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Indirect reciprocity is a foundational mechanism of human coop-
eration. Existing models of indirect reciprocity fail to robustly
support social cooperation: Image-scoring models fail to provide
robust incentives, while social-standing models are not informa-
tionally robust. Here we provide a model of indirect reciprocity
based on simple, decentralized records: Each individual’s record
depends on the individual’s own past behavior alone, and not
on the individual’s partners’ past behavior or their partners’ part-
ners’ past behavior. When social dilemmas exhibit a coordination
motive (or strategic complementarity), tolerant trigger strate-
gies based on simple records can robustly support positive social
cooperation and exhibit strong stability properties. In the oppo-
site case of strategic substitutability, positive social cooperation
cannot be robustly supported. Thus, the strength of short-run
coordination motives in social dilemmas determines the prospects
for robust long-run cooperation.

indirect reciprocity | robust cooperation | strategic complementarity |
strategic substitutability

People (and perhaps also other animals) often trust each
other to cooperate even when they know they will never

meet again. Such indirect reciprocity relies on individuals hav-
ing some information about how their partners have behaved
in the past. Existing models of indirect reciprocity fall into two
paradigms. In the image-scoring paradigm, each individual car-
ries an image that improves when the individual helps others,
and (at least some) individuals help only those with good images
(1, 2). In the standing paradigm, each individual carries a stand-
ing that typically improves when the individual helps others with
good standing, but not when the individual helps those with bad
standing, and individuals with good standing help only other
good-standing individuals (3, 4).

Neither of these paradigms provides a robust explanation for
social cooperation. In image-scoring models, there is no rea-
son for an individual to help only partners with good images:
Since the partner’s image does not affect one’s future payoff,
helping some partners and not others is optimal only if one
is completely indifferent between helping and not helping. In
game-theoretic terms, individuals never have strict incentives
to follow image-scoring strategies, and hence such strategies
can form at best a weak equilibrium. Closely related to this
point, image-scoring equilibria are unstable in several envi-
ronments (5, 6). Standing models do yield strict, stable equi-
libria, but they fail to be informationally robust: An individ-
ual’s standing is a function of not only the individual’s past
behavior, but also the individual’s past partners’ behavior, their
partners’ partners’ behavior, and so on ad infinitum. In the
absence of centralized record keeping or some way of physi-
cally marking bad-standing individuals, computing such a func-
tion requires information that is likely unavailable in many
groups (7).

We develop a theoretical paradigm for modeling indirect reci-
procity that supports positive social cooperation as a strict, stable
equilibrium while relying only on simple, individualistic informa-
tion: When two players meet, they observe each other’s records
and nothing else, and each individual’s record depends only on
the individual’s own past behavior. [Individualistic information is
also called “first-order” (8–10).]

As our model of individual interaction, we use the clas-
sic prisoner’s dilemma (“PD”) with actions C ,D (“cooperate,”
“defect”) and a standard payoff normalization, where the gain
from unilateral defection, g , and the loss from unilateral coop-
eration, l , are both positive and satisfy the condition g < l +1,
which means that joint payoffs are maximized by mutual coop-
eration (Fig. 1, Left). This canonical game can capture many
two-sided interactions, such as business partnerships (11), man-
agement of public resources (12, 13), and risk sharing in devel-
oping societies (14), as well as many well-documented animal
behaviors (15).

A critical feature of the PD is whether it exhibits strategic
complementarity or strategic substitutability. Strategic comple-
mentarity means that the gain from playing D is greater when
the opponent also plays D . In the PD payoff matrix displayed in
Fig. 1, this corresponds to the condition

g < l . [Strategic Complementarity]

The opposite case of strategic substitutability arises when the
gain from playing D is greater when the opponent plays C :
Mathematically, this occurs when

g > l . [Strategic substitutability]

Many previous studies of indirect reciprocity restrict attention to
the “donation game” instance of the PD where g = l , as in Fig. 1,
Right (16).* Our analysis reveals this to be a knife-edge case
that obscures the distinction between strategic complementarity
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Fig. 1. The prisoner’s dilemma. (Left) Matrices show how any prisoner’s
dilemma can be represented by the standard normalization with g = (T −
R)/(R− P) and l = (P− S)/(R− P), where T > R> P> S. (Right) Matrices
illustrate this normalization for “donation games” in which choosing G
(Give) instead of S (Shirk) incurs a personal cost c and gives benefit b> c
to the opponent.

