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1. Introduction

In Game Theory, incomplete information is modeled using a type in a Bayesian game a la Harsanyi (1967). Unfortunately, 
the representation is not unique: a given piece of information can be modeled using many distinct types, coming from 
distinct Bayesian games. It is desirable that the solution be invariant to alternative representations of the same information, 
in the sense that the types that represent the same information all take the same action according to the solutions to the 
games they come from. In this note, I explore the implications of such an invariance condition.

To be more precise, consider a researcher. Given any type ti of any player i in any Bayesian game G , she thinks that the 
relevant information of ti is hi(ti, G). If there is another type t′

i from a game G ′ with hi(ti, G) = hi(t′
i, G

′), then she considers 
(ti, G) and (t′

i, G
′) as two alternative representations of the same relevant information. Hence, she requires that types ti and 

t′
i play the same action according to the solutions to games G and G ′ , respectively. If she selects a solution to each game 

satisfying her requirement, then she obtains an invariant selection from her solution concept. Such a selection is needed to 
study the solutions that are invariant to alternative representations of the same relevant information. Can she find such a 
selection? Can she ensure that her solutions to the games of her interest are part of an invariant selection without analyzing 
other hypothetical situations? I answer these questions affirmatively.

In the baseline model, I take h as the infinite hierarchy of beliefs about some parameters that are deemed relevant. 
I note that the same piece of information can be modeled by uncountably many types, coming from Bayesian games with 
complicated interconnections that are difficult to foresee. Hence, invariance is a strong restriction on the selections of the 
solutions, requiring that the actions of all these types be equal. Moreover, given the complicated interconnections between 
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these games, constructing an invariant selection is a difficult task, which involves equalizing the actions of all these types 
and doing this for all games at the same time.

I consider all solution concepts with the following two basic properties. Given any game G , construct a new game Gh by 
representing each type ti in G by its relevant information hi(ti, G). The first property is that for every solution σ of Gh , the 
strategy profile σ ◦ h, in which each ti plays σi (hi(ti, G)), is a solution to G . The second property is that given any finite 
type space T and any invariant selection for its proper subspaces, there exists a solution on T that yields the selection when 
we restrict the solution to the proper subspaces of T . Both properties are exhibited by canonical solution concepts, such as 
Bayesian Nash equilibrium and rationalizability.1

Given the generality above, invariance may put non-obvious restrictions on the selection of solutions across games that 
may appear to be unrelated. Nonetheless, I show that when finite type spaces are embedded in a universal type space 
using the mapping h, they exhibit an interesting and useful lattice structure. Using this structure, I construct an invariant 
selection in a straightforward manner. I further show that any invariant selection within a class of games can be extended 
to the set of all games with finite type spaces, maintaining the invariance condition throughout. Conceptually, this shows 
that the invariance requirement does not impose any additional restrictions on the solutions to individual games or on the 
selections for subfamilies. On a practical level, it ensures that if a researcher is only interested in behavior in a class of 
games, she can focus on constructing an invariant selection for that class without worrying about the invariance across all 
games. In particular, if she is interested only in a specific game, she can analyze the game in isolation without analyzing 
the other possible strategic situations. All she needs to do is to make sure that the types with identical relevant information 
play the same action in the specific game. In contrast, if she is interested in behavior across a family of games (as in the 
analysis of comparative statics), then she needs to analyze invariant selections for the family, and invariance imposes many 
more conditions on such selections than on the solutions to individual games.

There is a one-to-one correspondence between the invariant equilibrium selections on a given class of games and the 
equilibria on the subspace of the universal type space in which these games are embedded. The above results on invariance 
selections then lead to equilibrium existence results on the universal type space. First, since there is an invariant equilibrium 
selection for all games with finite type spaces, there exists an equilibrium on the space of all finite types, which consists of 
the images of all types from all finite type spaces. This fills an important gap in the literature, in which very little is known 
on the existence of equilibria in prominent subspaces of the universal type space. Second, any equilibrium within a subspace 
can be extended to the space of all finite types. This result is quite useful in equilibrium analysis on such spaces. In such 
an analysis, one is often interested in the behavior of types within a small class. This result ensures that one can simply 
focus on the class without worrying about the construction of equilibrium on the entire space, which is often the main 
difficulty. Third, as a special case of the second result, an equilibrium of a game can be extended to the space of all finite 
types as long as the types with identical information play the same action in the equilibrium. This result is important for 
robustness analysis. In such an analysis, one considers an equilibrium in the universal type space and explores its sensitivity 
to information (see for example Weinstein and Yildiz, 2007, 2011). This result shows that such an analysis is not vacuous 
and the robustness of any equilibrium as above can be analyzed within this methodology. Börgers and Smith (2014) provide 
an important application of invariance in robust mechanism design.

I study invariance of solutions with respect to the alternative representations of incomplete information. More broadly, 
one wants the solution to be invariant to any alternative representation of the strategic situation. Within this larger context, 
a number of authors, such as Kohlberg and Mertens (1986) and Govindan and Wilson (2006, 2009, 2012), have studied 
other invariance conditions, such as invariance with respect to the introduction of mixed strategies as pure strategies and 
the “small worlds” condition, which requires that embedding a game into a larger game with additional players does not 
affect the solutions induced on the original game. The invariance condition here differs from the above conditions in two 
ways. First, it focuses on incomplete information. Second, it is a condition on how the solution changes across games rather 
than being a condition on the solution sets. Indeed, it does not at all restrict the set of solutions to any given game with no 
“redundant” types (i.e. multiple types with identical relevant information).

A solution concept and the notion of relevant information are inherently related. If a researcher strongly believes in a 
solution concept, she can use the solution concept to determine which information is strategically relevant. This is especially 
true when she does not have strong knowledge of players’ concerns. For example, using equilibrium or rationalizability, one 
can discover that whether a seller has private information can be quite relevant in trade and that higher-order beliefs do 
matter in strategic situations. Unfortunately, solution concepts are often introduced as working hypotheses, using analogy 
and extrapolation from toy examples or existing theories.2 The researcher may then have a better understanding of players’ 
concerns and the relevance of a piece of information. In that case, she may use her knowledge of the situation to modify or 
refine the solution concept. In general, one expects a researcher to strike a balance between the solution concept and her 
knowledge of the situation. No matter where she strikes the balance, invariance helps the researcher in refining the set of 
selections from the solution concepts she considers and provides a better understanding of how players’ behavior changes 

1 By rationalizability, I mean interim correlated rationalizability and interim independent rationalizability.
2 In contrast, rationalizability in complete information games and interim correlated rationalizability in Bayesian games are introduced as characteriza-

tions of a set of rationality assumptions. Recently, Battigalli et al. (2011) argued that one must use a solution concept that can be expressible as such 
assumptions—about players’ beliefs, information and actions. Once the researcher settles on such a solution concept, she will be in the previous case above.
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from one situation to another. To the extent that she uses her own knowledge of the situation, invariance helps further in 
refining her solutions to individual games.

It is known that some prominent solution concepts, such as Bayesian Nash equilibrium, may depend on the specific type 
space through which a belief hierarchy is modeled. For example, when there are redundant types, there may be additional 
equilibria in which distinct types with identical hierarchies play distinct actions. Many researchers proposed alternative 
ways to address this issue. For example, Ely and Peski (2006) proposed a broader class of belief hierarchies under which 
interim independent rationalizability is not affected by the presence of redundant types. Dekel et al. (2007) introduced a 
weaker solution concept (namely, interim correlated rationalizability) that is immune to the above problem. In a way, the 
former authors take the solution concept as given and explore the information relevant for the solution concept, while the 
latter authors expand the set of solutions in order to account for some relevant information that may have been overlooked 
(Liu, 2009). Finally, noting that some equilibria may fail to extend to a larger type space, Friedenberg and Meier (2007)
proposed that we should embrace the dependence of solutions on the type space: we should use the type space in order 
to model the context in which the game is played.3 Such a dependence of the solution set on the type space is not a main 
concern in my paper, and my invariance condition is consistent with all of the above approaches, which offer alternative 
solution concepts and notions of relevant information. Of course, once a researcher settles on a particular notion of relevant 
information and a solution concept, invariance refines the solution concept and more importantly puts strong restrictions 
on how the solution varies from one game to another.

In the next section, I introduce invariance formally and explain its implications and my construction on a simple example. 
In Section 3, I demonstrate that finite type spaces exhibit a useful lattice structure when they are represented as subspaces 
of a universal type space. I study invariant selections in Section 4, invariant equilibrium selections in Section 5, and the 
equilibria on the universal type space in Section 6. I present two extensions in Section 7, one to countable type spaces and 
one to broader notions of relevant information. Section 8 concludes. The omitted proofs are in Appendix A.

