
INTERIM CORRELATED RATIONALIZABILITY IN INFINITE GAMES

JONATHAN WEINSTEIN AND MUHAMET YILDIZ

Abstract. In a Bayesian game, assume that the type space is a complete, separable metric

space, the action space is a compact metric space, and the payoff functions are continuous.

We show that the iterative and fixed-point definitions of interim correlated rationalizability

(ICR) coincide, and ICR is non-empty-valued and upper hemicontinuous. This extends the

finite-game results of Dekel, Fudenberg and Morris (2007), who introduced ICR. Our result

applies, for instance, to discounted infinite-horizon dynamic games.

JEL Numbers: C72, C73.

1. Introduction

Interim correlated rationalizability (henceforth ICR) has emerged as the main notion of

rationalizability for Bayesian games. Among other reasons, it has the following two desirable

properties: Firstly, it is upper hemicontinuous in types, i.e., one cannot obtain a substantially

new ICR solution by perturbing a type. Secondly, two distinct definitions of ICR coincide:

The fixed-point definition states that ICR is the weakest solution concept with a specific

best-response property, and this is the definition that gives ICR its epistemological meaning,

as a characterization of actions that are consistent with common knowledge of rationality.

Under an alternate definition, ICR is computed by iteratively eliminating the actions that

are never a best response (type by type), and this iterative definition is often more amenable

for analysis.

The above properties were originally proven for games with finite action spaces and finite

sets of payoff parameters (by Dekel, Fudenberg, and Morris (2006, 2007), who introduced

ICR). However, in many important games these sets are quite large. For example, in the

infinitely repeated prisoners’dilemma game, the set of outcomes is uncountable. Hence, the

In earlier versions of the paper, the results were confined to compactly metrizable type spaces. We thank

an anonymous referee for detailed comments and for providing the main arguments that extended our proofs

to the type spaces that are completely metrizable and separable.
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set of all possible payoff functions (with payoffs in [0, 1]) is the unit cube with uncountably

many dimensions. Therefore, to analyze the infinitely repeated prisoners’dilemma game

under payoff uncertainty without restricting the payoffs, we would need to consider a space

of underlying payoff parameters larger than the continuum. The action space is also un-

countably infinite, because the action space consists of all mappings that specify whether

one cooperates or defects at each of infinitely many histories.

In this note, we establish the aforementioned two properties of ICR in greater general-

ity so that it can be applied to commonly-used games with large action and type spaces.

Specifically, we establish that ICR is upper hemicontinuous and its iterative and fixed-point

definitions coincide in games where (i) the spaces of payoff parameters and types are com-

plete, separable metric spaces, (ii) the space of actions is a compact metric space, and (iii)

the belief and payoff functions are continuous.

An immediate consequence of our result is that ICR is upper hemicontinuous when types

are endowed with the product topology of belief hierarchies. That is, one cannot obtain a

substantially distinct ICR solution for a type by perturbing the type’s higher-order beliefs

(possibly by considering another type space). In that sense, ICR predictions are robust

to higher-order uncertainty. Interestingly, ICR is unique in that regard: any strict refine-

ment of ICR, such as Bayesian Nash equilibrium, fails to be upper hemicontinuous as a

correspondence from belief hierarchies (Weinstein-Yildiz, 2007).

When the action space is a compact metric space, the set of all continuous payoff func-

tions is a complete separable metric space under the uniform metric. Then, the universal

type space is also complete and separable metric space. Therefore, we obtain an upper-

hemicontinuity result for ICR on universal type space under the same conditions for individ-

ual best response: the action space is a complete separable metric space and it is common

knowledge that the utility functions are continuous.

In Section 6, we apply our results to infinite-horizon games with finitely many moves at

every stage, where the relevant notion of continuity is continuity at infinity. As examples,

we show that ICR is upper hemicontinuous in discounted repeated games with uniformly

bounded stage-game payoffs, even if discount factors are unknown and stage payoffs are

unknown, history-dependent or even stochastic. We applied our results here to general

infinite-horizon games, including repeated games, in Weinstein and Yildiz (2013).
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Our note relates to the existing literature as follows. The usual solution concepts, includ-

ing Nash equilibrium and rationalizability under complete information (Bernheim (1984)

and Pearce (1984)), are upper hemicontinuous with respect to the parameters of the game.

