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Justified communication equilibrium (JCE) is an equilibrium re-
finement for signaling games with cheap-talk communication. A
strategy profile must be a JCE to be a stable outcome of non-
equilibrium learning when receivers are initially trusting and
senders play many more times than receivers. In the learning
model, the counterfactual “speeches” that have been informally
used to motivate past refinements are messages that are actually
sent. Stable profiles need not be perfect Bayesian equilibria, so JCE
sometimes preserves equilibria that existing refinements eliminate.
Despite this, it resembles the earlier refinements D1 and NWBR,
and it coincides with them in co-monotonic signaling games.

Cheap-talk communication is available in many of the settings signaling games
are intended to model, and signaling games with or without cheap talk can have
a great many equilibria. This paper provides a learning foundation for justified
communication equilibrium (JCE), which is a new equilibrium refinement for sig-
naling games with costly signals and cheap-talk messages. For a given signal and
strategy profile, a sender type is justified if some conceivable (i.e. undominated)
response makes the type weakly prefer to play the signal rather than conform
to the strategy profile, and makes all other types weakly prefer to conform. A
justified response to a signal is a convex combination of best responses to beliefs
that assign probability 1 to the justified types for that signal. JCE requires that
for every signal, there is at least one message that induces the receiver to play a
justified response.

The restrictions imposed by JCE on off-path play have some of the flavor of
commonly used signaling game refinements, such as the Intuitive Criterion (Cho
and Kreps, 1987) and D1 (Banks and Sobel, 1987), but JCE can make very differ-
ent predictions in economically relevant settings. Unlike those refinements, JCE
has a foundation in the theory of learning in games. We provide this foundation
by analyzing the limits of steady states in an overlapping generations learning en-
vironment where agents are patient, have long expected lifetimes, and the senders
on average play many more repetitions of the game than the receivers do. This
fits settings where the senders are institutions and the receivers are individuals
(or families, clans, etc.), since institutions will typically be involved in many more
interactions than individuals. We say that the strategy profiles corresponding to
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these steady states are stable.
We analyze the stable profiles under the assumption that the message space is

large enough that, for each signal and subset of sender types, there is a distinct
message that claims “I am playing this signal and my type is in this set.” We
further assume that receivers are initially trusting, which roughly means that
the receivers’ prior leads them to trust such messages they have not previously
observed to be lies. We view initial trust as a mild and plausible assumption on
how receivers respond to messages. Section V.C discusses how it relates to past
work on the interpretation of communication.

JCE emerges as a necessary condition for stability in our learning model because
when senders are long-lived most of them play a best response to the aggregate
play of the receivers. A given signal can only be a best response for justified types,
so receivers are very unlikely to encounter a signal being played by a non-justified
type. Initial trust then implies that most receivers will trust a message claiming
to be a justified type, and so play a justified response.

Because we formally add cheap talk to the extensive form of the signaling game,
our analysis can and does specify how receivers respond to each possible message,
including to the “null message” of saying nothing at all, so we can give the first
learning foundation for “speeches” of the sort Cho and Kreps (1987) used to moti-
vate the Intuitive Criterion. In particular, these speeches are not counterfactual,
but are messages that are actually sent, which lets us determine how receivers
respond to them. Thus, we sidestep the “Stiglitz critique” (Cho and Kreps,
1987; Rabin and Sobel, 1996) of signaling game refinements, which is based on
iterated arguments about how players believe their opponent “should” interpret
hypothetical deviations, and address the possible complications in adding explicit
communication to the signaling game discussed in Fudenberg and Tirole (1991a).

Our results can be seen as both a validation of and a correction to previous
signaling game refinements, which are only roughly in line with the implications
of non-equilibrium learning. Specifically, none of the traditional equilibrium re-
finements is a necessary condition for stability in our learning model.1 Indeed,
as shown by Example 3, the stable outcomes of our learning model need not be
perfect Bayesian equilibria (Fudenberg and Tirole, 1991b), since the response to
an off-path signal can be a mixture over pure best responses corresponding to
different beliefs that need not itself be a best response to a single belief. For this
reason, JCE is not a refinement of perfect Bayesian equilibrium, but instead is
a refinement of perfect Bayesian equilibrium with heterogeneous off-path beliefs
(PBE-H, Fudenberg and He (2018)).

We explore the relationships of JCE with previous equilibrium refinements later
in the paper, but we preview a few results here. As the left-hand box in Figure 1
illustrates, every JCE passes the “Intuitive Criterion Test,” and every JCE is a
rationality-compatible equilibrium (RCE, Fudenberg and He (2020)), which is the
strongest previous equilibrium refinement for signaling games that has a learning

1Moreover, as far as we know they have not been shown to be necessary in -any- learning model.
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Figure 1. JCE and other restrictions of PBE-H.

foundation. JCE is not nested with D1, but every PBE-H that satisfies NWBR
is path-equivalent to a JCE.2 The right-hand box in Figure 1 depicts the fact
that JCE, NWBR, and D1 are essentially equivalent in the special but important
class of co-monotonic signaling games, which provides a learning justification for
selecting the least-cost separating equilibria in many of these games.

I. Preliminaries

A. Signaling Games with Communication

In a signaling game with communication, the sender (player 1) has a type space
Θ, a signal space S, and a message space M . The sender observes their type,
which is drawn from a full-support distribution λ ∈ ∆(Θ), and then chooses a
signal s ∈ S and a message m ∈M .3 The receiver (player 2) observes the sender’s
choice of (s,m), but not the sender’s type, then selects their action a ∈ A, after
which payoffs are realized. We assume that all of these sets are finite. We denote
the set of sender behavior strategies by Π1 = (∆(S ×M))Θ, the set of receiver
behavior strategies by Π2 = (∆(A))S×M , and let Π = Π1 × Π2 be the set of
strategy profiles.

The utility function of the sender is u1 : Θ×S×A→ R and the utility function
of the receiver is u2 : Θ×S×A→ R. Each player’s utility depends on the sender’s

2When we refer to NWBR in this paper we mean “Never a weak best response” in the sense of Cho and
Kreps (1987) and Cho and Sobel (1990).

3Throughout, we use ∆(Ω) to denote the set of (Borel) probability distributions over a set Ω.
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signal and type and the receiver’s action; neither utility depends on the message
of the sender. We will abuse notation slightly and write u1(θ, π) and u2(π) for
the expected payoffs from strategy profile π = (π1, π2), as well as u1(θ, s, α) for
the expected utility of the type θ sender from playing signal s when the receiver
responds according to α ∈ ∆(A), and u2(p, s, α) for the expected utility of the
receiver from playing α when the sender plays s and the probability distribution
over their type is p ∈ ∆(Θ). Finally, BR(θ, s) = arg maxa∈A u2(θ, s, a) denotes
the pure best responses for the receiver to signal s when the sender’s type is θ,
BR(p, s) = arg maxa∈A u2(p, s, a) denotes the pure best responses for the receiver

to signal s under belief p ∈ ∆(Θ), and BR(Θ̃, s) = ∪
p∈∆(Θ̃)

BR(p, s) denotes the

pure best responses to signal s for some p with support in Θ̃.

B. Definition of Justified Communication Equilibrium

The set of actions that are a best response to some belief about θ is BR(Θ, s).
These are the undominated responses to s; the other responses are conditionally
dominated in the sense of Fudenberg and Tirole (1991a). Thus ∆(BR(Θ, s)) is the
set of receiver mixed actions that assign probability 1 to undominated responses.

DEFINITION 1 (Fudenberg and He, 2018): Strategy profile π is a perfect Bayesian
equilibrium with heterogeneous off-path beliefs (PBE-H) if

1) For each θ ∈ Θ, u1(θ, π) = max(s,m)∈S×M u1(θ, s, π2(·|s,m)).
2) For each on-path signal-message pair (s,m), π2(·|s,m) ∈ ∆(BR(p(s,m), s)),

where p(s,m) is the posterior belief given (s,m) obtained through Bayes’ rule.
3) For each off-path signal-message pair (s,m), π2(·|s,m) ∈ ∆(BR(Θ, s)).

Conditions 1 and 2 of Definition 1 are the conditions for a strategy profile to be a
Nash equilibrium. Condition 3 lets the receiver’s response to an off-path signal-
message pair (s,m) be a mixture over several actions, each of which is a response
to a possibly different belief about the sender’s type. Conditions 1–3 together
are slightly weaker than perfect Bayesian equilibria (PBE, Fudenberg and Tirole
(1991b)). This is because PBE replaces Condition 3 with the requirement that
the receiver response to each (s,m) is in the set

MBR(Θ, s) = {α ∈ ∆(A) : ∃p ∈ ∆(Θ) s.t. u2(p, s, α) ≥ u2(p, s, a) ∀a ∈ A}

of mixed best responses to s.4 ∆(BR(Θ, s)) can be strictly larger thanMBR(Θ, s)
because it can include mixtures over actions that are not best responses to the
same belief.