2. Invariance—definition and examples

Fix a set N = {1,2, . . . ,n} of players i, a set A = A1 × · · · × An of action profiles a,4 and a set �∗ of payoff parameters θ . 
For each i ∈ N , fix also a utility function ui : �∗ × A → R. A finite type space is a triplet (�, T , κ) where � ⊆ �∗ is a 
finite set of parameters, T = T1 × · · · × Tn is a finite set of type profiles t , and κti is a probability distribution on � × T−i , 
representing the belief of ti , for each type ti ∈ Ti . A Bayesian game is a list G = (N, A, u,�, T , κ). The set of all Bayesian 
games with varying finite type spaces is denoted by G . Throughout G , (N, A, u) is fixed for clarity.

For any game G = (N, A, u,�, T , κ) ∈ G and any player i, a strategy of i for G is a mapping σi : Ti → � (Ai), and a strategy 
profile for G is a list (σ1, . . . , σn) of strategies. A solution concept is any correspondence � : G ⇒�T

∏
i � (Ai)

Ti that picks 
a set � (G) of strategy profiles for G at each game G ∈ G , where �T

∏
i � (Ai)

Ti is the set of all strategy profiles available 
within G . Given any solution concept � and any G′ ⊆ G , I write �|G′ for the restriction of � to G′ . By a selection from �

for G′ , I mean a selection from �|G′ , i.e., a function that picks a solution σ G ∈ � (G) for each G ∈ G′:

G′ 	 G 
→ σ G ∈ � (G) .

A selection for G is simply called a selection.

2.1. Invariance

For every game G ∈ G and every type ti of a player i in G , let hi (ti, G) be the relevant information of ti (according to 
a researcher). Given that all the relevant information is contained in hi (ti, G), if hi (ti, G) = hi

(
t′

i, G ′) for some types ti and 
t′

i from games G and G ′ , respectively, then (ti, G) and 
(
t′

i, G ′) are just alternative representations of the same information. 
One may then desire the solution to be independent of the representation, requiring that ti and t′

i play the same action 
according to the solutions at G and G ′ , respectively. The next definition formalizes this idea.

Definition 1. Fix a solution concept �, a map h from domain G to some abstract codomain and a set G′ ⊆ G of games. 
A selection G 
→ σ G for G′ is said to be h-invariant if

hi (ti, G) = hi
(
t′

i, G ′) =⇒ σ G
i (ti) = σ G ′

i

(
t′

i

)
(C)

for all games G, G ′ ∈ G′ and for all types ti and t′
i in G and G ′ , respectively. Likewise, for any G ∈ G , a strategy profile σ in 

3 Friedenberg and Meier also study the relation between the equilibrium sets of two type spaces when one is embedded in the other, showing that 
Bayesian Nash equilibrium satisfies the basic properties I assume for the solution concepts here.

4 Notation: For any list X1, . . . , Xn of sets, X denotes X1 × · · · × Xn and X−i denotes ∏ j �=i X j . For any x1, . . . , xn , write x = (x1, . . . , xn) ∈ X , x−i =(
x j

)
j �=i ∈ X−i , and (x′

i , x−i
) = (

x1, . . . , xi−1, x′
i , xi+1, . . . , xn

)
. For any family of functions f j : X j → Y j , write f (x) = (

f j
(
x j

))
j∈N and f−i (x−i) = (

f j
(
x j

))
j �=i . 

In general, drop a subscript to denote the entire mapping that varies with that subscript; e.g., write κti for the belief of type ti and κ for the belief function. 
The set of all probability distributions on a set X is denoted by � (X).
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Table 1
The type spaces T 0, . . . , T 6. In T 0, T 1, T 2, T 3 and T 6, the number in a cell (θ, t) indicates the ex-ante probability of (θ, t). In T 4 and T 5, 
the first and the second entries in a cell (θ, t) are the interim beliefs of types t1 and t2, respectively; e.g., t4,1

1 assigns probability 1 on 
(θ0, t4,1

2 ).

T 0 T 1 T 2

θ0 t0
2 θ1 t0

2

t0
1 1 t0

1 0

θ0 t1
2 θ1 t1

2

t1
1 0 t1

1 1

θ0 t1
2 θ1 t1

2

t1
1 1/2 t1

1 1/2

T 3 T 6

θ0 t3,1
2 t3,2

2

t3,1
1 1/2 0

t3,2
1 0 0

θ1 t3,1
2 t3,2

2

t3,1
1 0 0

t3,2
1 0 1/2

θ0 t6,1
2 t6,2

2

t6,1
1 1/6 1/12

t6,2
1 1/12 1/6

θ1 t6,1
2 t6,2

2

t6,1
1 1/12 1/6

t6,2
1 1/6 1/12

T 4 T 5

θ0 t4,1
2 t4,2

2

t4,1
1 1,1 0,0

t4,2
1 0,0 1/2,1/2

t4,3
1 1/2,0 0,0

θ1 t4,1
2 t4,2

2

t4,1
1 0,0 0,0

t4,2
1 0,0 1/2,1/2

t4,3
1 0,0 1/2,0

θ0 t5,1
2 t5,2

2

t5,1
1 1,1 0,0

t5,2
1 0,0 0,0

t5,3
1 ε,0 ε2,0

θ1 t5,1
2 t5,2

2

t5,1
1 0,0 0,0

t5,2
1 0,0 1,1

t5,3
1 0,0 1 − ε − ε2,0

G is said to be h-invariant if for all types ti and t′
i in G ,

hi (ti, G) = hi
(
t′

i, G
) =⇒ σi (ti) = σi

(
t′

i

)
. (C′)

Invariance of selections is a condition on how the solution varies across games, rather than restricting the set of solutions 
at a given game. On the other hand, invariance of a strategy profile is a condition on the solution of a game, requiring that 
the types with identical relevant information play the same action. Of course, the latter is a special case of invariance of a 
selection for G′ = {G}.

For concreteness, in the baseline model, I consider the following notion of relevance (see Section 7 for more general 
notions). I take

�∗ = �∗
R × �∗

NR,

so that the underlying parameters are of the form

θ = (θR , θNR) .

Here, θR is a vector of parameters that are deemed relevant while θNR is a vector of parameters that are deemed irrelevant. 
The relevant information of a type ti in a game G is the hierarchy of beliefs about θR :

hi (ti, G) =
(

h1
i (ti, G) ,h2

i (ti, G) , . . .
)

where h1
i (ti, G) is the first-order belief of type ti about θR , h2

i (ti, G) is the second-order belief of type ti about (
θR ,h1

−i (t−i, G)
)
, and so on.

The set of all such belief hierarchies forms an infinite type space, called �∗
R -based universal type space (Mertens and Zamir, 

1985, and Brandenburger and Dekel, 1993). The finite type spaces are mapped to a subspace 
(
�∗, T u, κu

)
of this universal 

type space. The uncountable set T u = T u
1 × · · · × T u

n is called the space of finite types. Note that

T u
i = {hi (ti, G) |ti ∈ Ti for some G = (N, A,�, T , κ, u) ∈ G} (2.1)

for each i ∈ N . Note also that the beliefs are preserved by the embedding:

κu
hi(ti ,G) (θ,h−i (t−i, G)) =

∑

t′−i∈T−i∩h−1
−i

(
h−i

(
t−i ,G

)
,G

)
κti

(
θ, t′

−i

)
(2.2)

for all i, all G = (N, A,�, T , κ, u) ∈ G , and all (θ, ti, t−i) ∈ � × T .
An important special case arises when 

∣∣�∗
NR

∣∣ = 1 so that all the parameters are deemed relevant. Even in this case, 
type spaces may contain some distributed information that is not contained in the hierarchies, and some Bayesian Nash 
equilibria may use such information (see Section 2.3 below). According to the notion considered in the baseline model, such 
information is deemed irrelevant, and the equilibria that use such information are discarded.

2.2. Examples

In the rest of this section, I illustrate the implications of invariance on a simple example, using the Bayesian Nash 
equilibrium as the solution concept. I fix N = {1,2}, A = {a,b} × {c,d}, �∗ = �∗ = {θ0, θ1}, and fix the utility functions as:
R
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θ0 c d

a 5,1 0,0

b 3,0 3,1

θ1 c d

a 0,1 5,0

b 3,0 3,1

I analyze the games G0, . . . , G6 with type spaces T 0, . . . , T 6, respectively, depicted in Table 1. The games G0 and G1 are 
complete information games in which it is common knowledge that θ = θ0 and θ = θ1, respectively. Their type spaces T 0

and T 1 are embedded in T 3, rather trivially. In T 3, the true state is common knowledge at the interim stage, but they are 
equally likely ex ante. The hierarchies of t3,1 and t3,2 are identical to those of t0 and t1, respectively. On the other hand, G2
is also a complete information game, in which the players find the states equally likely. Although the type space T 6 looks 
quite different, it also expresses the information that it is common knowledge that the players find the states equally likely. 
One can see this by observing that each type in T 6 assigns probability 1/2 on each state. Hence, t2, t6,1 and t6,2 all have 
the same relevant information.

