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Abstract

To what degree should societies allow inequality to be inherited? What role should estate
taxation play in shaping the intergenerational transmission of welfare? We explore these ques-
tions by modeling altruistically-linked individuals who experience privately observed taste or
productivity shocks. Our positive economy is identical to models with infinite-lived individ-
uals where efficiency requires immiseration: inequality grows without bound and everyone’s
consumption converges to zero. However, under an intergenerational interpretation, previous
work only characterizes a particular set of Pareto-efficient allocations: those that value only
the initial generation’s welfare. We study other efficient allocations where the social welfare
criterion values future generations directly, placing a positive weight on their welfare so that
the effective social discount rate is lower than the private one. For any such difference in social
and private discounting we find that consumption exhibits mean-reversion and that a steady-
state, cross-sectional distribution for consumption and welfare exists, where no one is trapped
at misery. The optimal allocation can then be implemented by a combination of income and
estate taxation. We find that the optimal estate tax is progressive: fortunate parents face
higher average marginal tax rates on their bequests.

Introduction

Societies inevitably choose the inheritability of inequality. Some balance between equality of oppor-

tunity for newborns and incentives for altruistic parents is struck. We explore how this balancing

act plays out to determine long-run inequality and draw some novel implications for optimal estate

taxation.
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Existing normative models of inequality reach an extreme conclusion: inequality should be per-

fectly inheritable and rise steadily without bound, with everyone converging to absolute misery and

a vanishing lucky fraction to bliss. This immiseration result is robust; requires very weak assump-

tions on preferences (Phelan, 1998); and obtains invariably in partial equilibrium (Green, 1987;

Thomas and Worrall, 1990), in general equilibrium (Atkeson and Lucas, 1992), and across environ-

ments with moral-hazard regarding work effort or with private information regarding preferences

or productivity (Aiyagari and Alvarez, 1995).1

We depart minimally from these contributions, adopting the same positive economic models,

but a slightly different normative criterion. In a generational context, previous work with infinite-

lived agents characterizes the instance where future generations are not considered directly, but

only indirectly through the altruism of earlier ones. On the opposite side of the spectrum, Phelan

(2005) proposes a social planner with equal weights on all future generations. Our interest here is in

exploring a class of Pareto-efficient allocations that take into account the current population along

with unborn future generations. We place a positive and vanishing Pareto weight on the expected

utility of future generations, this leads effectively to a social discount rate that is lower than the

private one.

This relatively small change produces a drastically different result: long-run inequality remains

bounded, a steady-state, cross-sectional distribution exists for consumption and welfare, social mo-

bility is possible and everyone avoids misery. Indeed, welfare typically remains above an endogenous

lower bound that is strictly better than misery. This outcome holds however small the difference

between social and private discounting, and regardless of whether the source of asymmetric infor-

mation is privately observed preferences or productivity shocks.

We begin by modeling a positive economy that is identical to the taste-shock setup developed

by Atkeson and Lucas (1992). Each generation is composed of a continuum of individuals who

live for one period and are altruistic towards a single descendant. There is a constant aggregate

endowment of the only consumption good in each period. Individuals are ex-ante identical, but

experience idiosyncratic shocks to preferences that are only privately observed—thus ruling out first-

best allocations. Feasible allocations must be incentive compatible and must satisfy the aggregate

resource constraint in all periods.

When only the welfare of the first generation is considered, the planning problem is equivalent

to that of an economy with infinite-lived individuals. Intuitively, immiseration then results from

the desire to smooth the dynastic consumption path: rewards and punishments, required for incen-

tives, are best delivered permanently. As a result, the consumption process inherits a random-walk

component that leads cross-sectional inequality to grow endlessly without bound. Infinite spreading

of the distribution is consistent with a constant aggregate endowment only if everyone’s consump-

1Many find the immiseration result perplexing and some even find it morally questionable, but it is also incon-
venient from a practical standpoint. Long-run steady-states often provide a natural benchmark to study dynamic
economies, but such long-run analyses are not possible for private-information economies without a steady-state
distribution with positive consumption. This has impaired the study of long-run implications of optimal taxation,
so common in the Ramsey taxation literature.
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tion eventually converges to zero. Note, that as a consequence, no steady-state, cross-sectional

distribution with positive consumption exists.

Across generations, this arrangement requires a lock-step link between the welfare of parent and

child. Of course, the perfect intergenerational transmission of welfare improves parental incentives—

but at the expense of exposing newborns to the risk of their parent’s luck. Individuals would value

being insured against the uncertainty of their family’s fortune—it is often recognized that one of

the biggest risks one faces in life is regarding the family one is born into.

By contrast, it remains optimal to link the fortunes of parents and children in our model, but

no longer in lock-step. Rewards and punishments are distributed over all future descendants, but

in a front-loaded manner. This creates a mean-reverting tendency in consumption—instead of a

random walk—that is strong enough to bound long-run inequality. The result is a steady-state

cross-sectional distribution for consumption and welfare, with no fraction of the population stuck

at misery.

We also study a repeated Mirrleesian version of our economy and derive implications for optimal

estate taxation. In this model, individuals have identical preferences with regard to consumption

and work effort, but are heterogenous in the productivity of their work effort. Information about

productivity and work effort is private—only the resulting output is publicly observable. We show

that the analysis from the taste-shock model carries over to this setup, virtually without change. In

particular, a very similar Bellman equation characterizes the solution to the social planning prob-

lem: consumption exhibits mean-reversion and has a steady-state cross-sectional distribution. This

outcome highlights the fact that our results do not require any particular asymmetry of information.

More importantly, the Mirrleesian model offers new insights into estate taxation. Feasible al-

locations can be implemented by combining income and estate taxes. Specifically, we find that a

progressive estate tax, which imposes a higher average marginal tax rate on the bequests of fortu-

nate parents, is optimal. This result reflects the mean-reversion of consumption: more fortunate

dynasties, with relatively high levels of current consumption, must have a declining consumption

path induced by higher estate tax rates that lower the net rates of return across generations.

Finally, an important methodological contribution of this paper is to reformulate the social

planning problem recursively. In doing so, we extend ideas introduced by Spear and Srivastava

(1987) to situations where private and social preferences differ. Indeed, we are able to reduce the

dynamic program to a one-dimensional state variable, and our analysis and results heavily exploit

the resulting Bellman equation.

Related Literature. Our paper is most closely related to Phelan (2005), who considered a

social planning problem with no discounting of the future. He shows that if a steady state for the

planning problem exists then it must solve a static maximization problem, and that solutions to this

problem have strictly positive inequality and social mobility. Our paper establishes the existence

of a steady-state distribution for the planning problem for any difference in social and private

discounting. Unlike the case with no discounting, there is no associated static planning problem for

steady-state distributions, and as a result, the methods we develop here are very different.
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In overlapping-generation models without altruistic links, all market equilibria that are Pareto

efficient place positive direct weight on future generations. Bernheim (1989) was the first to point

out that in the dynastic extension of these models with altruism, many Pareto efficient allocations

are not attainable by the market. Kaplow (1995) argued that these Pareto efficient allocations

are natural social objectives and that they can be implemented by market equilibria with estate

taxation policy. The estate tax is negative—it is a subsidy — so as to internalize the externality of

giving on future generations.

Our work contributes to a large literature on dynamic economies with asymmetric information.

In addition to the work mentioned above, this includes recent research on dynamic optimal taxation

(e.g. Golosov et al., 2003; Albanesi and Sleet, 2004; Kocherlakota, 2005). This application has been

handicapped by the immiseration result and by the non-existence of a steady-state distribution with

positive consumption, making it difficult to draw long-run conclusions for optimal taxation. Our

results provide an encouraging way to overcome this problem.

Our work is also indirectly related to Sleet and Yeltekin (2004), who study an Atkeson-Lucas

environment with a utilitarian planner, who lacks commitment and cares only for the current

generation. In this environment, as in Phelan’s, it is a foregone conclusion that immiseration will

not obtain, so that the interesting question is how to solve for the best subgame-perfect equilibria.

Sleet and Yeltekin derive first-order conditions from a Lagrangian and use these to numerically

simulate the solution. Interestingly, it turns out that the best allocation in their no-commitment

environment is asymptotically equivalent to the optimal one with commitment but featuring a more

patient welfare criterion. Thus, our own approach and results provide an indirect, but effective

way of characterizing the no-commitment problem and of formally establishing that a steady-state

distribution with no one at misery exists.

The rest of the paper is organized as follows. Section 1 begins by previewing the main mechanism

in the general model through a simple deterministic example. Section 2 introduces the economic

environment, while Section 3 defines the planning problem. In Section 4, we develop a recursive

version of the planning problem and draw its connection to our original formulation. The resulting

Bellman equation is then put to use in Section 5 to characterize the solution to the social planning

problem. Here we derive our main results on mean-reversion and on the existence of a steady-state

distribution for consumption. We discuss these results in Section 6 and develop intuition for them.

In Section 7, we turn to the canonical optimal-taxation setup with productivity shocks and focus

on its implications for estate taxes. Section 8 offers some conclusions from the analysis. All proofs

omitted in the main text are contained in the Appendix.

1 Social Discounting and Mean Reversion

In this section, we preview the main forces at work in the full model using a simple deterministic

example. We first explain why weighing future generations maps into lower social discounting.

We then show how this affects the optimal inheritability of welfare across generations. Finally, we
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relate the latter to the key mean-reversion force in our model, which prevents immiseration and

guarantees an steady state distribution with social mobility. Our discussion also provides intuition

for the immiseration result in Atkeson-Lucas.

Social Discounting. Imagine a two period deterministic economy. The parent is alive in the first

period, t = 0, and replaced by a single child in the next, t = 1. The child derives utility from his

own consumption, so that v1 = u(c1). The parent cares about her own consumption but is also

altruistic towards the child, so that her utility is v0 = u(c0) + βv1 = u(c0) + βu(c1).

A general welfare criterion that weighs both agents is W ≡ v0 + αv1, for some weight α ≥ 0.

Equivalently,

W = u(c0) + (β + α)u(c1) = u(c0) + β̂u(c1),

with the social discount factor given by β̂ ≡ β + α.

The only difference between the welfare criterion and the objective of the parent is the rate of

discounting. Social discounting depends on the weight on future generations α. When no direct

weight is placed on children, so that α = 0, social and private discounting coincide, β̂ = β. This

is the case covered by Atkeson and Lucas (1992). Whenever children are counted directly in the

welfare criterion, α > 0, society discounts less than parents do privately, β̂ > β.

A Planning Problem. In Section 2 we show that the calculations above generalize to an infinite

horizon economy and motivate a social welfare criterion with more patient geometric discounting:
∑∞

t=0 β̂
tu(ct). Now, suppose that initially dynasties are divided into two groups, A and B, of equal

size. The resource constraint is then simply 1
2
cAt + 1

2
cB,t = e, so that cB,t = 2e− cA,t. Each of these

groups has been promised some dynastic utility, vA and vB. Consider the planning problem

max
{cA,t}

∞
∑

t=0

β̂t
(

1
2
u(cA,t) + 1

2
u(2e− cA,t)

)

subject to the two promise keeping constraints vA =
∑∞

t=0 β
tu(cA,t) and vB =

∑∞
t=0 β

tu(2e− cA,t).
2

Note that, since there is no private information, there are no incentive constraints to impose.

The first-order conditions are

u′(cA,t)

u′(cB,t)
=

1 + λB(β/β̂)t

1 + λA(β/β̂)t
t = 0, 1, . . . ,

where λA and λB are the multipliers on the promise keeping constraints.

Imperfect Inheritability. Suppose that group A has been promised higher utility vA > vB, so

that λA > λB. The first-order condition then reveals that group A enjoys higher consumption in

all periods, cA,t > cB,t. If β̂ = β, as in Atkeson and Lucas (1992), consumption is constant over

time for both groups and initial differences persist forever—the luck of the first generation has a

2 The problem is well defined as long as delivering (vA, vB) is feasible, which requires being below the Pareto
frontier between these two groups so that vB ≤ u

(

2e − u−1((1 − β)vA)
)

/(1 − β).
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Figure 1: Consumption paths for groups A and B. Solid lines represent the case with β̂ > β; the
dotted line is the steady state for this case. The dashed line represent the Atkeson-Lucas case with
β̂ = β.

permanent impact on its descendants. The inheritability of welfare across generations is perfect,

the welfare of the child moves one-to-one with the parent’s welfare.

In contrast, when β̂ > β the difference in consumption between group A and B shrinks over time.