Justified communication equilibrium adds the “justified-response” condition to
PBE-H. To define this condition, for each type θ, signal s, and strategy profile π,
let

D̃θ(s, π) = {α ∈ ∆(BR(Θ, s)) : u1(θ, s, α) > u1(θ, π)}.

4Recall that PBE and sequential equilibrium are equivalent in signaling games.
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This is the set of mixtures over undominated receiver responses to s that would
make type θ strictly prefer s to their outcome under π.5 Let

D̃0
θ(s, π) = {α ∈ ∆(BR(Θ, s)) : u1(θ, s, α) = u1(θ, π)}

be the corresponding set for which type θ would be indifferent between s and
their outcome under π. For every s ∈ S and π ∈ Π1 ×Π2, let

Θ†(s, π) = {θ ∈ Θ : D̃θ(s, π) ∪ D̃0
θ(s, π) 6⊆ ∪θ′ 6=θD̃θ′(s, π)}

be the set of types θ for which there is some mixed receiver action α ∈ ∆(BR(Θ, s))
that makes θ weakly prefer (s, α) to their outcome under π and no other type θ′

strictly prefer (s, α) to their outcome under π.

DEFINITION 2: The set of justified types for signal s given profile π is

Θ(s, π) =

{
Θ†(s, π) if Θ†(s, π) 6= ∅
Θ if Θ†(s, π) = ∅

.

A justified response to signal s given profile π is a distribution α ∈ ∆(BR(Θ(s, π), s))
that assigns positive probability only to actions that are best responses to beliefs
with support in Θ(s, π).6

Note that in a PBE-H, each type is justified for every signal it plays with positive
probability. This is because every signal-message pair the type is willing to play
must give them their equilibrium payoff, while no other type can get strictly more
than their equilibrium payoff by playing it.

DEFINITION 3: The strategy profile π is a justified communication equi-
librium (JCE) if

1) It is a PBE-H.
2) For each s ∈ S, there is some m ∈M such that π2(·|s,m) ∈ ∆(BR(Θ(s, π), s)).

Every JCE must be a PBE-H. The second condition requires that the receiver’s
response to each signal is justified for at least one message. Since the equilibrium
response to on-path signal-message pairs is justified in any PBE-H, the substance
of JCE comes from the requirement that there be a justified response to every
off-path signal. As we will see, this conclusion only follows from our learning
model when the message space is sufficiently large. However, the definition of
JCE applies for any non-null message space, including the case without cheap
talk, where the message space is singleton.

5This set is very similar to the set Dθ used by Cho and Kreps (1987) to formulate NWBR; we discuss
the differences in Section III.

6Appendix A1 shows that if π is a PBE-H, Θ†(s, π) = ∅ only when s is equilibrium dominated for all

types, so how to define Θ(s, π) in this case is not important.
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C. Hiring a Worker

This subsection presents two stylized examples of a firm (the sender) potentially
hiring a worker (the receiver) for a particular job. In both examples, the firm’s
signal s ∈ {Hire, Pass} is its choice of whether to hire the worker. The worker’s
choice of action a ∈ {eH , eM , eL} represents how hard they work; eH represents
high effort, eM medium effort, and eL low effort. The firm has three possible
types, Θ = {θH , θM , θL}: type θH represents high quality, θM medium quality,
and θL low quality.7 The payoffs to both parties are normalized to 0 when the
firm does not hire. The examples differ only in their payoff functions when the
firm hires. In the first example JCE rules out an equilibrium that satisfies D1,
and in the second JCE preserves an equilibrium ruled out by D1 (and a fortiori
ruled out by NWBR). Both of these possibilities can happen in more general set-
tings; our goal here is to illustrate the logic of JCE in a simple and economically
sensible setting.

EXAMPLE 1:

θH eH eM eL
Hire 16, 2 1, 0 −2,−1
Pass 0, 0 0, 0 0, 0

θM eH eM eL
Hire 8, 0 6, 1 −4, 0
Pass 0, 0 0, 0 0, 0

θL eH eM eL
Hire 4,−1 1, 0 −1, 1
Pass 0, 0 0, 0 0, 0

In this example, a hired worker wishes to adjust their costly effort with the
quality of the firm because the worker gains when the firm does well, and firm
quality and worker effort are complements in determining the likelihood of success.
Moreover, the return to effort varies with type so much that the intermediate effort
level is strictly dominated when probability of the intermediate type θM is small.

All firm types have the same ordinal ranking over outcomes, (Hire, eH) �
(Hire, eM ) � Pass � (Hire, eL), but they do not have the same ranking of
outcome distributions. For instance, there are mixtures over eH and eL that
make θH strictly prefer to Hire and θL strictly prefer to Pass, while there are
mixtures over eM and eL that make θL strictly prefer to Hire while θH strictly
prefers to Pass. For motivation, suppose that, relative to the low quality θL firm,
the high quality θH firm can very efficiently capitalize on a worker exerting high
effort, but does not benefit much from medium effort, and is harmed by a poor
worker exerting low effort. Similarly, there are mixtures over eM and eL that make
θM strictly prefer to Hire and θL strictly prefer to Pass, while there are mixtures

7The conclusions in these examples do not depend on the distribution over types, so we omit λ.



VOL. VOLUME NO. ISSUE JUSTIFIED COMMUNICATION EQUILIBRIUM 7

over eH and eL that make θL strictly prefer to Hire and θM strictly prefer to
Pass. This is the case when, relative to the low quality firm, the medium-quality
firm gains significantly from medium effort, does not gain much from high effort,
and is greatly hurt by low effort.

In every JCE there is a positive probability that the worker is hired. To see
why, consider a strategy profile π in which π1(Hire|θ) = 0 for all θ. Observe
that when α ∈ ∆({eH , eM , eL}) satisfies 4α(eH) + α(eM ) − α(eL) ≥ 0, either
16α(eH) +α(eM )− 2α(eL) > 0 or 8α(eH) + 6α(eM )− 4α(eL) > 0, so either θH or

θM strictly prefers Hire whenever θL weakly prefers Hire. Thus D̃θL(Hire, π)∪
D̃0
θL

(Hire, π) ⊆ D̃θH (Hire, π) ∪ D̃θM (Hire, π), so θL 6∈ Θ†(Hire, π). Moreover,

Θ†(Hire, π) is not empty, because some effort distributions make θH prefer Hire
and the other types prefer Pass, so θL is not a justified type.8 Since it is optimal
for a hired worker to play eL only when they put positive probability on the firm
being θL, no justified response can use eL with positive probability, so all firm
types strictly prefer to Hire.

Unlike JCE, D1 and weaker equilibrium refinements such as the Intuitive Cri-
terion allow equilibria in which all types Pass.9 The Intuitive Criterion allows
this equilibrium because θL would obtain a higher payoff from Hire if the worker
responds with either eH or eM , both of which are undominated. Consequently,
the Intuitive Criterion allows the worker respond to Hire with eL, since it is the
best response to θL. Similarly, D1 allows the worker to respond to Hire with
eL, because there is no single type that strictly prefers to Hire whenever θL
weakly prefers to do so. In particular, θL strictly prefers to play Hire when the
worker responds with (1/7)eH + (6/7)eL, though this makes θM strictly prefer
to Pass. Likewise, θL strictly prefers to Hire when the worker responds with
(2/5)eM + (3/5)eL, though this makes θH strictly prefer to Pass. �

Example 1 shows that there are some sensible economic environments where
JCE makes stronger predictions than D1.10 The reverse can also be true, as
shown in the following example, where JCE allows an outcome that D1 and the
stronger NWBR condition rule out. Because JCE, unlike D1 or NWBR, has a
learning foundation, this highlights the subtlety of the implications of learning
foundations for equilibrium play.

