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While 2SLS is the most widely used estimator for simultaneous equation models, 

OLS may do better in finite samples.  Econometricians have recognized this possibility, 

and many Monte Carlo studies were undertaken in the early years of econometrics to 

attempt to determine condition when OLS might do better than 2SLS.  Here we 

demonstrate analytically that the for the widely used simultaneous equation model with 

one jointly endogenous variable and valid instruments, 2SLS has smaller MSE error, up 

to second order, than OLS unless the R2 , or the F statistic of the reduced form equation is 

extremely low.  We do a calculation based on observable statistics with one unknown 

parameter that allows a calculation that should give valuable information about the 

relative MSEs of OLS and 2SLS. 

We then consider the relative estimators when the instruments are invalid, i.e. the 

instruments are correlated with the stochastic disturbance.  Here, both 2SLS and OLS are 

biased in finite samples and inconsistent.  We investigate conditions under which the 

approximate finite sample bias or the MSE of 2SLS is smaller than the corresponding 

statistics for the OLS estimator.  We again find that 2SLS does better than OLS under a 

wide range of conditions, which we characterize as functions of observable statistics and 

one unobservable statistic.  

We then present a method of sensitivity analysis, which calculates the maximal 

asymptotic bias of 2SLS under small violations of the exclusion restrictions. For a given 

correlation between invalid instruments and the error term, we derive the maximal 

asymptotic bias. We demonstrate how such maximal asymptotic bias can be estimated in 

practice.  

Next, we turn to inference.  In the �weak instruments� situation the bias in the 

2SLS estimator creates a problem, since it is biased towards the OLS estimator, which is 

also biased.  The other problem that arises is that the estimated standard errors of the 

2SLS estimator are often much too small to signal the problem of imprecise estimates.  
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Here we derive the bias in the estimated standard errors for the first time, which turns out 

to cause the problem.  This derivation also has implications for the test of over-

identifying restrictions. 

We do not survey the weak instruments literature.  For recent surveys see Stock 

et. al. (2002) and Hahn and Hausman (2003). 

 

 

I Model Specification 

We begin with the model specification with one right hand side (RHS) jointly 

endogenous variable so that the left hand side (LHS) variable depends only on the single 

jointly endogenous RHS variable.  This model specification accounts for other RHS 

predetermined (or exogenous) variables, which have been �partialled out� of the 

specification. We will assume that1 

 
(1.1) 121 εβ += yy  

(1.2) 222 vzy += π , 

    
where ( ) K=2dim π . Thus, the matrix z  is the matrix of all predetermined variables, and 
equation (1.1) is the reduced form equation for 2y  with coefficient vector 2π .  We also 
assume homoscedasticity:  
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We initially assume the presence of valid instruments, 0]/'[ =nzE ε and 02 ≠π . 
 

                                                 
1 Without loss of generality we normalize the data such that y2 has zero mean. 
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II Estimation with Valid Instruments 

 From previous papers, e.g. Hahn and Hausman (2002a, 2002b) we know the bias 

and MSE of 2SLS up to second order.  The bias of 2SLS is 

(2.1) [ ]
)var( 2
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bE vv
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εε σσβ ≈
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where nzz ππ ''=Θ , assumed to be fixed, R2 is the theoretical value from the second 

(reduced form) equation,  and y2 is normalized to have mean zero.  We assume: 

Condition 1: .0)1(/ ≠+=∞→∞→ µµ someforonKthatsuchnasK  

 

A Properties of the 2SLS Estimator 

As a special case of Theorem 3 in Section 3, we obtain that: 
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Here, Θ= εεσSLSV2 , the usual 2SLS first order asymptotic variance. As a consequence, 

we obtain the approximate MSE of 2SLS: 
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 Note that both terms in equation (2.2) approach zero as )'( 22 yy increases with increasing 

sample size.  The first term, bias squared also approach zero more quickly, as expected, 

since 2SLS is �root n� consistent. 

We now simplify the M2 expression for 2SLS.  Without loss of generality we use the 

normalization (rescaling of units) 1== vvσσ εε  so that )1/(1)( 2
2 RyVar −=  and 

ρσ ε =v .2  Using this normalization we find: 
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The convergence of MSE to zero in terms of the sample size n becomes quite evident 

with this normalization.   
                                                 
2 These parameter are theoretical values from the underlying model specifications for given parameter 
values. 
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B Properties of the OLS Estimator 

 We now calculate the bias and MSE of the OLS estimator.  The approximate bias 

is: 
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The approximate variance is defined as: 

 

(2.5) 4

22

2

2

)(
2

)( vv

v

vv

v

vv
OLSV

σ
σ

σ
σ

σ
σ εεεε

+Θ
Θ−

+Θ
−

+Θ
=  

 

As a special case of Theorem 4 in Section 3, we obtain the distribution for the OLS 

estimator: 
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This result is the same as in Hausman (1978).  Thus, the approximate MSE of OLS is  
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The inconsistency of OLS is evident from equation (2.6) because while the second term 

goes to zero as n becomes large, the first term is not a function of n.  The OLS MSE 

under the normalization used above becomes: 
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We see that the first term in the OLS MSE is the usual first order bias term squared.  It 

does not go to zero as n becomes large since OLS is inconsistent.   

From the 2SLS MSE calculations as the sample size grows large the denominator 

of the 2SLS MSE calculation in equation (2.3) dominates, and the MSE goes to zero.  To 

the contrary for the OLS MSE, in equation (2.7) the numerator also grows with n, as the 

bias of the OLS estimator does not go to zero with the sample size. Thus, for large 

samples 2SLS is consistent and OLS is not.  We now consider how the estimators do in 

finite samples. 

 

C Bias Comparisons of the 2SLS and OLS Estimators 

We compare the approximate finite sample bias of 2SLS to the approximate MSE of 

OLS: 
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where the F statistic is the �theoretical� F-statistic from the first-stage reduced form.  

Thus, if 1>>F , 2SLS has less bias.  However the OLS variance is less than the 2SLS 

variance so we compare the MSEs below. 

 Before leaving the bias comparisons, we also consider what happens when we are 

close to being unidentified so that na=2π , where the vector has dimension K. Thus, 

the reduced form coefficients are �local to zero�.  With na=2π , equation (2.1) 

predicts the bias of 2SLS to be  

(2.9) [ ]
Ψ

=
Ψ

≈−

K

K
bE vv

SLS 1
22

2
εε σσ

β  

where equation (2.9) is an approximation to the asymptotic bias of 2SLS under the 

asymptotics where na=2π . Here, zaza ''=Ψ . On the other hand, equation (2.4) 

predicts the approximate bias for OLS to be:  
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Taking the ratio of the biases under local to zero asymptotics: 
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From equation (2.11), it follows that the bias of 2SLS is smaller than OLS as long as 

nK << , a condition which will always be satisfied in practice.  

 

D MSE Comparisons of the 2SLS and OLS Estimators 

 We next compare the MSE of 2SLS to the MSE of OLS using the normalization 

(and non-local asymptotics): 
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where 224 )(RR = .  The correlation parameter ρ is the key parameter in simultaneous 

equation analysis because if it is zero the OLS estimator is the unbiased Gauss-Markov 

estimator and the ratio of MSEs in equation (2.12) equals 1/1 2 >R , but OLS is biased 

and inconsistent if the parameter value of ρ  is not zero.    

