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Abstract

Individual heterogeneity is an important source of variation in demand. Allow-

ing for general heterogeneity is needed for correct welfare comparisons. We consider

general heterogenous demand where preferences and linear budget sets are statisti-

cally independent. We find that the dimension of heterogeneity and the individual

demand functions are not identified. We also find that the exact consumer surplus

of a price change, averaged across individuals, is not identified, motivating bounds

analysis. We use bounds on income effects to derive relatively simple bounds on

the average surplus, including for discrete/continous choice. We also sketch an

approach to bounding surplus that does not use income effect bounds. We apply

the results with income effect bounds to gasoline demand. We find little sensitivity

to the income effect bounds in this application.
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1 Introduction

Unobserved individual heterogeneity is thought to be a large source of variation in empir-

ical demand equations. Often r-squareds are found to be quite low in cross-section and

panel data applications, suggesting that much variation in demand is due to unobserved

heterogeneity. Given the potential magnitude of such heterogeneity it is important that

it be allowed for in a flexible way.

Demand functions could vary across individuals in general ways. For example, it

seems reasonable to suppose that price and income elasticities are not confined to a one

dimensional curve as they vary across individuals, meaning that heterogeneity is multi-

dimensional. Demand might also arise from combined discrete and continuous choice,

where heterogeneity has different effects on discrete and continuous choices. Furthermore,

the dimension of heterogeneity is not identified from cross-section data, as we show. For

these reasons it seems important to allow for general heterogeneity in demand analysis.

In this paper we do so.

Independence of preferences and budget sets is useful for identification in cross-section

data with general heterogeneity. This independence corresponds to prices and incomes

being independent of preferences as well as observations coming from different markets.

We impose independence, conditional on covariates and/or control functions.

Exact consumer surplus quantifies the welfare effect of price changes, including the

deadweight loss of taxes. The surplus averaged over individuals is a common welfare

measure. We show that average surplus is not identified. Nonidentification motivates a

bounds approach. We use bounds on income effects to derive relatively simple bounds on

the average of surplus across individuals, including for discrete/continuous choice models.

It may be also be possible to obtain bounds on average surplus without income effect

bounds, but this appears to be substantially more complicated. We sketch one approach

to finding such bounds, but leave its execution to future research.

We apply the exact consumer surplus results to gasoline demand, using data from the

2001 U.S. National Household Transportation Survey. We find little sensitivity to the
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income effect bounds in this application. We show that this is true more generally with

small expenditure on a good. We also show how to allow for covariates and some forms

of endogeneity, and incorporate these features in the application. We give confidence

intervals for an identified set of average surplus values and find that the intervals are

quite tight in the application.

Choice models with general heterogeneity independent of budget sets have previously

been considered. In their analysis of nonlinear taxes, Burtless and Hausman (1978) pio-

neered models with multi dimensional heterogeneity by allowing for the income effect to

vary over individuals. McFadden and Richter (1991) allowed for general heterogeneity in

a revealed preference framework. Lewbel (2001) gave conditions for the average demand

to satisfy the restrictions of utility maximization. Hoderlein and Stoye (2009) showed

how to impose the weak axiom of revealed preference. Dette, Hoderlein, and Neumeyer

(2011) proposed tests of downward sloping compensated demands. Kitamura and Stoye

(2012) gave tests of the revealed preference hypothesis. Blomquist and Newey (2002)

derived the form of average demand with nonlinear budget sets; see also Blomquist and

Newey (2011). Our paper differs from the revealed preference work in imposing smooth-

ness of demands. The hope is that smoothness will lead to more accurate nonparametric

demand estimation, as in other nonparametric settings.

Blundell, Horowitz, and Parey (2012), Hoderlein and Vanhems (2010), and Blundell,

Kristensen, and Matzkin (2011) have considered identification and estimation of welfare

measures when demand depends continuously on a single unobserved variable. Blun-

dell, Kristensen and Matzkin (2011) impose revealed preference restrictions on demand

functions in that setting. Recently Lewbel and Pendakur (2013) have considered re-

stricted multivariate heterogeneity. Our purpose is to go beyond and consider general

heterogeneity.

The results of this paper build on Hausman and Newey (1995). The focus of that pre-

vious paper was to apply the consumer surplus calculation to a conditional expectation.

As noted there, if the conditional expectation corresponds to the demand function for an

individual then one can interpret the results as consumer surplus for an individual. Here
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we allow for general heterogeneity but rely on our previous work for inference about the

estimators.

2 Heterogeneity and Demand

We consider demand models where the form of heterogeneity is completely unrestricted.

For simplicity we will describe these models for two goods. The bounds with income

effects are straightforward to extend to multiple goods. Let  denote the quantity of a

good,  its price relative to that of a numeraire good ,  the individual income level

relative to the numeraire price, and  a vector of unobserved disturbances represent-

ing individual heterogeneity. We think of each value of  as corresponding to a single

consumer with demand function (  ) that is obtained as the solution to

max
≥0≥0

(  ) s.t.  +  =  (2.1)

where (  ) is a utility function for individual . We impose no restrictions on the

way that  affects the utility function  and hence (  ) is completely unrestricted

as a function of  That is, demand functions are allowed to vary across individuals in

any way at all.

We consider identification and estimation under independence of  and  = ( )

where the heterogeneity takes an unrestricted form. We need some restriction on the

joint distribution of  and  to identify economically interesting objects, such as price

and income effects. Without such restrictions economic effects may be confounded with

individual heterogeneity. Independence is a natural starting condition to impose in mod-

els like this, that are nonlinear, nonseparable, and nonparametric. We also show later

how this assumption can be relaxed with covariates and/or control functions.

Assumption 1: The data ( ) ( = 1  ) are identically distributed and satisfy

 = ( ) where  and  are statistically independent

This condition encompasses a statistical version of a fundamental hypothesis of con-

sumer demand, that preferences do not vary with prices. It also encompasses the hy-
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pothesis that the individual is small relative to the market of observation, so that market

prices do not vary with individual preferences. This hypothesis is consistent with data

where different observations come from different markets.