However, as we mentioned above, most incomplete-information versions of these concepts

are not upper hemicontinuous with respect to higher-order beliefs, and we are not aware

of any positive result on this matter other than the result of Dekel, Fudenberg and Morris

that we extend here. On the other hand, there is a sizeable literature on the equivalence of

the iterative and fixed-point definitions of rationalizability under complete information. The

equivalence holds when the action spaces are compact metric spaces and the payoff functions

are continuous (Tan and Werlang, 1988), and we extend this result to Bayesian games (using

ICR as the notion of rationalizability).1 Under complete information, Lipman (1994) shows

that the equivalence may fail in games with countably infinite, discrete action spaces, because

reaching the fixed point may require iterations through a transfinite ordinal; Arieli (2010)

discusses the same issue in continuous games, in which the payoff functions are continuous

and the strategy spaces are complete separable metric spaces, finding that the iterations may

need to reach the first uncountable ordinal (but not further). These results show that our

continuity and compactness assumptions are not superfluous for the equivalence result.2

2. Basic Definitions

Given any topological space X, we will write ∆ (X) for the space of Borel probability

measures on X and endow it with the weak topology. We will also endow all product spaces

with their product topology. We write f : X ⇒ Y to mean that f is a correspondence fromX

to Y , i.e. an arbitrary subset ofX×Y with the convention that f(x) denotes {y : (x, y) ∈ f}.
We consider the defining subset of X × Y to be the graph of the correspondence and denote
this G(f) for clarity.

1The equivalence was also discussed, for a more narrow class of games, in Bernheim (1984), and in

Dufwenberg-Stegeman (2002). This extension to Bayesian games was also covered by Ely-Peski (2006),

using interim independent rationalizability as the solution concept.
2Also related is Chen-Long-Luo (2007) who form an iterative definition which is independent of the order

of elimination, by allowing dominance by previously eliminated strategies; standard concepts may be order-

dependent without the presence of regularity assumptions, as noted by Dufwenberg-Stegeman (2002).
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The correspondence f is said to have the closed-graph property ifG (f) is closed. In general,

the closed-graph property is weaker than upperhemicontinuity, but the two concepts coincide

when Y is compact. When Y is compact, a correspondence f : X ⇒ Y is said to be upper

hemicontinuous (UHC) if f has the closed-graph property.

Consider a Bayesian game (N,A, u,Θ, T, κ) in normal form where

• N is a set of players,

• A = ×i∈NAi is a compact metric space of action profiles,3

• Θ is a complete, separable metric space of payoff parameters,

• ui : Θ× A→ [0, 1] is a continuous payoff function for each player i ∈ N ,
• T = ×i∈NTi is a complete, separable metric space of type profiles, and
• κti ∈ ∆ (Θ× T−i) is the interim belief of type ti on the payoff functions and the other

players’types. The map ti 7→ κti is assumed to be continuous.

In the definition of a Bayesian game above, we made some topological assumptions that we

will maintain throughout. These assumptions are satisfied in many applications, including

discounted dynamic games, as discussed in Section 6.

For each player i, define the best-response correspondence BRi : ∆ (Θ× A−i) ⇒ Ai by

setting

BRi (µ) = arg max
ai∈Ai

∫
ui (θ, ai, a−i) dµ (θ, a−i)

for each µ ∈ ∆ (Θ× A−i), where arg max is the set of maximizers. The best-response

correspondence is extended to ∆ (Θ× T−i × A−i) by BRi (µ) = BRi

(
margΘ×A−iµ

)
, where

margX takes the marginal with respect to X. Since Ai is compact and ui is continuous and

bounded, BRi is always non-empty. Moreover:

Fact 1. BRi is UHC.

This fact is a version of Berge’s Maximum Theorem suitable for our purposes; see the

appendix for a straightforward proof.

3For any family (Xi)i∈N of sets and any family of functions fi : Xi → Yi, i ∈ N , we write X = ×i∈NXi

and X−i = ×j∈N\{i}Xj and define functions f : X → Y and f−i : X−i → Y−i by setting f−i (x−i) =

(fj (xj))j∈N\{i}.
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We next present the two definitions of interim correlated rationalizability (ICR). The

definitions may differ in general infinite games, but will coincide under the present conditions.

