 3/2 0.58150 0.27430 2.11994
600 3/2 0.85980 0.62170 1.38298
1200 3/2 0.99130 0.94460 1.04943

Results based on 10,000 simulations.

The simulations control for size. In particular, the Hausman test uses the critical value

of the TN−3 distribution while the new test uses the critical value of the TN−4 distribution.

Both numbers converge to the critical value of the standard normal distribution, and the

critical values of the TN−3 and TN−4 are very similar even for moderate sample sizes6

and, therefore, do not have a noticeable role in the simulation results.

The simulations in the last table have that the null hypothesis is a common intercept.

An alternative null hypothesis is that every individual has her own intercept and that this

intercept is random, i.e. independently distributed from all regressors. That model can

be estimated using Generalized Least Squares (GLS), see Hausman (1978) or Wooldridge

(2010) for details. GLS uses residuals to estimate the covariance matrix. Instead of using

ûit, defined above, we propose to use η̂it. The data generating process is the same as table

3, and the results are similar as well.

6We report the critical values in the appendix and these critical values are the same up to 5 digits for
our sample sizes.
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Table 4: 0.05 Rejection Frequencies; H0: Random Effects

N δ New Test Hausman Test Ratio

300 3/4 0.19680 0.13460 1.46211
600 3/4 0.33500 0.25500 1.31372
1200 3/4 0.57830 0.48440 1.19384
300 3/2 0.58150 0.25610 2.27059
600 3/2 0.86030 0.60310 1.42646
1200 3/2 0.99120 0.93770 1.05705

Results based on 10,000 simulations.

3. Theorem

The last section gave examples where the power of the Hausman (1978) test could be

improved. We now generalize these examples and state our theorem. In particular, we

allow for the class of estimators that can be written in terms of an influence function as

in Newey and McFadden (1994). The examples of the last section are in this class, and

so are generalized method of moments estimators and many of the maximum likelihood

estimators. Thus, we assume that we have two estimators, each with an influence func-

tions. This assumption is nothing more than that the estimator can be approximated by

an average.

Assumption 1

Let

β̂1 = β +G−1
∑
i

N
gi(Xi,Yi, Zi) + op(1/

√
N)

β̂2 = β +H−1
∑
i

N
hi(Xi,Yi, Zi) + op(1/

√
N),

where the vectors gi(·) and hi(·) have the same dimension as β, N is the sample size, and

G−1 and H−1 exist.

If a central limit theorem can be applied to the averages in the last assumption, then

the estimators are asymptotically normally distributed, and that is what we assume in

the next assumption.

Assumption 2

Let
√
N(β̂1 − β̂2 −

c√
N

)→
d
N(0,Ω),
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for some vector constant c and positive definite Ω. Also, let there exist a consistent esti-

mator for Ω,

Ω̂ = Ω + op(1).

Assumption 2 does not require β̂1 or β̂2 to be effi cient, i.e. we allow for our test to be

based on a difference. We use the information setW , which consists of data and knowledge

of the model that the researcher has. In example 1, W consists of the regressor and the

instrument. In example 2, W consists of the regressors in the first and second period.

The contribution of the individual to the influence function have expectation zero in many

models. For example, the contributions to the score function in likelihood models generally

have mean zero. Also, in many applications, the contributions to the generalized method

of moment influence function have mean zero, see for example Newey and McFadden

(1994). De Jong and Woutersen (2011) give examples of estimating functions in a dynamic

model, and these also have this property. The properties (i) E{G−1gi(Xi,Yi, Zi)|W} = 0

for all i and (ii) E{H−1hi(Xi,Yi, Zi)|W} = 0 for all i imply that E{G−1gi(Xi,Yi, Zi) −

H−1hi(Xi,Yi, Zi)|W} = 0 for all i. The last condition then implies that the plim{β̂1 −

β̂2} = 0. Of course, the reverse, E{G−1gi(Xi,Yi, Zi)−H−1hi(Xi,Yi, Zi)|W} 6= 0 for some

i does not imply plim{β̂1 − β̂2} 6= 0, so we also use c to state the hypotheses.

Hypotheses

H0 : Let c = 0 and E{G−1gi(Xi,Yi, Zi)−H−1hi(Xi,Yi, Zi)|W} = 0 for all i.

H1 : Let c 6= 0 or E{G−1gi(Xi,Yi, Zi)−H−1hi(Xi,Yi, Zi)|W} 6= 0 for some i.