The relationship between type spaces can be even more complex when there is no common prior. To see this, consider 
T 4 and T 5. In T 4, the relevant information of t4,1 is identical to that of t0 in T 0: it is common knowledge that θ = θ0. 
Likewise, the relevant information of t4,2 is identical to that of t2 in T 2: it is common knowledge that the states are equally 
likely. Finally, according to type t4,3

1 , either θ = θ0 and player 2 thinks that this fact is common knowledge, or θ = θ1 and 
player 2 thinks that it is common knowledge that the states are equally likely. In T 5, type t5,3

1 is almost certain that θ = θ1

and that player 2 believes that this is common knowledge, but the details of the beliefs refer to the hierarchies of t0 and t1.
The Bayesian Nash equilibria of games in set G1 = {G0, G1, G2, G3, G4, G5} are as follows. Game G0 has three equilibria: 

s0,1 = (a, c), s0,2 = (b,d), and s0,3, which is in mixed-strategies; G1 has a unique (mixed) equilibrium σ 1, and G2 has a 
unique equilibrium s2 = (b,d). Accordingly each game Gm with m ∈ {3,4,5} has three equilibria sm,1, sm,2, and sm,3, where

sm,k
(

tm,1
)

= s0,k,

s3,k
(

t3,2
)

= s5,k
(

t5,2
)

= σ 1 and s4,k
(

t4,2
)

= (b,d) , (2.3)

s4,1
1

(
t4,3

1

)
= s5,1

1

(
t5,3

1

)
= s4,3

1

(
t4,3

1

)
= a and s4,2

1

(
t4,3

1

)
= s5,2

1

(
t5,3

1

)
= s5,3

1

(
t5,3

1

)
= b (2.4)

for each k ∈ {1,2,3}. There are 81 possible selections for G1, as one can mix and match the equilibria of the individual 
games arbitrarily.

Invariance puts strong restrictions on selections, however. Since t0, t3,1, t4,1, and t5,1 all have identical relevant informa-
tion, invariance requires that one must select the same outcome in games G0, G3, G4, and G5 for these type profiles. Hence, 
by (2.3), if one selects s0,k in game G0, then he must also select the equilibria s3,k , s4,k , and s5,k in games G3, G4, and G5, 
respectively. Therefore, only 3 selections are invariant:

G0 G1 G2 G3 G4 G5

Selection 1 s0,1 σ 1 s2 s3,1 s4,1 s5,1

Selection 2 s0,2 σ 1 s2 s3,2 s4,2 s5,2

Selection 3 s0,3 σ 1 s2 s3,3 s4,3 s5,3

Some of the restrictions imposed by invariance may be unforeseen. For example, by (2.4), under an invariant selection, 
t4,3

1 must play a whenever type t5,3
1 does so, despite the apparent lack of connection between the hierarchies. Despite this, 

invariance does not restrict the solution set of a given game: every equilibrium of every game is selected by some invariant 
selection. The latter observation turns out to be true in general, as long as the games do not have redundant types, i.e., 
multiple types with identical belief hierarchies.

When there are redundant types, there may be non-invariant Bayesian Nash equilibria, expanding the equilibrium set. 
This well-known fact is illustrated by games G2 and G6. Recall that according to all types in games G2 and G6, it is common 
knowledge that the states are equally likely, all having the same relevant information. Therefore, G6 has an equilibrium s6,1

in which all types play according to the unique equilibrium of G2, yielding (b, c) as the outcome. Nevertheless, G6 has also 
another equilibrium s6,2:

s6,2
1

(
t6,1

1

)
= a; s6,2

1

(
t6,2

1

)
= b; s6,2

2

(
t6,1

2

)
= c; s6,2

2

(
t6,2

2

)
= d.

Note that s6,2 prescribes different actions for type t6,1
i and t6,2

i although they have identical relevant information. Therefore, 
equilibrium s6,2 is not invariant.

Although redundant types are not my main concern here, conceptually my approach to redundant types is closest to that 
of Liu (2009). He shows that any type space with redundant types can be represented as a type space without redundant 
types by introducing additional underlying parameters (i.e., by adding new dimensions to θ and obtaining a �∗

R larger than 
original �∗). Moreover, the set of Bayesian Nash equilibria are identical in the two type spaces. He then interprets redundant 
types as a consequence of the researcher’s ignoring some of the parameters that are deemed relevant by the players.
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Fig. 1. The lattice structure of the type spaces in the example.

2.3. Construction

To illustrate my construction, I include a new game G7 with type space T 7:

θ0 t7,1
2 t7,2

2

t7,1
1 1/2 0

t7,2
1 0 1/4

θ1 t7,1
2 t7,2

2

t7,1
1 0 0

t7,2
1 0 1/4

The set of equilibria for G7 is 
{

s7,1, s7,2, s7,3
}

where s7,k
(
t7,1

) = s0,k and s7,k
(
t7,2

) = s2 for each k.
In my construction, I first embed the Bayesian games into the �∗

R -based universal type space, using h. In the ongo-
ing example, this leads to a new set of games Gh

0, . . . , G
h
7, with type spaces h 

(
T 0, G0

)
, . . . , h 

(
T 7, G7

)
, respectively. After 

constructing an invariant selection for Gh
0, . . . , G

h
7, I select equilibria of games G0, . . . , G7 by transforming the selected equi-

librium sm in each game Gh
m to an equilibrium of Gm by sm ◦ h−1.

The embedding for G6 maps many types to one, yielding Gh
6 = Gh

2, and changing the solution set. For all the other games, 
the embedding mappings are isomorphisms, which rename the types without changing the solution in each game. Note 
however, that some types from distinct type spaces are mapped to the same hierarchy, yielding non-empty intersections of 
type spaces h 

(
T k, Gk

)
and h 

(
T l, Gl

)
for some k and l. These non-empty intersections make the construction non-trivial.

The following structure makes a straightforward construction possible: with the inclusion of the empty set, the set of all 
resulting type spaces from the embedding is a lattice under the set inclusion, and it is closed under an arbitrary number of 
intersections. For example, h 

(
T 4, G4

)
and h 

(
T 5, G5

)
have a non-empty intersection due to the identical hierarchies for t4,1

and t5,1, but

h
(

T 4, G4

)
∩ h

(
T 5, G5

)
= h

(
T 0, G0

)

is also a type space for another finite game, namely G0. The lattice structure is depicted by the graph in Fig. 1, where a link 
between two games indicates that the type space of the game above contains the type space of the game below.

This structure allows one to rank finite type spaces according to the length of the longest chain of its subspaces under 
the strict set inclusion. For example, the games Gh

0, Gh
1, and Gh

2 do not contain any proper subspace, and all have rank 1. The 
games Gh

3 and Gh
7 contain proper subspaces, as depicted in Fig. 1, but they contain only games of rank 1. These games then 

have rank 2. Finally, games Gh
4 and Gh

5 have rank 3, containing proper subspaces that have at most rank 2. The structure 
also implies that, for each type, there is a unique minimal type space that contains the type. For example, the minimal type 
space for the hierarchy h1

(
t4,1

1 , G4

)
is h 

(
T 0, G0

)
, while the minimal type space for h1

(
t4,3

1 , G4

)
is h 

(
T 4, G4

)
.

The above structure leads to the following straightforward construction of an invariant selection from the embedded 
games, which leads to a selection across all games. I first consider the type spaces of the first rank. These type spaces do 
not have any subspace. In particular, they are disjoint because the intersection would be a subspace by the lattice structure. 
I select a solution for each of these type spaces. Since they are disjoint, the selection is invariant. For example, games Gh

0 , 
Gh

1 and Gh
2 are of rank 1, and I first select an arbitrary equilibrium for each of these games, e.g., selecting s0,1 for Gh

0, σ 1 for 
Gh

1 and s2 for Gh
2. Next, I consider the type spaces of the second rank, e.g., the games Gh

3 and Gh
7 in the ongoing example. 