EXAMPLE 2:

As before, a hired worker wishes to exert high effort when hired by a high
quality firm and low effort when hired by a low quality firm. However, here a
hired worker also wishes to exert high effort when hired by a medium quality firm.
Moreover, there is no belief over the sender’s type that makes both high and low

8In fact, the set of justified types for Hire given π is Θ(Hire, π) = Θ†(Hire, π) = {θH , θM}.
9Section III reviews the formal definitions of the Intuitive Criterion and D1.
10OA.7.2 in the Online Appendix provides a qualitatively different example concerning job assignment

and corporate culture where JCE is again stronger than D1.
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θH eH eM eL
Hire 16, 2 1, 0 −5,−3
Pass 0, 0 0, 0 0, 0

θM eH eM eL
Hire 8, 1 6, 0 −4,−2
Pass 0, 0 0, 0 0, 0

θL eH eM eL
Hire 4,−8 1, 0 −1, 4
Pass 0, 0 0, 0 0, 0

effort levels best responses due to concavity in the worker’s payoff.
The firm’s payoffs are similar to Example 1, except here the payoff of the θH

firm from a worker exerting low effort is reduced. This guarantees that, whenever
a type θH or θM firm weakly prefers to Hire a worker whose effort concentrates
on eH and eL, type θL strictly prefers to Hire.

Every type playing Pass is both a PBE and a JCE outcome. It is a PBE
outcome because all types are deterred from playing Hire when the receiver
responds with eL = BR(θL, Hire). Moreover, θL is a justified type for Hire
under a strategy profile π where all types pass since there are effort distributions
which make θL prefer to play Hire and the other types prefer to Pass. Thus, eL
is a justified response to Hire, so it is a JCE outcome for every type to Pass.

However, every type playing Pass is not a D1 outcome. This is because no
mixed best response to Hire puts positive probability on both eH and eL. Con-
sequently, every mixed best response that makes θL weakly prefer to Hire, makes
θM strictly prefer to do so. Likewise, for type θH . The only response to Hire
allowed by D1 is then eH = BR(θM , Hire), which deters no type from hiring. �

Both Examples 1 and 2 use the setting of a firm hiring a worker, but the point
that JCE and D1 are not nested holds more generally, as we explain in Section
III.

II. The Learning Model

A. Model Overview

Now we sketch the structure of the learning model we use to provide a founda-
tion for JCE, and then explain why the learning model generates the predictions
we saw in the previous examples. (Later subsections provide the remaining details
and formal results of the model, as well as some alternative models with the same
implications.) The model is an overlapping generations learning environment
where time is discrete and doubly infinite, t ∈ {...,−2,−1, 0, 1, 2, ...}. For for each
θ, there is a continuum of agents of mass λ(θ) in the role of a type θ sender, and
there is a continuum of agents of mass 1 in the receiver role. The agents have ge-
ometric lifespans: agents in sender roles have continuation probability γ1 ∈ [0, 1),
while agents in the receiver role have continuation probability γ2 ∈ [0, 1). Each
period newborn agents replace the departing agents so the sizes of the various
populations are constant, and then agents are anonymously matched into sender-
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receiver pairs: Each sender agent is equally likely to be paired with any of the
current receiver agents and vice-versa. In each match, the sender plays a signal
s and a message m. The receiver observes the chosen (s,m) and responds with
an action a. At the end of each period, both players in a given match observe its
outcome, which consists of the type of the sender, the signal and message chosen
by the sender, and the action chosen by the receiver.

All agents are rational Bayesians who choose policies (maps from past observa-
tions to current play) that maximize their expected discounted payoff. At every
period t, the state of the system is the shares of agents in a given player role
with the various possible histories. The state and the optimal policies induce an
aggregate sender strategy and an aggregate receiver strategy, and thus an update
rule that maps states in period t to states in period t+ 1. We study this system’s
steady states, which are the fixed points of the update rule.

Because the receivers observe the type of the sender at the end of each match,
neither their continuation probability nor their discount factor impacts their play,
and their optimal dynamic programming policy is to simply choose an action that
maximizes their expected payoff in the current match. Senders’ observations do
depend on their play, so their optimal policies incorporate a value for “experi-
menting” with various signal-message pairs that have the potential to lead to an
increase in payoff. The size of the senders’ experimentation incentive depends
on their continuation probability, their discount factor δ ∈ [0, 1), and how much
they have already learned: Inexperienced senders have more incentive to experi-
ment, and senders cease experimenting when they have enough data. Moreover,
different types of sender will choose to experiment in different ways.

We focus on the limits of steady-state play when γ1 and γ2 tend to 1, so senders
and receivers can acquire enough observations to outweigh their prior, and γ1

tends to 1 quicker than γ2, so that the typical sender plays many more times
than the typical receiver. This means that most receivers only ever match with
senders who have substantially more experience than them. We also assume that
δ goes to 1, to ensure that the senders experiment enough to rule out limits that
are not Nash equilibria. We call the profiles that correspond to this limit the stable
profiles.11 This limit provides an idealized version of long-run behavior in settings
where the senders are institutions who both have an incentive to experiment and,
over time, interact with a large number of individuals in the role of the receivers;
one example is firms signaling their knowledge about their productivity, future
growth, etc. to potential workers via offers of incentive pay. While workers
may interact with a large number of firms over their lifetime, or observe family
members and other relations do so, it is unlikely that any given individual will
be involved in (or have access to information concerning) as many interactions as
the typical large firm.

Preliminary lemmas show that every stable profile must be a PBE-H. The

11As Section V.A explains, our results hold under other models of the population structure that also
have relatively experienced senders.
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optimality of sender play follows from the fact that patient and long-lived senders
eventually stop experimenting and play a best response to the aggregate receiver
strategy. The beliefs of long-lived receivers are almost entirely driven by their
data as opposed to their priors, ensuring that they respond optimally to on-
path signal-message pairs, and because receivers are myopic, their off-path play
is always a best response to some beliefs, as PBE-H requires.

Our main result, which shows that all stable profiles are JCE, uses two addi-
tional assumptions. First, we assume that the sender message space is sufficiently
large that for each signal s ∈ S and subset of sender types Θ̃ ⊆ Θ, there is a
distinct message m

s,Θ̃
that can be interpreted as “I am playing s and my type

is in Θ̃.”12 We also assume that the receiver “trusts” the message provided that
they have not previously encountered a sender with any other type θ 6∈ Θ̃ playing
s and sending m

s,Θ̃
. We discuss these assumptions in more detail in Section II.D.

With them we prove the following result:

THEOREM 1: If π is stable, then it is a justified communication equilibrium.

B. Hiring a Worker, Revisited

We now discuss our learning model in the context of the two “hiring a worker”
examples. In particular, we explain why the model rules out the “All Pass” out-
come in Example 1, where it is consistent with D1 but not JCE, while the model
does allow “All Pass” in Example 2, where it is consistent with JCE but not D1.

EXAMPLE 1 CONTINUED:
To see why there is no stable profile where all firms Pass, recall that with

enough experience, firms learn the aggregate effort distribution and exhaust the
option value of continued experimentation. Experienced firms then either hire
and optimally communicate with workers or Pass. If the stable outcome is for
all types of firm to Pass, it must be that the aggregate effort distribution puts
positive probability on effort eL regardless of how a hiring firm communicates.
However, low effort is only optimal for a worker if they assign positive probability
to the hiring firm being type θL. Initially-trusting workers will exert high or low
effort when a hiring firm claims to not be type θL, unless they have previously
experienced deception by type θL firms. Since the typical firm has many more
interactions over its lifetime than the typical worker, most workers only ever
match with experienced firms. Thus, in order for a significant share of workers to
experience deception by θL firms, θL firms must learn that it is optimal to Hire
and play mIn,{θH ,θM}. However, either θH or θM type firms strictly prefer to Hire
whenever a θL weakly prefers to Hire, so one of these types will not Pass because
it will learn it is strictly optimal to Hire. �

12The literal content of m
s,Θ̃

need not be “I am playing s and my type is in Θ̃.” Instead, m
s,Θ̃

might

be a statement like “I am playing signal s so you should believe my type is in Θ̃ because...”
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EXAMPLE 2 CONTINUED:
Online Appendix Section OA.6.1 shows that the outcome where every type

plays Pass is stable by demonstrating that there are steady-state profiles in which
most sufficiently experienced firms play Pass, but type θL firms experiment with
Hire much longer than the other types do. This means that the vast majority of
workers who have previously been employed were only hired by low quality firms,
which leads them to exert effort eL the next time they are hired. In contrast,
initially-trusting workers who have not previously experienced employment will
exert high effort when first hired by a firm claiming to be of high or medium
quality, so the aggregate worker effort distributions will concentrate on eH and
eL. As observed earlier, under such effort distributions, whenever type θH or θM
weakly prefers to Hire, type θL strictly prefers to do so. This is what drives
type θL firms to experiment with Hire much more than the other types, which
supports the desired steady states.