We also impose smoothness and the Slutzky condition on demands:

Assumption 2: For each  the demand function ( ) is continuously differentiable

in  ≥ 0 and ( )+ ( )( ) ≤ 0

The model is the set of pairs ((· ·)  ) of a function ( ) of  and a vector 

and a distribution function  for  such that Assumptions 1 and 2 are satisfied. This

model is a smooth version of the stochastic revealed preference model of McFadden

and Richter (1991). Assumption 1 imposes independence between the budget set and

preferences, with preferences here represented by . Also, as is well known from the

results on integrability of demand, Hurwicz and Uzawa (1971), the Slutzky condition in

Assumption 2 is equivalent to the axioms of revealed preference. What distinguishes this

model from McFadden and Richter’s (1991) is the smoothness of the demand function in

Assumption 2. As in other nonparametric estimation, the hope in imposing smoothness

is that it is likely to be satisfied in applications and nonparametric estimators are more

precise with smoothness. We drop parts of this requirement for discrete/continuous

choice models.

Turning now to identification, we adapt a standard framework to our setting, see

Hsiao (1983). Here a structure is a demand function and heterogeneity distribution

pair (  ) where for notational convenience we suppress the arguments of the demand

function . Two structures are observationally equivalent if they give the same conditional

distribution of demand given prices and income, over the support of prices and income

in the data.

Definition 1: (  ) and (̃ ̃ ) are observationally equivalent if and only if for all

,

Pr(

Z
1(( ) ≤ ) () =

Z
1(̃( ̃) ≤ )̃ (̃)) = 1
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We consider identification of a function (  ) of the structure ((· ·)  ), that is a
map from the demand function and the distribution of heterogeneity into another set.

The identified set will be the set of values of this function for all structures that are

observationally equivalent.

Definition 2: The identified set for  corresponding to (  ) is

Λ(  ) = {(̃ ̃ ) : (  ) and (̃ ̃ ) are observationally equivalent} (2.2)

A functional is identified if Λ(  ) is a singleton, sometimes now referred to as point

identified. An example of an identified functional is the average demand at an observed

value of , given by

(  )() =

Z
( ) () = [( )| = ]

where the second equality follows by independence of  and  in the model. Identifica-

tion follows because this functional is an explicit function of the conditional distribution

of quantity demanded conditional on . This functional may be of interest for predicting

the effect of price or income changes on the average consumption of  over the range

of the data. We will discuss below how it could be estimated subject to the restric-

tions of the demand model. Of course  is also the conditional expectation of quantity

given , () = [| = ] so could be estimated by nonparametric regression. For

example, Blomquist and Newey (2002, 2011) have done this for labor supply where the

above model is generalized to allow for a nonlinear budget set. One could consider the

average demand outside the range of the data on  That functional is not identified, but

the identified set may be restricted by imposition of positive demands and the Slutzky

condition.

A functional is not identified if Λ(  ) is bigger than a single point, sometimes now

referred to as set identified. An interesting example of an unidentified (or set identified)

functional is the dimension dim() of the heterogeneity. To see nonidentification, consider

the conditional quantile( |), 0    1, of  given  = . An important observation
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due to Dette, Hoderlein, Neumeyer (2011) is that ( |) satisfies the Slutzky condition
for every  , under certain regularity conditions, and so is a demand function for each  .

We refer to these as the quantile demands. By standard arguments it then follows that

((·|·) ̃ ) is a demand specification that is observationally equivalent to (  ), where
̃ is the uniform distribution on (0 1) Furthermore, the dimension of ̃ is 1, so that if

dim()  1 we have nonidentification of the dimension.

A precise result on the observational equivalence of quantile and actual demands

follows.

Theorem 1: Suppose that  = ( ) for scalar  ( ) = (  ) is continuously

differentiable in  there is   0 with (  ) ≥ 1 k( )k ≤  every-

where,  is continuously distributed conditional on  with conditional pdf (|) that is
bounded and continuous in . If Assumptions 1 and 2 are satisfied, then (  ) and (̃ ̃ )

are observationally equivalent demand specifications, where 0  ̃  1, ̃( ̃) = (̃|),
and ̃ is the uniform distribution on (0 1)

Nonidentification of dim() is a corollary of this result:

Corollary 2: dim() is not identified at any (  ) satisfying the hypotheses of

Theorem 1 with dim()  1.

A specification (  ) where the dimension is not identified is a linear random coeffi-

cients model where

 = 1 + 2 + 3 (1 2 3) independent of ( )Pr( ≥ 0 2 + 3 ≤ 0) = 1

Under the conditions of Theorem 1 the quantile demand is observationally equivalent to

this random parameter model. We have dim() = 3 for the random coefficients while

dim() = 1 for the observationally equivalent quantile demand. Thus, dim() is not

identified for this linear random coefficients specification.

It is also clear that the demand function is not identified when dim()  1 since the

demand depends on 
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Corollary 3: ( ) is not identified at any (  ) satisfying the hypotheses of

Theorem 1 with dim()  1.

Another example of an unidentified function is average exact consumer surplus, that

we consider in the next Section.

3 Average Surplus

We turn now to consumer surplus. We first consider exact consumer surplus for a single

individual. We focus on equivalent variation though a similar analysis could be carried

out for compensating variation. Let (  ) be the equivalent variation for a price

change from  to 1 for an individual  with income . As discussed in Hausman and

Newey (1995), Shephard’s Lemma implies that (  ) solves the following differential

equation,
(  )


= −(  − (  ) )  (1  ) = 0 (3.3)

Like the demand function, (  ) is not identified from cross-section data. To see

this, note that the mapping from the demand function to (  ) is one-to-one, with

the solution to equation (3.3) giving  as a function of  and (  ) = −(  +
(  ) ). Thus, (  ) will not be identified because (  ) is not identified.

Corollary 4: Equivalent variation is not identified at any (  ) satisfying the

hypotheses of Theorem 1 with dim()  1.

One interesting functional is the average, or expected consumer surplus. It is given

by

̄( ) = [(  )] =

Z
(  ) ()

Average surplus is often used in public economics as a welfare measure. It corresponds to

a social welfare function that is the average of the expenditure function across consumers.

One could consider other social welfare functions. We leave that to future work.
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In general, average consumer surplus is not identified. To show this it suffices to

consider a linear, random coefficients model with an income coefficient taking on two

values.

Theorem 5: In a specification ( ) = 1++2 with 1 continuously distributed

and 2 having a two point mixture distribution, the average consumer surplus ̄( ) is

not identified.