These type spaces contain only subspaces of the first rank, for which the solution has been selected already. Each of them 
has a solution that extends the existing selection for the proper subspaces to the type space itself. For example, Gh

3 has 
equilibrium s3,1 that extends s0,1 and s2 to Gh

3, and Gh
7 has equilibrium s7,1 that extends s0,1 and σ 1 to Gh

7. This property of 
Bayesian Nash equilibrium is assumed in the class of solution concepts considered here. I select such a solution from each of 
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these type spaces, e.g., selecting s3,1 and s7,1 for Gh
3 and Gh

7, respectively. Since these type spaces intersect each other, this 
could have led to a violation of invariance. That is, a type in the intersection could have played different actions according 
to the solutions of the distinct type spaces. This is not the case. Any such intersection is of the first rank, for which actions 
have been determined in the previous round. Hence, all of the selected solutions prescribe the same action for any type in 
the intersection. For example, the actions of types h1

(
t3,1

1 , G3

)
and h1

(
t7,1

1 , G7

)
are selected as a in round 1. Iterating this 

argument, I select a solution for every type space of third rank, fourth rank, and so on. For example, at round 3, I select 
equilibria s4,1 and s5,1 for games Gh

4 and Gh
5, respectively, the equilibria that extend s3,1 and s7,1 to games Gh

4 and Gh
5, 

respectively. Since each type space has a finite rank, this leads to a selection for every type space.
The construction here addresses two inherent difficulties. First, there are typically uncountably many type spaces by 

which the same piece of information can be modeled. Hence, in any construction, at some stage, one needs to select the 
solutions for uncountably many such type spaces simultaneously without violating the invariance condition. For example, 
the hierarchy h1

(
t4,1

1 , G4

)
is contained in a continuum of games in which the beliefs of type t4,3

1 vary, and one must select 

equilibria of all of these games simultaneously, making sure that the types with hierarchy h1

(
t4,1

1 , G4

)
all play the same 

action. In the above construction, this is accomplished by fixing the action of any type ti in any game G at the earliest 
round at which hi(ti, G) is available, relying on the fact that the minimal type space for hi(ti, G) is the only type space that 
contains hi(ti, G) at that round. When the solution to G is selected at a later round, one may need to select solutions to 
uncountably many type spaces that contain hi(ti, G), but the solutions will all assign the same fixed action to hi(ti, G). For 
example, the actions of the types with hierarchy h1

(
t4,1

1 , G4

)
are all selected as a at round 1 when s0,1 is selected for Gh

0.

The second difficulty is that the space of all finite types cannot be partitioned into smaller subspaces: for any two types 
t j and t′

j , one can construct a type ti that puts positive probabilities on t j and t′
j , in which case the types t j and t′

j must 
be in the same subspace—along with ti —in any partition. For example, because of type t5,1

1 , one cannot separate h 
(
t0, G0

)
and h 

(
t1, G1

)
. This prevents one from using more straightforward techniques or the existing existence results. For example, 

if the space could be partitioned into countable subspaces, one could obtain an invariant selection in each subspace, by 
simply selecting a solution from each of the type spaces one-by-one in the order given by counting the type spaces within 
the subspace. This would lead to an invariant selection in the entire space. If that were the case, one could also use the 
existence result of Simon (2003) for finitely generated type spaces.

3. Models in universal type space and the lattice structure

In this section, I embed every type space in T u as a subspace and show that the resulting set of subspaces exhibit a very 
useful lattice structure.

Models A subset T = T1 × · · · × Tn ⊂ T u is said to be a belief-closed subspace if 
(
�, T , κu

)
is a type space for some � ⊆ �∗ . 

That is, for each ti ∈ Ti , κu
ti

(� × T−i) = 1. A belief-closed subspace T is said to be finite if � and T above are finite. Finite 
belief-closed subspaces are simply called models. I will include the empty set to the set of models and write

M = {
T ⊂ T u| T is a finite belief-closed subspace

} ∪ {∅} .

Given any two models T , T ′ ∈ M , define the collage of T and T ′ as T ∨ T ′ ≡ (
T1 ∪ T ′

1

)× · · ·× (
Tn ∪ T ′

n

)
, which is clearly also 

a model.
Note that, by (2.2), the image h(T , G) of any game G is a model:

h (T , G) ∈ M (∀G = (N, A, u,�, T , κ) ∈ G) . (3.1)

By definition, T u is simply the collage of the images of games with finite type spaces, and it can be written as the collage 
of all models in T u .

Lattice structure of models I now show that models form a lattice under the set inclusion, exhibiting many useful properties. 
In particular, one can rank the models depending on how far they are removed from the empty set.

Proposition 1. (M,⊇) is a lattice with T ∨ T ′ ∈ M and T ∧ T ′ ≡ T ∩ T ′ ∈ M for all T , T ′ ∈ M. Moreover, (M,⊇) is a complete 
meet-semilattice, i.e., for any M ′ ⊆ M, ∩T ∈M′ T ∈ M.

Proof. That T ∨ T ′ ∈ M is immediate. Fixing any M ′ ⊆ M , I will show that T̄ ≡ ∩T ∈M′ T ∈ M . If T̄ = ∅, T̄ ∈ M by definition. 
Assume that T̄ �=∅. By definition, for each T ∈ M ′ , there exists a finite set �T , such that κu

ti

(
�T × T−i

) = 1 for each ti ∈ Ti . 
Define �̄ = ∩T ∈M′�T . In order to show that T̄ is a finite belief-closed subspace, it suffices to show that κu

ti

(
�̄ × T̄−i

) = 1

for every i ∈ N and ti ∈ T̄ i . To this end, take any ti ∈ T̄ i and (θ, t−i) with κu
ti

(θ, t−i) > 0. Then, (θ, t−i) ∈ �T × T−i for each 
T ∈ M ′ , as ti ∈ Ti . Hence, (θ, t−i) ∈ ∩T ∈M′

(
�T × T−i

) = �̄× T̄−i . This shows that κu
ti

(
θ ′, t′

−i

) = 0 for every 
(
θ ′, t′

−i

)
/∈ �̄× T̄−i . 

Since κu
t has a finite support, this further shows that κu

t

(
�̄ × T̄−i

) = 1. �

i i
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Proposition 1 shows that M is a lattice under the set inclusion, with join ∨ and meet ∧ defined as above. Moreover, it 
is a complete meet-semilattice, as it is closed under all intersections. It is not a complete lattice because infinite collages of 
finite models are not necessarily finite. In particular, T u /∈ M .

By (3.1), each type ti ∈ T u
i is in a model T ∈ M , but usually there are uncountably many such models. Proposition 1

implies that there is a unique minimal model T ti ∈ M that is included in all models that contain ti . Here,

T ti =
⋂

T ∈M,ti∈Ti

T . (3.2)

T ti is the minimal type space in which ti can be expressed. Note that T ti �= ∅ because (ti, t−i) ∈ T ti for each (θ, t−i) ∈
suppκu

ti
.

I will next rank the models according to how far they are removed from the empty set. Define R0 = {∅}. Define R1
as the set of models T ∈ M\R0 for which there is no model T ′ ∈ M\R0 with T ′ � T . That is, T does not have any proper 
belief-closed subspace other than the empty set. Note that every finite model is either in R1 or contains a subspace that 
is in R1. Proceeding in the same fashion, one can inductively define the sets Rk , k = 1, 2, . . . , by defining Rk as the set of 
models T ∈ M such that (i) T /∈ Rk′ for any k′ < k, and (ii) for any model T ′ � T , T ′ ∈ Rk′ for some k′ < k. I will say that a 
model T ∈ M has rank k if T ∈ Rk . The next lemma establishes some useful facts about the ranks of the models.

Lemma 1. The following are true.

(1) For every T ∈ M, T ∈ Rk iff k is the largest integer for which there exist models T 0, . . . , T k ∈ M with ∅ = T 0 � · · ·� T k = T .
(2) Every T ∈ M has a rank kT ≤ |T |.
(3) For any T , T ′ ∈ M with T � T ′ , kT < kT ′ .
(4) For any M ′ ⊆ M, T̄ ≡ ∩T ∈M′ T has rank kT̄ such that kT̄ ≤ kT for each T ∈ M ′ , with strict inequality whenever T �= T̄ .

The first three properties above are shared by any lattice formed by a family of finite sets under inclusion. The last 
property also relies on the fact that the meet is the same as the intersection operator and the lattice is closed under 
arbitrary intersections. The second and the fourth properties are the most crucial properties for this paper. The second 
property states that every model has a rank, and the fourth property states that the rank of an intersection is lower than 
the ranks of the intersecting models.

4. Invariant selections

In this section, I show that there exists an invariant selection from any solution concept that satisfies two basic proper-
ties. I further show that any invariant selection in a subfamily can be extended to a larger family. In particular, invariance 
of a selection has only one implication for the solutions of a given game: the solution is invariant.

In order to state the properties sufficient for invariance, I introduce two auxiliary games. For any T ∈ M , I write G T =(
N, A,�, T , κu, u

) ∈ G for the Bayesian game with type space T . For any game G = (N, A,�, T , κ, u) ∈ G , I write Gh =(
N, A,�,h (T , G) , κu, u

)
for the image of G in the universal type space under h. The first property is that the solution set 

� (G) of G includes all of the solutions to the image Gh of G in universal type space:

Assumption 1. For all G ∈ G , � (G) ⊇ �h (G) ≡ {
σ ◦ h (·, G) |σ ∈ �

(
Gh

)}
.