Consumption declines across generations for the privileged group A, and rises for the disadvantaged

group B. The immediate descendants of the first generation only partially share the luck of the

first generation. In this sense, there is imperfect transmission of welfare across generations, a child’s

wellbeing is not tied one-for-one with the parent’s. Indeed initial differences completely vanishes in

the long run—initial luck dies out and has no impact on distant descendants.3

Mean Reversion. Figure 1 illustrates these dynamics for consumption. When β̂ > β the system

is at rest only when there is no inequality, vA = vB = u(e)/(1 − β) with cA = cB = e; any other

initial condition upsets this steady state.

In this simple deterministic example, initial inequality was taken as given. However, in our full

model the ongoing taste shocks are transmitted to lifetime utility, in order to provide incentives.

Indeed, one can think of initial inequality in this example, as representing the effects of a shock in

the full model from some previous period. That is, the dynamics after a shock are similar to those

illustrated here and Figure 1 can be loosely interpreted as an “impulse response” function. When

β̂ = β shocks have a permanent effects on inequality and consumption inherits a random-walk-like

property. However, this random walk case is knife-edge, in that any difference between β̂ and β

introduces mean reversion.

In our deterministic example we found that as long as β̂ > β inequality vanishes in the long

3 A simple Taylor expansion yields cA,t/cB,t − 1 ≃ u′(e)
−eu′′(e) (λ

A − λB)(β/β̂)t. Hence, the relative difference in

consumption goes to zero at asymptotic rate β/β̂.
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run—the unique steady state has no inequality. However, in our full model with ongoing taste

shocks inequality remains positive in the long-run steady state. Intuitively, the mean-reverting

force illustrated here then serves to ensure that long-run inequality remains bounded. By contrast,

when β̂ = β, as in Atkeson and Lucas (1992), there is no mean-reversion. As with a random walk,

shocks accumulate indefinitely and inequality blows up, leading to immiseration.

2 A Social Insurance Problem

The backbone of our model requires a tradeoff between insurance and incentives. This tradeoff

can be due to private information regarding either productivity or preferences. For purposes of

comparison, we adopt the Atkeson-Lucas taste-shock specification. However, our arguments can be

adapted to a repeated Mirrleesian model with privately observed productivity shocks or to moral-

hazard situations with unobservable effort choices.

Demography, Preferences and Technology. At any point in time, our economy is populated

by a continuum of individuals who have identical preferences, live for one period, and are replaced

by a single descendant in the next. Parents born in period t are altruistic towards their only child

and their expected utility vt satisfies

vt = Et−1 [ θtu(ct) + βvt+1 ] ,

where ct ≥ 0 is the parent’s own consumption and β ∈ (0, 1) is the altruistic weight placed on the

descendant’s utility vt+1. The conditional expectation above is over the taste shock θt ∈ Θ, which

are identically and independently distributed across individuals and time.

This specification of altruism is consistent with individuals having a preference over the entire

future consumption of their dynasty given by

vt =
∞

∑

s=0

βs
Et−1 [ θt+su (ct+s) ] . (1)

In each period, a resource constraint limits aggregate consumption to be no greater than some con-

stant aggregate endowment e > 0. These specifications of preferences and technology are precisely

those adopted by Atkeson-Lucas.

For simplicity, we assume Θ contains a finite number of shocks θ ≡ θ1 < θ2 < · · · < θN ≡ θ̄,

with density p(θ). The utility function u(c) is assumed continuous and concave, with a continuous

derivative for all c > 0 satisfying the Inada conditions limc→0 u
′(c) = ∞ and limc→∞ u′(c) = 0.

Define U ≡ u(R+) to be the set of all possible utility values; since we allow utility to be unbounded,

the extremes u ≡ u(0) and ū ≡ limc→∞ u(c) may be finite or infinite. The cost function c(u) is

defined on U as the inverse of the utility function c ≡ u−1. We adopt the normalization that

E[θ]. The level of dynastic utility vt then belongs to the set V ≡ u(R+)/(1 − β) with extremes

v ≡ u/(1 − β) and v̄] ≡ ū/(1 − β).
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Social Welfare. Following Atkeson-Lucas, we identify each dynasty with a number v, which

we interpret as its initial entitlement to expected, discounted utility, v0 = v. We assume that

all dynasties with the same entitlement v receive the same treatment. We then let ψ denote a

distribution of utilities v across the population of dynasties: ψ(A) is the fraction of dynasties who

will receive expected discounted utility in the set A ⊂ R.

We depart from Atkeson-Lucas by introducing a social welfare criterion that can be represented

for each dynasty by
∞

∑

t=0

β̂t
E−1[ θtu(ct) ], (2)

with β̂ > β. Thus, social preferences are identical to the individual preferences given by (1), except

for the discount factor. The objective in our planning problem is the average across dynasties of

(2) using the distribution of entitlements ψ (see equation (7) below).

Our motivation behind the welfare criterion in (2) is that it can be derived from a utilitarian

criterion that places direct weight on the welfare of future generations. Future generations are

already indirectly valued through the altruism of the current generation. If, in addition, they are

also directly included in the welfare function the social discount factor must be higher than β.

To see this, consider the weighted utilitarian criterion with with strictly positive weights {αt}:

∞
∑

t=0

αt E−1vt =
∞

∑

t=0

δt E−1 [ θtu (ct) ], (3)

where δt ≡ βtα0 + βt−1α1 + · · · + βαt−1 + αt. Then the discount factor satisfies

δt+1

δt

= β +
αt+1

δt

> β,

so that social preferences are more patient.4

In particular, if we use simple geometric Pareto weights αt = β̂t with β̂ > β in the average

welfare function (3):

∞
∑

t=0

αt E−1vt =

(

1 −
1

β̂ − β

)

v0 +
1

β̂ − β

∞
∑

t=0

β̂t
E−1[ θtu(ct) ]. (4)

The second term is identical to the expression in (2). Moreover, the average of the first term is

exogenously given, since our planning problem (defined formally in Section 3) takes as given the

initial distribution of utility promises ψ for the first generation. This motivates our concern for the

welfare criterion, the average of the expression in (2).

Information and Incentives. Taste shock realizations are privately observed by individuals and

4 Bernheim (1989) performs similar intergenerational discount factor calculations in his welfare analysis of a
deterministic dynastic saving model. Caplin and Leahy (2004) argue that these ideas also apply to intra-personal
discounting within a lifetime, leading to a social discount factor that is greater than the private one not only across
generations, but within generations as well.
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their descendants. The revelation principle then allows us to restrict our attention to mechanisms

that rely on truthful reports of these shocks. Thus, each dynasty faces a sequence of consumption

functions {ct}, where ct(θ
t) represents an individual’s consumption after reporting the history θt ≡

(θ0, θ1, . . . , θt). A dynasty’s reporting strategy σ ≡ {σt} is a sequence of functions σt : Θt+1 → Θ

that maps histories of shocks θt into a current report θ̂t. Any strategy σ induces a history of reports

σt : Θt+1 → Θt+1. We use σ∗ to denote the truth-telling strategy with σ∗
t (θ

t) = θt for all θt ∈ Θt+1.

Given an allocation {ct}, the utility obtained from any reporting strategy σ is

U
(

{ct}, σ; β
)

≡
∞

∑

t=0

∑

θt∈Θt+1

βtθtu
(

ct
(

σt(θt)
))

Pr(θt).

An allocation {ct} is incentive compatible if truth-telling is optimal, so that

U
(

{ct}, σ
∗; β

)

≥ U
(

{ct}, σ; β
)

(5)

for all strategies σ.

Feasibility. An allocation is a sequence of functions {cvt } for each v, where cvt (θ
t) represents the

consumption that a dynasty with initial entitlement v gets at date t after reporting the sequence

of shocks θt. For any given initial distribution of entitlements ψ and resources e, we say that an

allocation {cvt } is feasible if: (i) it is incentive compatible for all dynasties; (ii) it delivers expected

utility of at least v to all initial dynasties entitled to v; and (iii) average consumption in the

population does not exceed the fixed endowment e in all periods:

∫

∑

θt

cvt (θ
t) Pr(θt) dψ(v) ≤ e t = 0, 1, . . . (6)

3 Social Planning Problem

When β̂ = β, the efficiency problem is to find the lowest constant resource level e such that there

exists a feasible allocation that delivers the distribution of utility entitlements ψ. Formally, let e∗(ψ)

denote the lowest e such that there exists an allocation that satisfies the resource constraints (6),

as well as the promise keeping and incentive constraints: v = U({cvt }, σ
∗; β) and U({cvt }, σ

∗; β) ≥

U({cvt }, σ; β) for all initial entitlements v and strategies σ. This is precisely the efficiency problem

studied in Atkeson and Lucas (1992).

When β̂ > β we define the social optimum as maximizing the average social welfare function (2),

weighed by ψ, over all feasible allocations. That is, the social planning problem given an initial

distribution of entitlements ψ and an endowment level e is to maximize

∫

U
(

{cvt }, σ
∗, β̂

)

dψ(v) (7)

subject to the the resource constraints (6), as well as the promise keeping and incentive constraints:
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v = U({cvt }, σ
∗; β) and U({cvt }, σ

∗; β) ≥ U({cvt }, σ; β) for all initial entitlements v and strategies σ.

Our social planning problem is well defined, with a non-empty constraint set, for all e ≥ e∗(ψ).

Note that the social discount factor β̂ appears in the objective function, while it is the private

discount factor β that matters for the promise keeping and incentive constraints; hence, the objective

function is not constant over the constraint set.5

If the initial distribution ψ and endowment e happen to be such that e = e∗(ψ), then there is

only one feasible allocation: the one leading to misery characterized by Atkeson-Lucas. That is, in

this case the first generation has been promised so much that nothing is left to be maximized for

future generations. We are interested in the non-trivial planning problems where e > e∗(ψ).

Steady States. Our focus is on distributions of utility entitlements ψ such that the solution

to the planning problem features, in each period, a cross-sectional distribution of continuation

utilities vt that is also distributed according to ψ. We also require the cross-sectional distribution

of consumption to replicate itself over time. We term any initial distribution of entitlements with

these properties a steady state and denote them by ψ∗. As we shall demonstrate below, continuation

utility constitutes a state variable that follows a Markov process, and steady states are then invariant

distributions of this process.

Note that in the Atkeson-Lucas case, with β = β̂, the non-existence of a steady state with

positive consumption is a consequence of the immiseration result: starting from any non-trivial

initial distribution ψ and resources e = e∗(ψ) the sequence of distributions converges weakly to the

distribution having full mass at misery, with zero consumption for everyone. We seek non-trivial

steady states ψ∗ that exhaust a strictly positive aggregate endowment e in all periods.

State Variable ψ. The social planning problem is indexed by the given initial distribution of

welfare entitlements ψ. Indeed, in any period the current distribution is a state variable for the

remaining planning problem: the social planning problem is recursive with state variable ψt. It

follows that the solution to the planning problem from any period t onward, {cvt+s}
∞
s=0, is a time

independent function of the current distribution ψt. In particular, this implies that the evolution

of the distribution satisfies a stationary recursion ψt+1 = Ψψt, for some fixed mapping Ψ. A

steady-state ψ∗ then corresponds to a fixed point of this mapping, ψ∗ = Ψψ∗.

Using the entire distribution ψ as a state variable is one way to approach the planning problem.

Indeed, this is the recursive method adopted by Atkeson and Lucas (1992). They were able to

keep the analysis manageable, despite the large dimensionality of the state variable, by exploiting

an homogeneity property of the problem in the case of constant relative risk aversion (CRRA)

preferences. Even with CRRA preferences, however, our model lacks this homogeneity, making

such a direct approach intractable.6 Consequently, in the next section, we attack the problem

5 Equivalently, when β̂ > β, one can also work starting from a dual problem, as in the Atkeson-Lucas case.
We then seek the lowest value of e that delivers the entitlements v to the first generation and yields some level
of utility, Vp, to the planner’s welfare criterion in equation (3). This alternative formulation leads to the same
analysis—specifically, to the Lagrangian in equation (9) below—and the same conclusions as the primal definition
we adopt.

6 Indeed, the homogeneity in Atkeson-Lucas is intimately linked to their immiseration result: it implies that
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differently, using a dynamic program with a one-dimensional state variable.7

4 A Bellman Equation

In this section we study a relaxed version of the social planning problem whose solution coincides

with that of the original problem at steady states. The relaxed problem has two important advan-

tages. First, the relaxed problem can be solved by studying a set of subproblems—one for each

dynasty with entitlement v—which avoids the need to keep track of the entire population. Second,

each of these subproblems admits a simple recursive formulation, which can be characterized quite

sharply. We believe that the general approach we develop here may be useful in other contexts.