The first definition is given by iterated elimination of strictly dominated actions that are

never a weak best response, as follows:

Define the family of correspondences Smi : Ti ⇒ Ai, i ∈ N , m ∈ N, iteratively, by setting
S0
i (ti) = Ai and for each m > 0 and ti ∈ Ti, let ai ∈ Smi (ti) if and only if there exists

µ ∈ ∆ (Θ× T−i × A−i) such that

ai ∈ BRi (µ) ,(2.1)

κti = margΘ×T−iµ,(2.2)

µ
(
G
(
Sm−1
−i

))
= 1.(2.3)

Here, the first condition requires that ai is a best response to belief µ; the second condition

requires that µ is a belief of type ti (coherence), and the last condition requires that the

other players play according to Sm−1
−i under µ. The set G

(
Sm−1
−i

)
is closed and therefore

measurable, by Proposition 1 below. Here, the domain of Sm−1
−i is taken to be Θ × T−i,

where θ ∈ Θ does not affect Sm−1
−i (θ, t−i). We consider such larger domains whenever it is

convenient. The limiting correspondence S∞ : T ⇒ Ai is defined by

(2.4) S∞ (t) =
⋂
m≥0

Sm (t) .

The correspondence S∞ is our first definition of ICR.

The second definition is given as a fixed-point property. A solution concept f : T ⇒ A

is said to have the best-response property if for every ti ∈ Ti and ai ∈ f (ti), there exists

µ ∈ ∆ (Θ× T−i × A−i) such that

ai ∈ BRi (µ) ,(2.5)

κti = margΘ×T−iµ,(2.6)

µ (G (f−i)) = 1.(2.7)

By convention, we take (2.7) to mean that µ assigns probability 1 to a measurable subset of

G (f−i). Interim correlated rationalizability is defined as the largest correspondence R : T ⇒
A with the best-response property. Note that, since the best-response property is closed
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under coordinate-wise union, R is well-defined, i.e.,

Ri (ti) =
⋃

f :T⇒A with best-response property

fi (ti) (ti ∈ Ti)

has the best-response property. Note also that the only difference from the iterative definition

of S∞ is that the definition of R requires that the other players play according to R as well,

while Sm requires only that they play according to Sm−1. Consequently, R is a stronger

solution concept.

Fact 2. For any ti and m ≤ ∞, Ri (ti) ⊆ Smi (ti).

Proof. It suffi ces to show this for any finitem. The statement is true form = 0, by definition.

Towards an induction, assume that it is true for m − 1. For any ai ∈ Ri (ti), there exists

µ with (2.5)-(2.7). But since R−i ⊆ Sm−1
−i by the inductive hypothesis, µ also satisfies

(2.1)-(2.3), showing that ai ∈ Smi (ti). �

When the two definitions differ, the fixed-point definition should be taken as the definition

of rationalizability because it characterizes the strategic implications of common knowledge

of rationality. However, under the present assumptions, the definitions are equivalent, as we

show in the next section.

3. Upperhemicontinuity

In this section, we will show that S∞ is UHC and non-empty, and further that it coincides

with the fixed-point definition.

Proposition 1. For every m ≤ ∞, Sm is UHC and non-empty.

Proof. For each finite m ∈ N, we will show that Sm has the closed-graph property, i.e.,

G (Sm) is closed. This further implies that

G (S∞) =
⋂
m≥0

G (Sm)

is also closed. Since A is compact, this is indeed the desired result: Sm is UHC for each

m ≤ ∞.
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Clearly, G (S0) = T ×A is closed. Towards an induction, assume that G
(
Sm−1
−i

)
is closed

for some i ∈ N and m ∈ N. Take a sequence (ti,k, ai,k) ∈ G (Smi ) with limit (ti, ai). For each

k, since (ti,k, ai,k) ∈ G (Smi ), there exists µk ∈ ∆ (Θ× T−i × A−i) such that

ai,k ∈ BRi (µk) ,(3.1)

κti,k = margΘ×T−iµk,(3.2)

µk
(
G
(
Sm−1
−i

))
= 1.(3.3)

Now, because κ is continuous, κti,k is convergent, hence (as a set) it is relatively compact,

and Prohorov’s theorem tells us that it is tight. That is, for each ε > 0 there is a set

Kε ⊂ Θ×T−i such that κti,k(Kε) > 1− ε for all k. Because A−i is compact, each Kε×A−i is
also compact, and by (3.2), µk(Kε×A−i) = κti,k(Kε) > 1−ε. Thus µk is tight. By Prohorov’s
Theorem, µk is relatively compact, and hence has a convergent subsequence. Focus now on

this subsequence and call the limit µ. We will show that µ satisfies the conditions (2.1)-(2.3),

showing that ai ∈ Smi (ti), as desired.