This assumption corresponds to a well-known property of Bayesian Nash equilibrium: any Bayesian Nash equilibrium in 
a terminal space, such as the universal type space, induces a Bayesian Nash equilibrium in every game embedded in that 
space.5 Assumption 1 also holds for other canonical solution concepts, such as rationalizability. In general, it holds for any 
expressible solution concept (Battigalli et al., 2011) if one requires the characterizing assumptions to be expressible with 
respect to the relevant information (by designating hi as the information mapping χi in Battigalli et al., 2011, and obtaining 
� = �h).6

On the other hand, since the set of Bayesian Nash equilibria is affected by the existence of redundant types, Assump-
tion 1 may not hold for equilibrium refinements based on external criteria such as efficiency and fairness. For example, in 
game G6 of Section 2, equilibrium s6,2 Pareto-dominates s6,1, which corresponds to the unique equilibrium of Gh

6. Hence, 
Assumption 1 does not hold for the Pareto-dominant Bayesian Nash equilibrium, which selects s6,2 in G6 and s6,1 in Gh

6. 
Incidentally, since s6,2 is not invariant, this also shows that there does not exist an invariant selection from the Pareto-
dominant Bayesian Nash equilibrium solution concept.

Note that the solutions of the form σ ◦ h (·, G) do not use any irrelevant information, in the sense that each type ti
plays σi (hi (ti, G)). If an invariant selection selects σ ∈ �

(
Gh

)
at Gh , it must also select σ ◦ h (·, G) at G . Hence, it is 

5 This is of course vacuously true when there is no equilibrium on the universal type space. Assumption 1 also vacuously holds when � (
Gh

)
is empty.

6 See also Heifetz and Samet (1998) for the concept of an expressible assumption.
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necessary for invariant selection that some solution that does not use any irrelevant information is available at � (G), i.e., 
� (G) ∩ �h (G) �= ∅. Assumption 1 strengthens this necessary condition by requiring that all such solutions are available at 
� (G). The necessary condition is not enough because invariance imposes many similar conditions, such as ∩Ĝh=Gh �(Ĝ) �= ∅. 
Assumption 1 ensures that all such conditions are satisfied.

The second property is a basic extension (and existence) property.

Assumption 2. For any T ∈ M and any invariant selection G T ′ 
→ σ T ′
from � for games G T ′

with T ′ ∈ 2T ∩ M\ {T }, there 
exists σ ∈ �

(
G T

)
such that for every t ∈ T ′ ⊂ T , σ (t) = σ T ′

(t).

That is, given a finite type space, invariant solutions for its subspaces can be extended to the type space. When there 
is only one proper subspace T ′ , this reduces to the well-known extension property of Bayesian Nash equilibrium: any 
equilibrium of T ′ can be extended to T . Once again, canonical solution concepts, such as Bayesian Nash equilibrium and 
rationalizability, have this property. It is necessary for invariant selection that some invariant selections for the subspaces 
are extendable to T . Assumption 2 strengthens this necessary condition by requiring that all such selections are extendable 
to T .

Within the context of Bayesian Nash equilibrium, Friedenberg and Meier (2007) provide a thorough analysis of both 
properties above. They show that while the “pull-back” property in Assumption 1 holds generally, the extension property in 
Assumption 2 may fail in infinite type spaces (see Sections 5 and 6 for more on the literature).

Toward constructing an invariant selection, I rank the games in G as follows. Recall that for any game G ∈ G with type 
space T , h (T , G) ∈ M by (3.1). Hence, by Lemma 1, h (T , G) has some finite rank k, i.e., h (T , G) ∈ Rk for some finite k ≥ 1. 
A game G is said to be of rank k if h (T , G) is of rank k; G and Gh are of the same rank. Write Gk for the set of all games 
G ∈ G of rank k, and write Ĝk = ∪l≤kGl . We are now ready to state and prove the main result:

Proposition 2. Under Assumptions 1 and 2, there exists an h-invariant selection from �.

Proof. Using induction on the rank k, the proof constructs an invariant selection G 
→ σ G from � for G , rank by rank. 
Take k = 1. For every model T ∈ R1 (with rank k = 1), pick an arbitrary σ GT ∈ �

(
G T

)
. Here, �

(
G T

) �= ∅ by Assumption 2. 
For any other G ∈ G1, pick σ G = σ Gh ◦ h. Note that, since σ Gh ∈ �

(
Gh

)
, by Assumption 1, σ G ∈ � (G). Note also that this 

constructs a selection G 
→ σ G from � for G1. The selection is invariant because the games in G1 have disjoint images 
under h by the last part of Lemma 1.

Now consider any k > 1, and assume that an invariant selection G 
→ σ G from � for Ĝk−1 has been constructed. Consider 
any model T ∈ Rk (with rank k). By Part 3 of Lemma 1, each proper subspace T ′ of T is of rank k − 1 or lower. Hence, by 
the inductive hypothesis, an invariant selection G T ′ 
→ σ GT ′

from � for the class of games G T ′
with T ′ ∈ 2T ∩ M\ {T ,∅}

has been constructed already. Then, by Assumption 2, there exists σ GT ∈ �
(
G T

)
such that σ GT

(t) = σ GT ′
(t) for all t ∈ T ′ ∈

2T ∩ M\ {T ,∅}. Pick σ GT
as the solution at G T , and repeat this for every T ∈ Rk . For all other games G ∈ Gk with rank k, 

pick σ G = σ Gh ◦ h, where σ G ∈ � (G) by Assumption 1. (Note that Gh = G T for some T ∈ Rk .) This constructs a selection 
from � for Ĝk .

In order to complete the inductive construction, check that the selection G 
→ σ G from � for Ĝk is indeed in-
variant. To this end, take any distinct (ti, G) and 

(
t′

i, G ′) with hi (ti, G) = hi
(
t′

i, G ′) where G = (N, A,�, T , κ, u) , G ′ =(
N, A,�, T ′, κ, u

) ∈ Ĝk , ti ∈ Ti and t′
i ∈ T ′

i . Note that, since the rank of Gh ≡ Gh(T ,G) is at most k, by construction, 

σ GT ′′
i

(
t′′

i

) = σ Gh

i

(
t′′

i

)
for any t′′

i ∈ T ′′
i with T ′′ ⊆ h (T , G). But, by definition, hi (ti, G) ∈ T hi(ti ,G) and T hi (ti ,G) ⊆ h (T , G), where 

T hi(ti ,G) is the unique minimal model that contains hi (ti, G). Therefore,

σ G T hi
(
ti ,G

)

i (hi (ti, G)) = σ Gh

i (hi (ti, G)) . (4.1)

Likewise, σ GT
hi

(
t′i ,G′)

i

(
hi

(
t′

i, G ′)) = σ G ′h
i

(
hi

(
t′

i, G ′)). Therefore,

σ G
i (ti) = σ Gh

i (hi (ti, G))

= σ G T hi
(
ti ,G

)

i (hi (ti, G))

= σ G T
hi

(
t′i ,G′)

i

(
hi

(
t′

i, G ′))

= σ G ′h
i

(
hi

(
t′

i, G ′)) = σ G ′
i

(
t′

i

)
,

where the first and the last equalities are by construction, the second equality is by (4.1), and the third equality holds 
simply because hi (ti, G) = hi

(
t′, G ′) and T hi(ti ,G) is unique.
i
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Since each game has a finite rank (i.e., G = ∪kGk), this construction picks a solution σ G ∈ � (G) for each G ∈ G at some 
round k. In order to check that the selection G 
→ σ G for G is invariant, note that for any G, G ′ ∈ G , since G, G ′ ∈ Ĝk for 
some k, σ G

i (ti) = σ G ′
i

(
t′

i

)
whenever hi (ti, G) = hi

(
t′

i, G ′), as established in the previous paragraph. �
Under Assumptions 1 and 2, Proposition 2 establishes that there exists an h-invariant selection from �, and its proof 

explicitly constructs such a selection. As discussed above, Assumptions 1 and 2 are strengthenings of basic necessary condi-
tions for invariant selection. These are weak assumptions in that they hold for canonical solution concepts, such as Bayesian 
Nash equilibrium and rationalizability.

The straightforwardness of the construction in the proof of Proposition 2 may be misleading, as it finesses the following 
inherent difficulty. The same piece of relevant information can be modeled by types in uncountably many games. In order 
to construct an invariant selection, one then needs to select the solutions for uncountably many such games simultaneously 
and maintain invariance. In the construction such a difficult task is made possible by the lattice structure established in the 
previous section, as follows.