This result is proved by showing that the average surplus for quantile demand is

different than the average surplus for the true demand function in an example. Because

it helps to quantify the misspecification that can result from quantile demands we briefly

describe the example. In the example 1 ∼ (0 1) and 2 is distributed independently

of 1 with Pr(2 = 13) = Pr(2 = 23) = 12 For  = −1  = 1 1 = 2 and  = 34

we calculate the ratio of average surplus for quantile demands to true average surplus to

be 903. Thus, in this example the average surplus for quantile demands is only about

90 percent of the true average surplus.

A key to this result is that the income effect 2 varies across individuals. Average

surplus is identified if the demand function is restricted to have a constant income effect

that does not vary across individuals, corresponding to the Gorman (1961) polar form

(GPF). GPF demand functions satisfy

(  ) = ( ) + () (3.4)

Here the average demand will be ̄( ) = ̄() + () where ̄() =
R
( ) ().

Also, the differential equation for the individual equivalent variation (  ) is given

by
(  )


= −[( ) + (){ − (  )}]

Because this equation is linear in functions of , integrating both sides with respect to 

and interchanging the order of differentiation and integration gives

̄( )


= −[̄() + (){ − ̄( )}] = −̄(  − ̄( )) ̄(1 ) = 0 (3.5)
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Thus, for the GPF, average surplus can be obtained by solving the differential equation

for equivalent variation using the average demand.

Theorem 6: If ( ) is restricted to satisfy ( ) = ( ) + () for functions

( ) and () Assumptions 1 and 2 are satisfied, and [|( )|] ∞ then ̄( ) is

identified as the solution to equation (3.5).

Identification of average consumer surplus for GPF demand is consistent with the well

known aggregation results of Gorman (1961), who showed that the GPF is necessary and

sufficient for the average of the demand functions to be the demand for a consumer with

utility equal to the average of the individual utilities. Indeed the preceding discussion is

just a simple demonstration of a partial dual result, that the GPF is sufficient for the

expenditure function for average (or aggregate) demand to be the average (or aggregate)

of individual expenditure functions when income is independent of preferences. It also is

interesting to note that average surplus for the quantile demand is the same as average

surplus for the true demand when demand is GPF.

The GPF is too restrictive for most applications. However related ideas can be used

to bound average welfare for other demands. The approach is based on restricting the

range of income effects. The idea is that if we have known income effect bounds then the

actual demand, on the right hand side of equation (3.3) will be bounded above and below

by a linear in  demand. Since the upper and lower bounds are linear in , a similar

calculation as for the GPF shows that average demand can be used to obtain upper and

lower bounds for average surplus.

The following result makes this idea precise. For any constant  define ̄( ) as

the solution to the differential equation

̄( )


= −̄( ) + ̄( ) ̄(

1 ) = 0 (3.6)

Theorem 7: If (  ) is continuously differentiable in  and there are constants

 and  such that  ≤ (  ) ≤  then for all  ≤ 1

̄( ) ≤ ̄( ) ≤ ̄( )
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This result shows that income effect bounds lead to corresponding bounds on expected

consumer surplus that can be computed from average demand. Thus, under Assumption

1 and bounds on the income effect, the conditional expectation [| ] = ̄( ) can

be used to identify bounds on the average surplus via equation (3.6) and Theorem 7.

In this way a nonparametric regression of  on ( ) can be used to obtain bounds on

average consumer surplus. It is interesting that the bounds come from the conditional

expectation of demand and not the log of demand or some other nonlinear function of

demand.

The key ingredients for this result are the bounds on the income effect. Prior restric-

tions may provide bounds. The lower bound is  = 0 for a normal good and the upper

bound is  = 0 for an inferior good. The data can also be informative about the bounds.

Let ( |) denote quantile demand, as discussed above. By Hoderlein and Mammen
(2007),

( |)


= [
( )


|( ) = ( |)]

Thus, as  varies the quantile derivative traces out the average of income effects over the

set of  values given by ( ) = ( |) The bounds  and  must be below and above,
respectively, all of these quantile derivatives. The bounds are not in general identified

because the demand function is not identified.

Allowing the income effect bounds to depend on  can lead to tighter surplus bounds.

Suppose that there are functions () and () such that

() ≤ ( )


≤ ()

In this case the upper and lower bounds could be obtained from the solution ̄( ) to

̄( )


= −̄( ) + ()̄( ) ̄(

1 ) = 0

where () = () and () = () respectively. The corresponding bounds will be

tighter than those for constant bounds  = inf () and  = sup(), respectively.

The surplus bounds will not be very sensitive to the income effect bounds when

expenditure on  is small. This result is related to the Hotelling (1938) result that when
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expenditure is small approximate consumers surplus is typically close to actual consumers

surplus. To see this note that the solution to the linear differential equation (3.6) is given

by

̄( ) =

Z 1


̄(̃ )(−̃)̃

Differentiating this with respect to  gives

̄( )


=

Z 1


̄(̃ )(− ̃)(−̃)̃

=

Z 1


[̄(̃ )̃] (



̃
− 1)(−̃)̃

It follows that the magnitude of the derivative increases with (̃ )̃. Therefore the

higher the expenditure on the good the more sensitive will be the surplus bounds to the

income effect bounds.

It is straightforward to carry out a similar analysis for deadweight loss. For an

individual the deadweight loss of a tax 1 − 0 is

(  ) = (  )− (1 − )(1  )

Integrating the deadweight loss over  gives the average

( ) = ̄( )− (1 − )̄(1 )

Upper and lower bounds for average deadweight loss are then

( ) = ̄( )− (1 − )̄(1 )( ) = ̄( )− (1 − )̄(1 )

These bounds are obtained by simply subtracting the average tax revenue term (1 −
)̄(1 ) from the surplus bounds.

There is a way to check the validity of the bounds using quantile demands. It turns

out that the integral over quantiles of the consumer surplus must lie between the bounds

if the income effect is bounded. To describe this result let ( ) be the exact consumer

surplus for the quantile demand given by the solution to

 ( )


= −( |  − ( ))  (1 ) = 0
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The average surplus under scalar heterogeneity would be the integral
R 1
0 

 ( ) of

( ) over a uniform distribution for  . The following result shows that this object is

always between the bounds.

Theorem 8: Under the conditions of Theorem 1, for all  ≤ 1

̄( ) ≤
Z 1

0
( ) ≤ ̄( )

Also, if  is a scalar, (  ) is monotonic in  and  is continuously distributed then

Z 1

0
( ) =

Z
(  ) ()

Thus the validity of the bounds on income effects can be checked by comparing the

bounds with what would be average surplus with scalar heterogeneity.