Firstly, since Θ× T−i ×A−i is endowed with product topology, the projection mapping is
continuous and hence

κti,k = margΘ×T−iµk → margΘ×T−iµ,

where the equality is by (3.2). Since κti,k → κti by continuity of κ, this further implies that

margΘ×T−iµ = κti ,

proving (2.2). Secondly, since BRi is UHC by Fact 1, (3.1) implies that ai ∈ BRi (µ),

proving (2.1). Finally, since G
(
Sm−1
−i

)
is closed (by the inductive hypothesis) and µk → µ,

by Portmanteau Theorem,

µ
(
G
(
Sm−1
−i

))
≥ lim supµk

(
G
(
Sm−1
−i

))
= 1,

where the last equality is by (3.3). This proves (2.3) and completes the proof.

Non-emptiness holds for each finite m because compactness implies that best-reply sets

are non-empty, and then follows for S∞ by the finite intersection principle. �

By Fact 2, R is always contained in S∞. The next result establishes the reverse inclusion.

Proposition 2. S∞ = R.
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Proof. By Fact 2, it suffi ces to show that S∞ ⊆ R. We will prove this by showing that S∞

has the best-response property. To this end, take any ti ∈ Ti and ai ∈ S∞i (ti). Now, since

ai ∈ Smi (ti) for each m, there exists a sequence µm ∈ ∆ (Θ× T−i × A−i) such that

ai ∈ BRi (µm) ,

κti = margΘ×T−iµm,

µm
(
G
(
Sm−1
−i

))
= 1.

As in the proof of Proposition 1, µm has a limit µ with ai ∈ BRi (µ) and κti = margΘ×T−iµ.

We will also show that µ
(
G
(
S∞−i
))

= 1, showing that S∞ has the best-response property.

Now, for any m ∈ N, since µk
(
G
(
Sm−i
))

= 1 for every k > m and G
(
Sm−i
)
is closed, by the

Portmanteau Theorem, µ
(
G
(
Sm−i
))

= 1. Since G
(
Sm−i
)
↓ G

(
S∞−i
)
, this implies that

µ
(
G
(
S∞−i
))

= lim
m
µ
(
G
(
Sm−i
))

= 1,

completing the proof. �

Combining the two propositions above, we come to the main conclusion in this section:

Proposition 3. R is UHC and non-empty.

We must emphasize that the above results extend the results of Dekel, Fudenberg, and

Morris (2006, 2007), dropping their finiteness assumptions on Θ and A. In particular, Propo-

sition 1 extends Theorem 2 of Dekel, Fudenberg, and Morris (2006), and Proposition 2 ex-

tends Proposition 4 of Dekel, Fudenberg, and Morris (2007). Our proofs are also similar to

theirs.

4. Upperhemicontinuity in Belief Hierarchies

In Bayesian games, a type is meant to represent a belief hierarchy in the interim stage. A

central issue in game theory is whether the solution is robust to small specification errors in

modeling the belief hierarchies using types. Such robustness is formalized by upperhemicon-

tinuity in belief hierarchies. In this section, we show that ICR is UHC in belief hierarchies,

by embedding the type spaces in the universal type space and applying Proposition 3 to the

universal type space.
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Fix Θ, A, and utility functions ui : Θ × A → [0, 1], and vary the type spaces (T, κ). We

maintain the assumptions on Θ, A, ui, and κ, but we allow T to have any topology. A

solution concept Σ is defined as a mapping that yields a correspondence Σ (·|T, κ) : T ⇒ A

on each type space (T, κ). When we refer to ICR as a solution concept, we use the obvious

notation R (·|T, κ) and S∞ (·|T, κ), with the same meanings as in Section 2.

The type spaces are continuously embedded in the universal type space (T ∗, κ∗) using the

following belief-hierarchy mapping (see Mertens and Zamir (1985) and Brandenburger and

Dekel (1993)). For any type space (T, κ) and type ti ∈ Ti, belief hierarchy

hi (ti|T, κ) =
(
h1
i (ti|T, κ) , h2

i (ti|T, κ) , h3
i (ti|T, κ) , . . .

)
is computed inductively by setting

h1
i (ti|T, κ) = κti ◦ ρ−1

Θ

and

hki (ti|T, κ) = κti ◦
(
ρΘ, h

1
−i (·|T, κ) , . . . , hk−1

−i (·|T, κ)
)−1

where ρΘ : Θ× T−i → Θ is the projection mapping. Here, h1
i (ti|T, κ) is the first-order belief

of type ti– about the payoff parameter θ, and hki (ti|T, κ) is the kth-order belief of type ti–

about the payoffparameter θ and first k−1 orders of beliefs. Each level of beliefs is given the

weak-star topology. The universal type space T ∗ consists of all belief hierarchies obtained

as above and is endowed with product topology. Since Θ is a complete and separable metric

space, the universal type space T ∗ is also a complete and separable metric space, and κ∗ is a

continuous function of belief hierarchies. Note also that h is continuous.4 Hence, all of our

assumptions hold for the Bayesian game (N,A, u,Θ, T ∗, κ∗), to which we apply our previous

results. Our first result establishes that ICR only depends on the belief hierarchies and its

iterative and fixed-point definitions coincide (although T need not be compact).