Recall from the previous section that for any type ti in any game G ∈ G , there exists a unique minimal type space 
T hi(ti ,G) ∈ M in which the relevant information hi (ti, G) of ti can be modeled. This type space has the lowest rank k

T hi
(
ti ,G

)

among the type spaces that can model hi (ti, G). The action of all types t′
i from games G ′ with hi

(
t′

i, G ′) = hi (ti, G) is 
selected at round k

T hi
(
ti ,G

) , which is the first time it is possible to express hi (ti, G), using a solution for the minimal type 
space T hi(ti ,G) , which is the only model that contains hi (ti, G) at that rank. Of course, many of these games have higher 
ranks than k

T hi
(
ti ,G

) , and the solutions to these games are selected in later rounds. In the construction, these selections 
respect the specification of the action for hi (ti, G) that had been made at round k

T hi
(
ti ,G

) .
I will next explore the restrictions imposed by the invariance requirement. I will first establish that any invariant selec-

tion in a subfamily can be extended to all games. Conceptually, this establishes that the invariance requirement on a larger 
family of games does not impose any extra restriction on the subfamilies. Practically, it ensures that if one is only interested 
in the behavior in a class of games (e.g. in the solution of a particular game), she can focus on constructing an invariant 
selection for that class without worrying about the invariance across all games.

Proposition 3. Under Assumptions 1 and 2, for any G′ ⊆ G and any h-invariant selection G 
→ σ G from � for G′ , there exists an 
h-invariant selection G 
→ σ̂ G from � for G such that σ̂ G = σ G for every G ∈ G′ .

Proof. I will construct a refinement �′ of � that satisfies Assumptions 1 and 2 and such that �′ (G) = {
σ G

}
for all G ∈ G′ . 

Then, by Proposition 2, there exists an invariant selection G 
→ σ̂ G from �′ for G as in the proposition. Since �′ is a 
refinement of �, G 
→ σ̂ G is also a selection from �.

To define �′ , note that, since G 
→ σ G is h-invariant, σ G = σ Gh ◦h for some solution σ Gh ∈ �
(
Gh

)
for each G ∈ G′ . Write 

Ḡ′ = G′ ∪ {
Gh|G ∈ G′} and set

�′ (G) =

⎧⎪⎨
⎪⎩

{σ G} if G ∈ Ḡ′,
{σ G T |T ′ } if G = G T ′

, T ′ ⊂ T , G T ∈ Ḡ′,
� (G) otherwise,

where σ GT |T ′ is the restriction of σ GT
to T ′ . Since G 
→ σ G is invariant, �′ is well-defined.

To check Assumption 1, note that the equality �′ (G) = {
σ ◦ h (·, G) |σ ∈ �′ (Gh

)}
holds for G ∈ G′ by construction and 

holds for G ∈ {
G T |T ∈ M

}
by definition. For any G /∈ G′ ∪ {

G T |T ∈ M
}

,

�′ (G) = � (G) ⊇
{
σ ◦ h (·, G) |σ ∈ �

(
Gh

)}
⊇

{
σ ◦ h (·, G) |σ ∈ �′ (Gh

)}
,

where the first equality is by construction of �′ , the next inclusion is by Assumption 1 for �, and the last inclusion is due 
to the fact that �′ is a refinement of �.

To check Assumption 2, note first that when G T ∈ Ḡ′ , Assumption 2 holds for T and �′ by construction. Now consider any 
T ∈ M with G T /∈ Ḡ′ and any invariant selection G T ′ 
→ σ T ′

from �′ for the class of games G T ′
with T ′ ∈ 2T ∩ M\ {T }. This is 

also an invariant selection from �, and �
(
G T

) = �′ (G T
)
. Hence, by Assumption 2 for �, there exists σ ∈ �

(
G T

) = �′ (G T
)

such that for every t ∈ T ′ ⊂ T , σ (t) = σ T ′
(t). Therefore, Assumption 2 holds for �′ . �

I will next characterize the implications of invariance to the solutions of a given game. As discussed before, invariance 
of a selection trivially implies that the solution is invariant, i.e., the types with identical relevant information play the same 
action. The next corollary establishes that this is the only implication of invariance of selections to the set of solutions of a 
given game. In the following, given a game G∗ , a solution σ ∈ � (G∗) is said to be selected by G 
→ σ G if σ G∗ = σ .

Corollary 1. Under Assumptions 1 and 2, for any G ∈ G and σ ∈ � (G), σ is selected by an h-invariant selection from � if and only if 
σ is h-invariant.
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Proof. Necessity immediately follows from the definition of invariance (applied to the types in G). To prove sufficiency, take 
G′ = {G} in Proposition 3 and note that σ is an invariant selection for {G}. �

Under Assumptions 1 and 2, the above results establish that there is always an invariant selection and that invariance 
does not impose any additional restriction on the solutions for the subfamilies of games. In particular, a solution to a game 
is selected by an invariant selection if and only if types with identical relevant information play the same action according 
to the solution. Hence, if one is interested only in behavior in a game G , then she can analyze G in isolation by focusing on 
h-invariant solutions to G .

5. Invariant equilibrium selection

In this section, under the usual regularity conditions, I show that Bayesian Nash equilibrium satisfies the sufficient 
conditions for invariant selection, and hence the conclusions of the previous results are true for Bayesian Nash equilibrium: 
there exists an invariant equilibrium selection and an equilibrium is selected by an invariant equilibrium selection if and 
only if the equilibrium is invariant.

Given any game G = (N, A, u,�, T , κ), by a Bayesian Nash equilibrium of G , I mean any strategy profile σ ∗ = (
σ ∗

1 , . . . , σ ∗
n

)
such that σ ∗

i (ti) ∈ BRti

(
σ ∗

−i |G
)

for each ti ∈ Ti , where BRti

(
σ ∗

−i |G
)

denotes the set of all mixed best replies of type ti to σ ∗
−i

in game G . I write BNE (G) for the set of Bayesian Nash equilibria of G . By an equilibrium selection, I mean a selection from 
BNE. I will consider the following regularity condition.

Assumption 3. The set �∗ is compact. For each i ∈ N , action set Ai is a compact metric space, and each ui is continuous in 
a, measurable in θ , and does not depend on θNR .

Note that Assumption 3 holds in most games considered in Game Theory and its applications, including finite games. It 
is made to ensure that Nash equilibrium exists when types are considered as players. Under this weak assumption, the next 
result establishes that Bayesian Nash equilibrium satisfies the sufficient conditions for invariant selection.

Lemma 2. Under Assumption 3, Assumptions 1 and 2 hold for BNE.

Proof. The fact that Assumption 1 holds for BNE is well known (see Friedenberg and Meier, 2007 for a general proof). To 
see that Assumption 2 also holds for BNE, observe that any invariant equilibrium selection G T ′ 
→ σ T ′

for games G T ′
with 

T ′ ∈ 2T ∩ M\ {T } induces a Bayesian Nash equilibrium σ on the subspace T̂ ≡ ∨
T ′∈2T ∩M\{T } T ′ (see Lemma 3 below). It is 

known that σ can be extended to T .7 �
Hence, the conclusions of the previous section apply to equilibrium selection:

Proposition 4. Under Assumption 3, the following are true.

(1) For any G′ ⊆ G and any h-invariant equilibrium selection G 
→ σ G for G′ , there exists an h-invariant equilibrium selection G 
→
σ̂ G for G such that σ̂ G = σ G for every G ∈ G′ .

(2) For any G ∈ G and any σ ∈ BNE (G), σ is selected by an h-invariant equilibrium selection if and only if σ is h-invariant.
(3) There exists an h-invariant equilibrium selection.

Proof. Note that Part 1 implies both Part 2 (for G′ = {G}) and Part 3 (for G′ = ∅). Part 1 immediately follows from Lemma 2
and Proposition 3. �

Under the usual regularity conditions, Proposition 4 establishes that any invariant equilibrium selection for a subset of 
games can be extended to all games with finite type spaces. In particular, there is an invariant equilibrium selection for all 
such games. It also implies that, beyond the basic restriction on the actions of types with identical information, invariance 
does not lead to any equilibrium refinement; it only restricts the way the solutions vary across games.

7 One extension result is known as the Basic Lemma in the robustness literature (Kajii and Morris, 1997) and dates back to Monderer and Samet

(1989). A version of the Basic Lemma states that if one embeds T̂ in T as a p-evident event, then any equilibrium σ on T̂ can be extended to T as 
(1 − p)-equilibrium (when the payoffs are restricted to be within [0,1]); another version for complete information games states that any p-dominant equi-
librium of T̂ can be extended to T . Here, I take p = 1. Friedenberg and Meier (2007) provide an extension result for p = 1 that holds under Assumption 3.