 Which estimator to use will depend on whether equation (2.12) is less than or 

greater than unity.  We can solve for the �critical value� of 2ρ  which causes the MSE of 

the 2 estimators to be equal.   The solution for this �critical value� has a remarkably 

simple form: 
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As n becomes large the  �critical value� of 2ρ  goes to zero.  In any particular sample R2 

and F can typically be accurately estimated from the unbiased estimates of the reduced 

form so that only 2ρ  is unknown. While this parameter value is typically unknown, the 

applied econometrician will often have a good (a priori) knowledge of ρ  so that she will 

be able to determine whether the critical value is below the square of the correlation 

coefficient.3  As we now demonstrate, the critical value is often so low that 2SLS will 

have a lower MSE than OLS, even for situation with relatively �weak instruments� or a 

low F statistic.  

 In Figure 1 we calculate the critical value of ρ  (using the absolute value) for a 

range of values of R2  for K of 5, 10, and 30 and for sample sizes of n = 100.4    The 

results of Figure 1 demonstrate that for K=5 if 1.02 ≥R then the critical value of ρ  is 

sufficiently small that 2SLS should typically be used in terms of the MSE comparison.  

For K=10 2SLS will typically be better if 2.02 ≥R .  However, for K=30 we typically 

require 4.02 ≥R .  In Table 1 we repeat the calculations for n=500 and n=1000.  Here we 

find that if 1.02 ≥R  that 2SLS typically will have a lower MSE.  Thus, except in the case 

of weak instruments, which can arise when both R2 is low and the number of instruments 

is high, 2SLS is typically the preferred estimator based on an approximate finite sample 

comparison of MSEs. 

 

III Estimation with Invalid Instruments 

Up to this point we have assumed that the instruments are valid so that they are 

orthogonal to the stochastic disturbance 1ε .  However, the econometrician may not be 

certain that the instruments satisfy the orthogonality condition.  We now consider the 

situation where the orthogonality condition on the instruments fails so that 

.0]/'[ 1 ≠nzE ε  We first consider the �large sample bias� of 2SLS: 

 

                                                 
3 The parameter ρ is also estimated from the 2SLS estimation, but a good estimate may be diffcult to 
achieve in a �weak instrument� situation. 
4 The curves for increasing K lie to the right of each other.  
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 where 2πzW = .  When we compare this with the analogous expression for OLS 
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In general either estimator may be preferred on this criterion depending on 

circumstances.  The numerator of equation (3.1) would likely be smaller (�less 

correlation� in the instrument) than the numerator of equation (3.2), but the denominator 

of equation (3.1) is always smaller since R2 < 1.  Indeed, if R2 is very small, the OLS 

estimator may do better in terms of inconsistency. 

 

A Invalid Instrument Specification 

 To do asymptotic approximations we need to specify the correlation of the 

instrument with the stochastic disturbance in the structural equation (1.1).  We use a local 

specification similar to the approach in Hausman (1978, Theorem 2.1): 

 

(3.3) .0)/(1 ≠+= γγε forenz  

 

We assume that (e,v) is homoscedastic and zero mean normally distributed with 

covariance matrix : 
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B Properties of the 2SLS Estimator with Invalid Instruments 

We derive the asymptotic distribution of the 2SLS estimator with locally invalid 

instruments in Appendix A: 
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Theorem 3: 
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where 2πzW = is the instrument and nzz /'' γπ=Ξ , which is assumed to be fixed .  The 

first term in the numerator of the mean Ξ  arises from failure of the orthogonality 

condition. The second term is the usual finite sample bias term and it decreases with the 

sample size. The variance continues to be SLSV2  under instrument invalidity because of 

the local departure in equation (3.3) similar to Hausman (1978, p. 1256).  

We use Theorem 3 to calculate the approximate bias of the 2SLS estimator with 

invalid instruments is: 
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where we use the previous normalizations and set nnW αρσ ε =Ξ='  for 1<α .  

Using Theorem 3 we find the MSE of 2SLS to be: 
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C Distribution of the OLS Estimator with Invalid Instruments 

We derive the asymptotic distribution of the OLS estimator with locally invalid 

instruments in Appendix A: 
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The distribution is centered around the usual OLS bias, as before, and the numerator of 

the mean of the distribution arises from the instrument invalidity.  Again, the variance 
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continues to be OLSV  under instrument invalidity because of the local departure in 

equation (3.3).  Using Theorem 4 we find the MSE of OLS to be: 
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The first term in parentheses is the �usual� simultaneous equation bias of OLS that does 

not decrease with the sample size.   

We consider a special situation which make the formulae easier to interpret.  Let 

τπγ = for some τ .  Under this proportionality assumption, the asymptotic distributions 

take the form: 
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where we have used the normalization to derive the final expression for the distribution 

of OLS. 

 

D Bias Comparison of 2SLS with OLS 

We now compare the bias of 2SLS under instrument invalidity with the bias of 

OLS given similar circumstances.  We now re-write the bias of OLS using the 

normalization: 
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As before, we take the ratio of (3.4) and (3.7):  
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The ratio of the biases is homogeneous of degree zero in the correlation coefficient ρ , so 

we can simplify terms. We plot the ratio of the biases in Figure 2 for the case of n=100 

and K=5 and .1.0=α   

We find that the 2SLS bias is less than the OLS bias if:   
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Equation (3.9) is very easy to interpret.  We calculate a �critical alpha� in Figure 3, and 

note that it increase quite rapidly, so that the bias of 2SLS with invalid instruments 

remains less than the bias of OLS so long as F exceeds 1.0 by a small amount.  The 

straightforward relationship of equation (3.9) allows for an easy interpretation on which 

the econometrician may well have some a priori knowledge. 

 In certain situations it may be reasonable to consider a relationship between εσ 'W  

and R2 such that when the covariance is less so is R2.  If we totally differentiate equation 

(3.9), we find that ( ) ( ) 




 +−=

22/12 // nnKnddR αα . Thus, for a given increase in the 

covariance between the instrument and the stochastic term, α , we find that the required 

increase in R2 is approximate at the rate of the one over the square root of n to keep the 

ratio of the biases approximately the same. However, the required change in R2 is also 

inversely related to α . 

Note that the common empirical finding that the 2SLS coefficient is larger than 

the OLS coefficient can arise because of the OLS bias when the instruments are valid or 

because of an improper instrument.  Thus, even if the instrument is �almost uncorrelated� 

so that 0' ≈εσW  substantial bias can still arise because 2R  is often quite small in the 

weak instruments situation.  Thus, comparing equation (3.4) to the bias of OLS in 

equation (3.7), the empirical finding that the 2SLS estimate increases compared to the 

OLS estimate may indicate that the instrument is not orthogonal to the stochastic 
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disturbance.  The resulting bias can be substantial.  Indeed, it could exceed the OLS bias, 

leading to an increase in the estimated 2SLS coefficient over the estimated OLS 

coefficient. 

 

E MSE Comparison of 2SLS and OLS with Invalid Instruments 

Returning to the general situation and using the normalizations the ratio of the 

MSEs is 
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No straightforward condition can be derived where the ratio is less than one.  We graph 

the ratio of the MSEs for 1.0=α  and K=5, n=100 in Figure 4 (please note the inverted 

vertical axis).  Note that the ratio of MSEs is below 1.0 except in the situation where R2 

becomes quite small (as with weak instruments) and ρ  becomes small (which decreases 

the OLS bias).  The situation remains essentially the same when we increase to 3.0=α  

in Figure 5.  To yield a better understanding of what can happen in this situation, we plot 

the situation in Figure 6 where 3.02.02 ≤≤ ρandR  for 1.0=α .  Figure 6 demonstrates 

that the 2SLS estimator can do quite poorly compared to the OLS estimator, even though 

the F statistic exceeds 1.0 by a large amount.  The reason for this poor relative 

performance is the small size of ρ  which makes OLS a relatively good estimator.  