Consider the relaxed planning problem where the sequence of resource constraints (6) is replaced

by the single intertemporal condition

∫ ∞
∑

t=0

Qt

∑

θt

cvt (θ
t) Pr(θt) dψ(v) ≤ e

∞
∑

t=0

Qt, (8)

for some positive sequence {Qt} with
∑∞

t=0Qt <∞. One can interpret this problem as representing

a small open economy facing intertemporal prices {Qt}. The relaxed and original versions of the

planning problem are related in that any solution to the former which happens to satisfy the resource

constraints in (6) must also be a solution to the latter—an analogue of the first theorem of welfare

economics for our environment.8 Since the problem is convex,9 a Lagrangian argument establishes

the converse: there must exist some positive sequence {Qt} such that the solution to the original

planning problem also solves the relaxed problem—an analogue of the second theorem of welfare

economics for our environment.

Most importantly, any steady-state solution to the relaxed problem is a steady-state solution

to the original one, since at a steady state the intertemporal constraint (8) implies the resource

constraints (6). Our focus on steady states leads naturally to exponential prices Qt = qt for some

constant q. In particular, we shall construct steady states with q = β̂. Indeed, steady states are not

compatible with other values for q. Intuitively, if q < β̂ at a proposed steady state, then the planner

would actually prefer an increasing path for consumption; while if q > β̂ the reverse is true.10,11

Attaching a multiplier λ̂ > 0 to the intertemporal resource constraint (8), we can form the

rewards and punishments are permanent and delivered by shifting the entire sequence of consumption up or down
multiplicatively. In our case, even with CRRA preferences, homogeneity breaks down and mean reversion emerges,
preventing immiseration.

7 A similar approach is taken in Atkeson and Lucas (1995), Aiyagari and Alvarez (1995), and others.
8 This is related to the decentralization result in Atkeson and Lucas (1992, Theorem 1, Section 7).
9 It is actually convex after the change in variables, from consumption to utility, performed next.

10 This contrasts with Atkeson-Lucas, since it can be shown that their decentralization requires q 6= β̂ whenever
utility is not logarithmic. However, it remains true that a steady-state requires q = β̂, which implies q = β. There
is no contradiction since no steady state exists in the Atkeson-Lucas case.

11 This also contrasts with incomplete market model economies, such as Huggett (1993) and Aiyagari (1994),
where the equilibrium steady-state interest rate is always lower than the discount rate, q > β. The reason is that
the equilibrium allocation in these economies does not solve a planning problem.
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Lagrangian L ≡
∫

Lv dψ(v) where

Lv ≡

∞
∑

t=0

∑

θt

β̂t
(

θtu(c
v
t ) − λ̂cvt (θ

t)
)

Pr(θt) (9)

and study the optimization of L subject to v = U({cvt }, σ
∗; β) ≥ U({cvt }, σ; β) for all v. This is

equivalent to the pointwise optimization, for each v, of the subproblem: k(v) ≡ supLv subject to

v = U({cvt }, σ
∗; β) ≥ U({cvt }, σ; β). Our first result characterizes this value function and shows that

it satisfies a Bellman equation.

Theorem 1 The value function k(v) is continuous, concave, and satisfies the Bellman equation

k(v) = max
u,w

E
[

θu(θ) − λ̂c
(

u(θ)
)

+ β̂k
(

w(θ)
)]

(10)

subject to

v = E[θu(θ) + βw(θ)] (11)

θu(θ) + βw(θ) ≥ θu(θ′) + βw(θ′) for all θ, θ′ ∈ Θ. (12)

This recursive formulation imposes a promise-keeping constraint (11) and an incentive con-

straint (12). Intuitively, the latter rules out one-shot deviations from truth-telling, guaranteeing

that telling the truth today is optimal if the truth is told in future periods. Of course, this is

necessary to satisfy the full incentive-compatibility condition (5). Intuitively, the rest is implicitly

taken care of in (10) by evaluating the value function at the continuation utility: for any given

continuation value w(θ), envision the planner in the next period solving the remaining sequence

problem by selecting an entire allocation that is incentive compatible from then on. Then k(w(θ))

represents the value to the planner of this continuation allocation. Taken together, a pair u(θ) and

w(θ) that satisfies (11)–(12) pasted with the corresponding continuation allocations for each w(θ),

yields an allocation that satisfies the full incentive-compatibility (5). The objective function in (10)

then captures the relevant value of allocations constructed in this way.

Among other things, Theorem 1 shows that the maximum in the Bellman equation (10) is

attained. We let the policy functions gu(θ, v) and gw(θ, v) denote the unique solutions for u and w,

respectively. For any initial utility entitlement v0, an allocation {ut} can then be generated from

the policy functions (gu, gw) by setting u0(θ0) = gu(θ0, v0) initially and defining ut(θ
t) and vt+1(θ

t)

inductively for t ≥ 1 by ut(θ
t) = gu(θt, vt(θ

t−1)) and vt+1(θ
t) = gw(θt, vt(θ

t−1)).

Our next result elucidates the connection between allocations generated from the policy functions

in this way and solutions to the planning problem.

Theorem 2 (a) An allocation {ut} is optimal for the relaxed problem, given v0, if and only if it

is generated by the policy functions (gu, gw) starting at v0, is incentive compatible, and delivers a

lifetime utility of v0; (b) an allocation {ut} generated by the policy functions (gu, gw), starting at

12



v0, has limt→∞ βt
E−1vt(θ

t−1) = 0 and delivers utility v0; (c) an allocation {ut} generated by the

policy functions (gu, gw), starting from v0, is incentive compatible if

lim sup
t→∞

E−1β
tvt

(

σt−1(θt−1)
)

≥ 0

for all reporting strategies σ.

Part (a) of Theorem 2 implies that either the solution to the relaxed planning problem is

generated by the policy functions of the Bellman equation, or there is no solution at all. Parts (b)

and (c) of the theorem show that the first case is guaranteed if we can verify the limit condition in

part (c). The latter is automatically satisfied for all utility functions that are bounded below and

can be verified in many other cases of interest.12

Atkeson-Lucas Case. The case with β = β̂ can be studied by the same approach. Recall that

the efficiency problem studied by Atkeson and Lucas (1992) minimizes resources e subject to the

sequence of resource constraints (6) and v = U({cvt }, σ
∗; β) ≥ U({cvt }, σ; β) for all v. Consider the

relaxed version of this problem that replaces the sequence of resource constraints with the single

intertemporal constraint (8) for some sequence {Qt}. Then if the solution to this problem satisfies

the resource constraints (6) it is also a solution to the original problem. Although no steady state

exists in this case, with constant relative risk aversion utility functions, the solution to the relaxed

problem with Qt = qt
AL

solves the original one, for an appropriately chosen value of qAL > 0, not

necessarily equal to β.

Since the constraint (8) binds, we can take the objective function for the relaxed problem as

the left hand side of this inequality. This minimization can then be done pointwise: for each v let

KAL(v) ≡ inf
∑∞

t=0 q
t
AL
ct(θ

t) subject to v = U({ct}, σ
∗; β) ≥ U({ct}, σ; β). The associated Bellman

equation for this problem is then

KAL(v) = min
u,w

E
[

c
(

u(θ)
)

+ qALKAL

(

w(θ)
)]

(13)

subject to (11) and (12). This problem can be thought of as the limiting version of the β̂ > β case

as λ̂→ ∞ and where the discount factor in the objective qAL is not necessarily β̂. Theorems 1 and 2

also apply to this problem and its Bellman equation.

With CRRA preferences the value function takes the form kAL(v) = A((1 − σ)v)
1

1−σ for some

constant A (or when σ = 1, the logarithmic case, it is kAL(v) = A exp((1−β)v)). This homogeneity

property can be used to reduce the Bellman equation (13) to a simple recursion on the constant A.

12 Theorem 2 involves various applications of versions of the Principle of Optimality. For example, for any given
policy functions (gu, gw) and an initial value v0, the individual dynasty faces a recursive dynamic programming
problem with state variable vt. Conditions (11) and (12) then amount to guessing and verifying a solution to the
Bellman equation of the agent’s problem—in particular, that the value function that satisfies the Bellman equation,
with truth telling, is the identity function. However, one also needs to verify that this value function represents the
true optimal value for the dynasty from the sequential problem. This verification is accomplished by part (c) of
Theorem 2.
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This also illustrates the homogeneity property for the Atkeson-Lucas case, discussed at the end of

Section 3.

5 Optimal Inequality

In this section we exploit the connection between the Bellman equation and the planning problem.

We characterize the solution and derive a key equation that illustrates mean-reverting forces in the

dynamics of consumption. The main result of the section is to establish that these forces are strong

enough to imply the existence of an invariant distribution with no misery. Finally, we provide

sufficient conditions to verify part (c) of Theorem 2, and ensure that a solution to the planning

problem exists.

Mean Reversion

We are now in a position to study the Bellman equation’s optimization problem. To begin, we

justify the use of first-order conditions with the following lemma:

Lemma 1 The value function k(v) is strictly concave and differentiable on the interior of its do-

main, with limv→v̄ k
′(v) = −∞. If utility is unbounded below, then limv→v k

′(v) = 1. Otherwise

limv→v k
′(v) = ∞.

Let λ = k′(v) be the multiplier on the left-hand side of the promise-keeping constraint (11) and

let µ(θ, θ′) be the multipliers on the incentive constraints (12). The first-order condition for u(θ) is

(

1 − λ̂c′
(

u(θ)
)

)

p(θ) − θλp(θ) +
∑

θ′

θµ(θ, θ′) −
∑

θ′

θ′µ(θ, θ′) ≤ 0,

with equality if u (θ) is interior. The solution for w(θ) must be interior, given the Inada conditions

for k(v) derived in Lemma 1, and must satisfy the first-order condition

β̂k′
(

w(θ)
)

p(θ) − βλp
(

θ
)

+ β
∑

θ′

µ(θ, θ′) − β
∑

θ′

µ(θ, θ′) = 0.

Using the envelope condition k′(v) = λ and adding up across θ, this becomes

∑

θ∈Θ

k′
(

gw(θ, v)
)

p(θ) =
β

β̂
k′(v). (14)

This key equation can be represented in sequential notation as

Et−1

[

k′
(

vt+1(θ
t)

)]

=
β

β̂
k′

(

vt(θ
t−1)

)

(15)
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where {vt} is generated by the policy function gw. Thus, {k′(vt)} is a Conditional Linear Auto

Regressive (hereafter: CLAR) Markov process. Note that we can translate anything about the

process {k′(vt)} into implications for the process {vt}, since the derivative k′(v) is continuous and

strictly decreasing. Likewise, using the policy function gu(θ, v), conclusions about the process {vt}

provide information about the process for consumption.

The conditional expectation in (15) illustrates that β/β̂ < 1 creates a force for mean reversion

for the process {k′(vt)} toward zero. Lemma 1 implies that the value function k(v) has an interior

maximum at v∗ > v with k′(v∗) = 0, so reversion occurs towards this interior utility level—away

from misery. This feature is key to our results on the existence of invariant distributions.

Economically, the mean-reversion equation itself embodies an interesting form of social mobility.

We can divide the population into two social hierarchies, with mobility ensured between them.

Descendants of individuals with current welfare above v∗ will eventually fall below it. Similarly

dynasties initially entitled to welfare below v∗ are guaranteed to access levels above it. This rise

and fall of families illustrates a strong intergenerational mobility in the model.

To provide incentives, society rewards the descendants of an individual reporting a low taste

shock. Rewards can take two forms and society makes use of both. The first is standard and

involves increased consumption spending, in present-value terms. The second is more subtle and

exploits differences in preferences: it allows an adjustment in the pattern of consumption, for a

given present value, in the direction preferred by individuals.13

Since individuals are more impatient than the planner, this latter form of reward is delivered

by tilting the consumption profile toward the present. Similarly, punishments involve tilting the

consumption path toward the future. In both cases, earlier consumption dates are used more

intensively to provide incentives—rewards and punishments are front-loaded.

In deriving this result, it is important to stress the role played by the non-monotonicity of

the value function k(v). Although mean reversion stems from β̂/β < 1 in equation (15), it is

non-monotonicity of k(v) that ensures that reversion is not toward misery. By contrast, in the

Atkeson-Lucas case a CLAR equation similar to (15) may hold, but the value function in this

case is monotone and reversion then occurs toward misery. Indeed, the envelope and first-order

conditions for the Bellman equation (13) yield

∑

θ

K ′
AL

(

gw
AL

(θ, v)
)

p(θ) =
β

qAL

K ′
AL

(v),

which is similar to condition (15) when qAL > β.14 Crucially, unlike the case with β̂ > β, here

the value function KAL(v) is strictly increasing, so that K ′
AL

(v) ≥ 0. Thus, {K ′
AL

(vt)} is a non-

negative process, which implies by the Martingale Convergence Theorem that it must converge

13 Some readers may recognize this last method as the time-honored system of rewards and punishments used by
parents when conceding their child’s favorite snack or reducing their TV-time. In these instances, the child values
some goods more than the parent wishes, and the parent uses them to provide incentives.