M. Yildiz / Games and Economic Behavior 94 (2015) 142–156 153
6. Equilibrium on T u

There is a one-to-one correspondence between the invariant equilibrium selections and the equilibria on T u , the univer-
sal space of finite types. In this section, using this correspondence and the results of the previous section, I will show that 
there exists an equilibrium on T u , and indeed, every equilibrium on its belief-closed subspaces can be extended to T u .

For any player i, by strategy, I mean any function σi : T u
i → � (Ai). By a Bayesian Nash equilibrium on T u , I mean any 

strategy profile σ ∗ = (
σ ∗

1 , . . . , σ ∗
n

)
such that σ ∗

i (ti) ∈ BRti

(
σ ∗

−i

)
for each ti ∈ T u

i where BRti

(
σ ∗

−i

)
is the set of best replies 

for ti against σ ∗
−i . The strategies and equilibria on subspaces are defined similarly. It is crucial here that I do not impose 

any measurability conditions on the strategies. Since strategies condition on players’ types already, measurability is not 
needed for players’ knowing their own actions. It is not needed for expectations either because the types’ beliefs have finite 
supports, yielding well-defined beliefs on �∗ × A−i for each ti and each σ−i . Consequently, BRti

(
σ ∗

−i

)
is well-defined.

There is a one-to-one correspondence between invariant selections and the strategy profiles on T u . Any h-invariant 
selection G 
→ σ G for G′ yields a well-defined strategy profile σ ∗ on TG′ ≡ ∨

G=(N,A,�,T ,κ,u)∈G′ h (T , G), defined by

σ ∗
i (hi (ti, G)) = σ G

i (ti)
(∀G = (N, A,�, T , κ, u) ∈ G′, i ∈ N, ti ∈ Ti

)
. (6.1)

Conversely, for any strategy profile σ ∗ on TG′
, (6.1) yields an h-invariant selection G 
→ σ G for G′ . The following lemma 

establishes a similar one-to-one correspondence between the invariant equilibrium selections and the equilibria on the 
subspaces of T u .

Lemma 3. For any G′ ⊆ G , an equilibrium selection G 
→ σ G for G′ is h-invariant if and only if there exists a Bayesian Nash equilibrium 
σ ∗ on TG′

such that

σ ∗
i (hi (ti, G)) = σ G

i (ti)
(∀G = (N, A,�, T , κ, u) ∈ G′, i ∈ N, ti ∈ Ti

)
. (6.2)

That is, invariant selections on G′ are precisely the selections obtained by restricting the equilibria on TG′
to its sub-

spaces. Due to this correspondence, the previous results on invariant equilibrium selection immediately yield the following 
existence result for equilibrium on the space of all finite types. (See Appendix A for a detailed proof.)

Proposition 5. Under Assumption 3, the following are true.

(1) For any G′ ⊆ G and any h-invariant equilibrium selection G 
→ σ G for G′ , there exists a Bayesian Nash equilibrium σ ∗ on T u such 
that σ ∗

i (hi (ti, G)) = σ G
i (ti) for every G ∈ G′ and every type ti in G.

(2) For any M ′ ⊆ M and any Bayesian Nash equilibrium σ on T M′
, there exists a Bayesian Nash equilibrium σ ∗ on T u such that 

σ ∗ = σ on T M′
.

(3) For any G ∈ G and any h-invariant σ ∈ BNE (G), there exists a Bayesian Nash equilibrium σ ∗ on T u such that σ ∗
i (hi (ti, G)) =

σ G
i (ti) for all ti in G.

(4) There exists a Bayesian Nash equilibrium on T u.

Part 2 states that any equilibrium defined on any subspace can be extended to T u , the space of all finite types. By 
Lemma 3, this is equivalent to stating that for any invariant selection for any family of games, there is an equilibrium 
on T u that specifies the actions of the types in the family according to the selection—Part 1. This result is very useful in 
equilibrium analysis on T u . In such an analysis, one often needs to specify a partial strategy for a given set of types and 
have an equilibrium on T u in which the given types play according to the specification. For a suitably selected set of types, 
it is relatively easy to verify that the specified behavior of the given types is part of an equilibrium of the games that the 
types come from and that these equilibria form an invariant selection. On the other hand, specifying a nontrivial equilibrium 
on T u is a prohibitively difficult task because of the complex interconnections between the types in T u and between their 
best responses. The result stated in Parts 1 and 2 frees the researcher from the latter daunting task. Thanks to this result, 
she can focus on specifying the equilibrium behavior on the relevant games without worrying about whether the specified 
behavior is part of an equilibrium on T u . (See Weinstein and Yildiz, 2011 for such an application.)

As a special case (for G′ = {G}), this result implies that any invariant equilibrium of any game G can be extended to the 
space of all finite types, as in Part 3. That is, one can focus on the equilibria on T u without ruling out any equilibria of 
games in which distinct types have distinct relevant information. For example, in robustness analysis for equilibria of these 
games, it suffices to analyze the sensitivity of equilibria on T u to perturbations in T u .

Finally, as another special case (for G′ = ∅), the result establishes existence of an equilibrium on the space of finite types. 
This fills an important gap in the literature, in which very little is known on the existence of equilibrium on the universal 
type space and on its prominent subspaces, such as T u . Simon (2003) shows existence of equilibrium on spaces that can 
be partitioned into countable subspaces and in which the types have finite support. Unfortunately, one cannot partition T u

because given any two types in T u , there is another type in T u that puts positive probabilities on both of the given types. 
(This property is exhibited by most prominent subspaces of the universal type space, such as the spaces of all finite types 
with common prior and all countable types, and one cannot partition them either.)
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The crucial modeling assumption here is that I do not require that the strategies are measurable, which is not necessary 
here. In a larger type space with types that have uncountable supports, one needs to impose a measurability restriction on 
the strategies. In that case, the above results may not be true. For example, in a particular class in which his existence result 
applies, Simon (2003) shows that all equilibria must be in non-measurable strategies (cf. Part 4). Under the measurability 
restriction, Friedenberg and Meier (2007) show that some equilibria of a given game may not be extendable to a larger 
space even if there is an equilibrium in the larger space (cf. Part 3).

Finally, note that if A is convex and ui is concave in own action, the above results also apply to equilibria in pure 
strategies.

7. Extensions

The baseline model focuses on finite type spaces and assumes a specific class of h mappings. This section presents 
extensions to countable type spaces and to more general h mappings.

7.1. Countable type spaces

The analysis of countable type spaces is similar to that of finite type spaces. The only difficulty is that a countable type 
space may have an infinite rank; the results and the proofs extend to the case of countable type spaces with finite rank 
verbatim. With type spaces of infinite rank, one needs to consider countable ordinals and use transfinite induction for the 
construction, but the results are the same.

Let G̃ be the set of games with countable type spaces, T̃ u be the space of countable type profiles h (t, G) with G ∈ G̃ , and 
M̃ be the set of countable models within T̃ u ; M̃ consists of the images of games G̃ ∈ G̃ along with the empty set. Extend 
Assumptions 1 and 2 to G̃ , by replacing 

(
G, T u, M

)
with 

(
G̃, T̃ u, M̃

)
. One can use the existing analysis to show that M̃ is a 

lattice under inclusion and complete under all intersections (cf. Proposition 1). One can then extend the existing results to 
countable type spaces as follows:

Proposition 6. Under the extensions of Assumptions 1 and 2 to G̃ , for any G̃′ ⊆ G̃ and any h-invariant selection G 
→ σ G from � for 
G̃′ , there exists an h-invariant selection G 
→ σ̂ G from � for G̃ such that σ̂ G = σ G for every G ∈ G̃′ . Under Assumption 3 (alone), the 
following are also true.

(1) For any G̃′ ⊆ G̃ and any h-invariant equilibrium selection G 
→ σ G for G̃′ , there exists a Bayesian Nash equilibrium σ ∗ on T̃ u such 
that σ ∗

i (hi (ti, G)) = σ G
i (ti) for every G ∈ G̃′ and every type ti in G̃ .

(2) For any M̃ ′ ⊆ M̃ and any Bayesian Nash equilibrium σ on T M̃′
, there exists a Bayesian Nash equilibrium σ ∗ on T̃ u such that 

σ ∗ = σ on T M̃′
.

(3) For any G ∈ G̃ and any h-invariant σ ∈ BNE (G), there exists a Bayesian Nash equilibrium σ ∗ on T̃ u such that σ ∗
i (hi (ti, G)) =

σ G
i (ti) for all ti in G.

(4) There exists a Bayesian Nash equilibrium on T̃ u .