The average surplus bounds given above are based on income effect bounds. One could

also construct average surplus bounds based only on utility maximization. Consider the

set of functions ̃( ) and CDF’s ̃ for  in the set

̃ =

(
(̃ ̃ ) :  (|) =

Z
1(̃( ) ≤ )̃ ()

̃( )


+ ̃( )

̃( )


≤ 0

)
 (3.7)

where the first equality and the second inequality hold for all   in the support of

 and  in the support of ̃ . One could approximate ̃ using a series approximation,

with ̃( ) ≈ −1(0|) +P
=1 () where () are approximating functions, the

marginal distribution of 0 is (0 1) and the distribution of  = (1  ) is a discrete

mixture that is independent of 0. Many, say , values for  could be drawn at random,

only keeping those that satisfy the second condition in equation (3.7) over a grid of 

points. The distribution of  over the resulting values could be taken to be independent

of 0 and a discrete mixture with  = Pr( = ). One could impose the first condition

in equation (3.7) by requiring equality of a nonparametric estimator of the conditional

CDF  (|) with that implied by the model. Let ̂ (|) be a nonparametric estimator
that satisfies the Slutzky conditions (the conditional CDF satisfies the Slutzky condition
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by the inverse function theorem). Then equality of this estimator with that implied by

the model is

̂ (|) =
X
=1

̂ ( −
X

=1

()|)

Specifying that this holds over a grid of  and  points then leads to a set of equality re-

strictions on , with  being taken large in order to model general heterogeneity. Bounds

on average exact consumer surplus (or average demand) could then be estimated by linear

programming. Average surplus and average demand are linear combinations of  and

so bounds could be estimated by maximizing and minimizing those linear combinations

subject to the above constraints,  ≥ 0 and
P

=1  = 1 This approach is like the

revealed preference approaches except that it imposes the Slutzky condition on smooth

demands rather than revealed preference inequalities. The hope is that using smooth

approximations will improve nonparametric estimation as it does in other nonparametric

settings. We intend to investigate this approach in future work.

4 Discrete and Continuous Choice

Discrete and continuous choice models are important in applications. For instance, gaso-

line demand could be modeled as gasoline purchases that are made jointly with the

purchase of automobiles. In those models the heterogeneity can influence the discrete

choices as well as the demand for a particular commodity, e.g. see Dubin and McFadden

(1984) and Hausman (1985). Multiple sources of heterogeneity are an integral part of

these models, with separate disturbances for discrete and continuous choices. The general

heterogeneity we consider allows for such multi dimensional heterogeneity.

We first consider the individual choice problem and the associated expenditure func-

tion. We adopt the framework of Hausman (1985), extending previous results to the

expenditure function. Suppose that the agent is choosing among  discrete choices in

addition to choosing . The consumer choice problem is

max


(   ) s.t.  + +  ≤  (4.8)
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where  is the usage price of choice . Here we assume that for each  and  the function

(   ) is strictly quasi-concave (preferences are strictly convex) and satisfies local

nonsatiation.

To describe the demand function, let ( ̃ ) = max{(   ) s.t. + ≤ ̃}
denote the indirect utility function associated with the  discrete choice and ( ̃ ) =

−[( ̃ )̃]−1( ̃ ) the demand function. The utility maximizing choice
of the discrete good will be argmax ( − )When there is a unique discrete choice
 (depending on , , 1   , and ) that maximizes utility, i.e. where ( − ) 
(  −  ) for all  6= , the demand (  1    ) will be

(  1    ) = (  −  )

When there are multiple values of the discrete choice that maximize utility the demand

will generally be a correspondence, containing one point for each value of  that maximizes

utility.

In what follows we will assume that (1( −1 )  ( −  )) is continuously
distributed so that the probability of ties is zero. Nevertheless the case with ties is im-

portant for us. Surplus is calculated by integrating the demand function as price changes

while income is compensated to keep utility constant. As compensated income changes

ties may occur and the demand for  may jump. With gasoline demand, compensated

income changes could result in a choice of car with different gas mileage, leading to a

jump. Such jumps must be accounted for in the bounds analysis.

In what follows we will group the usage prices with individual heterogeneity , so

that usage prices are treated as unobserved by the econometrician. Assumption 1 then

requires that the income  and price  are independent of the usage prices. This seems

a reasonable assumption for some applications to cross-section data, such as gasoline

demand. There Assumption 1 states that car purchase prices are independent of gasoline

prices in the cross-section. If the prices of different types of cars do not vary in the

cross-section then independence would automatically hold.

It is interesting to note that the components of  that affect the discrete choice may

[14]



be different than the components that affect the continuous choice. For example, this is

the case in Dubin and McFadden (1984). A discrete/continuous choice model thus leads

naturally to multiple sources of heterogeneity in .

Turning to welfare analysis, let (  ) denote the expenditure function in this

discrete/continuous choice setting, defined as

(  ) = min{ s.t. max


{(   ) s.t.  + +  ≤ } ≥ }

As usual it is the minimum value of income that allows individual  to attain utility level

. The exact equivalent variation (  ) for a price change from  to 1 with income

 for individual  is defined as before, as (  ) = − ( 1 ) The next result gives

conditions for (  ) to satisfy the same differential equation as in the continuous case.

Theorem 9: If for each  and  the utility (   ) is strictly quasi-concave and

satisfies local nonsatiation then at any   and  such that there is  with (  −
(  ) −  )  (  − (  ) −  ) for all  6=  it follows that (  ) is

differentiable and

(  )


= −(  − (  ) ) = −(  − (  )−  )

Thus when there are no ties the surplus is differentiable and satisfies the same dif-

ferential equation as in the continuous case. Also, by standard arguments the surplus

will be continuous in  and . As long as ties only occur at a finite number of points it

then follows that surplus is the solution to the differential equation in between the jump

points that is connected together in a continuous function across the jump points.

The discontinuity of individual demand does affect the bounds for average consumer

surplus. The previous bounds depend on demand derivatives. With jumps we construct

bounds that are based on limits on the size of the jump and on the proportion of individ-

uals whose demand would jump as income is compensated along with the price change.