However, this situation is typically not a situation where the absolute performance of the 

2SLS estimator with valid instruments would be poor under weak instruments because ρ  

is not large.  It is the presence of invalid instruments, with only a �small amount� of 

correlation with the stochastic disturbance that creates the problem.   

 

F. Comparison of a (Second order) Unbiased Estimator 
 

In our comparisons of 2SLS with OLS, two sources of bias arise.  The first source 

of bias is from the use of estimated parameters, 2�π  in equation (1.2), in forming the 

instruments.  This source of bias disappears as the sample becomes large.  The second 

source of bias is from the use of invalid instruments, 0≠γ  in equation (3.3).  This source 
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of bias does not disappear sufficiently fast with the sample size to cause 2SLS to be 

consistent.  An interesting question would be about how the comparison of IV to OLS 

would change if the first source of bias were eliminated.  We can eliminate this source of 

bias (to second order) by using the Nagar estimator.5 

We derive the asymptotic distribution of the Nagar estimator with locally invalid 

instruments in Appendix A: 

Theorem 5: 
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where 2πzW = is the instrument and nzz /'' γπ=Ξ , which is assumed to be fixed,  and 

as before Θ= εεσSLSV2 .  Thus to compare the MSE of the Nagar estimator to the MSE 

of the 2SLS estimator with invalid instruments, we see that the variance of the two 

estimators is the same, but that the bias differs as explained above.  However, when we  

compare the bias square of 2SLS from equation (3.4) with the Nagar estimator we find 

that 
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can be less than or greater than zero.  Thus, we cannot conclude that using the Nagar 

estimator to compare with OLS would make the comparison more favorable to an IV 

estimator. 

 

IV Sensitivity Analysis  

 Card (2001) discusses possible concerns that the instruments may be invalid in 

discussing the empirical literature that estimates the return to additional education. The 

use of instrumental variables in this situation began with Griliches (1977) well known 

paper.  To investigate the possibility of invalid instruments, we consider the specification: 

 

                                                 
5 The Nagar estimator may perform poorly with weak instruments because of its lack of moments.  See 
Hahn, Hausman, and Kuersteiner (2002).  
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a small violation of the exclusion restriction in Appendix B, where ψ   is the correlation 
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asymptotic bias to be: 
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Note that the maximal asymptotic bias can be consistently estimated by 
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Imbens (2003) suggested a different sensitivity analysis in a program evaluation 

model with binary explanatory variable, extending Rosenbaum and Rubin�s (1983). With 

some simplification, it can be said that he considers a parametric model where an omitted 

variable bias is suspected. It is well known that the omitted variable bias can be related to 

two parameters, the coefficient of the omitted variable and the correlation of the omitted 

variable with other observed variables in the model, e.g. Griliches (1957). The sensitivity 

analysis of Imbens (2002) is based on manipulation of these two parameters.  

 We now consider the effect of invalid instruments in an empirical example.  

Estimating the return to education has been a well-researched problem over the past 25 

years. Griliches (1977) is a seminal paper that uses IV to estimate returns to schooling.   

The usual result is that researchers find the OLS estimate to be smaller than the 2SLS 

estimate by approximately 25%-50%, e.g. Card (2001).  This result arises from a tradeoff 

between two potential sources of bias: (1) an omitted variable, call it �spunk� in the 

stochastic disturbance may be correlated with the amount of educations.  Thus, people 
                                                 
6 Imbens (2003) considers the question of sensitivity analysis, but not in the context of instrumental 
variables. 
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with more spunk achieve higher education levels and also higher earnings, because they 

work harder both in school and on the job.  This left out variable would lead to an upward 

bias in the least squares estimate of the schooling coefficient. (2) errors in variables (EIV) 

that arise because years of schooling are a noisy measure of �useful knowledge� attained 

with more years of school that leads to higher earnings.  Here the EIV would lead to a 

downward bias in the least squares estimate of the schooling coefficient.  The typical IV 

results finds that the EIV effect is larger than the left out variable effect, so the 2SLS 

estimated typically exceed the OLS results by a significant amount. 

We now consider the Angrist and Krueger (AK) results which have an extremely 

large sample and use quarter of birth to form instruments, which may be more likely to be 

orthogonal to the stochastic disturbance than more widely used family background and 

other types of instruments typically used in the empirical returns to schooling literature.  

However, the AK instruments have an extremely low R2 that could help create a weak 

instruments situation.  Angrist and Krueger (1991) used a sample of n = 329,509 

observations to estimate the returns to education.  Using the AK data we estimate the 

2SLS return to education to be 0.0891 (.016) using K=30 after partialing out the other 

right hand side variables.  This estimate is closer to the OLS estimate of 0.071 (.0003) 

than expected given other empirical results.  After partialling out, we find that the 

average squared residuals equal 0.41, the average of the partialled out right hand side 

endogenous variable (education) equals 10.8, and R2 = .00044662.  For 0001.02 =ψ , we 

find that the solution to equation (5.2) is 0.0925.  This maximal bias exceeds the 2SLS 

estimate of 0.0891, so a small amount of bias could either eliminate any estimated return 

to education or double the estimate.   

Our finding that the returns to coefficient could be over two times the OLS 

estimate contrasts with the results of Manski and Pepper (2000) who apply Manski�s 

(1990, 2003) non-parametric bounds approach.  Manski and Pepper (on a different 

sample) find that the upper bound is substantially less than two times the usual OLS 

estimates of the returns to schooling.  However, the Manski approach does not allow for 



 16

errors in variables.  This omission may significantly limit the empirical relevance of the 

Manski approach to this problem.7  

This result demonstrates that use of a �weak identification� strategy such as the 

AK approach is extremely sensitive to very small departures from the IV orthogonality 

assumption.  Note that from the result in Theorem 6, that this extremely sensitivity does 

not decrease with increasing sample size.  Thus, the AK estimate of the returns to 

schooling is very sensitive despite an extremely large sample size of n = 329,509.  Our 

results caution against using a weak identification strategy that has become widely used 

in applied econometrics. 

 
V  Bias in Estimated Standard Errors  

 We have previously discussed the biased in the 2SLS estimator in equation (2.1) 

and Theorem 1.  In the �weak instruments� situation this bias may be quite large.  A 

further problem arises in that the 2SLS estimator is biased in the same direction as the 

OLS estimator as equation (2.4) and Theorem 2 demonstrate.  Thus, Hausman (1978) 

specification type test will be biased towards not rejecting the null hypothesis of lack of 

orthogonality between 1ε  and 2v  in equations (1.1) and (1.2).  However, another problem 

has been recognized in the weak instruments situation.  The estimated standard errors for 

the 2SLS estimator are downward biased, sometimes leading to the mistaken inference 

that the 2SLS estimate are much more precise than they actually are.  From analysis 

based on first order asymptotics the usual conclusion would be that with �weak 

instruments� that the reported standard error of the 2SLS estimator would be sufficiently 

large to signal the finding that so much uncertainty exists with the estimate that it would 

not be of much use.  However, researchers have found that, to the contrary, often the 

2SLS estimator in the presence of weak instruments leads to a reasonably small standard 

error.  Thus, the researcher may be unaware of the weak instruments problem, although 

Hahn-Hausman (2002, 2003) propose a test that is useful in identifying when weak 

instruments is causing a problem.  The source of the problem of small reported standard 

                                                 
7 More generally, since the bias in the OLS estimate when EIV exists depends on the variance of the 
measurement error, or alternatively the R2 of the regression, typically no bounds exist in the EIV problem 
for the estimated coefficient unless some judgment is made regarding the unknown variance.  For further 
discussion, see Hausman (2001).  
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errors of the 2SLS estimator has not been discussed in the literature.  Here we derive the 

source of the problem and offer a possible approach to fixing it. 