D1 eliminates the “All Pass” outcome while our learning model allows it be-
cause D1 only considers receiver mixed best responses. However, in a learning
model, there is no reason that the prevailing aggregate receiver strategy must
be a mixed best response, and the steady states described above have aggregate
worker responses that put positive probability on both both eH and eL: Inexpe-
rienced workers exert effort eH , while most of the experienced workers learn that
it is optimal to exert effort eL. �

C. Details of the Learning Model

We now fill in the remaining details about the learning environment we study,
provide formal statements of our assumptions, and prove our main result. We
also discuss alternative interpretations of the stable profiles, and related versions
of stability that correspond to different ways of passing to the limit. Readers who
are more interested in the implications of JCE than its learning foundation can
skip ahead to Section III.

At the beginning of their lives, senders have a non-doctrinaire prior g1 ∈
∆(Π2) over the aggregate receiver behavior strategy π2, and receivers have a
non-doctrinaire prior g2 ∈ ∆(∆(Θ×S×M)) over q ∈ ∆(Θ×S×M), the prevail-
ing distribution of sender types, signals, and messages.13 (To simplify notation,
we assume there is a single prior for all agents in a given player role, but all
of our results extend to any finite number of priors per role.) Upon observing
the outcome of a match, agents update their beliefs in accordance with Bayes’
rule, which is always applicable because the priors assign positive probability

13Here “non-doctrinaire” means “has a continuous density function that is strictly positive on the interior
of the probability simplex.” Since q(θ, s,m) = λ(θ)π1(s,m|θ) is the distribution over (θ, s,m) induced
by the sender type distribution λ and the aggregate sender behavior strategy π1, it would be equivalent
to define the receivers’ beliefs as elements of ∆(∆(Θ)×Π1).
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to any finite sequence of observations. Define H1,t = (S ×M × A)t to be the
histories that a sender of age t could have observed, with the convention that
(S ×M × A)0 = ∅, and let H1 = ∪t∈NH1,t be the collection of all such histories.
Likewise, the relevant pieces of information for the receiver are the type, signal
choice, and message choice of the sender. Let H2,t = (Θ×S×M)t denote the set
of sequences of such triples that a receiver agent with age t could have observed,
and let H2 = ∪t∈NH2,t be the collection of all such sequences.

All agents maximize their expected discounted payoff. The receivers use a policy
y : H2 → AS×M which maps their histories to pure strategies to maximize

Eg2

 ∞∑
t=0

∑
θ,s,m,a

γt2q(θ, s,m)u2(θ, s,y(s,m|h2,t))

 .
Type θ senders use an optimal policy xδ,γ1

θ : H1 → S×M that maps their histories
to signal-message pairs to maximize

Eg1

[ ∞∑
t=0

∑
s,m,a

(δγ1)tπ2(a|xδ,γ1

θ (h1,t))u1(θ,xδ,γ1

θ (h1,t), a)

]
.14

We will focus on the case where both δ and γ1 are near 1, so the senders have
maximal incentives to experiment.15

At every period t, the state of the system, denoted µt = (µ1,t, µ2,t) ∈ (∆(H1))Θ×
∆(H2), gives the shares of agents in a given player role with the various possible

histories. Given µt, the profile xδ,γ1 = {xδ,γ1

θ }θ∈Θ of sender policies induces a

sender behavior strategy σδ,γ1
1 (µ1,t) ∈ Π1 that we call the aggregate sender play.

Similarly, the receiver policy y induces a receiver behavior strategy σ2(µ2,t) ∈ Π2

that we call the aggregate receiver play. We call σδ,γ1(µt) = (σδ,γ1
1 (µ1,t), σ2(µ2,t)) ∈

Π1×Π2 the aggregate strategy profile. (Appendix D gives formal definitions of the

mappings σδ,γ1
1 : (∆(H1))Θ → Π1 and σ2 : ∆(H2) → Π2, as well as other objects

introduced in this subsection.)
A policy profile generates an update rule f δ,γ1,γ2 : (∆(H1))Θ×∆(H2)→ (∆(H1))Θ×

∆(H2), taking the state in period t to the state in period t + 1, a mapping

Rδ,γ1
1 : Π2 → Π1 that describes the limit of the aggregate play of the senders

as t → ∞ when the aggregate receiver play is fixed at π2, and a mapping
Rγ2

2 : Π1 → Π2 that describes the limit of the aggregate receiver play as t →
∞ when the aggregate sender play is fixed at π1. We refer to the mapping

Rδ,γ1,γ2(π) ≡ (Rδ,γ1
1 (π2),Rγ2

2 (π1)) as the aggregate response mapping. OA.2.1
verifies that this mapping is continuous.

14Here we slightly abuse notation by having both components of xδ,γ1θ enter the utility function, though
it does not depend on the sender’s message.

15Recall from Fudenberg and Kreps (1988) and Fudenberg and Levine (1993) that with impatient players
learning need not lead to Nash equilibrium, let alone to refinements of it.
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We study this system’s steady states, those µ satisfying f δ,γ1,γ2(µ) = µ. We call
the corresponding aggregate strategy profiles the steady-state profiles, and denote
them by Π∗(g, δ, γ1, γ2) ⊆ Π1×Π2. As OA.2.2 shows, these are the fixed points of
the aggregate response mapping. Continuity of the aggregate response mapping,
along with Brouwer’s fixed point theorem, then implies that steady-state profiles
always exist.

PROPOSITION 1: Π∗(g, δ, γ1, γ2) consists of the strategy profiles that are fixed
points of the aggregate response mapping, and it is non-empty for all g = (g1, g2),
δ, and γ1, γ2.

We consider the iterated limit limγ2→1 limδ→1 limγ1→1 Π∗(g, δ, γ1, γ2). That is,
we focus on strategy profiles that are limits of steady states corresponding to
some sequence of parameters δ, γ1, and γ2 satisfying this iterated limit. We will
call these the stable profiles.16 A corollary of Proposition 1 is that there are stable
strategy profiles.

COROLLARY 1: Stable strategy profiles exist.

D. Key Assumptions

Our results about stable profiles use two additional assumptions. First, we
assume that the sender message space is sufficiently rich.

ASSUMPTION 1: (Richness) |M | ≥ 2|Θ||S|.

Assumption 1 requires that the message space is large enough to have a distinct
element, m

s,Θ̃
∈M , for each signal s ∈ S and subset of sender types Θ̃ ⊆ Θ. This

allows m
s,Θ̃

to be interpreted as “I am playing s and my type is in Θ̃.” Our

next assumption is that when the sender plays s and sends the message m
s,Θ̃

, the

receiver “trusts” the message provided that they have not previously encountered
a sender with any other type θ 6∈ Θ̃ playing s and sending m

s,Θ̃
.

ASSUMPTION 2: (Initial Trust) For every s ∈ S and Θ̃ ⊆ Θ, there is some

m
s,Θ̃
∈ M such that y(s,m

s,Θ̃
|h2) ∈ BR(Θ̃, s) for every h2 ∈ H2 in which

(θ′, s,m
s,Θ̃

) has not been observed for any θ′ 6∈ Θ̃.

Initial trust says that receivers give the sender the “benefit of the doubt” and
act in accordance with certain claims they have not previously seen proved false.17

It does not require that the receivers are certain that these claims are true, only

16Formally, strategy profile π is stable if there is a sequence {γ2,j}j∈N → 1, sequences {δj,k}j,k∈N with
limk→∞ δj,k = 1 for all j, and sequences {γ1,j,k,l}j,k,l∈N with liml→∞ γ1,j,k,l = 1 for all j, k, such
that π = limj→∞ limk→∞ liml→∞ πj,k,l for some sequence πj,k,l ∈ Π∗(g, δ1,j,k, γ1,j,k,l, γ2,j).

17Initial trust is similar in spirit to the “believe-unless-refuted” condition of Lipman and Seppi (1995),
and is also related to notions of credibility in Rabin (1990), Farrell (1993), and Clark (2020). We
discuss these connections in more detail in Section V.C.
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that they give them a sufficiently high probability of being true. Of course, the
receiver may quickly learn to distrust claims that prove to be false, which is why
Assumption 2 is only applied to claims for which no direct contradictory evidence
exists.18

We maintain Assumptions 1 and 2 throughout the main text. Section V.D
discusses alternatives to initial trust that give refinements of PBE-H that are
similar to JCE.