For that purpose we make use of a demand decomposition into continuous and jump

components.
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Assumption 3: There are    0 such that for each  there is () such that for

 ∈ [0 1] and 0 ≤  ≤ (0  ),

(  ) = ̇(  )+(  )  ≤ −̇( −  )+ ̇(  ) ≤  |(  )| ≤ ()

Here we assume that the demand function can be decomposed into a jump component

(  ) and a Lipschitz continuous component ̇(  ), with lower and upper bounds 

and  respectively, on how much ̇ may vary with . The constants  and  are bounds

on the income effect, for the continuous part. The term () is an individual specific

bound on the jump. It will be zero for individuals whose demand function does not jump

as income is compensated up to the surplus amount (0  ). For example, for gasoline

demand it will be zero for individuals who would not change car types over the range of

income being compensated.

To describe bounds on average surplus that allow for jumps, let ̄( ) and ̄( )

be the solutions to the differential equations

̄( )


= −̄( ) + 2[()] +  · ̄( ) ̄(1 ) = 0

̄( )


= −̄( )− 2[()] + · ̄( ) ̄(1 ) = 0

Theorem 10: If Assumptions 1, 2, and 3 are satisfied then ̄( ) ≤ ̄( ) ≤
̄( )

These bounds adjust for the possible presence of discontinuity in individual demands

by adding 2[ ()] to −̄( ) in the equation for the upper bound and subtracting the
same term in the equation for the lower bound. This adjustment will be small when the

largest possible jump is small or when the proportion of individuals with a discontinuity

is small.

5 Covariates and Control Functions

In some settings it may be useful to account for the presence of covariates and/or to

control for endogeneity. In this Section we describe how this can be done. Covariates
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can be allowed for by assuming that the utility function depends on a vector of functions

( ) of covariates  and parameters . For example, a linear index would be ( ) =

1 + 2, with the usual scale and location normalization imposed. We will allow the

utility function to depend on ( ) in a completely general way. In demand these

covariates might be demographic variables that represent observed components of the

utility.

If the utility can depend on ( ) in any way at all then so can demand. In keeping

with a nonparametric specification, we will take demand to be

( ( 0) )

where 0 denotes the true value of the parameter. Assuming that  is distributed inde-

pendently of   ( ), the conditional expectation of demand will be

[( ( 0) )|  ( 0)] = ̄(  ( 0))

This is a semiparametric specification for the conditional mean where the conditional

mean depends on ,  and the index ( ). It can be estimated by semiparametric

index regression.

With covariates all that we have done before applies conditionally on the covariates

( ). Bounds on expected consumer surplus can be obtained for some value of the

estimated index ( ̂) Calculations exactly like those before lead to bounds that are

conditional on values of the covariates.

Endogeneity can also be allowed for if there is a control variable. A control variable

 is an estimable variable such that  = ( ) and  are independent of each other

conditional on  In that case
R
(  ) () =

R
 [|  ] () when the support

of  conditional on  does not vary with ; see Blundell and Powell (2003).
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6 Estimation and Welfare Analysis of Gasoline De-

mand

In this section we estimate average consumer surplus and deadweight loss from changes

in the gasoline tax in the US while allowing for unrestricted multidimensional individ-

ual heterogeneity. We use data from the 2001 U.S. National Household Transportation

Survey (NHTS). This survey is conducted every 5-8 years by the Federal Highway Ad-

ministration. The survey is designed to be a nationally representative cross section

which captures 24-hour travel behavior of randomly-selected households. Data collected

includes detailed trip data and household characteristics such as income, age, and num-

ber of drivers. We restrict our estimation sample to households with either one or two

gasoline-powered cars, vans, SUVs and pickup trucks. We exclude Alaska and Hawaii.

We use daily gasoline consumption, monthly state gasoline prices, and annual household

income. We have 8,908 observations. Summary statistics are given in Table 1. Note that

the mean price of gasoline was $1.33 per gallon with the mean number of drivers in a

household equal to 2.04.

To estimate the average gasoline demand we estimate up to a 4th degree polynomial

with interaction and predetermined variables along with price and income for household

: d̄(  ) =
4X

=1

̂(ln )
(ln )(( ̂)) (6.9)

We estimate equation (6.9) taking the price of gasoline as predetermined assuming a

world market for gasoline. We also allow for the gasoline price to be jointly endogenous

using state tax rates as instruments and also distance of the state from the Gulf of Mexico,

as in Blundell, Horowitz and Parey (2012). Here we take a control function approach

where in the first stage we use the instruments , along with household income, and the

predetermined variables . We then take the estimated residuals from this first stage ̂

and use them as a control function in equation (6.9), constructing

d[|   ] =
4X

=1

̃(ln )
(ln )(0)(̂) (6.10)
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where ̃ are the coefficients from the regression of  on log price, income, the

covariates index, and the first stage residual. The average demand is then estimated as

d̄(  ) =
1



X
=1

4X
=1

̂(ln )
(ln )(0)(̂)

 (6.11)

In Figure 1 we plot the OLS estimates taking gasoline price to be predetermined. Note

that it is generally downward sloping except at low prices. In Figure 2 we estimate the

demand function using the control function approach and find it to be better behaved.

In Table 2 we consider the estimated price elasticities for OLS and IV. We see that the

estimated price elasticity has the incorrect sign for the 75th quantile for three out of

the four specifications, while the IV estimates all have the correct sign. However, the

IV estimates are somewhat large except perhaps for the 3rd and 4th order specification.

In Table 3 we see that the estimated income elasticities for both OLS and IV are quite

similar and also similar to previous estimates, e.g. Hausman and Newey (1995).

We now set bounds on the income effect. We estimate the income derivatives from

a local linear quantile regression of log of gasoline demand on log price and log income.

We assume that gasoline is a normal good and so choose the lower bound  to be 00. We

set the upper bound  to be 20 times the derivative from the 09 quantile income effect

which is equal to 00197 and is quite small. We assume that the previously discussed

jump term from changing car type is negligible, consistent with few individuals changing

car type and/or small changes in gas consumption, as income is compensated.

In Figure 3 we graph the bounds on the change in the average equivalent variation for

a price increase from the stated price on the lower axis to $140 per gallon. We use the

estimates from the 3rd order power series, with a control function, evaluated at median

income. Note that the lower bound and upper bound estimates are almost the same and

it is difficult to distinguish between them. This result follows from the small income

derivative and the small share of gasoline expenditure in overall household expenditure.

The results demonstrate that although the welfare function is not point identified, in this

type of situation the upper and lower bound estimates are very similar.
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In Figure 4 we graph the bounds on deadweight loss for a price increase from the

price on the lower axis to $1.40. Again we use the 3rd order power series control function

estimates evaluated at the median income. Again, the lower and upper bound estimates

are very similar and difficult to distinguish except for very low gasoline prices. Since

deadweight loss is a second order calculation compared to the first order calculation of

equivalent variation, e.g. Hausman (1981), the closeness of the bounding estimates allows

for policy evaluation, even in the absence of point identification.