14 With logarithmic utility qAL = β yields a solution with constant average consumption. With u(c) = c1−σ/(1−σ)
and σ < 1 the appropriate value of qAL, that yields constant consumption, is strictly above β.
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almost surely (a.s.) to some finite value. Since incentives must be provided using continuation

utilities gw(θ̄, v) 6= gw(θ, v), this rules out anything other than K ′
AL

(vt) → 0 a.s. Immiseration then

follows, vt → v and ct → 0 a.s. This highlights the importance of the non-monotonicity of the value

function k(v) for our results in the case of β̂ > β.

Our next result pushes the characterization of reversion past the average behavior of the {k′t}

process by deriving bounds for its evolution. These bounds are critical for guaranteeing the existence

of an invariant distribution with no mass at misery.

Proposition 1 The policy function gw(θ, v) satisfies the CLAR equation (14). In addition:

(a) if utility is unbounded below, then

γ
(

1 − k′(v)
)

+

(

1 −
β

β̂

)

≤ 1 − k′
(

gw(θ, v)
)

≤ γ̄
(

1 − k′(v)
)

+

(

1 −
β

β̂

)

(16)

for all θ ∈ Θ, where the constants are given by γ̄ ≡ (β/β̂) max
1≤n≤N

{(1 + θn − E[θ | θ ≤ θn])/θn}

and γ ≡ (β/β̂) min
2≤n≤N

{1 + θn−1 − E[θ | θ ≥ θn]/θn−1}.

(b) if utility is bounded below, then for low enough values of v such that k′(v) > 1, we have

u(θ) = u

w(θ) > v

k′
(

w(θ)
)

= β̂
β
k′(v)

for all θ ∈ Θ. For values of v such that k′(v) ≤ 1, the lower bound in (16) holds; the upper

bound in (16) holds for sufficiently high v.

Proposition 1 illustrates a powerful tendency away from misery. For example, with utility

unbounded below, continuation utility gw(θ, v) remains bounded even as v → −∞. Thus, no matter

how much a parent is supposed to be punished, his child is always somewhat spared.

Main Result: Existence of an Invariant Distribution with No Misery

We now state the main result of this section: if a solution to the relaxed planning problem exists,

then it admits an invariant distribution with no misery. The proof of this result relies on the

conditional-expectation equation (15) and the bounds in Proposition 1. Thus, it makes use of both

mean-reversion properties discussed in the previous subsection.15

Proposition 2 The existence of an invariant distribution ψ∗ with no mass at misery, ψ∗({v}) = 0,

for the Markov process {vt} implied by gw is guaranteed if any of the following holds: utility is

unbounded below, utility is bounded above, γ̄ < 1, or γ > 0.

15 When utility is bounded below, we use sufficient conditions (that either utility is bounded above, γ̄ < 1, or
γ ≥ 0) that ensure that the ergodic set is bounded away from misery. It seems very plausible, however, that these
conditions could be dispensed with.
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Proposition 2, when combined with part (a) of Theorem 2, leaves open only two possibilities: (i)

the relaxed problem admits a steady-state invariant distribution with no misery; or (ii) no solution

exists. This situation contrasts strongly with the Atkeson-Lucas case, with β = β̂, where a solution

exists but does not admit a steady state, and everyone ends up at misery. Towards the end of this

section we show that a solution to the planning problem can be guaranteed so that case (i) holds.

Our Bellman equation also provides an efficient method for explicitly solving the planning prob-

lem. We illustrate this with two examples, one analytical and another numerical.

Example 1. Suppose utility is CRRA with σ = 1/2, so that u(c) = 4c1/2 for c ≥ 0 and c(u) = u2/2

for u ≥ 0. For β = β̂ Atkeson-Lucas show that the optimum involves consumption inequality

growing without bound and leading to immiseration.

Consider the relaxed problem where we ignore the non-negativity constraints on u and w,

k(v) = max
u,w

E
[

θu(θ) − λ̂
2
u(θ)2 + β̂k

(

w(θ)
)]

,

subject to (11) and (12). This is a linear-quadratic dynamic programming problem, so it follows

that the value function is a quadratic and the policy functions are linear in v:

gu(θ, v) = γu
1(θ)v + γu

0(θ)

gw(θ, v) = γw
1 (θ)v + γw

0 (θ)

For taste shocks with sufficiently small amplitude we can guarantee, by continuity with the deter-

ministic case θ = θ̄, that γw(θ) < 1 and γw(θ̄) > 0, implying a unique bounded ergodic set for utility

[vL, vH ] with vL > 0. Moreover, gu(θ, v) > 0 for v ∈ [vL, vH ]. Hence, since the planning problem is

convex and utility turns out to be strictly positive at the steady state, this solution does solves the

original problem with non-negativity constraints on u.

Example 2. To illustrate the numerical value of our recursive formulation, we compute the solution

for the logarithmic case with β = 0.9, β̂ = 0.975, e = λ̂−1 = 0.6, θh = 1.2, θl = 0.75 and

p = 0.5. Figure 2 displays the steady-state, cross-sectional distribution of dynastic utility measured

in consumption-equivalent units, c(v(1− β)) implied by the solution to the planning problem. The

long-run distribution has a smooth bell-curve shape—a feature that must be due to the smooth,

mean-reverting dynamics of the model, since it cannot be a direct consequence of our two-point

distribution of taste shocks. The figure also shows the invariant distributions for various values of

β̂. The degree of inequality appears to decrease with higher values of β̂. This outcome is suggested

intuitively by the coefficient on the CLAR equation (15). These simulations also support the natural

conjecture that as we approach the Atkeson-Lucas case, β̂ → β, the resulting sequence of invariant

distributions blows up, since no steady state with positive consumption exists when β̂ = β.

We now turn briefly to issues of uniqueness and stability for the invariant distribution guaranteed

by Proposition 2. This question is of economic interest because it represents an even stronger notion
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Figure 2: Steady-State Distributions of Dynastic Utility

of social mobility than that implied by the mean-reversion condition (15) discussed in the previous

subsection. That is, if convergence toward the distribution ψ∗ occurs starting from any initial utility

level v0, then the fortunes of distant descendants—the distribution of their welfare—is independent

of the individual’s present condition. At the optimum, the past always exerts some influence on the

present, but its influence is bounded and dies out over time, so that the advantages or disadvantages

of distant ancestors are eventually wiped out.

Indeed, under some conditions we can guarantee that the social optimum in our model does

display this strong notion of social mobility. To see this, suppose the ergodic set for the {k′t}

process is compact. This is guaranteed, for example, by applying Proposition 1 when γ̄ < 1. Then,

if the policy function gw(θ, v) is monotone in v, the invariant distribution ψ∗ is unique and stable

in the sense that, starting from any initial distribution ψ0, the sequence of distributions {ψt},

generated by gw, converges weakly to ψ∗. This follows since the conditional-expectation equation

(15) ensures enough mixing to apply Hopenhayn-Prescott’s Theorem.16 The monotonicity of the

policy functions for continuation utility w seems intuitive and plausible, as illustrated by Examples

1 and 2.17

Another approach suggests uniqueness and convergence without relying on monotonicity of the

policy functions. Grunwald et al. (2000) show that one-dimensional, irreducible Markov processes

with the Feller property that are bounded below and satisfy a CLAR condition, such as (15), have a

unique and stable invariant distribution. Moreover, convergence to this distribution from any initial

distribution is fast, in the sense that it occurs at the geometric rate β/β̂. All the requirements of their

theorem have been verified already for our model, except for the technical condition of irreducibility,

which is likely to hold if we were to assume that the taste shock has a continuous distribution. We

do not pursue this formally other than to note that the forces for reversion in (15) could be further

exploited to establish uniqueness and convergence.

16 See pg. 382-383 in Stokey and Lucas (1989).
17 Indeed, for the general case it can be shown that gw(θ, v) is strictly increasing in v. However, although we know

of no counterexample, we have not found conditions that ensure the monotonicity of gw(θ, v) for all θ 6= θ.

18



Our focus on steady states, where the distribution of utility entitlements replicates itself over

time, has exploited the fact that the relaxed and original planning problems must coincide. However,

for the logarithmic utility case we can do more and characterize transitional dynamics.

Proposition 3 If utility is logarithmic, then for any initial distribution of utility entitlements ψ

there exists an endowment level e∗(ψ) such that the solution to the original social planning problem

is generated by the policy functions (gu, gw) from the relaxed problem with Qt = β̂t. The function

e∗ is monotone increasing, in that if ψa ≺ ψb in the sense of first-order stochastic dominance then

e∗(ψa) < e∗(ψb).

One interesting application of this result is to the situation where the planning problem is

modified to select the best initial distribution ψ, instead of taking one as given. Then all initial

dynasties are treated identically and started with identical utility level v∗ solving k′(v∗) = 0. The

optimal allocation then evolves according to the dynamics implied by the policy function gw(θ, v).

The cross-sectional distribution of welfare will spread out from its initially egalitarian condition as

dynasties experience varying luck in the realization of their shocks.

By applying Proposition 3, convergence to a unique invariant distribution ψ∗ of the Markov

process {vt} implied by the policy function gw(θ, v) takes on additional economic meaning. It implies

the stability of the cross-sectional distributions of welfare and consumption in the population. That

is, if the Markov process {vt} generated by gw is stable, then the cross-sectional distributions of

welfare and consumption eventually settle down to the steady state.

As mentioned in Section 4, for any utility function specification one can characterize the solution

for any (ψ, e) as the solution to a relaxed problem with some sequence of prices {Qt}, that are not

necessarily exponential. Proposition 3 identifies the distributions and endowment pairs (ψ, e) that

lead to exponential prices in the logarithmic case. More generally, with logarithmic utility for any

pair (ψ, e), we can show that Qt = β̂t + Λβt for some constant Λ. The entire optimal allocation

can then be characterized by the policy functions from a non-stationary Bellman equation. Since

prices are asymptotically exponential, in that limt→∞ β̂−tQt = 1, it follows that long-run dynamics

are always dominated by the policy functions (gu, gw) from the relaxed problem with exponential

prices Qt = β̂t that we have characterized.

Sufficient Conditions for Verification

We conclude this section by describing sufficient conditions for a solution to the planning problem

to exist at the steady state ψ∗ identified by the policy functions in Proposition 2. This involves two

steps. First, we establish that allocations generated by the policy functions are indeed incentive

compatible by verifying the condition in part (c) of Theorem 2. Second, we verify that average

consumption is finite under the invariant distribution ψ∗.

Lemma 2 The allocation generated from the policy functions (gu, gw), starting from any v0, is

guaranteed to be incentive compatible in the following cases: (a) utility is bounded above; (b) utility

is bounded below; (c) utility is logarithmic; or (d) γ̄ < 1 or γ > 0.
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We now find sufficient conditions that guarantee average consumption is finite under the invariant

distribution ψ∗. If the ergodic set for utility v is bounded away from the extremes, then consumption

is bounded and average consumption is trivially finite. Even when a bounded ergodic set for utility

v cannot be ensured, finite average consumption can be guaranteed for a large class of utility

functions.

Lemma 3 Average consumption is finite under the invariant distribution ψ∗

∫

∑

θ

c
(

gu(θ, v)
)

p(θ) dψ∗(v) <∞

if either (a) the ergodic set for v is bounded; or (b) utility is such that c′(u(c)) is a convex function

of c.

Note that a bounded ergodic set is guaranteed by γ̄ < 1, which is ensured for taste shocks

with sufficiently small amplitude; and condition (b) holds, for example, for all constant relative risk

aversion utility functions with σ ≥ 1.

The value of average consumption depends on the value of λ̂. For instance, in the case of

constant relative risk aversion utility, average steady state consumption is a power function of λ̂,

and thus has full range. In fact, in this case the entire solution for consumption is homogenous

of degree one in the value of the endowment e. This ensures a steady state solution to the social

planning problem for any endowment level.

6 Discussion: Mean-Reversion

In this section we develop a alternative characterization, using a Bellman equation that holds for

any value of q not necessarily equal to β̂. This alternative formulation is useful, both as a source of

intuition and to motivate our focus on q = β̂. Consider the following cost minimization problem

K(v, v̂) ≡ min
{ct}

∞
∑

t=0

qt
∑

θt

ct(θ
t) Pr(θt),

subject to the incentive compatibility constraint U({ct}, σ
∗; β) ≥ U({ct}, σ; β) and

v̂ =
∞

∑

t=0

β̂t
E−1

[

θtu(ct)
]

v =
∞

∑

t=0

βt
E−1

[

θtu(ct)
]

,
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that is, delivering utility v̂ and v for the planner and individual, respectively. Then the value

function must satisfy the Bellman equation

K(v, v̂) = max
u,w,ŵ

E
[

c
(

u(θ)
)

+ qK
(

w (θ) , ŵ (θ)
) ]

,

subject to

v̂ = E
[

θu(θ) + β̂ŵ(θ)
]

v = E
[

θu(θ) + βw(θ)
]

and

θu(θ) + βw(θ) ≥ θu(θ′) + βw(θ′) for all θ, θ′ ∈ Θ.