(g < l) and substitutability (g > l). This distinction has long been
known to be of critical importance in economics (18, 19), while its
implications for cooperation in the repeated prisoner’s dilemma
have been noted more recently (8, 9). When a player’s record
depends only on the player’s own past actions, the future reward
for cooperation (or future penalty for defection) is independent
of the player’s current opponent’s record. Therefore, to obtain
an equilibrium where a player has a strict incentive to cooperate
if and only if the opponent’s record is good, the cost of coopera-
tion must be lower against an opponent with a good record (who
cooperates) than against one with a bad record (who defects):
That is, cooperation requires g < l .

Strategic complementarity is a common case in realistic social
dilemmas. It implies that although D is always selfishly optimal
(a defining feature of the PD), the social dilemma nonetheless
retains some aspect of a coordination game, so that playing C is
less costly when one’s partner also plays C . For example, mob-
bing a predator is always risky (hence costly) for each individual,
but it is much less risky when others also mob (20).

In our model, each player’s record is an integer, which evolves
as a function of the player’s history of plays of C and D . We
assume the system is subject to some noise, so that, whenever
an individual plays C , with probability ε the individual’s record
updates as if the individual had played D instead.† Here the level
of noise ε∈ (0, 1) can reflect either errors in recording or errors
in executing the intended action.

A simple example of such a record system is the “counting
Ds” system where a player’s record is just a count of the num-
ber of times the player has defected (or cooperated and was hit
by noise). More complicated record systems could also count the
number of times a player cooperated and could also keep track
of the time path of plays of C and D . We analyze a fairly broad
class of strategies, with the following three defining properties:
1) The set of all possible records can be partitioned into two
classes, “good records” and “bad records.” 2) When two play-
ers with good records meet each other, they cooperate; if instead
either partner has a bad record, both players defect. 3) The class
of bad records is absorbing: Once a player obtains a bad record,
the record remains bad forever. We refer to this as the class of
trigger strategies.

Examples of trigger strategies include strategies where a
player’s record becomes bad once the absolute number of times
the player has defected crosses a threshold K , as well as strate-
gies where the player’s record becomes bad the first time the
fraction of times the player has defected crosses a threshold. We

† It would not substantively affect our results to assume that there is also noise when an
individual plays D, so we exclude this possibility for simplicity.

call strategies of the former type tolerant grim trigger strategies
or GrimK , as they are a form of the well-known grim trigger
strategies (21) with a “tolerance” of K recorded plays of D . We
will see that GrimK strategies succeed in supporting cooperation
for a broad range of payoff parameters. Moreover, if the payoff
parameters preclude cooperation under GrimK strategies, they
also preclude cooperation under any other trigger strategy.

We analyze the steady-state equilibria of a system where the
total population size is constant, but each individual has a geo-
metrically distributed lifetime with survival probability γ ∈ (0, 1).
Players play the PD with random rematching every period and
receive no information about their current partner other than the
partner’s record. To ensure robustness, we insist that equilibrium
behavior is strictly optimal at every record; in classical (normal-
form) games, this implies that the equilibrium is evolutionarily
stable (22, 23).

Results
Steady-State Cooperation. We show that GrimK strategies can
form a strict steady-state equilibrium if and only if the PD
exhibits substantial strategic complementarity, in that the gain
from playing D rather than C is significantly greater when the
opponent plays D : The precise condition required in the PD
payoff matrix displayed in Fig. 1 is

g <
l

1+ l
.

Under this condition, the tolerance level K can be tuned so that
GrimK strategies support positive social cooperation in a steady-
state equilibrium.