We now estimate confidence sets for our estimated bounds, since both equivalent

variation and deadweight loss are only set identified instead of being point identified.

We construct confidence sets that cover the true identification region with probability

asymptotically equal to 95%. Let the estimated set identification regions be given by

Θ̂ = [̂, ̂] and the true identification region be given by Θ0 = [0, 0] Let the joint

asymptotic variance matrix of the bounds be Σ. It will follow from Hausman and Newey

(1995) that the bounds are joint asymptotically normal. We estimate Σ by treating

the model as if it were parametric and applying the delta method, as works for series

estimates, as in Newey (1997). Here we use the delta method on the estimated equation

(6.11) and the derivatives of the upper and lower bounds. The derivatives of the upper

and lower bounds with respect to  are straightforward to calculate since the equivalent

variation and deadweight loss are linear in these parameters with the derivative with

respect to the coefficient  of a price term given by

̂( )


= 

Z 1


(ln(̃))−̃̃

We compute the other elements in the surplus expression in a similar way using numerical

integration. We compute the derivatives for the deadweight loss.

 d


=

̂( )


− (1 − )(ln(1))

We then form an estimate Σ̂ of the the joint asymptotic variance matrix of the upper

and lower bounds in the usual way.

We use the Beresteanu and Molinari (2008) procedure to construct critical values.

The results are given in Table 4 for the equivalent variation estimates with the estimate
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standard errors in parenthesis and the 95% confidence intervals given in brackets. Con-

centrating on the 3rd order estimates which we plotted before we see that the estimated

standard errors are quite small at both the lower bound and the upper bound and the

95th percentile confidence interval goes from $13.72 to $16.24 which is small enough for

reliable policy analysis. In Table 5 we give the standard errors and bounds and the DWL

estimates. Here we find that the standard errors are reasonably small but the estimate

confidence intervals are sufficiently large to make their use in policy analysis problematic.

We have used our bounds approach to estimate household gasoline demand functions

allowing for unrestricted heterogeneity. While the welfare measures are not point iden-

tified, using our bounds approach we find that the lower and upper bound estimates are

very close to each other given the relatively small income elasticity and share of gasoline

consumption in overall household expenditure.

7 Appendix

Proof of Theorem 1: Let  (|) = Pr( ≤ |) = R 
−∞ (|) Then by the fun-

damental theorem of calculus,  (|) is differentiable in  with derivative (|) that is
continuous in . Let −1(  ) denote the inverse function of (  ) as a function of

. Then

Pr(( ) ≤ ) = [1(( ) ≤ )] = [[1( ≤ −1(  ))|]] = [ (−1(  )|)]

By the inverse function theorem −1(  ) is continuously differentiable in  and 

with

−1(  ) = [(  −1(  ))]−1 −1(  ) = −(  
−1(  ))

(  −1(  ))


By Assumption 2 both −1(  ) and −1(  ) are continuous in  and 

and bounded. Let  denote the random variable ( ), () be its marginal pdf at ,

and (|) its conditional pdf at  given  = . Then by the chain rule and a change

of variables from  to  = ( ) conditional on ,

 (−1(  ))|)


= (−1(  )|)−1(  ) = (|)
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 (−1(  ))|)


= (−1(  ))|)−1(  ) = −(|)
( )



¯̄̄̄
¯
()=



Also, these partial derivatives are all continuous and bounded in  and . Then by

standard results we can differentiate inside the integral and integrate over the distribution

of  so that Pr(( ) ≤ ) is continuously differentiable in  and  with

 Pr(( ) ≤ )


= ()  0

 Pr(( ) ≤ )


= −()[

( )


|( ) = ]

Note that ( |) is the inverse function of Pr(( ) ≤ ), so it then follows by the

inverse function theorem that ( |) is continuously differentiable in  with

( |)


= [
( )


|( ) = ( |)]

the conclusion from Hoderlein and Mammen (2007).

Since ( ) is a demand function it satisfies downward sloping compensated demand,

i.e. ( ) + ( )( ) ≤ 0 for all . Therefore, following Dette et al.
(2011), we have

( |)


+( |)( |)


= [
( )


+( |)( )


|( ) = ( |)]

= [
( )


+ ( )

( )


|( ) = ( |)] ≤ 0

Therefore, ( |) is a demand function for each  . Since Pr(( ) ≤ ) is differentiable

in  with positive derivative, ( |) is strictly monotonic and continuous in  for  ∈
(0 1). For 0  ̃  1, let ̃( ̃) = (̃|). It follows from above that ̃( ̃) satisfies

the Slutzky condition and hence is a demand function. Furthermore, for ̃ the uniform

distribution on (0 1) it follows by standard arguments that (̃ ̃ ) is observationally

equivalent to (  ). 

Proof of Corollary 2: Let (  ) = dim(). In the specification (  ) we have

(  ). Let (̃ ̃ ) be the specification in the conclusion of Theorem 1. Then (̃ ̃ ) =

1 6= (  ). 

Proof of Corollary 3: For (̃ ̃ ) as in the conclusion of Theorem 1 the functions 

and ̃ are different, because they have different domains. 
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Proof of Corollary 4: Follows by Corollary 3 and equivalent variation being a

one-to-one mapping of the demand function, as shown in the body of the paper. 