The hypothesis H1 states that a conditional expectation is nonzero and we can use

this to reduce the variation of the Hausman test under H1, just as in the examples. Define

δi = G−1gi(Xi,Yi, Zi)−H−1hi(Xi,Yi, Zi) so that β̂1− β̂2 =
∑

i

N δi+op(1/
√
N). Also define

the conditional expectation φi = E(δi|W ). Note that var{
∑

i

N (δi − φi)} = var{
∑

i

N δi} −

var{
∑

i

N φi}, i.e. the conditional expectation reduces the variation. Hypothesis H1 implies

that the conditional expectation is nonzero so that assuming that var{
∑

i

N φi} is positive

definite is a mild assumption. The case that the conditional expectation absorbs all the

variation is not realistic so that we also assume that var{
∑

i

N (δi−φi)} is positive definite.
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A simple way to approximate the conditional expectation φi = E(δi|W ) is by us-

ing a projection. In particular, we can use regressors from the information set W to

construct the matrix S and the projection matrix PS . Also, let PS,ii = Si(S
′S)−1S′i,

δ̂i = Ĝ−1gi(Xi,Yi, Zi) − Ĥ−1hi(Xi,Yi, Zi) where Ĝ and Ĥ are estimators for G and H.

Instead of subtracting a conditional expectation from Ω̂ we can subtract the projection.

That is, define Λ̃ = Ω̂ − 1
N

∑
i δ̂
′
iPS,iiδ̂i. This is very similar to using a residual matrix

I − PS .

An alternative to using the Hausman test in example 1 is to use the Wald test to test

whether γ = λ = 0 in the following model,

Yi = α+ βXi + γvi + λXiZi + εi

where E(εi|Xi, Zi) = 0. This Wald test has a χ2-distribution with two degrees of freedom

under the null, while the Hausman test in example 1 has a χ2-distribution with one degree

of freedom (after squaring the test statistic). Of course the Hausman test has the benefit

that one can make a judgement about whether the estimates of the quantity of interest

differ in a scientifically significant way in the two economic models as well as whether this

difference is statistically significant while the Wald test may be less suitable for economic

interpretation. Usually an empirical researcher would like to have a test that is powerful

against many violations of the model. However, there is only so much information in a

data set, so the empirical researcher may have to choose between focusing on β and using

the Hausman test (and allowing λ to be nonzero) or using the Wald test and having power

against both γ 6= 0 and λ 6= 0. The proposed test has more power than the Hausman test

against the probability limits of estimators for β to be different and also has some power

against λ 6= 0. This can be an additional advantage for empirical researchers who are

choosing between the proposed test and the Wald test. The theorem that follows states

that TNew and THausman have the same asymptotic distribution under H0 but that, under

the conditions of the theorem, TNew is more powerful against violations of H0.

Theorem

Let assumption 1 and 2 hold. Let Λ = Ω−var( 1√
N

∑
i φi) where φi = E{G−1gi(Xi,Yi, Zi)−

H−1hi(Xi,Yi, Zi)|W} be positive definite and let and Λ̂ = Λ + op(1) .
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(i) If H0 is true then (a) THausman = N ·(β̂1−β̂2)′Ω̂−1(β̂1−β̂2)→
d
χ2-distribution with

dim(β1) degrees of freedom and (b) TNew = N · (β̂1− β̂2)′Λ̂−1(β̂1− β̂2)→
d
χ2-distribution

with dim(β1) degrees of freedom.

(ii) If H1 is true and var( 1√
N

∑
i φi) is positive definite then TNew is more powerful

then THausman in the sense that TNew > THausman with probability approaching one.

(iii) If H1 is true and Λ̂ = ϕ̂Ω̂ where ϕ̂ = ϕ+op(1) and 0 < ϕ < 1 then (a) THausman →
d

noncentral χ2-distribution with dim(β1) degrees of freedom and noncentrality parameter

c′Ω−1c (b) TNew = THausman

ϕ + op(1).

(iv) Let Λ̃ = Ω̂ − 1
N

∑
i δ̂
′
iPS,iiδ̂i where δ̂i = Ĝ−1gi(Xi,Yi, Zi) − Ĥ−1hi(Xi,Yi, Zi),

Ĝ = G + op(1), Ĥ = H + op(1), and plim{ 1N
∑
i δ̂
′
iPS,iiδ̂i} is positive definite. Let

T ∗New = (β̂1 − β̂2)′Λ̃−1(β̂1 − β̂2). Then T ∗New →
d
χ2-distribution with dim(β1) degrees of

freedom under H0. If H1 is true then T ∗New is more powerful then THausman in the sense

that T ∗New > THausman with probability approaching one.