To see how to tune the threshold K , note that since even indi-
viduals who always try to cooperate are sometimes recorded as
playing D due to noise, K must be large enough that the steady-
state share of the population with good records is sufficiently
high: With any fixed value of K , a population of sufficiently
long-lived players would almost all have bad records. However,
K also cannot be too high, as otherwise an individual with
a very good record (that is, with a very low number of Ds)
can safely play D until the individual’s record approaches the
threshold. Another constraint is that an individual with record
K − 1 who meets a partner with a bad record must not be
tempted to deviate to C to preserve the individual’s own good
record. These constraints lead to an upper bound on the maxi-
mum share of cooperators in equilibrium. As lifetimes become
long and noise becomes small, this upper bound converges to
0 whenever g > l/(1+ l) and to l/(1+ l) whenever g < l/(1+
l) (Fig. 2), and we show that this share of cooperators can
in fact be attained in equilibrium in the (γ, ε)→ (1, 0) limit.
Thus, greater strategic complementarity (higher l and lower
g) not only helps support some cooperation; it also increases
the maximum level of cooperation in the limit, as shown
in Fig. 3.

We also show that, in the (γ, ε)→ (1, 0) limit, no trigger strate-
gies can support a positive equilibrium share of cooperators if
g > l/(1+ l), and no trigger strategies can support an equilib-
rium share of cooperations greater than l/(1+ l) if g < l/(1+ l).
Thus, when lifetimes are long and noise is small, GrimK strate-
gies attain optimum equilibrium cooperation within the class of
trigger strategies. The logic of this result is that the constraints on
the performance of GrimK strategies imposed by players’ incen-
tives and the presence of noise apply equally to any strategy in
the trigger class.

Stability, Convergence, and Evolutionary Properties. GrimK strate-
gies also satisfy desirable stability and convergence proper-
ties. These derive from an important monotonicity property of
GrimK strategies: When the distribution of individual records is
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Fig. 2. Upper bounds on cooperation. The entries are upper bounds on the
share of cooperators possible in a GrimK equilibrium for various γ and ε

values when g = 0.5 and l = 2.5, with a darker shade indicating a higher
value as shown in the scale at Right. As we move to the bottom right, the
upper bound converges to l/(1 + l)≈ 0.7143, which is the maximum share
of cooperators sustainable in the limit, but away from the limit the upper
bound can be different (the values in this table are all higher, but this is not
the case for small γ or large ε).

more favorable today, the same will be true tomorrow, because
players with better records both behave more cooperatively and
induce more cooperative behavior from their partners. (See
Methods for a precise statement.) From this observation it can
be shown that, whenever the initial distribution of records is
more favorable than the best steady-state record distribution,
the record distribution converges to the best steady state. Sim-
ilarly, whenever the initial distribution is less favorable than
the worst steady state, convergence to the worst steady state
obtains (Fig. 4). These additional robustness properties are not
shared by more complicated, nonmonotone strategies that can
sometimes support cooperation for a wider range of parameters
than GrimK .

We also analyze evolutionary properties of GrimK equilib-
ria. When g < l/(1+ l), there is a sequence of GrimK equilibria
that are “steady-state robust to mutants” and attain the maxi-
mum limit cooperation share of l/(1+ l). By this we mean that,
when a small fraction of players adopt some mutant GrimK ′

strategy where K ′ 6=K , there is a steady-state distribution of
records where it remains strictly optimal to play according to
GrimK . We also perform simulations of dynamic evolution
when a population playing a GrimK equilibrium is infected
by a mutant population playing GrimK ′ for some K ′ 6=K (SI
Appendix, Fig. S1).

Multiplayer Public Goods Games. Although our main analysis takes
the basic unit of social interaction to be the standard two-player
PD, many social interactions involve multiple players: The man-
agement of the commons and other public resources is a leading
example (12, 13). In SI Appendix we establish that, when strate-
gic complementarity is sufficiently strong, robust cooperation in
the multiplayer public goods game can be supported by a sim-
ple variant of GrimK strategies, wherein a player contributes
to the public good if and only if all of the player’s current part-
ners have good records. In contrast, with strategic substitutability
the unique strict equilibrium involves zero contribution. As
the n-player public good game is a generalization of the PD,
this implies that individualistic records preclude cooperation in
the PD with strategic substitutability, as indicated in the red
region in Fig. 3A.