Proposition 4. For any type space (T, κ), we have R (·|T, κ) = S∞ (·|T, κ), and

(4.1) S∞i (ti|T, κ) = S∞i (hi (ti|T, κ) |T ∗, κ∗) (∀i ∈ N, ti ∈ Ti) .

4See Mertens and Zamir (1985) for details. They assume that the type spaces are compact, but compact-

ness is not needed for continuity of h.
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Proof. Fix any (T, κ). It is straightforward to obtain (4.1) from the definitions; see Propo-

sition 1 in Dekel, Fudenberg, and Morris (2007) for a derivation under finiteness. Since T ∗

is a complete and separable metric space, by Proposition 2, we also have

(4.2) R (·|T ∗, κ∗) = S∞ (·|T ∗, κ∗) .

This further implies that R (·|T, κ) = S∞ (·|T, κ). To see this, take any ti ∈ Ti and any

ai ∈ S∞i (ti|T, κ). By (4.1), ai ∈ S∞i (hi (ti|T, κ) |T ∗, κ∗). However, by (4.2), S∞ (·|T ∗, κ∗) has
the best-response property. Hence, ai is a best response to a belief µ∗ ∈ ∆

(
Θ× T ∗−i × A−i

)
with (i) margΘ×T ∗−iµ

∗ = κ∗hi(ti|T,κ) and (ii) µ
∗ (a−i ∈ S∞−i (t∗−i|T ∗, κ∗)) = 1. Now we will define

a belief µ ∈ ∆ (Θ× T−i × A−i) with similar properties to µ∗. Let M∗(·|·) be the conditional
probability system induced by µ∗, where M∗(·|θ, t∗−i) ∈ ∆ (A−i) for each

(
θ, t∗−i

)
∈ Θ× T ∗−i,

and let

µ(E) =

∫
M∗(E(θ,t−i)|θ, h−i(t−i))dκti(θ, t−i)

where E(θ,t−i) = {a−i : (θ, t−i, a−i) ∈ E} is a cross-section of E. Since margΘ×A−iµ =

margΘ×A−iµ
∗, ai is also a best response to belief µ. Moreover, by (i), margΘ×T−iµ = κti (by

definition of κ∗), and by (ii) and (4.1), µ
(
a−i ∈ S∞−i (t−i|T, κ)

)
= 1. �

Proposition 4 establishes that ICR solution set does not depend on the way one models the

belief hierarchies. In contrast, many solution concepts, such as Bayesian Nash equilibrium

and “interim independent rationalizability”, fail (4.1), and the solution set depends on the

way one models the belief hierarchies. Indeed, if the original type space has redundant types,

some of the equilibria may disappear when the type space is embedded in the universal type

space; see for example Ely and Peski (2006). There then exists some type ti in some type

space (T, κ) such that Σ (ti|T, κ) 6= Σ (hi(ti|T, κ)|T ∗, κ∗).5

We now turn to the main concept of this section: upperhemicontinuity in belief hierarchies.

We use the following notion of convergence among types.

Definition 1. A sequence of types tmi from type spaces (Tm, κm) is said to converge in

belief hierarchies to a type ti from a type space (T, κ), denoted by tmi → ti, if

(4.3) hki (tmi |Tm, κm)→ hki (ti|T, κ) ∀k.
5These solution concepts may still have selections that are invariant to the way one models the hierarchies

(Yildiz (2015)).
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Here, we use the product topology on belief hierarchies, which reflects the point of view of

an observer who can only access to finite orders of beliefs (see Weinstein and Yildiz (2007)

for a detailed discussion). Our notion of convergence among types reflects the same view.

Definition 2. A solution concept Σ is said to be upper hemicontinuous in belief hierarchies

if

[ami ∈ Σ (tmi |Tm, κm)∀m] =⇒ ai ∈ Σ (ti|T, κ)

for every sequence of actions ami with limit ai and for every sequence of types t
m
i from type

spaces (Tm, κm) that converges in belief hierarchies to a type ti from a type space (T, κ).