Proof: See appendix.

Adjusting for the degrees of freedom does not effect the results in the theorem. How-

ever, we suggest to make such a correction if the number of regressors that is used in PS

is large. That would yield Λ̃ = N−K1

N−K2
Ω̂ − 1

N−K2

∑
i δ̂
′
iPS,iiδ̂i where K1 is the number of

parameters used to construct Ω̂ while K2 is the total number of parameters (including

regressors) used for Ω̂ and PS (our examples make such corrections).

The theorem is stated in terms of covariance matrices and conditional expectations and

allows for unobservables to be dependent. In particular, the information setW is the same

for all individuals so that, conditional on W, the conditional expectation of one individual

does not contain information about the conditional expectation of another individual. An

application of the idea of this paper to an information set that is predetermined is beyond

the scope of the paper. Our line of attack would be to use the covariance estimator by

Newey and West (1987) to estimate var( 1√
N

∑
i φi).

Further, the motivation to use local asymptotics in assumption 1 is to ensure that the

Hausman test and the proposed test have the same distribution under H0, and, therefore,

have the same critical values. In example 2 we have that µi is different for individuals



Increasing the Power of Specification Tests 12

with Xi1 = Xi2 = 1 and Xi1 = Xi2 = 0. In local asymptotics this difference in µi has to

be proportional to 1√
N
. This means that the reduction in the variation that we use in the

theorem cannot be this difference but, rather, the difference between the individuals who

have the same values of the regressor versus those who have Xi1 = 0 and Xi2 = 1. Such

a difference may be plausible in applications and goes against the common intercept and

random effects assumptions so that a test is warranted.

Also, Hahn et al. (2011) consider the linear model with endogeneity and assume that

the applied researcher has a weak set of instruments that is valid and a strong set of

instruments that is invalid. They then use the local asymptotics that was introduced by

Staiger and Stock (1997) and also regress the residuals on the instruments. Thus, our

theorem can also be viewed as a generalization of that approach.

Finally, the theorem above also applies to subset inference. The Hausman (1978) test,

as well as the difference test, is a convenient way to do subset inference (i.e. test the

parameters that you care about), and the new test has this advantage as well.

4. Conclusion

This paper shows how to increase the power of Hausman’s (1978) specification test, as

well as the difference test, in a large class of models. For example, consider the case

where a researcher compares her results that assume that a regressor in the linear model

is exogenous to another study that allows for endogeneity and uses instruments. We

propose to estimate the covariance matrix based on residuals that are orthogonal to these

exogenous regressors, instruments, and interaction terms. This differs from using least

squares residuals that are only orthogonal to the exogenous regressors. More generally,

the idea is to impose the restrictions of the null and the alternative hypotheses when

estimating the covariance matrix. If the null hypothesis is true, then the proposed test

has the same distribution as the existing one in large samples. If the hypothesis is false,

then the proposed test statistic is larger with probability approaching one as the sample

size increases in several important applications, including testing for endogeneity in the

linear model. As the Hausman (1978) test is very popular in empirical work, we expect

the current results to be useful as well.
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Appendix 1: T-distribution in Example 1

Let ε be a vector with length N with εi, i = 1, ..., N, as its elements. Let Q be an N

by 3 matrix with {1, Xi, Zi} as its rows, i = 1, ..., N. Let R be an N by 4 matrix with

{1, Xi, Zi, XiZi} as its rows, i = 1, ..., N.

Lemma A1: Let Yi = α+βXi+ εi for i = 1, ..., N. Let ε|Xi, Zi, i = 1, ..., N ∼ N(0, σ2IN ).

Let the matrices Q′Q and R′R have full rank. Then THausman = γLS

√∑
i v

2
i (1−

∑
i v

2
i∑

i X
2
i

)

√
1

N−3
∑

i û
2
i

and TNew = γLS

√∑
i v

2
i (1−

∑
i v

2
i∑

i X
2
i

)

√
1

N−4
∑

i η̂
2
i

have a T-distributions with N − 3 and N − 4 degrees of

freedom respectively.