This formulation could be used to derive all of our results, although the lower-dimensional Bellman

equation (10) is slightly more convenient for that purpose. The advantage of this cost-minimization

formulation, however, is that it lends itself naturally to economic interpretations.

The following story provides a useful reinterpretation and source for intuition. Consider an

infinite-lived household with two members, husband and wife, and assume that consumption is

a public good—there is no intra-period resource allocation problem. However, husband and wife

disagree on how to discount the future. Suppose the wife is more patient, but only the husband

can observe and report taste-shock realizations.

Then this cost-minimization problem characterizes the constrained Pareto problem for this

household, in the sense that the isocost curve K(v, v̂) = K0 represents, given resources K0, the

Pareto frontier between husband and wife. The Pareto frontier is non-standard in that it is not

everywhere decreasing and does not represent the usual transfer of private goods between two

agents. Instead, it arises from differences in preferences that generate a disagreement about the

optimal consumption path for the only public good. Since disagreement on preferences is bounded,

the Pareto frontier is non-monotone and the highest possible utility for the wife is attained for an

interior utility level for the husband, where K1(v
∗, v̂∗) = 0. Reductions in the husband’s utility to

the left of this point must also decrease utility for the wife, for a given level of resources.

The first-order conditions can be rearranged to deliver

β̂K2(v, v̂) = qK2

(

w(θ), ŵ(θ)
)

(17)

−
K1(v, v̂)

K2(v, v̂)
=
β

β̂
E

[

−
K1

(

w(θ), ŵ(θ)
)

K2

(

w(θ), ŵ(θ)
)

]

. (18)

Condition (17) can then be used to argue that a steady-state requires q = β̂. Indeed, if q < β̂, then

{K2t} would increase without bound; likewise, if q > β̂, then {K2t} decreases toward zero. Both

situations clearly do not lend themselves to the existence of an invariant distribution for (v, v̂).

On the other hand, if q = β̂ then K2(vt, v̂t) is constant along the optimal path and an invariant
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distribution is possible.

When q = β̂, the state (vt, v̂t) moves along a one-dimensional locus given by K2(v, v̂) =

K2(v0, v̂0). Intuitively, since no incentives are required for the wife, she is perfectly insured in

the sense that the marginal cost of delivering welfare to her is held constant across time.

Figure 3: Isocost curves of K(v, v̂)

Figure 3 shows that the curve K2(v, v̂) = K2(v0, v̂0) for continuation utilities cuts the isocost

curves from below, and cuts K1(v, v̂) = 0 from above. Intuitively, incentives require foregoing

perfect insurance for the husband and accepting fluctuations in v as rewards and punishments.

Starting from (v∗, v̂∗), rewards can be delivered in two ways. The optimum makes use of both forms

of rewards, explaining the shape of the schedule for continuation utilities.

The first form of rewarding involves increasing resources K, and can be seen as an upward

movement along the diagonal K1(v, v̂) = 0. However, the husband is also rewarded by allowing an

allocation of these resources that is more to his liking, which can be represented as lateral movements

along the Pareto frontier, which at (v∗, v̂∗) is horizontally flat. The solution combines both forms of

rewards and, as a result, (v, v̂) travels along K2(v, v̂) = K2(v0, v̂0) to the right of K1(v, v̂) = 0 and

above the initial isocost curve. Note that punishments will push the agent on the upward sloping

section of the Pareto frontier. Thus, ex-ante efficiency demands ex-post inefficiency.18

Condition (18) is the analog of the conditional-expectation equation (15) obtained from the

one-dimensional Bellman equation. Here, it implies that the slope of the isocost curve (Pareto

frontier), −K1/K2 reverts geometrically toward 0. Thus, (vt, v̂t) moves along K2(v, v̂) = K2(v0, v̂0)

and eventually reverts toward (v∗, v̂∗). Intuitively, the solution deviates from (v∗, v̂∗) to provide the

18Returning to the analogy in footnote 13: parents often complain that the punishments they choose to inflict on
their children hurt them more than they do their kids.
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husband with incentives, but it is efficient to revert back to this point of maximum efficiency for

the wife: Patience ensures that the wife has her way in the long-run.

7 Progressive Estate Taxation

We now turn to a repeated Mirrleesian economy and study optimal taxation. In this version of our

model, individuals have identical preferences over consumption and work effort but are heterogenous

regarding their labor productivity, which is privately observed by the individual and independently

distributed across generations and dynasties. We continue to focus on the case where the social

welfare criterion discounts the future at a lower rate than individuals.

Unlike the taste-shock model, here even if we were to restrict allocations to feature no link

between parent and child, there would still be a non-trivial planning problem. Indeed, in each

period the situation would then be identical to the static, nonlinear income tax problem originally

studied by Mirrlees (1971). Moreover, in the absence of altruism, so that β = 0, the social optimum

actually coincides with this static solution. With altruism, however, we shall see below that it is

always optimal to link welfare across generations within a dynasty to enhance incentives for parents.

Despite differences between the Mirrleesian economy and our taste-shock model, our previous

analysis can be adapted virtually without change. In particular, a recursive representation can

be derived, and the Bellman equation can be used to characterize the solution and to establish

that a steady-state, invariant distribution exists. This highlights the fact that our model requires

asymmetric information, but not any particular form of it.

We focus on an implementation of the allocation that uses income and estate taxes, and derive

some interesting results for the latter. We find that estate taxation should be progressive: more

fortunate parents should face a higher average marginal tax rate on their bequests. This result

reflects the mean reversion in consumption explained in the previous section. A higher estate tax

ensures that the fortunate face a lower net rate of return across generations, and that consequently

their consumption path decreases over time toward the mean.

Repeated Mirrlees: Productivity Shocks

Each period of this economy is identical to the canonical optimal taxation setup in Mirrlees (1971).

Utility depends on the level of consumption c and work effort n. We assume that individuals in

generation t have identical preferences that satisfy

Vt = Et−1[u(ct) − h(nt) + βVt+1],

but differ regarding their productivity in translating work effort into output. An individual with

productivity w, exerting work effort n, produces output y = wn. We assume that productivity w

is independently and identically distributed across dynasties and generations. Thus, the produc-

tivity talents of parent and child are unrelated—innate skills are assumed nonheritable. Given this
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assumption, if the optimum features intergenerational transmission of welfare, then it represents a

social decision to provide altruistic parents with incentives in this way, and not a mechanical result

originating from the assumed physical environment.19

For convenience, we adopt the power disutility function h(n) = nγ/γ so that, defining θ ≡ w−γ,

we can write total utility over consumption and output as being subject to taste shocks

∞
∑

t=0

βt
E−1

[

u(ct) − θth(yt)
]

=
∞

∑

t=1

βt
E−1

[

β−1u(ct−1) − θth(yt)
]

− E−1

[

θ0h(y0)
]

The right-hand side of this equation leads to a convenient recursive representation of the planning

problem in the continuation utility defined by vt =
∑∞

s=0 β
s
Et−1[u(ct+s−1)− θt+sh(yt+s)] (where we

are abusing notation slightly by folding the β−1 into the definition of the utility function u(c)).

The resource constraint requires total consumption not to exceed total output plus some fixed

constant endowment

∫

∑

θt

cvt (θ
t) Pr(θt) dψ(v) ≤

∫

∑

θt

yv
t (θ

t) Pr(θt) dψ(v) + e t = 0, 1, . . .

where individuals are indexed by their initial utility entitlement v, with distribution ψ in the

population.

We continue to assume social discounting is lower than private discounting: β̂ > β. The planning

problem is to choose an allocation {cvt (θ
t), yv

t (θ
t)} to maximize average social welfare subject to the

incentive-compatibility constraints and the resource constraints.

Using the last expression for the utility function and applying similar reasoning as in the taste-

shock model yields the Bellman equation for the associated relaxed problem

k(v) = max
u−,h,w

E
[

u− − λ̂c(u−) − θh(θ) + λ̂y
(

h(θ)
)

+ β̂k
(

w(θ)
)]

v = E
[

u− − θh(θ) + βw(θ)
]

−θh(θ) + βw(θ) ≥ −θh(θ′) + βw(θ′),

where the function y(h) represents the inverse of the disutility function, y = h−1. The arguments

that justify the study of this Bellman equation, are similar to those that underlie Theorems 1 and 2

in the context of the taste-shock model. The results regarding steady states parallel those obtained

previously, and imply that an invariant distribution exists with no immiseration, as in Proposition 2.

In what follows, to simplify the exposition and to obtain uniquely determined marginal tax rates

for our implementation, we will treat the case where the optimal allocation features strictly positive

consumption. This can be ensured if the utility function u is unbounded below or if productivity

shocks are not too disperse.

19As in the taste shock model, here the case with β = β̂ leads to immiseration. This case has been studied by
Albanesi and Sleet (2004), who impose an exogenous lower bound on dynastic welfare to circumvent immiseration.
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Implementation with Income and Estate Taxation

Any allocation that is incentive compatible and feasible, and has strictly positive consumption, can

be implemented by a combination of taxes on labor income and estates. Here we first describe this

implementation, and explore some features of the optimal estate tax in the next subsection.

For any incentive-compatible and feasible allocation {cvt (θ
t), yv

t (θ
t)} we propose an implemen-

tation along the lines of Kocherlakota (2005). In each period, conditional on the history of their

dynasty’s reports θ̂t−1 and any inherited wealth, individuals report their current shock θ̂t, produce,

consume, pay taxes and bequeath wealth subject to the following set of budget constraints

ct + bt ≤ yt

(

θ̂t
)

− Tt

(

θ̂t
)

+
(

1 − τ t

(

θ̂t
))

Rt−1, tbt−1 t = 0, 1, . . . (19)

where Rt−1,t is the before-tax interest rate across generations, and initially b−1 = 0. Individuals are

subject to two forms of taxation: a labor income tax Tt(θ̂
t), and a proportional tax on inherited

wealth Rt−1, tbt−1 at rate τ t(θ̂
t).20

Given a tax policy {T v
t (θt), τ v

t (θ
t), yv

t (θ
t)}, an equilibrium consists of a sequence of interest rates

{Rt, t+1}; an allocation for consumption, labor income and bequests {cvt (θ
t), bvt (θ

t)}; and a reporting

strategy {σv
t (θ

t)} such that: (i) {ct, bt, σt} maximize dynastic utility subject to (19), taking the

sequence of interest rates {Rt, t+1} and the tax policy {Tt, τ t, yt} as given; and (ii) the asset market

clears so that
∫

E−1[b
v
t (θ

t)] dφ(v) = 0 for all t = 0, 1, . . . We say that a competitive equilibrium is

incentive compatible if, in addition, it induces truth telling.

For any feasible, incentive-compatible allocation {cvt , y
v
t }, with strictly positive consumption we

construct an incentive-compatible competitive equilibrium with no bequests by setting T v
t (θt) =

yt(θ
t) − ct(θ

t) and

τ v
t (θ

t) = 1 −
1

βRt−1, t

u′(cvt−1(θ
t−1))

u′(cvt (θ
t))

(20)

for any sequence of interest rates {Rt−1, t}. These choices work because the estate tax ensures that

for any reporting strategy σ, the resulting consumption allocation {cvt (σ
t(θt))} with no bequests

bvt (θ
t) = 0 satisfies the consumption Euler equation

u′
(

cvt
(

σt(θt)
))

= βRt, t+1

∑

θt+1

u′
(

cvt+1

(

σt+1(θt, θt+1)
))(

1 − τ v
t+1

(

σt+1(θt, θt+1)
))

Pr(θt+1).

The labor income tax is such that the budget constraints are satisfied with this consumption allo-

cation and no bequests. Thus, this no-bequest choice is optimal for the individual regardless of the

reporting strategy followed. Since the resulting allocation is incentive compatible, by hypothesis, it

follows that truth telling is optimal. The resource constraints together with the budget constraints

20In this formulation, taxes are a function of the entire history of reports, and labor income yt is mandated given
this history. However, if the labor income histories yt : Θt → R

t being implemented are invertible, then by the
taxation principle we can rewrite T and τ as functions of this history of labor income and avoid having to mandate
labor income. Under this arrangement, individuals do not make reports on their shocks, but instead simply choose
a budget-feasible allocation of consumption and labor income, taking as given prices and the tax system.
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then ensure that the asset market clears.21

As noted above, in our economy without capital only the after-tax interest rate matters so the

implementation allows any equilibrium before-tax interest rate {Rt−1, t}. In the next subsection,

we set the interest rate to the reciprocal of the social discount factor, Rt−1, t = β̂−1. This choice is

natural because it represents the interest rate that would prevail at the steady state in a version of

our economy with capital.