Observe that when (4.1) fails, the solution concept cannot be UHC in belief hierarchies,

no matter what topology one uses on the belief hierarchies. More broadly, if hi (ti|T, κ) =

hi (t
′
i|T ′, κ′) while ai 6∈ Σ (ti|T, κ) for some ai ∈ Σ (t′i|T ′, κ′), then the condition for UHC in

belief hierarchies fails for the constant sequence (ami , t
m
i ) = (ai, t

′
i). In particular, Bayesian

Nash equilibrium and interim independent rationalizability are not UHC in belief hierarchies.

Indeed, as we mentioned in the introduction, no strict refinement of ICR can be UHC in

belief hierarchies. ICR turns out to be UHC in belief hierarchies, as Dekel, Fudenberg, and

Morris show for finite A and Θ. Applying Proposition 3 to the universal type space (T ∗, κ∗),

the next result shows that ICR remains UHC in belief hierarchies in our more general setup.

Proposition 5. R is upper hemicontinuous in belief hierarchies.

Proof. Consider a sequence of actions ami with limit ai and a sequence of types tmi ∈ Tmi

from type spaces (Tm, κm) with limit ti ∈ Ti from a type space (T, κ) in the sense of (4.3).

Assume that for each m, ami ∈ Ri (t
m
i |Tm, κm). Then, for each m, we have

ami ∈ Ri (t
m
i |Tm, κm) = S∞i (tmi |Tm, κm) = S∞i (hi (t

m
i |Tm, κm) |T ∗, κ∗) ,

where the first equality is by Proposition 2 and the second equality is by (4.1). Since

S∞ (·|T ∗, κ∗) is UHC (by Proposition 1) and hi (tmi |Tm, κm)→ hi (ti|T, κ), we have

ai ∈ S∞i (hi (ti|T, κ) |T ∗, κ∗) = S∞i (ti|T, κ) = Ri (ti|T, κ) ,

where the equalities are by Proposition 4. �
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5. Sufficient Conditions

In this section we will present simple suffi cient conditions under which our results immedi-

ately apply. We will assume throughout that the set A of action profiles is a compact metric

space and the utility functions are continuous in a for each fixed θ. Then, we will show that

all of our results apply, provided that we measure the distance between payoff functions θ

according to the uniform metric (5.1). Of course, the uniform topology is generally finer

than the product topology, so that the upperhemicontinuity result does not apply to some

sequences of types that would converge if we used the product topology on payoff functions.

However, if we restrict θ to a class of equicontinuous payoff functions, the uniform and prod-

uct topologies coincide, so that the upperhemicontinuity result applies under the product

topology as well.

Consider an n-player game in which A is a compact metric space, and let Θ∗ be the set of

all continuous payoff functions θ : A → [0, 1]n. Endow Θ∗ with the the uniform metric du,

defined by

(5.1) du (θ, θ′) = sup
a∈A
‖θ (a)− θ′ (a)‖ .

It is well-known that (Θ∗, du) is a complete separable metric space. Let (T ∗, κ∗) be the

(Θ∗, du)-based universal type space. By Brandenburger and Dekel (1993), T ∗ is a complete

and separable metric space under the product topology on belief hierarchies (as in previous

sections). Finally, note that, under this formulation, the utility functions ui : Θ×A→ [0, 1]

are defined by ui (θ, a) = θi (a), and ui is a continuous function under the above metric.

Therefore, all of our assumptions are satisfied, and ICR is UHC on (N,A, u,Θ∗, T ∗, κ∗). In

particular, R is upper hemicontinuous in belief hierarchies. Assuming the uniform metric on

payoff functions, this obtains upperhemicontinuity of ICR under the same conditions needed

for the best response correspondence: the action space is a compact metric space and the

payoffs are continuous.

One may need to use coarser topologies on the payoff functions θ : A→ [0, 1]n, such as the

topology of pointwise convergence. Under such topologies, upperhemicontinuity is a more

stringent condition as it applies to larger sets of convergent sequences. It is worth mentioning

that this distinction vanishes under certain restrictions on the payoff functions. In particular,
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suppose Θ is an equicontinuous set of payoff functions θ : A → [0, 1]n.6 Then, the Arzela-

Ascoli theorem tells us that pointwise convergence implies uniform convergence. That is, the

uniform and product topology coincide, so that the sup norm actually metrizes the product

topology. Thus, by the previous paragraph, our results hold for the Θ-based universal type

space under the product topology on Θ.7 In particular, R is upper hemicontinuous in belief

hierarchies under pointwise convergence, as long as it is common knowledge that the payoff

functions are in an equicontinuous family Θ.