Proof: Let MQ = IN − Q(Q′Q)−1Q′ and MR = IN − R(R′R)−1R′. Note that
∑
i û

2
i =

ε′MQε
σ2 has a χ2-distribution with N − 3 degrees of freedom and

∑
i η̂
2
i = ε′MRε

σ2 has a

χ2-distribution with N − 4 degrees of freedom. The next step is to show that the vector

û = MQε and γLS are independently distributed. Note that û and γLS are jointly normally

distributed, so we only have to show that every element of û is uncorrelated with γLS .

Consider  αLS
βLS
γLS

 =

 α
β
0

+ (Q′Q)−1Q′ε.

Next consider the expectation of (Q′Q)−1Q′ε, a 3 by 1 matrix, times û′, a 1 by N matrix,

i.e.

E{(Q′Q)−1Q′ε · û′} = E{(Q′Q)−1Q′ε · ε′MQ}

= σ2E{(Q′Q)−1Q′MQ}

= σ2E{(Q′Q)−1Q′ − (Q′Q)−1Q′} = 0.

The next step is to show that the vector η̂ = MRε and γLS are independently distributed.

Note that η̂ and γLS are jointly normally distributed, so we only have to show that every

element of η̂ is uncorrelated with γLS . Consider αLS
βLS
γLS

 =

 α
β
0

+ (Q′Q)−1Q′ε.
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Next consider the expectation of the 3 by 1 matrix (Q′Q)−1Q′ε times the 1 by N matrix

η̂′, i.e.

E{(Q′Q)−1Q′ε · η̂′} = E{(Q′Q)−1Q′ε · ε′MR}

= σ2E{(Q′Q)−1Q′MR} = 0

since Q′MR = 0 because all the regressors in Q are also in R. This completes the proof.

Appendix 2: Simulations Example 1

In the simulations we use sample sizes of 200, 400 and 800. Thus, the relevant critical

values are the critical values of the T-distribution with 196, 197, 396, 397, 796, and 797

degrees of freedom. Usually, empirical researchers use critical values that have three digits

(e.g. 1.96). The critical values for N − 3 and N − 4 are the same if one uses three digits

or four digits. We use 7 digits, and then one can observe a slight (although basically

irrelevant) change. The following table has the number of degrees of freedom in its first

column, the critical values for the two-sided test at the 95% significance level as its second

column, and the critical values for the two-sided test at the 99% significance level as its

third column.

Table A1: Critical Values T-distribution
Degrees of Freedom 95% confidence, 2 sided test 99% confidence, 2 sided test

196 1.972141 2.600887
197 1.972079 2.601016
396 1.965973 2.588301
397 1.965957 2.588270
796 1.962945 2.582020
797 1.962945 2.582012

Both the proposed test and the Hausman test have T-distributions. Therefore, the

size of the test is exact. Our simulations confirm that. That is, at the 95% confidence

level we reject the truth about 5% of the time (see table A2), and at the 99% confidence

level we reject the truth about 1% of the time (see table A3).

Table A2: 0.05 Rejection Frequencies:
N δ New Test Hausman Test Ratio

200 0 0.04974 0.04989 0.99699
400 0 0.05019 0.05011 1.00160
800 0 0.04978 0.04981 0.99939

Results based on 100,000 simulations.
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Table A3: 0.01 Rejection Frequencies:
N δ New Test Hausman Test Ratio

200 0 0.01017 0.01007 1.00993
400 0 0.01012 0.01010 1.00198
800 0 0.01007 0.01009 0.99801

Results based on 100,000 simulations.

In about 1 in 10,000 simulations for N = 200, we had that Xi = Zi for all i. In that

case, the least squares and two-stage least squares estimators are equal, and we did not

reject the null. We never had this issue with N = 400 or N = 800.

Appendix 3: Simulations Example 2

Arguments similar to the ones used in appendix 1 yield that the Hausman test in

the simulations has a T-distribution with NT − 3 degrees of freedom under the null of a

common intercept, while the new test has a T-distribution with NT−4 degrees of freedom

under the null. In the simulations we use sample sizes of 300, 600 and 900 individuals,

and we observe everybody twice. We thus use the critical values of the T-distribution

with 596, 597, 1196, 1197, 2396, and 2397 degrees of freedom. As the simulations below

show, these values yielded the correct size in simulations.

Table A4: Critical Values T-distribution
Degrees of Freedom 95% confidence, 2 sided test 99% confidence, 2 sided test

596 1.963952 2.584104
597 1.963946 2.584090
1196 1.961949 2.579946
1197 1.961948 2.579943
2396 1.960955 2.577883
2397 1.960954 2.577882

.