Without communication, or with communication but no assumptions on the
receivers’ prior beliefs about the meaning of previously unobserved messages,
stability offers little predictive power and the theorem is false. In particular,
it then allows implausible outcomes, as shown by example in OA.7.1. In the
example, there are two sender types, θ1 and θ2, and two signals, In and Out.
Out is strictly dominant for θ2, and θ1 prefers to play In if the receiver responds
to In with the best response to θ1, so the reasonable outcome seems to be one
where θ1 plays In and θ2 plays Out. Indeed, this is the unique JCE as well
as the unique equilibrium outcome that satisfies weaker refinements such as the
Intuitive Criterion. However, if the receivers are “initially skeptical” so that when
they first witness (In,m) they believe it probably came from θ2 regardless of m,
there are stable profiles in which both types play Out. This is because, if very few
senders play In, the aggregate receiver response to In concentrates on the best
response to θ2, which ensures that almost all senders in the population learn that
it is optimal to play Out.19 Intuitively, cheap talk has no effect in “babbling”
equilibria where messages are meaningless, and effective communication requires
some restrictions on how people interpret messages they have never seen before.

E. Proof of Theorem 1

THEOREM 1: If π is stable, then it is a justified communication equilibrium.

To prove this theorem we first show that a stable profile is a PBE-H. Condition
3 of the definition of PBE-H follows from the fact that the receivers in our model
myopically optimize because their observations do not depend on their play. We
establish the two other conditions of Definition 1, as well as the additional re-
quirement of JCE given in Definition 3, using three supporting lemmas, whose
proofs are in Appendix B.

The following lemma shows that stable profiles satisfy Condition 1 of Definition
1.

LEMMA 1: Suppose that π is stable. Then for each θ ∈ Θ, π1(·|θ) puts support
only on those sender signal-message pairs that are optimal for type θ under the
receiver behavior strategy π2.

18Initial trust implicitly places restrictions on the receivers’ prior g2. For simplicity, we state it directly
on receiver behavior.

19The same argument shows that this outcome is also stable when cheap talk is not feasible.
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The proof of Lemma 1 shows that for fixed γ2 ∈ [0, 1), aggregate sender play is
optimal given the aggregate receiver play when first γ1 → 1 and then δ → 1. As in
Fudenberg and Levine (1993), this holds because each sender type will experiment
enough to drive the option value of experimentation to 0, so that aggregate sender
play is optimal in the limit. The conclusion of Lemma 1 follows from combining
this with the fact that the sender best response correspondence (in the underlying
two-player game) has a closed graph.

The next lemma shows that stable profiles satisfy Condition 2 of Definition 1.

LEMMA 2: Suppose that π is stable. Then for any sender signal-message pair
(s,m) that occurs with positive probability under π, π2(·|s,m) puts support only
on receiver actions that are best-responses to s and the posterior belief induced by
λ and {π1(s,m|θ)}θ∈Θ.

The proof of Lemma 2 shows that receivers will get enough observations of on-
path play for their data to swamp their priors. By the law of large numbers their
sample converges to the population distribution with high probability, and since
receivers myopically optimize, the lemma follows.

Neither Lemma 1 nor Lemma 2 requires Assumptions 1 or 2. The next lemma
does require both assumptions. The lemma shows that, for fixed s ∈ S and
Θ̃ ⊆ Θ, if every type θ 6∈ Θ̃ strictly prefers their payoff under π to their payoff
from playing (s,m

s,Θ̃
) (and having the receiver respond with π2(·|s,m

s,Θ̃
)), then

the aggregate receiver response to (s,m
s,Θ̃

) must be supported on BR(Θ̃, s).

The proof of the lemma, and thus of Theorem 1, fails without Assumption 2,
and a fortiori in settings where cheap-talk messages are not available. Moreover,
the example in OA.7.1 shows that without initial trust, there can be stable profiles
that are not JCE.

LEMMA 3: Suppose that π is stable. Fix s ∈ S and Θ̃ ⊆ Θ. If u1(θ, s, π2(·|s,m
s,Θ̃

)) <

u1(θ, π) for all θ 6∈ Θ̃, then π2(BR(Θ̃, s)|s,m
s,Θ̃

) = 1.

Here we give some intuition for this result. When u1(θ, s, π2(·|s,m
s,Θ̃

)) <

u1(θ, π) for all θ 6∈ Θ̃, the proof of Lemma 1 shows that, for fixed γ2, the ag-

gregate probability that a type outside of Θ̃ plays (s,m
s,Θ̃

) is small when first

γ1 → 1 and then δ → 1. For any fixed receiver continuation probability, the share
of receivers in the population who have witnessed a sender with type outside of Θ̃
play the signal-message pair (s,m

s,Θ̃
) becomes arbitrarily small as the aggregate

probability of such play by types outside of Θ̃ approaches 0. Recall that receivers
who have never observed a type outside of Θ̃ play (s,m

s,Θ̃
) would respond to

(s,m
s,Θ̃

) with some action in BR(Θ̃, s). Combining these facts, it follows that

the share of receivers who play some action in BR(Θ̃, s) in response to (s,m
s,Θ̃

)

becomes arbitrarily close to 1 in the iterated limit.
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PROOF OF THEOREM 1:

Let π be a stable profile. We have already established that π must be a PBE-
H. We now show that the justified response condition in Definition 3 holds. Fix
s ∈ S. Since π is a PBE-H, u1(θ, s, π2(·|s,ms,Θ(s,π))) ≤ u1(θ, π) holds for all

θ ∈ Θ(s, π). By definition, whenever a receiver response weakly deters all justified
types from playing a given signal, it must strictly deter every non-justified type.
Thus, u1(θ, s, π2(·|s,ms,Θ(s,π))) < u1(θ, π) for all θ 6∈ Θ(s, π). Applying Lemma 3

to Θ̃ = Θ(s, π) then implies that π2(·|s,ms,Θ(s,π)) ∈ ∆(BR(Θ(s, π), s)). �

Theorem 1 shows that only JCE can be stable. Not all JCE are stable, because
non-doctrinaire priors prevent receiver agents from ever using weakly dominated
strategies, and there can be JCE using weakly dominated receiver strategies. It
is difficult to give an exact characterization of stable profiles for general games,
because all non-doctrinaire initially-trusting priors must be considered to show
that a given profile is not stable. Instead, we use direct proofs to show that certain
equilibria or classes of equilibria are stable. Proposition C1 in Appendix C gives
a partial converse to Theorem 1: It shows that all uniformly justified JCE in
strictly monotonic games are stable for all non-doctrinaire priors, including those
that do not satisfy initial trust. We also give direct proofs of stability in Example
2 and most of our other examples. The general approach in these proofs is to
modify the aggregate response mapping so that its fixed points coincide with the
target strategy profile in the limit, and then show that these fixed points are also
fixed points of the true aggregate response mapping.

III. Relation to Other Equilibrium Refinements

We have seen by example that JCE and D1 are not nested. We now study
their relationship in more detail, as well as the relationship between JCE and
other refinements. As a preliminary step, we show that stable profiles need not
be PBE, and a fortiori need not satisfy any refinements of PBE.20 This is the
reason that JCE is defined as a refinement of PBE-H.

EXAMPLE 3:

The type space is Θ = {θ1, θ2}, the signal space is S = {In,Out}, and the
action space is A = {a1, a2, a3}. The payoffs are given by these tables:

θ1 a1 a2 a3

In −2, 1 1, .1 1,−1
Out 0, 0 0, 0 0, 0

θ2 a1 a2 a3

In 1,−1 1, .1 −2, 1
Out 0, 0 0, 0 0, 0

20The equilibrium refinements in Fudenberg and He (2018) and Fudenberg and He (2020) also relax PBE
to PBE-H, but those papers do not show that this relaxation is needed.
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This game does not have a PBE in which both types play Out, because θ1 prefers
to play Out only if there is positive probability that the receiver responds to In
with a1, while θ2 prefers to play Out only if the receiver’s response to In uses
a3 with positive probability, yet there is no mixed best response to In where the
receiver assigns positive probability to both a1 and a3. Nevertheless, the profile
π in which both sender types play Out and the receiver always responds to In
with (1/2)a1 + (1/2)a3 is a JCE, because both sender types are justified and so
a1 = BR(θ1, In) and a3 = BR(θ2, In) are each justified responses.