6. Examples

Now, we will exhibit standard classes of dynamic games in which the assumptions are

satisfied. We will focus on infinite-horizon dynamic games, with discrete time, in which the

set of possible moves is finite at any given history. In these games, the histories are of the

form h = (b1, b2, . . .).8 We measure the distance between any two histories h and h′ by

d(h, h′) = 2−L(h,h′),

where L (h, h′) is the date of earliest discrepancy between h and h′. This endows the set of

histories with the product topology. A plan of action ai for a player i is a mapping that

maps each history at which player i is to move to an available move at that history. Once

again, we measure the distance between any two action plans ai and a′i by d (ai, a
′
i) = 2−l

where l is the length of the shortest h = (b1, . . . , bl) with ai (h) 6= ai (h
′). Since the players

can move only at histories of finite length, the set A = A1 × · · · × An is a compact metric
space. Let Z be the set of terminal histories. Each action profile a ∈ A leads to an outcome
z (a) ∈ Z. The outcome function a 7→ z (a) is continuous.

As in the previous section we consider payoff functions θ : Z → [0, 1]n and define the

utility functions ui : Θ × A → [0, 1] by ui (θ, a) = θi (z (a)). A function θ : Z → [0, 1]n

is said to be continuous at infinity if for every ε > 0 and z ∈ Z, there exists L̄ such that
6A family F ⊆ Y X of functions f : X → Y is said to be equicontinuous if for every x and every ε, there

exists a δ such that for all x′ with d(x′, x) < δ, and all f ∈ F , d(f(x), f(x′)) < ε.
7Note that we do not need to worry that Θ is complete, i.e. a closed subset of Θ∗, because we can apply

our result to the Θ∗-based universal type space, and continuity is inherited on the subset with common belief

in the restriction to Θ.
8See Osborne and Rubinstein (1994) and Weinstein and Yildiz (2013) for more details on the framework.
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|θi (z)− θi (z′)| < ε whenever L (z, z′) > L̄, i.e., whenever z and z′ agree in the first L̄ entries

(Fudenberg-Levine, 1983). This is equivalent to continuity with respect to the metric on Z

defined above. Let Θ∗ be the set of all payoff functions θ : Z → [0, 1]n that are continuous

at infinity. Apply the uniform metric du to Θ∗. Then, as in the previous section, all of our

assumptions are satisfied by the (Θ∗, du)-based universal type space (T ∗, κ∗). Therefore, ICR

is UHC on (N,A, u,Θ∗, T ∗, κ∗).

Once again, under an equicontinuity assumption, this leads to upperhemicontinuity under

pointwise-convergence. A set Θ of functions θ : Z → [0, 1]n is said to be equicontinu-

ous at infinity if for every ε > 0 and z ∈ Z, there exists L̄ such that for every θ ∈ Θ,

|θi (z)− θi (z′)| < ε whenever L (z, z′) > L̄. This strengthens the usual notion of continuity

at infinity by picking L̄ simultaneously for all θ ∈ Θ. As before, if it is common knowledge

that the set of payoff functions is restricted to a family Θ which is equicontinuous at infin-

ity, ICR is upper hemicontinuous in belief hierarchies which inherit the pointwise notion of

convergence on payoff functions.

The next section shows how our results apply to the specific class of discounted repeated

games.

6.1. Repeated Games. Consider an infinitely repeated game with perfect-monitoring and

with finite set S = S1× · · · ×Sn of strategy profiles in the stage game. We first focus on the
standard case of time-separable and stationary payoffs. Under this standard formulation,

the payoff of a player i at any given history h = (s0, s1, . . .) is

U (δi, gi, h) = (1− δi)
∞∑
l=0

δligi(s
l)

where δi is the discount factor of player i and gi ∈ [0, 1]S is his stage game payoff function.

The function U is known, but δi and gi may or may not be known. We write Θ∗ = (0, 1)n×
[0, 1]N×S for these possibly unknown parameters θ = (δ1, . . . , δn, g1, . . . , gn) and endow it

with the usual Euclidean topology. With appropriately chosen metric on (0, 1) and standard

metric on [0, 1], Θ is separable and complete.9 Let (T ∗, κ∗) be the Θ-based universal type

space. By Brandenburger and Dekel (1993), T ∗ is also a complete separable metric space.

9The metric on (0, 1) is given by d (x, x′) = |f (x)− f (x′)| where f (x) = log (x/ (1− x)).
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The payoff function of a player i is given by

ui (θ, a) = U (δi, gi, z (a)) .