Table A5: 0.05 Rejection Frequencies; H0: Common Intercept
N δ New Test Hausman Test Ratio

300 0 0.05150 0.05150 1
600 0 0.05060 0.05060 1
1200 0 0.05300 0.05280 1.00379

Results based on 10,000 simulations.

Table A6: 0.01 Rejection Frequencies; H0: Common Intercept
N δ New Test Hausman Test Ratio

300 0 0.00990 0.00990 1
600 0 0.00960 0.00960 1
1200 0 0.00960 0.00960 1

Results based on 10,000 simulations.
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.

Table A7: 0.05 Rejection Frequencies; H0: Random Effects
N δ New Test Hausman Test Ratio

300 0 0.05130 0.05140 0.99805
600 0 0.05040 0.05030 1.00199
1200 0 0.05290 0.05280 1.00189

Results based on 10,000 simulations.

Table A8: 0.01 Rejection Frequencies; H0: Random Effects
N δ New Test Hausman Test Ratio

300 0 0.00990 0.00970 1.02061
600 0 0.00940 0.00940 1
1200 0 0.00970 0.00970 1

Results based on 10,000 simulations.

Table A9: 0.01 Rejection Frequencies; H0: Common Intercept

N δ New Test Hausman Test Ratio

300 3/4 0.066100 0.0373000 1.77211
600 3/4 0.14820 0.0905000 1.63757
1200 3/4 0.33690 0.23950 1.40668
300 3/2 0.33080 0.07230 4.57538
600 3/2 0.67770 0.29750 2.27798
1200 3/2 0.96000 0.77080 1.24545

Results based on 10,000 simulations.

Table A10: 0.01 Rejection Frequencies; H0: Random Effects

N δ New Test Hausman Test Ratio

300 3/4 0.066400 0.035900 1.84958
600 3/4 0.14850 0.086700 1.71280
1200 3/4 0.33680 0.234000 1.43931
300 3/2 0.33170 0.0627000 5.29027
600 3/2 0.67770 0.27290 2.48332
1200 3/2 0.95990 0.74850 1.28243

Results based on 10,000 simulations.

Also, an alternative to running the augmented regression in the main text is to take

the difference between the least squares estimator, βLS , and the least squares estimator

with individual effects, βIndividual Effects LS . These estimators and their variance estimates

are

βLS =

∑
i

∑
t(Xit − X̄)Yit∑

i

∑
t(Xit − X̄)2

and ̂V ar(βLS) =
1

NT−2
∑
i

∑
t e
2
it

{
∑
i

∑
t(Xit − X̄)2}2

where eit = Yit − Ȳ − βLS(Xit − X̄), and

βIndividual Effects LS =

∑
i

∑
t(Xit − X̄i)Yit∑

i

∑
t(Xit − X̄i)2

and ̂V ar(βIndividual Effects LS) =
1

NT−N−1
∑
i

∑
t u

2
it

{
∑
i

∑
t(Xit − X̄i)2}2

where uit = Yit− Ȳi−βIndividual Effects LS(Xit−X̄i). In the simulation T = 2 and N = 300,

600, or 1200.
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Appendix 4: Proof of Theorem

(i) If H0 is true then φi = E{G−1gi(Xi,Yi, Zi) − H−1hi(Xi,Yi, Zi)|W} = 0 for all i

so that Λ ≡ Ω − var( 1√
N

∑
i φi) = Ω. The result then follows from the properties of the

χ2-distribution (see, e.g., Lehmann and Romano (2005)).

(ii) Let A and B denote invertible matrices. Abadir and Magnus (2005, exercise and

solution 12.16) show that if A−B is positive definite then {B−1−A−1} is positive definite

as well. Thus, if Ω − Λ is positive definite then {Λ−1 − Ω−1} is positive definite as well.

We have that

TNew − THausman = (β̂1 − β̂2)′{Λ̂−1 − Ω̂−1}(β̂1 − β̂2)

= (β̂1 − β̂2)′{Λ−1 − Ω−1}(β̂1 − β̂2) + op(1)

> 0 with probability approaching one under H1.

(iii) Note that

TNew = (β̂1 − β̂2)′Λ̂−1(β̂1 − β̂2)

= (β̂1 − β̂2)′(
1

ϕ̂
)Ω̂−1(β̂1 − β̂2)

=
THausman

ϕ
+ op(1)

and the result follows.

(iv) Note that Ω̂ − Λ̂ is positive definite with probability approaching one and the

result follows from (ii).