Discussion
We have shown how individualistic records robustly support
indirect reciprocity in supermodular PD and multiplayer public
goods games. To place our results in context, recall that scoring

models do not provide robust incentives, while standing models
compute records as a recursive function of a player’s partners’
past actions and standing, their partners’ actions and standing,
and so on, and thus require more information than may typ-
ically be available. The simplicity and power of individualistic
records suggest that they may be usefully adapted to specific set-
tings where cooperation is based on indirect reciprocity, such
as online rating systems (24, 25), credit ratings (10, 26), decen-
tralized currencies (27, 28), and monitoring systems for conflict
resolution (29). Individualistic records may also prove useful
in modeling the role of costly punishment in the evolution of
cooperation (30–33).

We interpret individualistic records and GrimK strategies
as both a theoretical demonstration that simple strategies can
sometimes support cooperation using only first-order informa-
tion and an approximation of human behavior in a range of
environments. For example, when meeting a potential business

B

A

Fig. 3. Limit performance of GrimK strategies. (A) In the green region
(l> g/(1− g)), GrimK strategies sustain a positive limit share of coopera-
tors, which increases with l, as indicated by a deeper shade of green. In the
orange region (g< l< g/(1− g)), the limit share of cooperators with GrimK
is 0, but other strategies may sustain positive cooperation in the limit. In
the red region (l≤ g), individualistic records preclude cooperation. (B) The
limit share of cooperators as a function of l when g = 1/2. At l = 1, there is
a discontinuity; as l→∞, the limit share of cooperators approaches 1.

11346 | www.pnas.org/cgi/doi/10.1073/pnas.1921984117 Clark et al.
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Fig. 4. Convergence of the share of cooperators. A depicts trajectories
for the share of cooperators when γ= 0.8, ε= 0.02, and players use the
Grim1 strategy; B does the same for the Grim2 strategy. In A, all trajectories
converge to the unique steady state; in B, there are three steady states.
Here “high” trajectories converge to the most cooperative steady state,
while “low” trajectories converge to the least cooperative steady state. See
Methods for details.

partner for the first time, it is common to contact the per-
son’s past partners and inquire about the potential partner’s past
behavior, typically without delving into the past partners’ own
past behavior or the past partners’ partners’ behavior. Similarly,
in online marketplaces such as eBay or Airbnb, one typically
rates one’s current partner’s behavior in the absence of any
information about the current partner’s past partners’ behav-
ior. Users then observe summary statistics that depend only on
their current partner’s own past behavior, which is an example
of individualistic (first-order) records. Moreover, if users behave
honestly only with partners who have not received too many neg-
ative reviews, their behavior can be approximated by GrimK
strategies.

We conclude by discussing possible extensions of our analysis.
First, while we have analyzed the evolutionary stability of the

GrimK equilibrium, we have not analyzed how this equilibrium

could first arise. In our model, it is a strict equilibrium for all
agents to always defect, so that equilibrium is also an evolution-
arily stable strategy. To explain how society might move from
such a state to a more cooperative equilibrium such as GrimK ,
we could appeal to random mutations. Given our continuum
population, this could be modeled as a deterministic drift as in
ref. 34, but we do not develop that argument here.

We have also assumed that everyone shares the same assess-
ment of each individual’s record. This “public information”
assumption is known to be critical in some prior models of indi-
rect reciprocity. In our model, allowing heterogeneous assess-
ments of a player’s record would not change the analysis very
much, so long as both partners learn their opponents’ assess-
ments of their records before taking actions (35–37). The more
complex situation where each partner’s assessment of the other’s
record is private information would be interesting to study in
future research.

Methods
Here we summarize the model and mathematical results; further details are
provided in SI Appendix.