 The variance of 2SLS is derived in Theorem 1 and takes the usual form of 
1

2
−Θ= εεσSLSV  where nzz /'' ππ=Θ  is assumed to be fixed.  Now Θ� is not difficult to 

estimate since unbiased estimated of π follow from OLS on equation (1.2).  Thus, the 

downward bias in the estimated 2SLS standard errors must arise from a downward biased  

estimate of εεσ .  We now derive the bias.  The intuition follows from the fact that 2SLS 

is biased towards the OLS estimator, which minimizes εεσ� .  Thus, we find that the bias 

of the 2SLS estimator of β creates a bias in the 2SLS estimate of  εεσ .  We find the bias 

to be:  

Theorem 7: 
Θ

+−
Θ

−−≈ vv
v

v
SLS

nn
K

n
E σσσσσσ εε

ε
ε

εε
11)2(2]�[ 2

2

2
2  

 

Note that the leading term in the bias calculation of Theorem 5 is 2 times the bias of the 

2SLS estimator from equation (2.1).  As either the number of instruments grows or the 

covariance between the structural and reduced term stochastic disturbances becomes 

large, the bias in the estimation of εεσ  will also become large.  We now apply the 

normalization that we used above to find: 

(5.1)  
2

2

22

2

2
2

2

22

2
2

1)1](1)42[(11

)1(11)1()2(21]�[

ρ
ρ

ρ
ρ

σ

nR
RK

n

R
R

nnR
RK

n
E SLS

−
−−−

−=

−+−
−−

−≈
 

The bias can be quite substantial as demonstrated by equation (5.1). The final term in 

equation (4.2) will typically be small so that it can be ignored.  Equation (5.1) 

demonstrates that the downward bias can be substantial; in Monte-Carlo results we find 

that for R2  = .01 and 9.0=ρ that the mean bias of the 2SLS estimate of the variance 

varies from �70% to �80% as K, the number of instruments, increases from 5 to 30.8 

Thus, we note that the bias in the estimation even when  K = 5 can be quite large.  This 

finding explains the result that when weak instruments are present, the estimated standard 

                                                 
8 The Monte-Carlo design is the same as in Hahn-Hausman (2002a). 
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errors of 2SLS can appear to be near those of OLS and small enough to allow the 

researcher to make conclusions about the likely true parameter value.  However, with 

weak instruments these conclusions could be erroneous because of the substantial bias in 

the estimated standard error of the 2SLS estimator.  Kleibergen (2002) also proposes an 

alternative approach to modify inferential procedures, but his approach is based on the 

LIML estimator rather than the 2SLS estimator.  Hahn-Hausman (2003) and Hahn, 

Hausman, and Kuiersteiner (2003) discuss problems that may arise with this approach 

because of non-existence of moments of the LIML estimator. 

 We now consider the finding that the often used test of over identifying 

restrictions (OID test) rejects �too often� when weak instruments are present, i.e. the 

actual size of the test is considerably larger than the nominal size.  See Hahn-Hausman 

(2002a), Table xx where the nominal size is 0.05 while the actual size is sometimes 

greater than 0.5.  The OID test can be quite important since it tests the economic theory 

embodied in the model as discuss by e.g. Hausman (1983).  In the weak instrument 

situation it may have increased importance given the substantial bias in the 2SLS 

estimator and the large MSE that we calculation in equations (3.1), (3.3) and (3.4).  From 

Hausman (1983) we write the OID test as: 

 

(5.2) 
εεσ
εε

�
�'� ZPW =  

 

W is distributed as chi-square with K-1 degrees of freedom.  From equation (5.2), we see 

that a downward biased of εεσ  can lead to substantial over-rejection and an upward 

biased size of the OID test.  Thus, correcting for this problem can have an important 

effect on test results. 

 

VI  Conclusions 

We derive second order approximations for the bias and MSE of 2SLS (and the 

Nagar estimator) with both valid and invalid instruments.  The derivation for invalid 

instruments is new, to the best of our knowledge.  We find that substantial finite sample 

bias can occur when weak instruments exist which arises when the R2 of the reduced 
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form regression is low, the number of instruments is high, or the correlation between the 

structural and reduced form stochastic terms ρ  is high.   

We then compare the bias and MSE of 2SLS with OLS.  The OLS estimator is 

biased and inconsistent, but its smaller variance may make it preferable to 2SLS in a 

weak instruments situation.  We determine straightforward and easily checked conditions 

under which 2SLS has smaller bias than OLS.  These bias conditions carry over, in large 

part, to the MSE comparisons because changes in the bias term are quite important in 

changes in the MSE term given typical sample sizes of n=100 or larger.  We find that for 

1.02 ≥R , 2SLS is generally the preferred estimator.  However, the econometrician can 

use our formulae to check the expected performance of 2SLS and OLS in a given 

situation given some a priori knowledge about likely parameter values. 

We also demonstrate that a substantial bias exists in the 2SLS estimator for the 

variance of the stochastic disturbance, which lead to downward biased 2SLS standard 

errors and over-rejection of the test of over-identifying restrictions.  We derive a formula 

for the bias that would allow for correction of the bias. 



 20

References 

 

Angrist, J. and A. Krueger (1991): �Does Compulsory School Attendance Affect 
Schooling and Earnings,� Quarterly Journal of Economics,� 106, 979-1014. 
 
Card, D. (2001), �Estimating the Return to Schooling,� Econometrica, 1127-1152 
 
Griliches, Z. (1957), �Specification Bias in Estimates of Production Function,� Journal of 
Farm Economics, 38, 8-20 
 
Griliches, Z. (1997), �Estimating the Returns to Schooling: Some Econometric 

Problems,� Econometrica, 45, 1-22. 
 
Hahn, J., and J. Hausman (2002a): �A New Specification Test for the Validity of 

Instrumental Variables,� Econometrica, 70, 163-189.  
 
Hahn, J., and J. Hausman (2002b): �Notes on Bias in Estimators for Simultaneous 

Equation Models�, Economics Letters, 75, 237-241. 
 
Hahn, J., and J. Hausman (2003): �Weak Instruments: Diagnosis and Cures in Empirical 

Econometrics�, American Economic Review 
 
Hahn, J., J. Hausman, and G. Kuiersteiner (2003): �Estimation with Weak Instruments: 

Accuracy of Higher Order Bias and MSE Approximations,� revised MIT mimeo 
 
Hausman, J.A. (1978): �Specification Tests in Econometrics,� Econometrica, 46, 1251 � 
1271.  
 