Optimal Progressive Estate Taxation

In this subsection we derive an important intertemporal condition that must be satisfied by the

optimal allocation. This condition has interesting implications for the optimal estate tax, computed

using (20) at the optimal allocation.

Let λ be the multiplier on the promise-keeping constraint and let µ(θ, θ′) represent the multipliers

on the incentive constraints. Then the first-order conditions for interior solutions for u− and w(θ)

are

1 − λ̂c′(u−) − λ = 0

β̂k′
(

w(θ)
)

p(θ) − βλp(θ) −
∑

θ′

µ(θ, θ′) +
∑

θ′

µ(θ′, θ) = 0

and the envelope condition is k′ (v) = λ. From the first-order condition for w(θ) we obtain the

CLAR equation
∑

θ

k′
(

w(θ)
)

p(θ) =
β

β̂
k′(v),

Substituting λ̂/u′(c−) = λ̂ c′(u−) = 1−k′(v) from first-order condition for u− we arrive at a Modified

Inverse Euler equation

1

u′(c−)
=

β̂

β

∑

θ

1

u′
(

c(θ)
) p(θ) − λ̂−1

(

β̂

β
− 1

)

. (21)

The left-hand side together with the first term on the right-hand side is the standard inverse Euler

equation. The second term on the right-hand side is novel, since it is zero when β = β̂ and is strictly

negative when β̂ > β.22

In our environment, the relevant past history is encoded in the continuation utility so the estate

tax τ(θt−1, θt) can actually be reexpressed as a function of vt(θ
t−1) and θt. Abusing notation we

then denote the estate tax by τ t(v, θt). Since we focus on the steady-state, invariant distribution,

we also drop the time subscripts and write τ(v, θ).

21Since the consumption Euler equation holds with equality, the same estate tax can be used to implement alloca-
tions with any other bequest plan with income taxes that are consistent with the budget constraints.

22This equation can also be derived from an elementary variation argument. This is done in
Farhi, Kocherlakota and Werning (2005), who also show that this equation, and its implications for estate taxa-
tion, generalize to an economy with capital and an arbitrary process for skills.
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The average estate tax rate τ̄(v) is then defined by

1 − τ̄(v) ≡
∑

θ

(

1 − τ(v, θ)
)

p(θ) (22)

Using the modified inverse Euler equation (21) we obtain

τ̄ (v) = −λ̂−1 u′
(

c−(v)
)

(

β̂

β
− 1

)

In particular, this implies that the average estate tax rate is negative, τ̄(v) < 0, so that bequests

are subsidized. However, recall that before-tax interest rates are not uniquely determined in our

implementation. As a consequence, neither are the estate taxes computed by (20). With our

particular choice for the before-tax interest rate, however, the tax rates are pinned down and

acquires a corrective, Pigouvian role. Differences in discounting can be interpreted as a form of

externalities from future consumption, and the negative average tax can then be seen as a way

of countering these externalities as prescribed by Pigou. In our setup without capital, this result

depends on the choice of the before-tax interest rate. However, the negative tax on estates would

be a robust steady-state outcome in a version of our economy with capital.

In our model it is more interesting to understand how the average tax varies with the history

of past shocks encoded in the promised continuation utility v. The average tax is an increasing

function of consumption, which, in turn, is an increasing function of v. Thus, estate taxation is

progressive: the average tax on transfers for more fortunate parents is higher.

Proposition 4 In the repeated Mirrlees economy, an optimal allocation with strictly positive con-

sumption can be implemented by a combination of income and estate taxes. At a steady-state,

invariant distribution ψ∗, the optimal average estate tax τ̄(v) defined by (20) and (22) is increasing

in promised continuation utility v.

The progressivity of the estate tax reflects the mean-reversion in consumption. The fortunate

must face lower net rates of return so that their consumption path decreases towards the mean.23

8 Conclusions

Should privately-felt parental altruism affect the social contract? If so, what are the long-run

implications for inequality? To address these questions, we modeled a central tension in society:

the tradeoff between ensuring equality of opportunity for newborns and providing incentives for

altruistic parents.

Our model’s answer is that society should indeed exploit altruism to motivate parents, linking

the welfare of children to that of their parents. However, we also find that if we value the welfare

23Farhi, Kocherlakota and Werning (2005) explore more general versions of this result and discuss other intuitions.
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of future generations directly, the inheritability of good or bad fortune should be tempered. This

produces a steady-state outcome in which welfare and consumption are mean-reverting, long-run

inequality is bounded, social mobility is possible and misery is avoided by everyone.

What instruments should society use to implement such allocations? For a Mirrleesian version

of our model we find an important role for the estate tax. The optimal tax on inheritances is

progressive: more fortunate parents should face a higher average marginal tax rate on their bequests.

This result illustrates an interesting way in which the conflict between corrective and redistributive

taxation is optimally resolved. Further examination of other situations with similar conflicts remains

an interesting direction for future work.24

Appendix

Proof of Theorem 1

Weak concavity of the value function k(v) follows because the relaxed sequence problem has a

concave objective and a convex constraint set. The weak concavity of the value function k(v) implies

its continuity over the interior of its domain. If utility is bounded, continuity at the extremes can

also be established as follows. Define the first-best value function

k∗(v) ≡ max
u

∞
∑

t=0

β̂t
E−1

[

θtut(θ
t) − λ̂c

(

ut(θ
t)

) ]

subject to v =
∑∞

t=0 β
t
E−1[θtut(θ

t)]. Then k∗(v) is continuous and k(v) ≤ k∗(v), with equality

at any finite extremes v̄ and v. Then continuity of k(v) at finite extremes follows. Thus, k(v) is

continuous.

We first show that the constraint (8) with q = β̂ implies that utility and continuation utilities

are well-defined. Toward a contradiction, suppose

lim
T→∞

T
∑

t=0

βtEsθtu(ct)

is not defined, for some s ≥ −1. This implies that limT→∞

∑T
t=0 β

t max{Esθtu(ct), 0} = ∞. Since

utility is concave θu(c) ≤ Ac+B for some A,B > 0, so it follows that

T
∑

t=0

βt max{Esθtu(ct), 0} ≤ A

T
∑

t=0

βt
Esct +B ≤ A

T
∑

t=0

β̂t
Esct +B

Taking the limit yields limT→∞

∑T
t=0 β̂

t
E−1ct = ∞. Since there are finitely many histories θs ∈ Θs+1

this implies limT→∞

∑T
t=0 β̂

t
E−1ct = ∞. If there is a non-zero measure of such agents this implies

a contradiction of (8). Thus, for both the relaxed and unrelaxed problems utility and continuation

24Some progress along these lines can be found in Amador, Angeletos and Werning (2005).
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utility are well defined given the other constraints on the problem. This is important for our

recursive formulation below.

We next prove two lemmas that imply the rest of the theorem. Consider the optimization

problem on the right hand side of the Bellman equation:

sup
u,w

E
[

θu(θ) − λ̂c
(

u(θ)
)

+ β̂k
(

w(θ)
)]

(23)

v = E
[

θu(θ) + βw(θ)
]

(24)

θu (θ) + βw(θ) ≥ θu (θ′) + βw(θ′) for all θ, θ′ ∈ Θ (25)

Define m ≡ maxc≥0,θ∈Θ(θu(c) − λ̂c) and k̂ (v) ≡ k (v) − m/(1 − β̂) ≤ 0. The problem in (23) is

equivalent to the following optimization with non-positive objective:

sup
u,w

E
[

θu(θ) − λ̂c
(

u(θ)
)

−m+ β̂k̂
(

w(θ)
)]

(26)

subject to (24) and (25).

Lemma A.1 The supremum in (23), or equivalently (26), is attained.

Proof. If utility is bounded the result follows immediately by continuity of the objective function

and compactness of the constraint set. So suppose utility is unbounded above and below — similar

arguments apply when utility is only unbounded below or only unbounded above. We first show

that

lim
v→∞

k̂(v) = lim
v→−∞

k̂(v) = −∞ (27)

and then use this result to restrict, without loss, the optimization within a compact set, ensuring a

maximum is attained.

To establish these limits, define

h(v; β̂) ≡ sup
u

∞
∑

t=0

β̂t
E−1

[

θtu(θ
t) − λ̂c

(

u(θt)
)

−m
]

subject to v = E−1

∑∞
t=0 β

tθtu(θ
t). Since this corresponds to the same problem but without the

incentive constraints it follows that k̂(v) ≤ h(v, β̂). If limv→∞ h(v, β̂) = limv→−∞ h(v, β̂) = −∞,

then the desired limits (27) follow. Since θu− λ̂c(u) −m ≤ 0 and β < β̂ it follows that

h(v, β̂) ≤ h(v, β) = v − λ̂C(v, β) −
m

1 − β
, (28)

where

C(v, β) ≡ inf
u

∞
∑

t=0

βt
E−1c

(

u(θt)
)
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subject to v =
∑∞

t=0 β
t
E−1[θtu(θ

t)]. Note that C(v, β) is a standard convex first-best allocation

problem, with solution u(θt) = (c′)−1(θtγ(v)) for some positive multiplier γ(v), increasing in v and

such that limv→−∞ γ(v) = 0 and limv→∞ γ (v) = ∞. Then

C(v, β) =
1

1 − β
E

[

c
(

(c′)−1
(

θγ(v)
)

)]

,

so that limv→−∞ h(v, β) = −∞ and limv→∞ h(v, β) = −∞. Using the inequality (28) this establishes

limv→−∞ h(v, β̂) = −∞ and limv→∞ h(v, β̂) = −∞, which, in turn, imply the limits (27).

Fix a v. Take any allocation that verifies the constraints (24) and (25) and let k < ∞ be

the corresponding value of (26). Then, since the objective is non-positive, we can restrict the

maximization to w(θ) such that k̂(w(θ)) ≥ k̄/(β̂p(θ)). Since k̂(w(θ)) is concave with the limits (27),

this defines a closed, bounded interval for w(θ), for each θ. It follows that there exists Mv,w < ∞

such that we can restrict the maximization to |w(θ)| ≤Mv,w.

Similarly, we can restrict the maximization over u(θ) so that θu(θ) − λ̂c(u(θ)) − m ≥ k̄/p(θ).

Since (θu− λ̂c(u)) is strictly concave, with (θu− λ̂c(u)) → −∞ when either u → ∞ or u → −∞,

this defines a closed, bounded interval for u(θ), for each θ. Thus, there exists an Mv,u < ∞ such

that we can restrict the maximization to |u(θ)| ≤Mv,u.

Hence, we can restrict the maximization in (26) to a compact set. Since the objective function

is continuous over this restricted set, the maximum must be attained.

Lemma A.2 The value function k(v) satisfies the Bellman equation (10)–(12).

Proof. Suppose that for some v

k(v) > max
u,w

E
[

θu(θ) − λ̂c
(

u(θ)
)

+ β̂k
(

w(θ)
)]

where the maximization is subject to (24) and (25). Then there exists ∆ > 0 such that

k(v) ≥ E
[

θu(θ) − λ̂c
(

u(θ)
)

+ β̂k
(

w(θ)
)

] + ∆

for all (u,w) that satisfy (24) and (25). But then by definition

k
(

w(θ)
)

≥
∞

∑

t=0

β̂t
E−1

[

θtũt(θ
t) − λ̂c

(

ũt(θ
t)

)]

for all allocations ũ that yield w (θ) and are incentive compatible. Substituting, we find that

k(v) ≥
∞

∑

t=0

β̂t
E−1

[

θtut(θ
t) − λ̂c

(

ut(θ
t)

)]

+ ∆

for all incentive-compatible allocations that deliver v, a contradiction with the definition of k(v).

Namely, that there should be a plan with value arbitrarily close to k(v0). We conclude that k(v) ≤
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maxu,w E[θu(θ) − λ̂c(u(θ)) + β̂k(w(θ))] subject to (24 ) and (25).

By definition, for every v and ε > 0 there exists a plan {ũt(θ
t; v, ε)} that is incentive compatible

and delivers v with value

∞
∑

t=0

β̂t
E−1

[

θtũt(θ
t; v, ε) − λ̂ c

(

ũt(θ
t; v, ε)

)]

≥ k(v) − ε.