Moreover, Online Appendix Section OA.6.2 shows that both types playing Out
can be a stable outcome, because there are steady-state profiles in which the
aggregate receiver strategy plays a2 with probability less than 1/4 in response to
In combined with any message. Under such receiver play, for every message m,
it can be optimal for at most one sender type to play (In,m). Thus, if in the
limit the aggregate strategy of type θ1 plays (In,m) with positive probability,
then the aggregate strategy of type θ2 must play (In,m) with 0 probability, and
the receivers must learn to respond to (In,m) with a1 = BR(θ1, In). But this
response strictly deters type θ1 from playing (In,m), and an analogous argument
applies for the type θ2 senders. �

Unlike JCE, the Intuitive Criterion (Cho and Kreps, 1987), D1 (Banks and
Sobel, 1987), and NWBR (Kohlberg and Mertens, 1986; Cho and Kreps, 1987)
were all formulated as refinements of PBE. However, the procedures they use
to restrict out-of-equilibrium beliefs and equilibrium outcomes can be adapted to
develop tests for any PBE-H, which lets us more naturally compare the predictions
of the modified versions of these refinements with JCE. As we will see, JCE is
stronger than the modified version of the Intuitive Criterion. JCE and D1 are not
nested, although JCE is nested inside the set of equilibria that satisfy a modified
version of D1 we call co-D1. JCE and NWBR are particularly similar, and in
some sense JCE is an adaptation of NWBR with a learning foundation.

We begin by showing that JCE is stronger than a modified version of the In-
tuitive Criterion we call the Intuitive Criterion Test. Let E(s, π) = {θ ∈ Θ :
maxa∈BR(Θ,s) u1(θ, s, a) ≥ u1(θ, π)}. These are the types for whom s is not equi-
librium dominated by profile π in the sense of Cho and Kreps (1987).

DEFINITION 4 (Cho and Kreps, 1987): Strategy profile π passes the Intu-
itive Criterion Test if, for every s ∈ S and θ ∈ E(s, π), mina∈BR(E(s,π),s) u1(θ, s, a) ≤
u1(θ, π).

PROPOSITION 2: If π is a justified communication equilibrium, then π is a
PBE-H that passes the Intuitive Criterion Test.

The key step of the proof is to show that in a PBE-H, unless s is equilibrium
dominated for every type, s is not equilibrium dominated for any justified type,
i.e. Θ(s, π) ⊆ E(s, π) when E(s, π) 6= ∅. This implies that if there is a justified
response that deters all types from playing s, then the profile passes the Intuitive
Criterion Test. The proof of Proposition 2 is given in Appendix A1.
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To compare JCE with D1 and NWBR, we first develop some notation. For
every θ ∈ Θ, s ∈ S, and π ∈ Π1 × Π2, let Dθ(s, π) = {α ∈ MBR(Θ, s) :
u1(θ, s, α) > u1(θ, π)} be the set of receiver mixed best responses to s that give
type θ strictly more than their equilibrium payoff, and let D0

θ(s, π) = {α ∈
MBR(Θ, s) : u1(θ, s, α) = u1(θ, π)} be the mixed best responses that give type θ

their equilibrium payoff. These are the analogs of the sets D̃θ(s, π) and D̃0
θ(s, π)

when ∆(BR(Θ, s)) is replaced by MBR(Θ, s).
To define D1, let Θ‡,D1(s, π) = {θ ∈ Θ : ∀θ′ 6= θ, Dθ(s, π) ∪ D0

θ(s, π) 6⊆
Dθ′(s, π)}, and let Θ̂D1(s, π) ⊆ Θ be the set of types given by

Θ̂D1(s, π) =

{
Θ‡,D1(s, π) if Θ‡,D1(s, π) 6= ∅
Θ if Θ‡,D1(s, π) = ∅

.

Also, let MBR(Θ̃, s) = {α ∈ ∆(A) : ∃p ∈ ∆(Θ̃) s.t. u2(p, s, α) ≥ u2(p, s, a) ∀a ∈
A} denote the set of mixed best responses to s for beliefs supported on a given

Θ̃ ⊆ Θ.

DEFINITION 5 (Banks and Sobel, 1987): Strategy profile π satisfies D1 if for

every s ∈ S, there is an α ∈ MBR(Θ̂D1(s, π), s) such that u1(θ, s, α) ≤ u1(θ, π)
for all θ ∈ Θ.

D1 can be stronger than JCE (and rule out some stable profiles) because it
only considers receiver mixed-best responses, both in finding possible responses
to off-path signal-message pairs and in the construction of the sets of sender types
to which the receiver must be best-responding. As we have seen, however, the
larger convex hull of receiver best responses emerges in our learning model rather
than the receiver mixed best responses.21

To see the difference this makes, for every s ∈ S and π ∈ Π1 × Π2, let
Θ†,D1(s, π) = {θ ∈ Θ : ∀θ′ 6= θ, D̃θ(s, π)∪D̃0

θ(s, π) 6⊆ D̃θ′(s, π)} be the set of types
θ where, for every θ′ 6= θ, there is some mixed receiver action α ∈ ∆(BR(Θ, s))
that makes θ weakly prefer (s, α) to their equilibrium outcome and θ′ weakly

prefer their equilibrium outcome to (s, α). Let Θ
D1

(s, π) ⊆ Θ be the set

Θ
D1

(s, π) =

{
Θ†,D1(s, π) if Θ†,D1(s, π) 6= ∅
Θ if Θ†,D1(s, π) = ∅

.

DEFINITION 6: A PBE-H π is co-D1 if for every s ∈ S, there is an α ∈
∆(BR(Θ

D1
(s, π), s)) such that u1(θ, s, α) ≤ u1(θ, π) for all θ ∈ Θ.

PROPOSITION 3: If π is a justified communication equilibrium, then π is a
PBE-H that is co-D1.

21Fudenberg and Kreps (1988) and Sobel, Stole and Zapater (1990) recognized that the convex hull of
best responses is more natural in a learning setting, but neither paper showed that restricting attention
to the receiver mixed best responses rules out a profile that is stable in a learning model.
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Co-D1 is more permissive than JCE because it strikes fewer types. Appendix A2

gives the proof of Proposition 3, which shows that Θ(s, π) ⊆ Θ
D1

(s, π) for all s;
Example 1 shows that the inclusion is sometimes strict.

To define NWBR, let Θ‡(s, π) = {θ ∈ Θ : D0
θ(s, π) 6⊆ ∪θ′ 6=θDθ′(s, π)}, which

are the θ for which there is a mixed receiver best response α ∈ MBR(Θ, s) that
makes θ indifferent between (s, α) and their equilibrium outcome and every other

type weakly prefer their equilibrium outcome to (s, α). Let Θ̂(s, π) ⊆ Θ be the
set

Θ̂(s, π) =

{
Θ‡(s, π) if Θ‡(s, π) 6= ∅
Θ if Θ‡(s, π) = ∅

.

DEFINITION 7 (Kohlberg and Mertens, 1986; Cho and Kreps, 1987): Strategy pro-
file π satisfies never a weak best response (NWBR) if, for every s ∈ S, there

is some α ∈MBR(Θ̂(s, π), s) such that u1(θ, α) ≤ u1(θ, π) for all θ ∈ Θ.

Up to path-equivalence, JCE selects the same profiles as NWBR would if the
mixed best responses MBR(Θ̃, s) were replaced with the convex hulls of best

responses ∆(BR(Θ̃, s)). Indeed, as shown in OA.1, it would be equivalent to

define JCE by setting Θ†(s, π) = {θ ∈ Θ : D̃0
θ(s, π) 6⊆ ∪θ′ 6=θD̃θ′(s, π)}, rather

than Θ†(s, π) = {θ ∈ Θ : D̃θ(s, π) ∪ D̃0
θ(s, π) 6⊆ ∪θ′ 6=θD̃θ′(s, π)}. Thus JCE

modifies NWBR in much the same way that co-D1 modifies D1, so NWBR is a
stronger refinement than JCE.

PROPOSITION 4: Any PBE-H that satisfies NWBR is path-equivalent to a
PBE that is a JCE.22

A PBE-H π that satisfies NWBR is not necessarily a PBE, since the receiver’s
response to off-path play need not be a best reply to any single belief over the
sender’s type. However, every such profile is path-equivalent to a PBE, since
the receiver’s response to a given off-path (s,m) can always be replaced by some

α ∈MBR(Θ̂(s, π), s) that deters the sender types from playing it. Appendix A3
completes the proof of Proposition 4 by showing that an “NWBR type” is always
a justified type. That is, for a given signal and PBE-H, Θ̂(s, π) ⊆ Θ(s, π) for all
s and all PBE-H π.

The converse of Proposition 4 is in general false, as shown earlier by Example
2. However, there are important settings in which NWBR and JCE are path-
equivalent. One is when there are at most two undominated receiver responses to
each signal, because then mixed best responses and convex hulls of best responses
are the same. We now explore a different class of games where this equivalence
holds.

22Path equivalence is needed in this statement because, unlike JCE, NWBR does not impose requirements
about the receiver’s actual responses to off-path play.
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IV. Co-Monotonic Signaling Games

This section highlights an important class of commonly studied games in which
JCE, D1, and NWBR are path-equivalent, so the learning foundation for JCE
applies to D1 and NWBR as well. In these co-monotonic signaling games, all
sender types share the same preference over mixtures over BR(Θ, s).