Hausman, J.A. (1983): �Specification and Estimation of Simultaneous Equation Models,� 
in Z. Griliches and M. Intriligator, eds., Handbook of Econometrics, Vol. 1, Amsterdam: 
North Holland. 
 
Hausman, J. (2001), �Mismeasured Variables in Econometric Analysis: Problems from 
the Right and Problems from the Left�, Journal of Economic Perspectives, 2001 
 
Imbens, G. (2003), �Sensivity to Exogeneity Assumptions in Program Evaluation,�  
 American Economic Review 
 
Kleibergen, F. (2002): �Pivotal Statistics for Testing Structural Parameters in IV 

Regression,� Econometrica, 70, 1781-1803 
 
Manski, C. (1990): �Nonparametric Bounds on Treatment Effects,� American Economic 

Review Papers and Proceedings, 80, 319-323. 
 



 21

Manski, C. (2003), Partial Identification of Probability Distributions, New York: 
Springer-Verlag. 

 
Manski, C. and R. Pepper (2000), �Monotone Instrumental Variables: With an 
Application to the Returns to Schooling,� Econometrica, 68, 997�1010. 
 
 
Rosenbaum, P., and D. Rubin (1983), �Assessing Sensitivity to an Unobserved Binary 

Covariate in an Observational Study with Binary Outcome�, Journal of the Royal 
Statistical Society, Series B, 45, 212-218. 

 
Staiger, D., and J.H. Stock (1997): �IV Regression with Weak Instruments,� 

Econometrica, 65, 557-586. 
 
Stock. J.H., J. Wright and M. Yogo (2002): �A Survey of Weak Instruments and Weak 

Identification in GMM,� Journal of Business and Economic Statistics, 20, 518-
529. 

 
 

 



 22

 

 

Figure 1 
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 Table 1: Critical Values of ρ  

R^2 0.01 0.1 0.2 0.3 0.5 0.7 0.9 
K=5        

100 ** 0.3677 0.2323 0.1863 0.1432 0.1210 0.1070 
500 ** 0.1423 0.1002 0.0818 0.0634 0.0536 0.0473 

1000 0.3654 0.1002 0.0708 0.0578 0.0448 0.0378 0.0334 
        
K=10        

100 ** ** 0.2601 0.1949 0.1455 0.1220 0.1075 
500 ** 0.1445 0.1006 0.0819 0.0634 0.0536 0.0473 

1000 ** 0.1006 0.0708 0.0578 0.0448 0.0378 0.0334 
        
K=10        

100 ** ** ** ** 0.1789 0.1339 0.1135 
500 ** 0.1771 0.1050 0.0834 0.0638 0.0538 0.0474 

1000 ** 0.1049 0.0716 0.0581 0.0448 0.0379 0.0334 
 

** denotes no critical value of ρ  less than 1.0 exists  
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Figure 2:  Ratio of 2SLS Bias to OLS Bias with Invalid Instruments 

N=100, K=5, 1.0=α  
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Figure 3 
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Figure 4 
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Figure 5 

 

 



 28

 

Figure 6 
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A Bekker Asymptotic Distribution of 2SLS, OLS, and Nagar

under MisspeciÞcation

Suppose that

y∗1i = y2iβ + e1 = (z
0
iπ2)β + u1i

y2i = z0iπ2 + v2i

where Ã
u1i

v2i

!
∼ N

Ã
0,

"
ω1,1 ω1,2

ω1,2 ω2,2

#!

Following is the Lemma reproduced from Hahn and Hausman (2001):

Lemma 1 Let U ≡
h
y∗1 y2

i
. Assume that Kn → α+ o

¡
n−1/2

¢
, and that π02z0zπ2/n is Þxed at Θ. Let

S ≡ U 0PzU and S⊥ ≡ U 0MzU . We then have

√
n





n−1S11
n−1S12
n−1S22
n−1S⊥11
n−1S⊥12
n−1S⊥22


−



Θ · β2 + K
n · ω1,1

Θ · β + K
n · ω1,2

Θ+ K
n · ω2,2¡

1− K
n

¢ · ω1,1¡
1− K

n

¢ · ω1,2¡
1− K

n

¢ · ω2,2




⇒ N

Ã
0,

"
Λ 0

0 Λ⊥

#!
,

where Λ and Λ⊥ denote symmetric 3× 3 matrices such that

Λ1,1 = 4ω1,1Θβ
2 + 2αω21,1

Λ1,2 = 2ω1,1Θβ + 2β
2Θω1,2 + 2αω1,1ω1,2

Λ1,3 = 4βΘω1,2 + 2αω
2
1,2

Λ2,2 = ω1,1Θ+ β
2Θω2,2 + 2Θω1,2β + αω1,1ω2,2 + αω

2
1,2

Λ2,3 = 2ω2,2Θβ + 2Θω1,2 + 2αω2,2ω1,2

Λ3,3 = 4ω2,2Θ+ 2αω
2
2,2

and

Λ⊥1,1 = 2 (1− α)ω21,1
Λ⊥1,2 = 2 (1− α)ω1,1ω1,2
Λ⊥1,3 = 2 (1− α)ω21,2
Λ⊥2,2 = (1− α)ω1,1ω2,2 + (1− α)ω21,2
Λ⊥2,3 = 2 (1− α)ω2,2ω1,2
Λ⊥3,3 = 2 (1− α)ω22,2

1



Remark 1 The ωs in the Lemma correspond to the �reduced form�. It would be convenient to rewrite

the above with structural form parameters. Because

u = ε+ βv

we can see that

ω1,1 = σ1,1 + 2βσ1,2 + β
2σ2,2

ω1,2 = σ1,2 + βσ2,2

ω2,2 = σ2,2

Lemma 2 Suppose that K√
n
= µ+ o (1). Then we have

√
n

µ
y02Pzy∗1
y02Pzy2

− Θ · β
Θ

¶
⇒ N

³µσ1,2
Θ

, V2SLS

´
√
n

Ã
y02Pzy∗1 − K

n y
0
2Mzy

∗
1

y02Pzy2 − K
n y

0
2Mzy2

− β
!

⇒ N (0, V2SLS)

√
n

µ
y02y∗1
y02y2

−
µ
β +

σ1,2
Θ+ ω2,2

¶¶
⇒ N (0, VOLS)

Proof. Suppose that α = 0. Using the previous Lemma, we obtain

√
n

ÃÃ
n−1S12
n−1S22

!
−
Ã
Θ · β + K

n · ω1,2
Θ+ K

n · ω2,2

!!
⇒ N

Ã
0,

" ¡
β2ω2,2 + 2ω1,2β + ω1,1

¢
Θ 2 (ω2,2β + ω1,2)Θ

2 (ω2,2β + ω1,2)Θ 4ω2,2Θ

#!
√
n

ÃÃ
n−1

¡
S12 − K

n S
⊥
12

¢
n−1

¡
S22 − K

n S
⊥
22

¢ !−Ã Θ · β
Θ

!!
⇒ N

Ã
0,

" ¡
β2ω2,2 + 2ω1,2β + ω1,1

¢
Θ 2 (ω2,2β + ω1,2)Θ

2 (ω2,2β + ω1,2)Θ 4ω2,2Θ

#!
and

√
n

ÃÃ
n−1

¡
S12 + S

⊥
12

¢
n−1

¡
S22 + S⊥22

¢ !−Ã Θ · β + ω1,2
Θ+ ω2,2

!!