A Model of Social Cooperation with Individualistic Records. Time is discrete
and doubly infinite: t∈{. . . ,−2,−1, 0, 1, 2, . . .}. There is a population of
individuals of unit mass, each with survival probability γ ∈ (0, 1), so each
individual’s lifespan is geometrically distributed with mean 1/(1− γ). An
inflow of 1− γ newborn players each period keeps the total population size
constant. We thus have an infinite-horizon dynamic model with overlapping
generations of players (38).

Every period, individuals randomly match in pairs to play the PD (Fig. 1).
Each individual carries a record k∈N :={0, 1, 2, . . .}. Newborns have record
0. Under the counting Ds record system, whenever an individual plays D, the
individual’s record increases by 1, while whenever an individual plays C, the
individual’s record remains constant with probability 1− ε and increases by
1 with probability ε; thus, ε∈ (0, 1) measures the amount of noise in the
system (39–43). More generally, a record system specifies an arbitrary next-
period record as a function of the current-period record and the current-
period recorded action, which equals D if the individual plays D, equals
C with probability 1− ε, and equals D with probability ε if the individual
plays C.

When two players meet, they observe each other’s records and nothing
else. A strategy is a mapping s :N×N→{C, D}, with the convention that
the first component of the domain is a player’s own record and the second
component is the current opponent’s record. We assume that all players use
the same strategy, noting that this must be the case in every strict equilib-
rium in a symmetric, continuum-agent model like ours. (Of course, players
who have different records and/or meet opponents with different records
may take different actions.)

The state of the system µ∈∆(N) describes the share of the popula-
tion with each record, where µk ∈ [0, 1] denotes the share with record k.
When all players use strategy s, let fs : ∆(N)→∆(N) denote the result-
ing update map governing the evolution of the state. (The formula for
fs(µ) is in SI Appendix.) A steady state under strategy s is a state µ such
that fs(µ) =µ.

Given a strategy s and state µ, the expected flow payoff of a
player with record k is πk(s,µ) =

∑
k′ µk′u(s(k, k′), s(k′, k)), where u is

the PD payoff function. Denote the probability that a player with cur-
rent record k has record k′ t periods in the future by φk(s,µ)t(k′). The
continuation payoff of a player with record k is then Vk(s,µ) = (1−
γ)
∑∞

t=0 γ
t ∑

k′ φk(s,µ)t(k′)πk′ (s,µ). Note that we have normalized contin-
uation payoffs by (1− γ) to express them in per-period terms. A player’s
objective is to maximize the expected lifetime payoff.

A pair (s,µ) is an equilibrium if µ is a steady state under s and,
for each own record k and opponent’s record k′, the prescribed action
s(k, k′)∈{C, D} maximizes the expected lifetime payoff from the current

period onward, given by (1− γ)u(a, s(k′, k)) + γ
∑

k′′ (ρ(k, a)[k
′′

])V
k′′ (s,µ),

over a∈{C, D}, where ρ(k, a)[k
′′

] denotes the probability that a player

with record k who takes action a acquires next-period record k
′′

. Note
that this expression depends on the opponent’s record only through the
predicted current-period opponent action, s(k′, k). In addition, the ratio
(1− γ)/γ captures the weight that players place on their current pay-
off relative to their continuation payoff from tomorrow on. We study
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limits where this ratio converges to 0, as opposed to time-average pay-
offs which give exactly 0 wt to any one period’s payoff, because in the
latter case optimization and equilibrium impose unduly weak restrictions
(44). An equilibrium is strict if the maximizer is unique for all pairs (k, k′);
i.e., the optimal action is always unique. Note that this equilibrium defi-
nition allows agents to maximize over all possible strategies, as opposed
to only strategies from some preselected set. We focus on strict equilibria
because they are robust: They remain equilibria under “small” perturba-
tions of the model. Note that the strategy “always defect,” i.e., s(k, k′) = D
for all (k, k′), together with any steady state is always a strict equilibrium.
SI Appendix, Lemma 2 characterizes the steady states for any GrimK strat-
egy, as well as the γ, ε, g, l parameters for which the steady states are
equilibria.

Limit Cooperation under GrimK Strategies. Under GrimK strategies, a
matched pair of players cooperate if and only if both records are below a
prespecified cutoff K: That is, s(k, k′) = C if max{k, k′}<K, and s(k, k′) = D
if max{k, k′}≥K.