DEFINITION 8: A signaling game is co-monotonic if, for all θ, θ′ ∈ Θ, s ∈ S,
and α, α′ ∈ ∆(BR(Θ, s)), u1(θ, s, α) ≥ u1(θ, s, α′) if and only if u1(θ′, s, α) ≥
u1(θ′, s, α′).

This is a subset of the monotonic signaling games studied in Cho and Sobel
(1990), where the sender types are required to share the same preference only
over the receiver mixed best responses MBR(Θ, s) rather than the convex hull of
those responses.

A sufficient condition for a signaling game to be co-monotonic is that there be
functions v : S × A → R, ω : Θ × S → R++, and ψ : Θ × S → R such that
u1(θ, s, a) = ω(θ, s)v(s, a) +ψ(θ, s) for all θ ∈ Θ, s ∈ S, and a ∈ A. Many games,
including the following simple economic example, satisfy this condition.

EXAMPLE 4:
Like Examples 1 and 2, this example concerns a firm hiring a worker, except

here the firm offers incentive pay to their prospective employee. The firm is
better informed about the productivity of the worker’s effort; their information
is represented by their type θ ∈ Θ = {1, 2, 3}, with each type equally likely. The
firm’s signal s = (s1, s2) ∈ {0, 1/4, 1/2, 3/4, 1} × {0, 1, 2, ..., 100} consists of a
share of profits s1 and a base wage s2 which the worker is offered, and the action
a ∈ {0, 5, 10, ..., 60} represents the worker’s choice of effort level. The expected
profit given the firm’s type θ and the worker’s effort a is θa. Thus, the payoffs to
the sender and receiver are u1(θ, s, a) = θ(1 − s1)a − s2 and u2(θ, s, a) = θs1a +
s2−a2/40, which satisfy the sufficient condition for co-monotonic signaling games
given above. OA.6.3 in the Online Appendix shows that JCE selects equilibria
that approximate the least-cost separating equilibrium of this game. �

We now explore JCE’s relationship with other refinements in co-monotonic
games. Co-monotonicity implies that, for all s, any mixture over receiver best
responses α ∈ ∆(BR(Θ, s)) has a corresponding receiver mixed best response
α′ ∈ MBR(Θ, s) such that u1(θ, s, α) = u1(θ, s, α′) for all θ. This ensures that

Θ(s, π) = Θ̂(s, π) for every PBE-H π.

LEMMA 4: In a co-monotonic signaling game, Θ(s, π) = Θ̂(s, π) for all s ∈ S
and PBE-H π ∈ Π.

The proof of Lemma 4 is in Appendix A3.
In co-monotonic games, all types agree about which receiver best responses

are least desirable. Combining this with Lemma 4 shows that JCE and NWBR
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(Definition 7) select the same profiles up to path-equivalence. JCE thus provides
a learning foundation for the predictions of NWBR in the class of co-monotonic
games.

PROPOSITION 5: In a co-monotonic signaling game, every justified commu-
nication equilibrium is a PBE-H that satisfies NWBR, and every PBE-H that
satisfies NWBR is path-equivalent to a justified communication equilibrium.

PROOF:
Suppose that π is a PBE-H that satisfies NWBR. Then, by Proposition 4, π is

path-equivalent to a JCE.
If π is a JCE, it is a PBE-H. Moreover, for every s ∈ S, there is some

αs ∈ ∆(BR(Θ(s, π), s)) such that u1(θ, s, αs) ≤ u1(θ, π) for all θ ∈ Θ. Be-
cause the game is co-monotonic, there exists as ∈ BR(Θ(s, π), s) such that as ∈
arg mina∈BR(Θ(s,π),s) u1(θ, s, a) for all θ ∈ Θ, so u1(θ, s, as) ≤ u1(θ, π) for all θ ∈ Θ.

Since the game is co-monotonic, Lemma 4 implies that as ∈ BR(Θ̂(s, π), s), so π
is a PBE-H that satisfies NWBR. �

Combining Proposition 5 with the observation that every PBE-H that satisfies
NWBR is path-equivalent to a PBE shows that in co-monotonic signaling games,
every JCE is path-equivalent to a PBE that satisfies NWBR. Moreover, as shown
by Cho and Sobel (1990), NWBR and D1 coincide in monotonic games, so JCE
is also path-equivalent to D1 in co-monotonic games.

COROLLARY 2: In a co-monotonic signaling game, every justified communi-
cation equilibrium is path-equivalent to a PBE that satisfies NWBR and D1, and
every PBE-H that satisfies NWBR or D1 is path-equivalent to a justified commu-
nication equilibrium.

Thus, JCE provides a learning foundation for restricting attention to D1 equilibria
in co-monotonic games, as in e.g. Nachman and Noe (1994), DeMarzo and Duffie
(1999), and DeMarzo, Kremer and Skrzypacz (2005).23

In various co-monotonic games, such as that of DeMarzo and Duffie (1999),
JCE selects the least-cost separating equilibrium outcome, often called the “Riley
outcome” (Riley, 1979). Moreover, Cho and Sobel (1990) showed that NWBR
selects the Riley outcome in a class of monotonic games with a continuum of
actions. The definition of JCE can be applied as is to signaling games with infinite
actions, and the equivalence of JCE and NWBR in Proposition 5 continues to hold
in all co-monotonic signaling games. Thus, JCE selects the Riley outcome in all
co-monotonic games that satisfy the additional assumptions of Cho and Sobel
(1990) and, by a closed graph argument, also only selects equilibria that are close

23Technically, the game analyzed in DeMarzo, Kremer and Skrzypacz (2005) is not a traditional signaling
game because of the presence of multiple senders, but this distinction is not important.
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to the Riley outcome when the action space is a sufficiently fine finite grid, as in
Example 4.24

V. Discussion

A. Alternate Models

The key to our analysis is that we consider a limit where most senders and
receivers have substantial experience, but typical senders have significantly more
experience, so that most receivers never encounter inexperienced senders. Because
it is inexperienced senders who are the most likely to “experiment” with signal-
message pairs that depart from the limit strategy profile, most receivers have little
experience with off-path play by the senders, which facilitates the analysis of the
stable profiles.

We can obtain this situation with many different specifications of the popula-
tions of agents and how they interact. For example, suppose that senders and re-
ceivers have geometric lifetimes with common continuation probability γ ∈ [0, 1),
so that they all have expected lifetime T = 1/(1− γ). Every period, each sender
is matched with a receiver, but each receiver only gets matched with some i.i.d.
probability p ∈ (0, 1).25 A given receiver is expected to have N2 = pT matches
over their lifetime, while a sender is expected to have N1 = T matches. For every
steady state in this alternate model, there is a corresponding steady state in our
main model with the same aggregate strategy profile when the receiver’s continu-
ation probability is γ̃2 = (1−1/T )N2/(1+(1−1/T )N2), which we demonstrate in
Online Appendix Section OA.10. Since γ̃2 → N2/(1 +N2) ∈ [0, 1) as T →∞ for
any fixed N2 ∈ R+ and N2/(1+N2)→ 1 as N2 →∞, the iterated limit where first
T → ∞ (so that both sender and receiver agents become long-lived) then δ → 1
(so that sender agents become patient) then N2 → ∞ (so that receiver agents
become experienced) generates precisely the same predictions as our notion of
stability.

Moreover, we can also obtain the same set of stable profiles in models where
agents do not have geometric lifetimes: To illustrate, suppose that agents have
deterministic lifetimes, and that sender agents are matched every period, while
receiver agents are matched every K periods during their life. Suppose that sender
agents are involved in N1 matches over the course of their lifetime, while receiver
agents are involved in N2. Focusing on the profiles that emerge in the limit where
first N1 → ∞ then δ → 1 then N2 → ∞ generates exactly the same predictions
as stability in the geometric lifetime models. Thus, the unequal lifetimes of our
baseline model are simply a modeling convenience, and not an essential feature.

However, we do need some sort of asymmetry in the interaction structure to

24As noted by e.g. Fudenberg and Tirole (1991a), it may seem odd that adding a type with a small
probability ε can make a large change in the Riley outcome. Stability tracks this change in the Riley
outcome because we hold the prior fixed as we take the iterated limit.