⇒ N
Ã
0,

" ¡
β2ω2,2 + 2ω1,2β + ω1,1

¢
Θ+ ω21,2 + ω1,1ω2,2 2 (ω2,2β + ω1,2)Θ+ 2ω2,2ω1,2

2 (ω2,2β + ω1,2)Θ+ 2ω2,2ω1,2 4ω2,2Θ+ 2ω22,2

#!
Therefore, using Delta method, we obtain the following:

√
n

Ã
y02Pzy∗1
y02Pzy2

− Θ · β +
K
n · ω1,2

Θ+ K
n · ω2,2

!
⇒ N

³
0,
σ1,1
Θ

´
√
n

Ã
y02Pzy∗1 − K

n y
0
2Mzy

∗
1

y02Pzy2 − K
n y

0
2Mzy2

− Θ · β
Θ

!
⇒ N

³
0,
σ1,1
Θ

´
√
n

µ
y02y∗1
y02y2

− Θ · β + ω1,2
Θ+ ω2,2

¶
⇒ N

Ã
0,

σ1,1
(Θ+ ω2,2)

− σ21,2

(Θ+ ω2,2)
2 − 2

σ21,2Θ
2

(Θ+ ω2,2)
4

!
where we used the fact that

ω1,1 = σ1,1 + 2βσ1,2 + β
2σ2,2

ω1,2 = σ1,2 + βσ2,2

ω2,2 = σ2,2

2



Because K√
n
= µ+ o (1), we can see that

√
n

Ã
Θ · β + K

n · ω1,2
Θ+ K

n · ω2,2
− Θ · β

Θ

!
=

K√
n
σ1,2

Θ+ 1√
n
K√
n
σ2,2

=
µσ1,2
Θ

+ o (1)

and

√
n

µ
y02Pzy∗1
y02Pzy2

− Θ · β
Θ

¶
=

√
n

Ã
y02Pzy∗1
y02Pzy2

− Θ · β +
K
n · ω1,2

Θ+ K
n · ω2,2

!
+
√
n

Ã
Θ · β + K

n · ω1,2
Θ+ K

n · ω2,2
− Θ · β

Θ

!

=
√
n

Ã
y02Pzy∗1
y02Pzy2

− Θ · β +
K
n · ω1,2

Θ+ K
n · ω2,2

!
+
µσ1,2
Θ

+ o (1)

⇒ N
³µσ1,2
Θ

,
σ1,1
Θ

´

A.1 Asymptotic Distribution of 2SLS under MisspeciÞcation

Note that

b2SLS =
y02Pzy1
y02Pzy2

=
y02Pz

³
y∗1 +

1√
n
zγ
´

y02Pzy2

=
y02Pzy∗1
y02Pzy2

+
1√
n

n−1 (zπ2 + v2)
0
zγ

n−1y02Pzy2

But

n−1 (zπ2 + v2)
0 zγ = Ξ+ n−1v02zγ = Ξ+ op (1)

n−1y02Pzy2 = n−1S22 = Θ+ op (1)

so that

n−1 (zπ2 + v2)
0
zγ

n−1y02Pzy2
=
Ξ

Θ
+ op (1)

It follows that

√
n (b2SLS − β) =

√
n

µ
y02Pzy∗1
y02Pzy2

− β
¶
+
n−1 (zπ2 + v2)

0
zγ

n−1y02Pzy2

=
√
n

µ
y02Pzy∗1
y02Pzy2

− β
¶
+
Ξ

Θ
+ op (1)

⇒ N

µ
Ξ+ µσ1,2

Θ
, V2SLS

¶
A.2 Asymptotic Distribution of OLS under MisspeciÞcation

Note that

bOLS =
y02y1
y02y2

=
y02
³
y∗1 +

1√
n
zγ
´

y02y2

=
y02y∗1
y02y2

+
1√
n

n−1 (zπ2 + v2)
0 zγ

n−1y02y2

3



But

n−1 (zπ2 + v2)
0
zγ = Ξ+ n−1v02zγ = Ξ+ op (1)

n−1y02y2 = n−1S22 + n−1S⊥22 = Θ+ σ2,2 + op (1)

so that

n−1 (zπ2 + v2)
0
zγ

n−1y02Pzy2
=

Ξ

Θ+ σ2,2
+ op (1)

It follows that

√
n

µ
bOLS −

µ
β +

σ1,2
Θ+ ω2,2

¶¶
=

√
n

µ
y02y∗1
y02y2

−
µ
β +

σ1,2
Θ+ ω2,2

¶¶
+
n−1 (zπ2 + v2)

0
zγ

n−1y02y2

=
√
n

µ
y02y∗1
y02y2

−
µ
β +

σ1,2
Θ+ ω2,2

¶¶
+

Ξ

Θ+ σ2,2
+ op (1)

⇒ N

µ
Ξ

Θ+ σ2,2
, VOLS

¶
A.3 Asymptotic Distribution of Nagar under MisspeciÞcation

Note that

bN =
y02Pzy1 − K

n y
0
2Mzy1

y02Pzy2 − K
n y

0
2Mzy2

=
y02Pz

³
y∗1 +

1√
n
zγ
´
− K

n y
0
2Mz

³
y∗1 +

1√
n
zγ
´

y02Pzy2 − K
n y

0
2Mzy2

=
y02Pzy∗1 − K

n y
0
2Mzy

∗
1

y02Pzy2 − K
n y

0
2Mzy2

+
1√
n

n−1 (zπ2 + v2)
0
zγ

n−1
¡
y02Pzy2 − K

n y
0
2Mzy2

¢
But

n−1 (zπ2 + v2)
0
zγ = Ξ+ op (1)

n−1
µ
y02Pzy2 −

K

n
y02Mzy2

¶
= Θ+ op (1)

so that

n−1 (zπ2 + v2)
0
zγ

n−1
¡
y02Pzy2 − K

n y
0
2Mzy2

¢ = Ξ

Θ
+ op (1)

It follows that

√
n (bN − β) =

√
n

Ã
y02Pzy∗1 − K

n y
0
2Mzy

∗
1

y02Pzy2 − K
n y

0
2Mzy2

− β
!
+

n−1 (zπ2 + v2)
0
zγ

n−1
¡
y02Pzy2 − K

n y
0
2Mzy2

¢
=

√
n

Ã
y02Pzy∗1 − K

n y
0
2Mzy

∗
1

y02Pzy2 − K
n y

0
2Mzy2

− β
!
+
Ξ

Θ
+ op (1)

⇒ N

µ
Ξ

Θ
, V2SLS

¶
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B Sensitivity Analysis

Consider a model with one endogenous regressor where other included exogenous variables are partialled

out. The model takes the form where

yi = xiβ + εi, i = 1, . . . , n.