We call an individual a cooperator if the individual’s record is below K and
a defector otherwise. Note that individuals may be a cooperator for some
periods of their life and a defector for other periods, rather than being
preprogrammed to cooperate or defect for their entire life.

Given an equilibrium strategy GrimK, let µC =
∑K−1

k=0 µk denote the cor-
responding steady-state share of cooperators. Note that, in a steady state
with cooperator share µC , mutual cooperation is played in share (µC )2 of all
matches. Let µC (γ, ε) be the maximal share of cooperators in any tolerant
grim trigger equilibrium (allowing for every possible K) when the survival
probability is γ and the noise level is ε.

SI Appendix, Theorem 1 characterizes the performance of equilibria
in GrimK strategies in the double limit where the survival probabil-
ity approaches 1—so that players expect to live a long time and the
“shadow of the future” looms large—and the noise level approaches
0—so that records are reliable enough to form the basis for incen-
tives. [This long-lifespan/low-noise limit is the leading case of interest
in theoretical analyses of indirect reciprocity (8, 45–49).] SI Appendix,
Theorem 1 shows that, in the double limit (γ, ε)→ (1, 0), µ̄C (γ, ε) con-
verges to l/(1 + l) when g< l/(1 + l) and converges to 0 when g> l/(1 +

l). The formal statement and proof of this result are contained in SI
Appendix.

Barring knife-edge cases, tolerant grim trigger strategies can thus
robustly support positive cooperation in the double limit (γ, ε)→ (1, 0) if
and only if the gain from defecting against a partner who cooperates is
significantly smaller than the loss from cooperating against a partner who
defects: g< l/(1 + l). Moreover, the maximum level of cooperation in this
case is l/(1 + l). Here we explain the logic of this result.

We first show that g<µC in any GrimK equilibrium. Newborn individuals
have continuation payoff equal to the average payoff in the popula-

tion, which is
(
µC
)2

. Thus, since a newborn player plays C if and only

if matched with a cooperator,
(
µC
)2

= (1− γ)µC + γµCVC
0 + γ(1−µC )VD

0 ,

where VC
0 and VD

0 are the expected continuation payoffs of a newborn
player after playing C and D, respectively. Newborn players have the

highest continuation payoff in the population, so VC
0 ≤V0 =

(
µC
)2

. For a

newborn player to prefer not to cheat a cooperative partner, it must be
that VD

0 <VC
0 − (1− γ)g/γ, so when µC < 1 (as is necessarily the case with

any noise), (
µ

C
)2
< (1− γ)µC

+ γ
(
µ

C
)2
− (1− γ)(1−µC )g.

This inequality can hold only if g<µC .
We next show that γ(1− ε)µC < l/(1 + l) in any GrimK equilibrium.

The continuation payoff VK−1 of an individual with record K− 1 satisfies
VK−1 = (1− γ)µC + γ(1− ε)µCVK−1, or VK−1 = (1− γ)µC/(1− γ(1− ε)µC ).
A necessary condition for an individual with record K− 1 to prefer to
play D against a defector partner is (1− γ)(−l) + γ(1− ε)VK−1 < 0, or l>
γ(1− ε)VK−1/(1− γ). Combining this inequality with the expression for
VK−1 yields γ(1− ε)µC < l/(1 + l), which in the (γ, ε)→ (1, 0) limit gives
µC ≤ l/(1 + l).

We have established that tolerant grim trigger strategies can support
positive cooperation in the (γ, ε)→ (1, 0) limit only if g≤ l/(1 + l) and that
the maximum cooperation share cannot exceed l/(1 + l). The proof of SI
Appendix, Theorem 1 is completed by showing that when g< l/(1 + l), by
carefully choosing the tolerance level K, GrimK can support cooperation
shares arbitrarily close to any value between g and l/(1 + l) in equilib-

rium when the survival probability is close to 1 and the noise level is
close to 0.