Proof of Theorem 5: Consider a specification ( ) = 1 +  + 2 where 

is constant, 1 ∼  [0 1], and 2 is independent of 1 and has a two point distribution,

with Pr(2 = 13) = Pr(2 = 23) = 12 Throughout we impose on , , and  that

( ) ≥ 0 and that the Slutzky condition +( )2 ≤ 0 is satisfied. With this ( )
eq. (3.3) has the solution

(  ) =
³
−12 (  ) + −22

´
−
³
−12 (1  ) + −22

´
(2(− 1))

By (  ) = (  1 2) linear in 1 it follows that (  ) is linear in 1 Then by

independence of 1 and 2, integrating first over 1 and then summing over values for 2

gives true average equivalent variation

̄( ) =

Z
(  ) () =

Z
( [1] 2) (2)

= [(  12 13) + (  12 23)]2

We compare this with the average equivalent variation for the quantile demand. Let

() denote the CDF for (0 1) The CDF of ( ) is given by

Pr(( ) ≤ |) = [( − − 3) + ( − − 23)]2

Define

1(̃|) = (  2̃ 13) 2(̃|) = (  ̃ 12) 3(̃|) = (  2̃ − 1 23)

Then the conditional quantile function is given by

(̃|) =
⎧⎪⎨⎪⎩

1(̃|) 0 ≤ ̃ ≤ 6

2(̃|) 6  ̃  1− 6

3(̃|) 1− 6 ≤ ̃ ≤ 1

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Let (  ̃) denote (  ) with 
(̃|) replacing (  ). Average exact consumer

surplus for the quantile demand is then given by

̄( ) =

Z 6

0
1(  ̃)̃ +

Z 1−6

6
2(  ̃)̃ +

Z 1

1−6
3(  ̃)̃

= (6)(  6 13) + (1− 3)(  12 12) + (6)(  1− 6 23)

We restrict the value of  and the range for  so that demand is positive and the

Slutzky condition is satisfied for all 1 2 in their respective supports. By the ( )

monotonic in 1 and 2 separately, these conditions are, respectively,

+ 3 ≥ 0  + (1 + + 23)(23) ≤ 0

Choosing  = −1 as a further example, these conditions become  ≤ 3  ≥ 23−12
Choose  = 34 so the constraints are  ≤ 14  ≥ 0. We compare the true average
surplus with the quantile demand average surplus for ( ) = 1 +  + 2,  = 1

1 = 2  = 34  = −1 1 distributed (0 1) and 2 a two point distribution with

support {13 23} and probability of each point equal to 12 For this specification the
ratio of average surplus for quantile demands to true average surplus is 90279. Thus, in

this example the average surplus for quantile demands is only about 90 percent of the

true average surplus.

The calculations here are clearly continuous in all the variables involved, so this

difference will remain for small modifications of these parameters. Thus, we have provided

an example where average surplus is not identified because there are two observationally

equivalent models with average surplus that differs by about 10 percent, and average

surplus remains unidentified for small variations in the parameters. Q.E.D.

Proof of Theorem 6: Given in text. Q.E.D.

Proof of Theorem 7: Note first that (  ) is positive because (  ) is ob-

tained as the solution to eq. (2.1). Then expanding the right-hand side of equation (3.3)

around  = 0 it follows that

(  )


= −(  ) + (  − ̇(  ))


(  ) ≤ −(  ) +(  )
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where 0 ≤ ̇(  ) ≤ (  ) is an intermediate value. Let (  ) be the solution

to
(  )


= −(  ) +(  ) (

1  ) = 0 (7.12)

For notational convenience, suppress the  and  arguments, and let () = (  )

and () = (  ), etc.. By equation (7.12) it follows that for all   1,




(−·()) = − · −·() + −·

()


= −−·()

Then by the above inequality for () we have




(−·()) = − · −·() + −·

()


≤ − · −·() + −·[−() +()]

= −−·() = 


(−·())

Consider now () = −·[()− ()] Note that (1) = 0 and for   1 we have

() ≥ 0. Therefore, for   1 we have () ≤ 0 implying that

() ≤ ()

It follows similarly that

() ≤ ()

Adding back the  and  notation, we have

(  ) ≤ (  ) ≤ (  )

Taking expectations gives

[(  )] ≤ ̄( ) ≤ [(  )]

Furthermore, it follows as in the discussion preceding Theorem 1 that

[(  )] = ̄( ) [(  )] = ̄( )

giving the conclusion. 
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Proof of Theorem 8: Integrating this over a uniform on [0 1] and making the

change of variables  = −1 () = () givesZ 1

0
( ) =

Z
()( ) ()

By (()) =  it follows that ()( ) is the consumer surplus for individual 

giving the second conclusion.

Similarly to the proof of Theorem 7, define 
( ) as the solution to


( )


= −( | ) + 

( ) 

(

1 ) = 0

As in the proof of Theorem 7, the solution to this linear differential equation is 
( ) =R 1

 ( |̃ )(−̃)̃ Integrating this, and interchanging the order of integration, givesZ 1

0

( ) =

Z 1


[

Z 1

0
( |̃ ) ](−̃)̃ = ̄ ( ) 

where the second equality follows by [| ] = R 1
0 ( | )

Next, as in the proof of Theorem 7, an expansion of the differential equation for

( ) gives

( )


= −( | ) + ( |  − ̈( ))


( )

where ̈( ) is an intermediate value. Furthermore, by Hoderlein and Mammen (2007)

and (  ) ≤  for all   and ,

( |  − ̈(  ))


= [




(  − ̈(  ) )|(  ) = ( | )] ≤ 

Plugging this in, it follows that

 ( )


≤ −( | ) +( )

The right hand side of this equation is identical with that for 
( ), so by a similar ar-

gument as in the proof of Theorem 7, we have ( ) ≥ 
( ). It follows analogously

that  ( ) ≤ 
 ( ) so that


( ) ≤ ( ) ≤ 

 ( )
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Integrating both sides then gives

̄ ( ) =

Z 1

0

( ) ≤

Z 1

0
( ) ≤

Z 1

0

 ( ) = ̄ ( ) 

Thus we find that, under the general heterogeneity conditions of Theorem 1, the integral

of the surplus for the   quantile lies between the bounds for average surplus. 

Before proving Theorem 9 we give a useful Lemma. For notational convenience sup-

press the  argument and let  be a vector that includes  and  be the absolute price

vector. Let ( ) = min{0 : ( ) ≥ } be the expenditure function for the utility
function ( ), ( = 1  )0.

Lemma A1: If the Assumptions of Theorem 9 are satisfied then ( ) = min{( )+
}

Proof: Define ̄( ) = min{( ) + } By the definition of ̄( ) it follows
that ̄( ) = ∗( ) + ∗ for some 

∗ that need not be unique. By the definition of

∗( ) and standard results there is 
∗ such that (∗ ∗) ≥  and 0∗ = ∗( ), so

0∗ + ∗ = ̄( ). Since (∗ ∗) ≥  and 0∗ + ∗ ≤ ̄( ), it follows that

max

{( ) s.t. 0 +  ≤ ̄( )} ≥ (∗ ∗) ≥ 

It follows that ( ) ≤ ̄( ). Next, consider any ̄  ̄( ). Then by the definition

of ̄( ) we have ̄ −   ( ) for all  ∈ {1     }. Since ( ) is the expen-
diture function it follows that max{( ) s.t. 0 ≤ ̄ − }   for every , and so

max{( ) s.t. 0 ≤ ̄ − }   It follows that ̄  ( ) Since this is true for

every ̄  ̄( ) it follows that ̄( ) = ( ) Q.E.D.