Denote the available instrument as zi, and write the Þrst stage regression as

xi = z
0
iπ + vi. (1)

2SLS estimator is obviously given by

bβ2SLS = hX 0Z (Z0Z)−1 Z0X
i−1

X0Z (Z0Z)−1 Z0Y,

where

X =


x1
...

xn

 , Y =


y1
...

yn

 , Z =


z01
...

z0n

 .
What is the property of b if the exclusion restriction is in fact violated? In order to implement violation

exclusion restriction, we add a little noise to εi, and consider a new model

y∗i (θ) = xiβ + z
0
iθ + ε

∗
i (2)

where

ε∗i = z
0
iθ + εi

Let

bβ∗2SLS (θ) = hX0Z (Z0Z)−1 Z0X
i−1

X 0Z (Z0Z)−1 Z0Y ∗ (θ)

and

b2SLS (θ) ≡ plim bβ∗2SLS (θ)− β
We would like to examine the maximal asymptotic bias |b2SLS (θ)| for a small violation of exclusion
restriction, i.e., the violation such that the correlation between z0iθ and ε

∗
i is some small number ψ. We

argue that vuutn−1
Pn
i=1 bε2i

n−1
Pn
i=1 x

2
i

1bR2f
s

ψ2

1− ψ2 (3)

provides such measure of sensitivity. Here, bR2f denotes the R2 in the Þrst stage.

5



B.1 Derivation of (3)

It can be shown that1

b2SLS (θ) = (π
0Φπ)−1 π0Φθ

where

Φ = plimn−1Z0Z

Note that

∂b2SLS (θ)

∂θ0
= (π0Φπ)−1 π0Φ

which is maximized when θ ∝ π. We therefore focus on the type of violation such that θ = ξ · π for some
scalar ξ.2 Without loss of generality, we will write

b2SLS (θ) = b2SLS (ξ · π) = b2SLS (ξ)

Note that the population R2 in the regression of ε∗ on z, which is equal to the square of the correlation

ζ between ε∗i and z
0
iπ, is equal to

ζ2 =
θ0Φθ

θ0Φθ +E [ε2i ]
=

ξ2 · π0Φπ
ξ2 · π0Φπ +E [ε2i ]

(4)

and

b2SLS (ξ) = (π
0Φπ)−1 π0Φ (ξ · π) = ξ (5)

We can solve (4) for ξ2, and obtain

ξ2 =
E
£
ε2i
¤

π0Φπ
ψ2

1− ψ2 (6)

Now, note that the population R2 in the Þrst stage R2f is equal to

R2f =
π0Φπ
E [x2i ]

which can be solved for π0Φπ as

π0Φπ = R2f · E
£
x2i
¤

(7)

1See next subsection for a slightly more general proof.
2Maximization of kb2SLS (θ)k2 with respect to θ Þxing θ0Φθ constant has the purpose of maximizing the asymptotic

bias b2SLS (θ) for a Þxed population R2 in the regression of ε∗ on z. Because¯̄
π0Φθ

¯̄2 ≤ ¡π0Φπ¢ · ¡θ0Φθ¢
with equality when θ ∝ π, we can say that π is the direction that maximizes the sensitivity (inconsistency) of b2SLS for a

given amount of violation of exclusion restriction.

6



Combining (6) and (7), we obtain

ξ2 =
E
£
ε2i
¤

E [x2i ]

1

R2f
ψ2

1− ψ2
or

|ξ| = |b2SLS (ξ)| =
s
E [ε2i ]

E [x2i ]

1

R2f

s
ψ2

1− ψ2 (8)

We note that (8) can be approximated by the empirical counterpart

|ξ| = |b2SLS (ξ)| ≈
vuutn−1

Pn
i=1 bε2i

n−1
Pn
i=1 x

2
i

1bR2f
s

ψ2

1− ψ2 (9)

B.2 Digression: Robustness of 2SLS

In general, we estimate β by

bβA = £(ZA)0X¤−1 (ZA)0 Y
and the counterpart under small misspeciÞcation is

bβ∗A (θ) = £(ZA)0X¤−1 (ZA)0 Y ∗ (θ)
so that

bA (θ) ≡ plim bβ∗A (θ)− β
= plim

£
(ZA)0X

¤−1
(ZA)0 Y ∗ (θ)− β

= plim
£
(ZA)0X

¤−1
(ZA)0 (Xβ + Zθ + ε)− β

= β + plim
£
(ZA)0X

¤−1
(ZA)0 Zθ − β

= plim [A0Z0X]−1A0Z0Zθ

= plim
h
A0Z0Z (Z0Z)−1 Z0X

i−1
A0Z0Zθ

= (A0Φπ)−1A0Φθ

Note that

∂b2SLS (θ)

∂θ0
= (π0Φπ)−1 π0Φ

and

∂bA (θ)

∂θ0
= (A0Φπ)−1A0Φ

Instead of dealing with an awkward normalization involving the weight matrix Φ, it is convenient to

use assume that Φ = I. We then have

∂b2SLS (θ)

∂θ0
= (π0π)−1 π0

and

∂bA (θ)

∂θ0
= (A0π)−1A0

7



Remark 2 If there is only one instrument, then ∂b2SLS(θ)
∂θ0 = π−1. Therefore, small π indicates that 2SLS

is sensitive to misspeciÞcation.

Remark 3 If there are multiple components in π, and if the Þrst component of π is small relative to

other components of π, then ∂b2SLS(θ)
∂θ1

would be small, i.e., 2SLS is not very sensitive to the violation of

the exclusion restriction in zi,1.

Remark 4 Note that °°°°∂b2SLS (θ)∂θ0

°°°°2 = (π0π)−1 = 1

kπk2

and °°°°∂bA (θ)∂θ0

°°°°2 = (A0π)−1A0A (A0π)−1 = kAk2
(A0π)2

≥ kAk2
kAk2 kπk2 =

1

kπk2 =
°°°°∂b2SLS (θ)∂θ0

°°°°2
Therefore, 2SLS is the most robust estimator among the class of IV estimators bA.

C Higher Order Bias of bσ2
Our model is given by

yi = xiβ + εi,

xi = fi + ui ≡ z0iπ + ui i = 1, . . . , n

where (εi, ui)
0 is homoscedastic and normal. We consider the 2SLS

bβ2SLS ≡ x0Py
x0Px

and the related estimator for the variance of εi:

bσ2 ≡ 1

n

nX
i=1

³
yi − xibβ2SLS´2

We have the following characterization of bσ2
bσ2 =

1

n

nX
i=1

³
εi − xi

³bβ2SLS − β´´2
=

1

n

nX
i=1

ε2i − 2
Ã
1

n

nX
i=1

εixi

!³bβ2SLS − β´+
Ã
1

n

nX
i=1

x2i

!³bβ2SLS − β´2
=

ε0ε
n

−2
µ
ε0u
n
+
f 0ε
n

¶³bβ2SLS − β´
+

µ
H + 2

f 0u
n
+
u0u
n

¶³bβ2SLS − β´2
where

H ≡ 1

n
f 0f =

1

n
π0Z0Zπ

8



Lemma 3

√
n
³bβ2SLS − β´ = 1

H

7X
j=1

Tj + op

µ
1

n

¶
for

T1 =
1√
n
f 0ε = Op (1)

T2 =
u0Pε√
n
= Op

µ
1√
n

¶
T3 = −2

µ
f 0u
n

¶
1

H

µ
1√
n
f 0ε
¶
= Op

µ
1√
n

¶
T4 = 0

T5 = −
µ
u0Pu
n

¶
1

H

µ
1√
n
f 0ε
¶
= Op

µ
1

n

¶
T6 = −2

µ
f 0u
n

¶
1

H

µ
u0Pε√
n

¶
= Op

µ
1

n

¶
T7 = 22

µ
f 0u
n

¶2
1

H2

µ
1√
n
f 0ε
¶
= Op

µ
1

n

¶
Proof. Note that 2SLS is a special case of the k-class estimator

bβk = x0Py − k · x0My
x0Px− k · x0Mx

for

k =
aθ + b

n

1− aθ − b
n

and θ is the �eigenvalue�. Note that 2SLS corresponds to a = 0 and b = 0. The result follows from

Donald and Newey (1998).