Let (u∗(θ), w∗(θ)) ∈ arg maxu,w E[θu(θ) − λ̂c(u(θ)) + β̂k(w(θ))]. Consider the plan u0(θ0) = u∗(θ0)

and ut(θ
t) = ũt−1((θ1, . . . , θt);w

∗(θ0), ε) for t ≥ 1. Then

k(v) ≥
∞

∑

t=0

β̂t
E−1

[

θtut(θ
t) − λ̂c

(

ut(θ
t)

)]

= E−1

[

θ0u
∗(θ0) − λ̂c

(

u∗(θ0)
)

+ β̂

∞
∑

t=0

β̂t
E0

[

θt+1ut+1(θ
t+1) − λ̂c

(

ut+1(θ
t+1)

)]

]

≥ max
u,w

E
[

θu(θ) − λ̂u(θ) + β̂k
(

w(θ)
)]

− β̂ε.

Since ε > 0 was arbitrary it follows that k(v) ≥ maxu,w E[θu(θ) − λ̂c(u(θ)) + β̂k(w(θ))] subject to

(24) and (25).

Finally, together both inequalities imply k(v) = maxu,w E[θu(θ) − λ̂c(u(θ)) + β̂k(w(θ))] subject

to (24) and (25).

Proof of Theorem 2

Part (a). Suppose the allocation {ut} is generated by the policy functions starting from v0, is

incentive compatible and delivers lifetime utility v0. After repeated substitutions of the Bellman

equation (10), we arrive at

k(v0) =
T

∑

t=0

β̂t
E−1[θtut(θ

t) − λ̂c(ut(θ
t))] + β̂

T
E−1k(vT (θT )). (29)

Since k(v0) is bounded above this implies that

k(v0) ≤
∞

∑

t=0

β̂t
E−1[θtut(θ

t) − λ̂c(ut(θ
t))],

so {ut} is optimal, by definition of k(v0).

Conversely, suppose an allocation {ut} is optimal given v0. Then, by definition it must be

incentive compatible and deliver utility v0. Define the continuation utility implicit in the allocation

w0(θ0) ≡
∞

∑

t=1

βt−1
E0[θtut(θ

t)].

31



and suppose that either u0 (θ) 6= gu (θ; v0) or w0 (θ) 6= gw (θ; v0), for some θ ∈ Θ. Since the original

plan {ut} is incentive compatible, u0 (θ) and w0 (θ) satisfy (24) and (25). The Bellman equation

then implies that

k(v0) = E
[

gu(θ; v0) − λ̂c
(

gu(θ; v0)
)

+ βk
(

gw(θ; v0)
)]

> E
[

u0(θ) − λ̂c
(

u0(θ)
)

+ βk
(

w0(θ)
)]

≥ E−1

[

u0(θ0) − λ̂c
(

u0(θ0)
)]

+
∞

∑

t=1

βt
E−1

[

ut(θ
t) − λ̂c

(

ut(θ
t)

)]

.

The first inequality follows since u0 does not maximize (10), while the second inequality follows

the definition of k(w0 (θ)). Thus, the allocation {ut} cannot be optimal, a contradiction. A similar

argument applies if the plan is not generated by the policy functions after some history θt and t ≥ 1.

We conclude that an optimal allocation must be generated from the policy functions.

Part (b). First, suppose an allocation {ut, vt} generated by the policy functions (gu, gw) starting

at v0 satisfies limt→∞ βt
E−1vt(θ

t) = 0. Then, after repeated substitutions of (11), we obtain

v =
T

∑

t=0

βt
E−1

[

θtut(θ
t)

]

+ βT
E−1

[

vT (θT )
]

. (30)

Taking the limit we get v0 =
∑∞

t=0 β
t
E−1[θtut(θ

t)] so that the allocation {ut} delivers lifetime utility

v0. Next, we show that for any allocation generated by (gu, gw), starting from finite v0, we have

limt→∞ βt
E−1vt(θ

t) = 0.

Suppose utility is unbounded above and lim supt→∞ βt
E−1vt(θ

t) > 0. Then β̂ > β implies that

lim supt→∞ β̂t
E−1vt(θ

t) = ∞. Since the value function k(v) is non-constant, concave and reaches

an interior maximum, we can bound the value function so that k(v) ≤ av + b, with a < 0. Thus,

lim inf
t→∞

β̂t
E−1k

(

vt(θ
t)

)

≤ a lim sup
t→∞

β̂t
E−1vt(θ

t) + b = −∞

and then (29) implies that k(v0) = −∞, a contradiction since there are feasible plans that yield

finite values. We conclude that lim supt→∞ βt
E−1vt(θ

t) ≤ 0.

Similarly, suppose utility is unbounded below and that lim inft→∞ βt
E−1vt(θ

t) < 0. Then

lim inft→∞ β̂t
E−1vt(θ

t) = −∞. Using k(v) ≤ av + b, with a > 0, we conclude that

lim inf
t→∞

β̂t
E−1k

(

vt(θ
t)

)

= −∞

implying k(v0) = −∞, a contradiction. Thus, we must have lim inft→∞ βt
E−1vt(θ

t) ≥ 0.

The two established inequalities imply limt→∞ βt
E−1vt(θ

t) = 0.

Part (c). Suppose lim supt→∞ βt
E−1vt(σ

t(θt)) ≥ 0 for every reporting strategy σ. Then after
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repeated substitutions of (12),

v ≥

T
∑

t=0

βt
E−1

[

θtut

(

σt(θt)
)]

+ βT
E−1vT

(

σT (θT )
)

.

implying

v ≥ lim inf
T→∞

T
∑

t=0

βt
E−1

[

θtut

(

σt(θt)
)]

.

Therefore, {ut} is incentive compatible, since v is attainable with truth telling from part (b).

Proof of Lemma 1

Part (a) (Strict Concavity) Let {ut(θ
t, v0), vt(θ

t, v0)} be the plans generated from the policy

functions starting at v0 (note: no claim of incentive compatibility is required). Take two initial

utility values va and vb, with va 6= vb. Define the average utilities

uα
t (θt) ≡ αut(θ

t, va) + (1 − α)ut(θ
t, vb)

vα
t (θt) ≡ αvt(θ

t; va) + (1 − α)vt(θ
t; vb)

Theorem 2 part (b) implies that {ut(θ
t, va)} and {ut(θ

t, vb)} deliver va and vb, respectively. This

immediately implies that {uα
t (θt)} delivers initial utility vα ≡ αva + (1 − α)vb. It also implies that

there exists a finite time T such that

T
∑

t=0

βt
E−1

[

θtut(θ
t; va)

]

6=
T

∑

t=0

βt
E−1

[

θtut(θ
t; vb)

]

,

so that

ut

(

θt; va

)

6= ut

(

θt; vb

)

, (31)

for some history θt ∈ Θt+1. Consider iterating T times on the Bellman equations starting from va

and vb:

k(va) =
T

∑

t=0

β̂t
E−1

[

θtut(θ
t; va) − c

(

ut(θ
t; va)

)]

+ β̂T
E−1k

(

vT (θT ; va)
)

k(vb) =
T

∑

t=0

β̂t
E−1

[

θtut(θ
t; vb) − c

(

ut(θ
t; vb)

)]

+ β̂T
E−1k

(

vT (θT ; vb)
)

,
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and averaging we obtain

αk(va) + (1 − α)k(vb) =
T

∑

t=0

β̂t
E−1

[

θtu
α
t (θt) −

[

αc
(

ut(θ
t; va)

)

+ (1 − α)c
(

ut(θ
t; vb)

)]]

+β̂T
E−1

[

αk(vT (θT ; va)) + (1 − α)k
(

vT (θT ; vb)
)]

<
T

∑

t=0

β̂t
E−1

[

θtu
α
t (θt) − αc

(

uα
t (θt)

)]

+ β̂T
E−1k

(

vα
T (θT )

)

≤ k(vα),

where the strict inequality follows from the strict concavity of the cost function c (u), the fact

that we have the inequality (31), and the weak concavity of the value function k. The last weak

inequality follows from iterating on the Bellman equation for vα since the average plan (uα, vα)

satisfies the Bellman equations constraints at every step. This proves that the value function k(v)

is strictly concave.

(b) (Differentiability) Since the value function k(v) is concave, it is sub-differentiable—that

is, there is at least one sub-gradient at every point v. Differentiability can then be established by

the following variational envelope arguments.

Suppose first that utility is unbounded below. Fix an interior value v0 for initial utility. For a

neighborhood around v0 define the test function

W (v) ≡ E
[

θ
(

gu(θ, v0) + (v − v0)
)

− λ̂c
(

gu(θ, v0) + (v − v0)
)

+ β̂k
(

gw(θ, v0)
)]

.

SinceW (v) is the value of a feasible allocation in the neighborhood of v0 it follows thatW (v) ≤ k(v),

with equality at v0. Since W ′(v0) exists it follows, by application of the Benveniste-Scheinkman

Theorem (see Theorem 4.10, in Stokey and Lucas, 1989), that k′(v0) also exists and

k′(v0) = W ′(v0) = 1 − λ̂ E
[

c′
(

u∗(θ)
)]

. (32)

Finally, since c′(u) ≥ 0 this shows that k′(v) ≤ 1. The limit limv→−∞ k′(v) = 1 is inherited

by the upper bound k(v) ≤ h(v, β) + m/(1 − β̂) introduced in the proof of Theorem 1, since

limv→−∞
∂
∂v
h(v, β) = 1.

The limit limv→v̄ k
′(v) = −∞ follows immediately from limv→v̄ k(v) = −∞, if v̄ <∞. Otherwise

it is inherited by the upper bound k(v) ≤ h(v, β)+m/(1− β̂) introduced in the proof of Theorem 1,

since limv→∞
∂
∂v
h(v, β) = −∞.

Next, suppose utility is bounded below but unbounded above, and without loss in generality

suppose that the utility of zero consumption is zero. Then the argument above establishes differ-

entiability at a point v0 as long as gu(θ, v0) > 0, for all θ ∈ Θ. However, corner solutions with

gu(θ, v0) = 0 are possible here even with Inada assumption on the utility function, so a different

envelope argument is required. We provide one that exploits the homogeneity of the constraint set.

If utility is bounded below, then lim supt→∞ E−1β
tvt(σ(θt)) ≥ 0 for all reporting strategies σ so
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that, applying Theorem 2, a solution {ut} to the planner’s sequence problem is ensured. Then, for

any interior v0, the plan {(v/v0)ut} is incentive compatible and attains value v for the agent. In

addition the test function

W (v) ≡
∞

∑

t=0

β̂t
E−1

[

θt
v

v0

ut(θ
t) − λ̂c

(

v

v0

ut(θ
t)

)]

satisfies W (v) ≤ k(v), W (v0) = k(v0) and is differentiable. It follows from the Benveniste-

Scheinkman Theorem, that k′(v0) exists and equals W ′(v0).

The proof of limv→v̄ k
′(v) = −∞ is the same as in the case with utility unbounded below. Finally,

we show that limv→v k
′(v) = ∞. Consider the deterministic planning problem

k(v) ≡ max
u

∞
∑

t=0

β̂t
(

ut − λ̂c(ut)
)

subject to v =
∑∞

t=0 β
tut. Note that k(v) is differentiable with limv→v k

′(v) = ∞. Since deterministic

plans are trivially incentive compatible, it follows that k(v) ≤ k(v), with equality at v. Then we

must have limv→v k
′(v) = ∞ to avoid a contradiction.

If utility is bounded above and unbounded below then a symmetric argument, normalizing utility

of infinite consumption to zero, also works. If utility is bounded above and below we can generate

a test function that combines both arguments, one for the v < v0 and another for v ≥ v0.

Proof of Proposition 1

The CLAR equation was shown in the main text, so we focus here on the bounds. Consider the

program

max
u,w

∑

n

p̄n{θ̄nun − c(un) + β̂k(wn)}

v =
∑

n

p̄n(θ̄nun + βwn)

θnun + βwn ≥ θnun+1 + βwn+1 for n = 1, 2, . . . , K − 1,

This problem and its notation require some discussion. We do not incorporate the monotonicity

constraint on u. But this notation allows us to consider bunching in the following way. If any set

of neighboring agents is bunched, then we group these agents under a single index and let p̄n be

the total probability of this group. Likewise let θ̄n represent the conditional average of θ within

this group, which is what is relevant for the promise-keeping constraint and the objective function.

Let θn be the taste shock of the highest agent in the group. The incentive constraint must rule the

highest agent in each group from deviating and taking the allocation of the group above him.

Of course, every combination of bunched agents leads to a different program. The optimal

allocation of our problem must solve one of these programs with a strictly monotone allocation—

since bunching can be characterized by regrouping agents. Thus, below we characterize solutions
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to these programs with strict monotonicity of the solution.

The first-order conditions are

p̄n{θ̄n − λ̂c′(un) − λθ̄n} + θnµn − θn−1µn−1 ≤ 0

p̄n{β̂k
′(wn) − βλ} + β(µn − µn−1) = 0

where, by the Envelope theorem, λ = k′(v).