Proof of Theorem 9: By definition, ( 1) =  − ( ) and  ( ( )) ≥ 

Then by definition of  Lemma A1, and ( ( )) =  for every , there is  such

that

 ( ( )) = ( ( )− ) ≤ ( ( )) = 

[27]



Therefore we have  ( ( )) = . Similarly we have (  ( )) ≤  by the definitions

and there is  such that

(  ( )) = (  ( )) +  ≥ ( (  − )) +  = 

so that (  ( )) = 

Now consider  such that  ( ( 1)) = ( ( 
1)− ) For any  6=  it follows

by duality that ( ( 
1)) = 1 Therefore, we have

( ( 
1)) = 1 =  ( ( 1)) = ( ( 

1)− )  ( ( 
1)− )

By ( ) monotonically increasing in , it follows that ( 
1)  ( 1)− . Since

this is true for any  6=  we have

( 
1) +   ( 1) = ( 

1) + .

Since each ( 
1) is continuous in , this inequality continues to hold in a neighborhood

of . Therefore, by ( 
1) differentiable and by Shephard’s lemma, on that neighbor-

hood ( ) =  − ( 1) is differentiable and

−( )


=
( 1)


=

( 
1)


= ( 

1) = ( ( 
1))

= ( ( 
1)− ) = (  − ( )− ) = (  − ( ))

where the last equality follows by the ( ) = ( −) when ( −)  ( −
) for all  6= . 

Proof of Theorem 10: For notational convenience, suppress the  argument. Note

first that 0 ≤ ( ) ≤ (0 ) by  ≥ 0 Then by Assumption 3,

( )


= −̇(  − ( )) + (  − ( )) ≤ −̇(  ) +  · ( ) +

= −( ) + ( ) +  · ( ) + ≤ −( ) + 2 +  · ( )

Then the first conclusion follows as in the proof of Theorem 7 while the second conclusion

follows similarly. 
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Notes: Demand estimated from 3rd order series regression evaluated at median income.

Figure 1. Estimated Demand: OLS

Figure 2. Estimated Demand: Control Function

Notes: Demand estimated from 3rd order power series control function regression evaluated at 
median income.



Figure 3. Equivalent Variation Bounds

Notes: Graph shows change in equivalent variation for a price increase from p to $1.40, evaluated at upper 
and lower bounds of income derivative and at median income and estimated from 3rd order power series 
control function estimated demand.

Figure 4. Deadweight Loss Bounds

Notes: Graph shows change in deadweight loss for a price increase from p to $1.40, evaluated at 
upper and lower bounds of income derivative and at median income and estimated from 3rd order 
power series control function estimated demand.



Variable Mean Median Std Dev Max
price ($) 1.33 1.32 0.08 1.46
quantity (gallons) 4.90 2.65 7.53 195.52
income (1,000 $) 62.19 47.5 47.47 170.72
number of drivers 2.04 2 0.78 7
public transit availability 0.24 0 0.42 1
Observations

Quantiles 0.25 0.5 0.75 0.25 0.5 0.75
Order 1 -0.698 -0.656 -0.631 -1.111 -1.060 -1.043

(0.254) (0.244) (0.243) (0.282) (0.280) (0.291)

Order 2 -1.597 -0.798 0.069 -1.675 -1.350 -1.111
(0.469) (0.283) (0.509) (0.476) (0.320) (0.657)

Order 3 -1.214 -0.798 0.271 -1.037 -1.102 -0.872
(0.753) (0.570) (0.721) (0.860) (0.670) (0.952)

Order 4 -0.713 -0.583 0.140 -0.389 -0.588 -0.853
(0.877) (0.623) (0.801) (1.158) (0.707) (1.032)

Quantiles 0.25 0.5 0.75 0.25 0.5 0.75
Order 1 0.168 0.157 0.151 0.167 0.159 0.157

(0.022) (0.019) (0.017) (0.022) (0.019) (0.018)

Order 2 0.221 0.244 0.261 0.210 0.233 0.262
(0.032) (0.025) (0.031) (0.032) (0.025) (0.034)

Order 3 0.217 0.221 0.236 0.220 0.221 0.256
(0.057) (0.040) (0.039) (0.059) (0.041) (0.043)

Order 4 0.266 0.305 0.275 0.267 0.294 0.277
(0.067) (0.054) (0.047) (0.074) (0.058) (0.052)

OLS Estimates

Control Function Estimates

Min
1.14
0.01
2.08

1
0

Table 2. Estimated Price Elasticities

Table 3. Estimated Income Elasticities

Control Function Estimates

8,908

Table 1. Summary Statistics

OLS Estimates



Lower Bound Upper Bound Lower Bound Upper Bound
Order 1 16.777 16.794 32.281 32.343

0.349 0.349 0.502 0.501

Order 2 28.829 28.884
0.443 0.443 0.753 0.751

Order 3 14.972 14.987 28.845 28.900
0.647 0.646 0.884 0.882

Order 4 14.625 14.639 28.546 28.601
0.660 0.659 0.924 0.922

Lower Bound Upper Bound Lower Bound Upper Bound
Order 1 0.646 0.663 2.467 2.529

0.175 0.175 0.669 0.668

Order 2 2.821 2.876
0.233 0.233 0.728 0.727

Order 3 0.485 0.500 2.434 2.489
0.393 0.393 1.04 1.039

Order 4 0.321 0.335 1.827 1.882
0.498 0.497 1.137 1.135

Table 5. Bounds on Deadweight Loss Estimates

[-0.272, 1.257] [0.447, 4.475]

[-0.641, 1.298] [-0.343, 4.052]

From $1.20 to 1.30 From $1.20 to 1.40

[0.319, 0.990] [1.219, 3.776]

[0.277, 1.178] [1.452, 4.245]

0.735

Table 4. Bounds on Equivalent Variation Estimates

[13.715, 16.244] [27.163, 30.583]

[13.340, 15.925] [26.788, 30.360]

From $1.20 to 1.30 From $1.20 to 1.40

[16.104, 17.468] [31.355, 33.270]

[14.275, 16.005]

15.147

[27.405, 30.309]
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