We therefore obtain

Lemma 4

bσ2 = σ2ε

+
1√
n

√
n

µ
ε0ε
n
− σ2ε

¶
− 2√

n
σεu

µ
1

H
T1

¶
− 2√

n
σεu

µ
1

H
T2 +

1

H
T3

¶
− 2

n

√
n

µ
ε0u
n
− σεu

¶µ
1

H
T1

¶
− 1

n

T 21
H
+
1

n

σ2uT
2
1

H2

+op

µ
1

n

¶
Proof. We have

bσ2 =
ε0ε
n

− 2√
n

µ
ε0u
n
+
f 0ε
n

¶ 1

H

7X
j=1

Tj


+
1

n

µ
H + 2

f 0u
n
+
u0u
n

¶ 1

H

7X
j=1

Tj

2

9



Because

T1 = Op (1)

T2 = Op

µ
1√
n

¶
, T3 = Op

µ
1√
n

¶
T4 = 0, T5 = Op

µ
1

n

¶
, T6 = Op

µ
1

n

¶
, T7 = Op

µ
1

n

¶
and

ε0u
n

= Op (1) ,
f 0ε
n
=

1√
n
T1 = Op

µ
1√
n

¶
f 0u
n

= Op

µ
1√
n

¶
,

u0u
n
= Op (1)

we obtain

bσ2 =
ε0ε
n

− 2√
n

µ
ε0u
n

¶ 1

H

3X
j=1

Tj

− 2√
n

µ
1√
n
T1

¶µ
1

H
T1

¶

+
1

n

µ
H +

u0u
n

¶µ
1

H
T1

¶2
+ op

µ
1

n

¶
Now, note that

√
n

µ
ε0ε
n
− σ2ε

¶
= Op (1) ,

√
n

µ
ε0u
n
− σεu

¶
= Op (1) ,

√
n

µ
u0u
n
− σ2u

¶
= Op (1)

We therefore obtain

ε0ε
n
= σ2ε +

1√
n

√
n

µ
ε0ε
n
− σ2ε

¶
,

2√
n

µ
ε0u
n

¶ 1

H

3X
j=1

Tj

 =
2√
n

µ
σεu +

µ
ε0u
n
− σεu

¶¶ 1

H

3X
j=1

Tj


=

2√
n
σεu

 1

H

3X
j=1

Tj

+ 2

n

√
n

µ
ε0u
n
− σεu

¶µ
1

H
T1

¶
+ op

µ
1

n

¶
,

and

1

n

µ
H +

u0u
n

¶µ
1

H
T1

¶2
=
1

n

1

H
T 21 +

σ2u
n

1

H2
T 21 + op

µ
1

n

¶
It follows that

bσ2 = σ2ε +
1√
n

√
n

µ
ε0ε
n
− σ2ε

¶

− 2√
n
σεu

 1

H

3X
j=1

Tj

− 2

n

√
n

µ
ε0u
n
− σεu

¶µ
1

H
T1

¶
− 2

n

T 21
H

+
1

n

T 21
H
+
1

n

σ2uT
2
1

H2
+ op

µ
1

n

¶
10



or

bσ2 = σ2ε

+
1√
n

√
n

µ
ε0ε
n
− σ2ε

¶
− 2√

n
σεu

µ
1

H
T1

¶
− 2√

n
σεu

µ
1

H
T2 +

1

H
T3

¶
− 2

n

√
n

µ
ε0u
n
− σεu

¶µ
1

H
T1

¶
− 1

n

T 21
H
+
1

n

σ2uT
2
1

H2

+op

µ
1

n

¶

Condition 1 Assume that we can ignore the op
¡
1
n

¢
term in Lemma 4 in calculation of expectation.

Theorem 1

E
hbσ2i ≈ σ2ε − 2

n

(K − 2)σ2εu
H

− 1

n
σ2ε +

1

n

σ2uσ
2
ε

H

where

H ≡ 1

n
f 0f =

1

n
π0Z0Zπ

Proof. From Lemma 4, we have

bσ2 = σ2ε

+
1√
n

√
n

µ
ε0ε
n
− σ2ε

¶
− 2√

n
σεu

µ
1

H
T1

¶
− 2√

n
σεu

µ
1

H
T2 +

1

H
T3

¶
− 2

n

√
n

µ
ε0u
n
− σεu

¶µ
1

H
T1

¶
− 1

n

T 21
H
+
1

n

σ2uT
2
1

H2

+op

µ
1

n

¶
Because expected values of the Op

³
1√
n

´
terms in the second line are zero, it suffices to consider the

Op
¡
1
n

¢
in the third line. First, we note that

E [T2] = E

·
u0Pε√
n

¸
=

1√
n
Kσεu

E [T3] = E

·
−2
µ
f 0u
n

¶
1

H

µ
1√
n
f 0ε
¶¸

= − 2√
n
σεu

from which we obtain

E

·
− 2√

n
σεu

µ
1

H
T2 +

1

H
T3

¶¸
= − 2

n

(K − 2)σ2εu
H

Second, we note that

E

·
− 2
n

√
n

µ
ε0u
n
− σεu

¶µ
1

H
T1

¶¸
= 0

due to symmetry. Third, we note that

E
£
T 21
¤
= Hσ2ε

11



from which we obtain

E

·
− 1
n

T 21
H
+
1

n

σ2uT
2
1

H2

¸
= − 1

n
σ2ε +

1

n

σ2uσ
2
ε

H

We therefore obtain

eE hbσ2i = σ2ε − 2

n

(K − 2)σ2εu
H

− 1

n
σ2ε +

1

n

σ2uσ
2
ε

H

Remark 5 In order to understand Theorem 1, imagine a counter-factual situation where the Þrst order

asymptotic approximation for
√
n
³bβ2SLS − β´ is exact, i.e., write

√
n
³bβ2SLS − β´ = 1

H
T1

We would then have

bσ2 = σ2ε

+
1√
n

√
n

µ
ε0ε
n
− σ2ε

¶
− 2√

n
σεu

µ
1

H
T1

¶
− 2
n

√
n

µ
ε0u
n
− σεu

¶µ
1

H
T1

¶
− 1

n

T 21
H
+
1

n

σ2uT
2
1

H2

+op

µ
1

n

¶
and

E
hbσ2i ≈ σ2ε − 1

n
σ2ε +

1

n

σ2uσ
2
ε

H

Therefore, Theorem 1 implies that the approximate mean of bσ2 is smaller by
2

n

(K − 2)σ2εu
H

than would be expected out of Þrst order asymptotic approximation.

Remark 6 Theorem 1 can be understood from a different perspective. Note that the approximate bias of

2SLS is equal to

1√
n
E [T2 + T3] =

(K − 2)σεu
nH

Roughly speaking, 2SLS is biased toward OLS, which minimizes 1
n

Pn
i=1 (yi − xib)2 with respect to b. If

the 2SLS bβ2SLS is close to the OLS bβOLS, then we should expect
1

n

nX
i=1

³
yi − xibβ2SLS´2 ≈ 1

n

nX
i=1

³
yi − xibβOLS´2 ¿ 1

n

nX
i=1

(yi − xiβ)2 = 1

n

nX
i=1

ε2i
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