7.2. General notions of relevance

The baseline model assumes that h is the �R -based hierarchy of beliefs for some �R with � = �R × �NR . Such a 
functional form is not needed. Indeed, the working paper shows that all of the results here are true so long as h embeds all 
games to a general type space (�∗, T ∗, κ∗) while preserving beliefs. For example, h can be an X-based hierarchy of beliefs 
for any set X .8 In particular, h can be taken as the hierarchy of beliefs obtained by Ely and Peski (2006) and Sadzik (2008)
for interim independent rationalizability and Bayesian Nash equilibrium, respectively. For another example, h can be the 
identity mapping.

Some important notions of relevant information do not lead to a belief-preserving embedding, however. For example, a 
prominent notion of relevant information is the first k orders of beliefs for some finite k, denoted by ĥk hereafter.9 One 
cannot have a belief function for ĥk (T , G) that preserves the beliefs in the original type spaces. Indeed, since ĥk

i (ti, G) is 
the kth-order belief of type ti , the belief of type ĥk

i (ti, G) on 
(
θ, ĥk

−i (t−i, G)
)

is the (k + 1)st-order belief of type ti , which 

can vary as one varies (ti, G) while fixing the kth-order belief ĥk
i (ti, G). Note that one can define a type space for each type 

set ĥk (T , G) by assigning some beliefs, but one cannot preserve the beliefs as in (2.2).

8 Afterall, one can transform a �-based type space to a X-based type space, by computing the interim beliefs about X × T−i for each type ti . For the 
results about the Bayesian Nash equilibrium, one needs to include everything that is necessary for computing the best responses in X .

9 See for example, Rubinstein (1989), Weinstein and Yildiz (2007), Strzalecki (2014), Kets (2012). Cianciaruso and Germano (2011) provide a thorough
analysis of quotient type spaces for a fixed k.
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Without a belief-preserving embedding, one cannot obtain the results regarding Nash equilibrium. Nevertheless, one 
can still construct an invariant selection for other solution concepts as follows. Let h map each (t, G) to some set T ∗ =
T ∗

1 × · · · × T ∗
1 .10 Let also M be the set of all images h (T , G) with G ∈ G in T ∗ along with the empty set. Assume that a 

solution concept � is defined on M as well as G , and in Assumptions 1 and 2 replace Gh with h (T , G) and G T with T .

Proposition 7. There exists an h-invariant selection from � whenever (i) M is a lattice that is closed under arbitrary intersections, and 
(ii) Assumptions 1 and 2 hold.

Proof. The proof is identical to the proof of Proposition 2. �
For example, consider ĥk . Assumption (i) holds because M is obtained by projecting the models in the universal type 

space to the space of lower-order beliefs. Although rationalizability and Bayesian Nash equilibrium are not well-defined 
on M (Weinstein and Yildiz, 2007), the kth-order iterated dominance is well-defined on M and satisfies Assumptions 1
and 2 (Dekel et al., 2007). Level-k thinking is also well-defined on M .

8. Concluding remarks

A piece of relevant information can be modeled through multiple types coming from various Bayesian games. In order to 
avoid solutions that depend on the choice of modeling the information, one may want to require that all of these types take 
the same action according to the solutions to these games. That is, the solutions to the Bayesian games form an invariant 
selection. In this paper, I construct an invariant selection for the space of all games with finite type spaces from arbitrary 
solution concepts that satisfy two basic conditions. I further show that any invariant selection within a subfamily can be 
extended to the family of all games with finite type spaces. Constructing such a selection is a difficult task because one 
needs to equalize the actions of uncountably many types from various games with complicated interconnections that are 
difficult to foresee. In order to construct such a selection, I first establish an interesting lattice structure for the finite type 
spaces within the universal type space, a structure that is clearly useful beyond the scope of this paper. It is this structure 
that enables me to construct an invariant selection in a straightforward manner without making any significant assumptions.

There is a one-to-one correspondence between the invariant equilibrium selections and the equilibria on the space of all 
finite types. Using this correspondence, I show that there exists an equilibrium in that space, filling an important gap in the 
literature, and show that indeed any equilibrium in any type space can be extended to entire space, which is a quite useful 
result in equilibrium analysis on the space of all finite types.

Appendix A. Omitted proofs

Proof of Lemma 1. Part 1 immediately follows from the definition of Rk , and Part 3 immediately follows from Parts 1 and 2.
(Part 2) Take any T ∈ M and integer K such that T /∈ Rk for any k ≤ K . Then, by Part 1, there exist models T 1, . . . , T K ∈

M\ {∅} with T 1 � · · ·� T K � T . In particular, |T | > K . Therefore, for any T ∈ M , T ∈ RkT for some kT ≤ |T |.
(Part 4) By Proposition 1, T̄ ∈ M . Hence, by Part 2, it has a rank kT̄ . For any T ∈ M ′ , since T̄ ⊆ T , by Part 3, kT̄ ≤ kT , with 

strict inequality whenever T �= T̄ . �
Proof of Lemma 3. A strategy profile σ ∗ on TG′

is well-defined by (6.2) iff the family σ G is h-invariant. Moreover, one can 
show that, for any G ∈ G′ and ti in G , BRti

(
σ G

−i |G
) = BRhi(ti ,G)

(
σ ∗

−i

)
. Hence, by (6.2), σ G

i (ti) ∈ BRti

(
σ G

−i

)
iff σ ∗

i (hi (ti, G)) ∈
BRhi(ti ,G)

(
σ ∗

−i

)
. Therefore, σ G is an equilibrium of G for every G ∈ G′ iff σ ∗ is a Bayesian Nash equilibrium on TG′

. �
Proof of Proposition 5. (Part 1) By Proposition 4, there exists an h-invariant equilibrium selection G 
→ σ̂ G for G such that 
σ̂ G = σ G for every G ∈ G′ . Then, by Lemma 3, there exists a Bayesian Nash equilibrium σ ∗ on T u such that σ ∗

i (hi (ti, G)) =
σ̂ G

i (ti) for every G ∈ G and every type ti in G . When G ∈ G′ , σ ∗
i (hi (ti, G)) = σ̂ G

i (ti) = σ G
i (ti).

(Part 2) Take G′ = {
G T |T ∈ M ′}. For each T ∈ M ′ , set σ GT = σ|T ∈ BNE

(
G T

)
, where σ|T is the restriction of σ to T . 

Then, by Lemma 3, G T 
→ σ GT
is an h-invariant equilibrium selection for G′ . Hence, by Part 1, there exists a Bayesian Nash 

equilibrium σ ∗ on T u such that σ ∗
i (ti) = σ ∗

i

(
hi

(
ti, G T

)) = σ GT

i (ti) = σi (ti) for all ti ∈ Ti and T ∈ M , where hi
(
ti, G T

) = ti .
Finally, Part 1 implies both Part 3 (for G′ = {G}) and Part 4 (for G′ =∅). �

Proof of Proposition 6. Since M̃ is a meet-complete lattice, one can rank countable models T ∈ M̃ using countable ordinals 
as follows. For any T ∈ M̃ , say that T is of finite rank k if there exists the largest integer k for which there exist models 

10 Canonically, one can specify T ∗ by listing all true propositions from a set P of relevant propositions as in Aumann (1999). The key distinction is that 
P is restricted to a subset of propositions that are deemed relevant. For example, P consists of the propositions that does not refer to θNR in the baseline 
model, while P consists of the propositions that does not refer to higher-order beliefs in ĥk .
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T 0, . . . , T k ∈ M̃ with ∅ = T 0 � · · · � T k = T (as in the baseline model). If the length of such chains are unbounded, then 
T is of infinite rank. If all proper subspaces of T are of finite rank but there does not exist a bound k as above, then T is 
of rank ω. Define orders ω + 1, ω + 2, . . . , 2ω, 2ω + 1, . . . similarly: T ∈ M̃ is of rank mω + k if its highest ranked proper 
subspace is of rank mω + k − 1; it is of rank (m + 1)ω if it has subspaces of rank mω + k for an unbounded set of integers 
k and all of its proper subspaces are of rank m′ω + k for some m′ ≤ m and k.

The construction of an invariant selection is as in the baseline model. Constructing a solution to the type spaces of rank 
mω + k mimics the construction for finite-ranked type spaces. Construction of solutions to the type spaces of rank mω is as 
follows. Suppose that there exists an invariant selection σ for the class Gm of all games with rank m′ω + k for all m′ < m. 
Now, for each T ∈ T̃ u , by Assumption 2, there exists σ GT ∈ �

(
G T

)
such that σ GT

(t) = σ GT ′
(t) for all t ∈ T ′ ∈ 2T ∩ M\ {T ,∅}, 

where T ′ is necessarily of rank m′ω + k for some m′ < m and k and hence G T ′ ∈ Gm . Pick σ GT
as the solution at G T . As in 

the proof for finite ranks, since the intersections of disjoint type spaces are always of a lower rank, the solutions constructed 
this way yields an invariant selection for games with rank up to mω. �
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