Since U and a 7→ z (a) are continuous, ui is also continuous. Moreover, belief function κ∗

is continuous with respect to the types in the universal type space T ∗. Therefore, the game

(N,A, u,Θ, T ∗, κ∗) satisfies all of our assumptions, and ICR is UHC and can be computed

by iterated strict dominance on this game. In other words, our results here show that, in a

repeated game, ICR is UHC and can be computed by iterated strict dominance whenever

the repeated game structure is common knowledge.

In some applications, players’payoffs are not time-separable or stationary. Consider a

repeated game as in the previous paragraph, but allow non-separable and non-stationary

payoffs. In particular, let the payoff of a player i at any given history h = (s0, s1, . . .) be

(6.1) θi (h) = U (δi, gi, h) ≡ (1− δi)
∞∑
l=0

δlig
l
i

(
s1, . . . sl

)
where δi is the discount factor of player i and gi = (g1

i , g
2
i . . .) is a sequence of stage game

payoff functions gli : Sl → [0, 1], where the stage game payoff at any period l can depend on

any action that has been taken up to period l. Separable (but non-stationary) payoffs are

included in this class as the special case in which each gli depends only in s
l. Write

(6.2) Θ∗ = (0, 1)n ×
∞∏
l=1

[0, 1]N×S
l

for the set of parameters θ = (δ1, . . . , δn, g1, . . . , gn). Under the product topology, Θ∗ is

completely metrizable and separable. Therefore, our general results apply: ICR is UHC and

can be computed by iterated strict dominance.

6.2. Stochastic Games. In stochastic games, the stage-game payoff functions are allowed

to depend on a stochastic state. If the state and the realized stage-game payoffs are not

observable, then these games can be encoded as a special case of the general repeated games

described in equations (6.1) and (6.2). Indeed, θ describes payoffs on all possible paths of

stage-game payoffs, allowing the stochastic process and induced payoffs to be encoded as a

belief about θ in the universal type space. This trick will not encompass stochastic games

with any monitoring of the stochastic state, because in our setup of Section 6.1 the players

only receive information about actions taken, not about θ. We now show how to model
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stochastic games with public monitoring of the state. The class of games modelled here is

neither a subset nor a superset of that in the previous section.10

For any finite set Y of states, consider a (controlled) stochastic process yl|∞l=0 where the

distribution of yl ∈ Y is a function of past states and the moves in the previous period.

That is, the process is specified by providing, for each l ≥ 0, a conditional distribution

ρl
(
yl|y0, . . . , yl−1, s

l−1
)
. The stage-game payoff of player i at l is a function gli of

(
sli, yl+1

)
,

i.e. only directly of his action and the next state, though yl+1 may depend in turn on

all players’moves including at time l. Players can only observe current and past states

y0, . . . , yl and recall their previous moves, i.e., a player i moves at histories of the form(
y0, s

0
i , . . . , yl−1, s

l−1
i , yl

)
. The set of parameters, which encode both payoffs and the initial

and conditional distributions of y, can be written as

Θ∗ =
∏
i∈N

(
(0, 1)×

∞∏
l=1

[0, 1]Si×Y
)
×∆(Y )×

∞∏
l=1

∆(Y )Y
l×S.

Once again, under the product topology, Θ∗ is completely metrizable and separable. There-

fore, our general results apply: ICR is UHC —with respect to hierachies of beliefs over both

payoffs and the laws governing y —and it can be computed by iterated strict dominance.

Appendix A. Proof of Fact 1

It follows from the following.

Lemma 1. Let (S, dS) and (X, dX) be metric spaces with S compact and X complete and

separable, and let u : S ×X → R be continuous. Then,

Bi (µ) = arg max
s∈S

∫
u (s, x) dµ (x)

is upper hemicontinuous in µ.

Proof. By the Maximum Theorem, it suffi ces to show that

U (s, µ) =

∫
u (s, x) dµ (x)

10It does not encompass the arbitrary non-stationary games of the previous section because we only allow

finitely many states, so that arbitrary dependence on arbitrarily long histories would not be possible.
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is continuous. Indeed, it is the composition of the following maps, which are each continuous

by standard results:

(s, µ) 7→ (δs, µ)

where δs is the unit mass at s;

(δs, µ) 7→ δs × µ

the product measure; and

δs × µ 7→
∫
S×X

u(s′, x)d(δs × µ)(s′, x)

which is continuous by definition of the weak topology. �
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