Limit Cooperation under General Trigger Strategies. GrimK strategies are an
instance of the more general class of trigger strategies, which are defined by
the following properties: 1) The set of all possible records can be partitioned
into two classes, good records G and bad records B. 2) Partners cooperate
if and only if they both have good records: s(k, k′) = C for all pairs (k, k′)∈
G×G, and s(k, k′) = D for all other pairs (k, k′). 3) The class B is absorbing:
If k∈ B, then every record k′ that can be reached starting at record k is
also in B.

SI Appendix, Theorem 9 shows that, in the (γ, ε)→ (1, 0) double limit, the
maximum steady-state share of good-record players that can be supported
in any trigger strategy equilibrium converges to zero if g> l/(1 + l) and con-
verges to l/(1 + l) if g< l/(1 + l). Thus, in this double limit, tolerant grim
trigger strategies attain the most equilibrium cooperation that any trigger
strategy can support.

The intuition for this result is that the necessary conditions g<µC and
γ(1− ε)µC < l/(1 + l) derived above for GrimK strategies apply equally to
any trigger strategy. The argument to establish the necessity of g<µC is
similar to that for GrimK strategies, except we must now consider the incen-
tives of a player with whichever record k yields the greatest equilibrium
continuation payoff, which is no longer necessarily a newborn (i.e., we
may now have k 6= 0). The argument to establish necessity of γ(1− ε)µC <

l/(1 + l) is also similar to that for GrimK strategies, but now we consider the
incentives of any player with a “marginal” good record that will become
bad if the player is recorded as playing one additional D, which is no longer
necessarily a player who has been recorded as playing K− 1 Ds for some
fixed cutoff K.

Convergence of GrimK Strategies. Fix an arbitrary initial record distribution
µ0 ∈∆(N). When all individuals use GrimK strategies, the population share
with record k at time t, µt

k, evolves according to

µ
t+1
0 = 1− γ+ γ(1− ε)µC,t

µ
t
0,

µ
t+1
k = γ(1− (1− ε)µC,t)µt

k−1 + γ(1− ε)µC,t
µ

t
k for 0< k<K,

where µC,t =
∑K−1

k=0 µ
t
k.

Fixing K, we say that distribution µ dominates (or is more favorable
than) distribution µ̃ if, for every k<K,

∑k
k̃=0

µk̃ ≥
∑k

k̃=0
µ̃k̃; that is, if

for every k<K the share of the population with record no worse than
k is greater under distribution µ than under distribution µ̃. Under the
GrimK strategy, let µ̄ denote the steady state with the largest share of
cooperators, and let µ denote the steady state with the smallest share of
cooperators.

SI Appendix, Theorem 12 shows that, if the initial record distribu-
tion is more favorable than µ̄, then the record distribution converges
to µ̄; similarly, if the initial record distribution is less favorable than
µ, then the record distribution converges to µ. Formally, if µ0 domi-

nates µ̄, then limt→∞ µt = µ̄; similarly, if µ0 is dominated by µ, then

limt→∞ µt =µ.
In Fig. 4A the blue trajectory corresponds to the initial distribution where

all players have record 0, the red trajectory is constant at the unique steady-
state value µC ≈ 0.2484, and the yellow trajectory corresponds to the initial
distribution where all players have defector records. Here all of the trajec-
tories converge to the unique steady state. In Fig. 4B, the red trajectory is
constant at the largest steady-state value µC ≈ 0.9855, the yellow trajec-
tory is constant at the intermediate steady-state value µC ≈ 0.9184, and the
purple trajectory is constant at the smallest steady-state value µC ≈ 0.6471.
The blue trajectory corresponds to the initial distribution where all players
have record 0 and converges to the largest steady-state share of coopera-
tors. The green trajectory corresponds to the initial distribution where all
players have defector records and converges to the smallest steady-state
share of cooperators.

Code Availability. All simulations and numerical calculations have been
performed with MATLAB R2017b and Wolfram Mathematica 11.3.0.0. In
SI Appendix, we provide the MATLAB scripts used to generate Fig. 4
as well as those to simulate evolutionary dynamics and generate SI
Appendix, Fig. S1.
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