Consider first case with utility unbounded below, so that the first order condition for consump-

tion holds with equality. Summing the first-order conditions for consumption, we get

λ̂E
[

c′
(

u(θ)
)]

= 1 − k′(v)

The first-order conditions for n = 1 imply

(1 − λ) +
θ1

θ̄1

µ1

p̄1

=
λ̂c′(u1)

θ̄1

≤
λ̂E

[

c′(uθ)
]

θ̄1

=
1 − λ

θ̄1

.

This implies
µ1

p̄1

≤
1 − λ

θ1

− (1 − λ)
θ̄1

θ1

.

Using

k′(w1) =
β

β̂
λ−

β

β̂

µ1

p̄1

,

we get

k′(w1) ≥
β

β̂

[

λ−
1 − λ

θ1

+ (1 − λ)
θ̄1

θ1

]

=
β

β̂

[

1 +
1

θ1

−
θ̄1

θ1

]

k′(v) +
β

β̂

[

θ̄1

θ1

−
1

θ1

]

.

Similarly, writing the first-order conditions for n = K, we get

(1 − λ) −
θK−1

θ̄K

µK−1

p̄K

=
λ̂c′ (uK)

θ̄K

≥
λ̂E[c′(uθ)]

θ̄K

=
1 − λ

θ̄K

.

This implies

−
µK−1

p̄K

≥
1 − λ

θK−1

− (1 − λ)
θ̄K

θK−1

.

Using

k′ (wK) =
β

β̂
λ+

β

β̂

µK−1

p̄K

,

we get

k′ (wK) ≤
β

β̂

[

λ−
1 − λ

θK−1

+ (1 − λ)
θ̄K

θK−1

]

=
β

β̂

[

1 +
1

θK−1

−
θ̄K

θK−1

]

k′(v) +
β

β̂

[

θ̄K

θK−1

−
1

θK−1

]

.
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For any n, wK ≤ wn ≤ w1,

β

β̂

[

1 +
1

θ1

−
θ̄1

θ1

]

k′(v) +
β

β̂

[

θ̄1

θ1

−
1

θ1

]

≤ k′ (wn)

≤
β

β̂

[

1 +
1

θK−1

−
θ̄K

θK−1

]

k′(v) +
β

β̂

[

θ̄K

θK−1

−
1

θK−1

]

.

After rearranging, we obtain

β

β̂

[

1 +
1

θ1

−
θ̄1

θ1

]

(1 − k′(v)) + 1 −
β

β̂
≥ 1 − k′ (gw (θ, v))

≥
β

β̂

[

1 +
1

θK−1

−
θ̄K

θK−1

]

(1 − k′(v)) + 1 −
β

β̂
.

To arrive at the expression in the text we take the worst case scenario: we choose the subproblem

that is most unfavorable to each bound, noting that 1 − k′(v) ≥ 0.

Turning to the bounded utility case, note that all the first-order conditions and constraints are

satisfied when λ ≥ 1 with µn = 0 and u (θ) = u and w (θ) = β−1v > v. The first-order condition for

w implies k′(w(θ)) = k′(β−1v) = (β̂/β)k′(v). Since the problem is strictly convex, this represents

the unique solution. Recall that in the arguments above establishing the lower bound involved no

assumption on interior solutions for u, so this holds for all v. The upper bound, on the other hand,

did require u(θ) > u for all θ, which must be true for high enough v, i.e. for low enough k′(v).

Proof of Proposition 2

Consider first the case with utility unbounded below. Since the derivative k′(v) is continuous and

strictly decreasing, we can define the transition function

Q(x, θ) = k′
(

gw
(

(k′)−1(x), θ
))

for all x < 1 if utility is unbounded below. For any probability distribution µ, let TQ(µ) be the

probability distribution defined by

TQ(µ)(A) =

∫

1{Q(x,θ)∈A} dµ(x) dp (θ)

for any Borel set A. Define

TQ,n ≡
TQ + T 2

Q + · · · + T n
Q

n

For example, TQ,n(δx) is the empirical average of {k′(vt)}
n
t=1 over all histories of length n starting

with k′(v0) = x. The following lemma establishes the existence of an invariant distribution by

considering the limits of {TQ,n}.

Lemma A.3 If utility is unbounded below, then for each x < 1 there exists a subsequence {TQ,φ(n)(δx)}
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that converges weakly, i.e. in distribution, to an invariant distribution on (−∞, 1) under Q.

Proof. The bounds (16) derived in Proposition 1 imply that for all θ ∈ Θ

lim
x↑1

Q (x, θ) = lim
v→−∞

k′
(

gw(θ, v)
)

= β/β̂ < 1.

We first extend the continuous transition function Q(x, θ) : (−∞, 1)×Θ → (−∞, 1) to a continuous

transition function Q̂(x, θ) : (−∞, 1] × Θ → (−∞, 1), with Q̂(1, θ) = β/β̂ and Q̂(x, θ) = Q(x, θ),

for all x ∈ (−∞, 1). It follows that TQ̂ maps probability distributions over (−∞, 1] to probability

distributions over (−∞, 1), and TQ(δx) = TQ̂(δx), for all x ∈ (−∞, 1).

We next show that the sequence {TQ̂,n(δx)} is tight, in that for any ε > 0 there exists a compact

set Aε such that TQ̂,n(δx)(Aε) ≥ 1 − ε, for all n. The expected value of the distribution T n
Q̂
(δx)

is simply E−1[k
′(vt(θ

t−1))] with x = k′(v0) < 1. Recall that E−1[k
′(vt(θ

t−1))
]

= (β/β̂)tk′(v0) → 0.

This implies that

min{0, k′(v0)} ≤ E−1

[

k′
(

vt(θ
t−1)

)]

≤ T n
Q̂
(δx)(−∞,−A)(−A) +

(

1 − T n
Q̂
(δx)(−∞,−A)

)

1

for all A > 0. Rearranging,

T n
Q̂
(δx)(−∞,−A) ≤

1 − min{0, x}

A+ 1

which implies that {T n
Q̂
(δx)}, and therefore {TQ̂,n(δx)}, is tight.

Tightness implies that there exists a subsequence TQ̂,φ(n)(δx) that converges weakly, i.e. in dis-

tribution, to some distribution π. Since Q̂(x, θ) is continuous in x, then TQ̂(TQ̂,φ(n)(δx)) converges

weakly to TQ̂(π). But the linearity of TQ̂ implies that

TQ̂

(

TQ̂,φ(n)(δx)
)

=
T

φ(n)+1

Q̂
(δx) − TQ̂(δx)

φ(n)
+ TQ̂,φ(n)(δx)

and since φ(n) → ∞ we must have TQ̂(π) = π.

Recall that TQ̂ maps probability distributions over (−∞, 1] to probability distributions over

(−∞, 1). This implies that π = TQ̂(π) has no probability mass at {1}. Since TQ and TQ̂ coincide

for such distributions, it follows that π = TQ(π), so that π is an invariant distribution on (−∞, 1)

under Q.

The argument for the case with utility bounded below is very similar. Define the transition

function Q(x, θ) as above, but for all x ∈ R, since now k′(v) can take on any real value. If utility

is unbounded above but γ̄ < 1, then there exists an upper bound vH < v̄ for the ergodic set for

v. Define the utility level v0 > v by k′(v0) = 1. Next, define vL to be the minimum of the policy

function gw over v ∈ [v0, vH ], which is defined since gw is continuous over this compact set. If

utility is bounded above then let vL by the minimum of gw over v ∈ [v0, v̄), which is defined since

limv→v̄ g
w(θ, v) = v̄. In both cases, since gw > v we must have that this minimum is above misery:
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vL > v. Finally, the transition function is continuous with Q(x, θ) ≤ k′(vL) < ∞. The rest of the

argument is then a simple modification of the one above for utility unbounded below, with k′(vL)

playing the role of 1 (things are actually slightly simpler here, since no continuous extension of Q

is required).

If γ > 0 then the bound in (16) implies that k′
(

gw
(

θ̄, v
))

≤ 1 − β/β̂ and the result follows

immediately.

Proof of Proposition 3

Consider indexing the relaxed planning problem by e by setting λ̂ = e−1, with associated value func-

tion k(v; e). We first show that if an initial distribution ψ satisfies the condition
∫

k′(v; e) dψ(v) = 0,

then the solution to the relaxed problem and original problem coincide. We then show that for any

initial distribution there exists a value for e that satisfies this condition.

Since utility is unbounded below, we have k′(vt; e) = Et−1

[

1− λ̂c′
(

uv
t (θ

t)
)]

. Applying the law of

iterated expectations to (15) then yields

E−1

[

1 − λ̂c′
(

uv
t (θ

t)
)]

=

(

β

β̂

)t

k′ (v; e) .

With logarithmic utility c′(u) = c(u), so that
∫

k′(v; e) dψ(v) = 0 implies
∫

E−1[ct] dψ = λ̂−1 = e

for all t = 0, 1, . . . The allocation is incentive compatible by Lemma 2 below, and applying part (c)

of Theorem 2, it follows that it must solve the original planning problem.

Now consider any initial distribution ψ. We argue that we can find a value of λ̂ = e−1 such that
∫

k′(v; e) dψ(v) = 0. The homogeneity of the sequential problem implies that

k(v; e) =
1

1 − β̂
log(e) + k

(

v −
1

1 − β
log(e); 1

)

Note that k′(v − 1
1−β

log(e); 1) is strictly increasing in e and limits to 1 as e → ∞, and to −∞ as

e→ −∞. It follows that

∫

k′(v; e) dψ(v) =

∫

k′
(

v −
1

1 − β
log(e); 1

)

dψ(v) = 0

defines a unique value of e∗ for any initial distribution ψ. The monotonicity of e∗(ψ) then follows

immediately by using the fact that k′(·; 1) is a strictly decreasing function.

Proof of Lemma 2

(a) If utility is also bounded below, then the result follows from part (b). So suppose utility is

unbounded below, but bounded above. Then k′(gw(θ̄, ·)) is continuous and Proposition 1 implies

that limv→−∞ k′(gw(θ̄, v)) = 1. It follows that maxv k
′(gw(θ̄, v)) is attained, so there exists a vL >
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−∞ such that gw(θ̄, v) > vL.

(b) If utility is bounded below, the result follows immediately from part (c) of Theorem 2.

(c) Using the first-order conditions from the proof of Proposition 1, one can show that:

c′
(

u
(

θ̄
))

c′ (u (θ))
≤
θ̄

θ
.

With logarithmic utility this implies that gu(θ̄, v) − gu(θ, v) ≤ log
(

θ̄/θ
)

. The incentive constraint

then implies that gw(θ, v) − gw(θ̄, v) ≤ (θ̄/β) log(θ̄/θ) ≡ A. It follows that vt(θ̂
t−1) ≥ vt(θ

t−1) − tA

for all pairs of histories θt−1 and θ̂t−1. Then

βt
E−1

[

vt

(

σt−1(θt−1)
)]

≥ βt
E−1

[

vt(θ
t−1)

]

− βttA.

From part (b) of Theorem 2 we have limt→∞ βt
E−1[vt(θ

t−1)] = 0. Since limt→∞ βttA = 0, it follows

that lim supt→∞ βt
E−1[vt(σ

t−1(θt−1)] ≥ 0.

(d) If γ > 0 then the bound in (16) implies that k′
(

gw
(

θ̄, v
))

≤ 1 − β/β̂ and the result follows

immediately. If γ̄ < 1, then we can define κ = 1− (1− β/β̂)/(1− γ̄), and define vH by k′(vH) = κ.

Then for all v ≤ vH we have gw(θ, v) ≤ v. It follows that the unique ergodic set is bounded above

by vH . We can now apply the argument in (a) so there exists a vL > −∞ such that gw
(

θ̄, v
)

> vL.

Proof of Lemma 3

Part (a) is immediate since by continuity of the policy functions, consumption is bounded. For part

(b), recall that
∫

k′(v) dψ∗(v) = 0 under the invariant distribution ψ∗. If utility is unbounded below

then all solutions for consumption are interior. If utility is bounded below, then corner solutions

with gc(θ, v) = 0 for some θ can only occur for low enough levels of v, so that gc(θ, v) is bounded,

for all θ in this compact set. Recall that for interior solutions

1 − k′(v) = λ̂E
[

c′
(

gu(θ, v)
) ]

= λ̂E
[

c′
(

u
(

c
(

gu(θ, v)
))) ]

Applying Jensen’s inequality we obtain

c′
(

u

(
∫

E
[

c
(

gu(θ, v)
)]

dψ∗(v)

))

≤

∫

E
[

c′
(

u
(

c
(

gu(θ, v)
)))]

dψ∗(v) = 1.

The result then follows since c′(u(c)) is an increasing function of c.
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