25Correspondingly set the population mass of senders to be p times that of the receivers.
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derive our results. When both populations have the same expected number of
interactions, we have not been able to derive interesting restrictions on the stable
profiles. When the receivers have many more interactions (as would be the case
in our baseline model in the limit where first γ2 → 1 then γ1 → 1), all stable
profiles must be PBE and not only PBE-H, but we do not know whether stability
has additional implications.

B. Orders of Limits

We require senders to become long-lived (γ1 → 1) before they become patient
(δ → 1) so that near the limit very few senders will choose to experiment. (This is
why we need the model to have a discount factor parameter.) As in Fudenberg and
Levine (1993, 2006) and Fudenberg and He (2018, 2020, 2021), it seems difficult
to establish in general what happens when a player’s patience level δ goes to 1
before their lifetime become long, as in this case we do not know how to show
that most players stop experimenting. The order with which γ2 and δ go to 1 is
not crucial; we specify that δ converges to 1 before γ2 because it affords slightly
cleaner results and simpler proofs. All profiles that we prove are stable in our
examples would also be stable under a more general version of the iterated limit
where first γ1 → 1 and then (δ, γ2)→ (1, 1). Moreover, OA.9 shows that Theorem
1’s conclusion applies under this general limit to all stable profiles satisfying an
additional condition, such as on-path strict incentives for the receiver.

C. Related Work

Fudenberg and Kreps (1988) introduced the analysis of non-equilibrium learn-
ing in extensive-form games, and announced a program of deriving equilibrium
refinements from learning foundations, but did not provide details. Our steady-
state formulation is in the spirit of Fudenberg and Levine (1993). Fudenberg
and Levine (1993) and Fudenberg and Kreps (1994) provided conditions for ra-
tional players to do enough experimentation to rule out non-Nash outcomes.26

Fudenberg and Levine (2006) used a steady-state learning model to study equi-
librium refinements in a class of games of perfect information, and showed that
all “subgame-confirmed” equilibria are stable.

In signaling games without cheap talk, Fudenberg and He (2018) analyzed the
steady states of a model where senders and receivers have identically-distributed
geometric lifetimes. It assumed that the senders’ prior beliefs over the aggregate
receiver responses are independent across signals, so that the senders’ optimal

26Kalai and Lehrer (1993), Lehrer and Solan (2007), Esponda (2013), Battigalli et al. (2019) studied
rational learning without assuming that agents are patient. Battigalli (1987), Rubinstein and Wolinsky
(1994), Dekel, Fudenberg and Levine (1999), Esponda (2013), Battigalli et al. (2015), and Fudenberg
and Kamada (2015, 2018), among other papers, studied equilibrium concepts motivated by rational
learning without analyzing an explicit learning model, and e.g. Binmore and Samuelson (1999), Nöldeke
and Samuelson (1993), Hart (2002), Jehiel and Samet (2005) studied evolutionary or boundedly rational
learning dynamics in extensive form games.
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policy is given by the Gittins index (Gittins, 1979), and used this to derive re-
strictions on equilibria. Fudenberg and He (2020) extended Fudenberg and He
(2018) by supposing that the senders assign probability 0 to receivers playing
conditionally dominated actions, and gave a learning foundation for rationality-
compatible equilibrium (RCE). If we treat the signal-message pair (s,m) as a
signal when evaluating the conditions of RCE, then RCE collapses to the Intu-
itive Criterion when the message space is not singleton because messages have no
effect on payoffs. If we instead compare RCE to JCE in a game with a singleton
message space, RCE is again weaker. For example, the “All Pass” outcome of
Example 1 is consistent with RCE but not JCE.27 Moreover, OA.3 shows that
every JCE is an RCE, because types that are “less compatible” with a given
signal in the sense of RCE can never be justified. This paper obtains a stronger
refinement than RCE without assuming independent priors by explicitly modeling
cheap-talk messages and combining this with the assumptions of initially-trusting
receivers and relatively long-lived senders.

We view initial trust as a plausible and appealingly simple assumption. It
has a similar form to the “believe-unless-refuted” condition of Lipman and Seppi
(1995), which is an equilibrium refinement for signaling games with multiple re-
ceivers and partial provability. There, each receiver can learn from refutations
provided by other receivers. Initial trust is also related to the restrictions imposed
by Rabin (1990), Farrell (1993), and Clark (2020) on how receivers respond to
“credible” messages in signaling games.28 In these papers, common knowledge
of the equilibrium to be played figures heavily in determining the credibility of
messages; such restrictions do not fit with our model of non-equilibrium learning.
Moreover, deriving restrictions on equilibria from a learning model yields more
insight than imposing the restrictions directly.

D. Extensions

We can obtain similar solution concepts by replacing initial trust with alter-
native assumptions. For example, if receivers know the payoff functions of the
senders, as in Fudenberg and He (2020), then receivers who are long-lived may feel
that they have acquired a good sense of each sender type’s equilibrium payoff. In
OA.8.1, we discuss a weakened version of initial trust which only requires receivers
to trust previously unencountered claims if they are consistent with the receiver’s
evaluation of the senders’ incentives. Any stable profile under this assumption
must satisfy a refinement that is similar to, but weaker, than JCE. OA.8.2 shows
that we can capture an iterated procedure similar to that of divinity and universal
divinity (Banks and Sobel, 1987) by strengthening initial trust: If the only types

27RCE also permits equilibria ruled out by JCE and D1 in co-monotonic games like Example 4.
28Rabin (1990) and Farrell (1993) only analyzed cheap-talk games, but their refinements can be extended

to games where the sender also has costly signals. Matthews, Okuno-Fujiwara and Postlewaite (1991),
Blume and Sobel (1995), Zapater (1997), Olszewski (2006), Chen, Kartik and Sobel (2008), and Gordon
et al. (2021) also studied refinements in cheap-talk games.
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who have lied about being in Θ̃ are elements of Θ̃′, then the receiver responds to
a claim of Θ̃ as if the sender’s type belongs to Θ̃ ∪ Θ̃′.

An extensive experimental literature shows that a non-trivial share of experi-
mental subjects tell the truth even when this earns less compensation, and thus
behave as if they face a cost of lying. (See the papers surveyed in Abeler, Nosenzo
and Raymond (2019).) Kartik, Ottaviani and Squintani (2006) and Kartik (2009)
incorporated messages with such lying costs into models of strategic communica-
tion. OA.8.3 discusses how our analysis can be extended to signaling games with
costly lying. Intuitively, lying costs make it less appealing for a non-justified type
to falsely represent themself as justified.

Finally, JCE has no cutting power in games where the sender’s only actions are
cheap-talk messages. Developing learning foundations for refinements in these
games is a promising area for future research, and could lead to learning-based
refinements for settings with cheap talk and multiple audiences, as in Goltsman
and Pavlov (2011).

VI. Conclusion

Adding cheap-talk communication to signaling games let us provide a learning-
theoretic foundation for the concept of justified communication equilibrium. We
recovered some of the intuitions that underlie traditional equilibrium refinements
for signaling games, whose predictions were by and large sensible in the games
where they were used. We also confirmed that some of the worries in the literature
about the details of these refinements were well founded, and pointed out how
those refinements need to be modified to accord with the implications of non-
equilibrium learning.29

Of course, there are multiple ways to formulate models of non-equilibrium learn-
ing, just as there are many definitions of forward induction, and several variants of
the Kohlberg and Mertens (1986) axioms. In our opinion, it is easier to judge the
plausibility of assumptions on learning models than of axiomatic conditions on
equilibrium concepts, especially axioms that are imposed without any reference
to how equilibrium play might arise. For this reason, our work makes a valu-
able contribution even in settings such as co-monotonic signaling games, where
the predictions of JCE coincide with those of past work. Outside of those cases,
not only does JCE have the benefit of a learning foundation, it is also easier to
compute, which may make it more appealing to use.
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Appendix A: Other Refinements

A1. Intuitive Criterion

LEMMA A1: If π is a JCE, then, for every s ∈ S, either
1) Θ†(s, π) 6= ∅, or
2) u1(θ, s, a) < u1(θ, π) for all θ ∈ Θ and a ∈ BR(Θ, s).

PROOF:
Let π be a JCE. Fix s ∈ S and suppose that Θ†(s, π) = ∅. Let A− =
{α ∈ ∆(BR(Θ, s)) : u1(θ, s, α) < u1(θ, π) ∀θ ∈ Θ} be the set of mixtures
over receiver best responses that make playing s strictly worse for every type
than their outcome under π. Similarly, let A+ = {α ∈ ∆(BR(Θ, s)) : ∃θ ∈
Θ s.t. u1(θ, s, α) > u1(θ, π)} be the set of mixtures over receiver best responses
that make some type strictly better off by playing s than under π. A− and
A+ are disjoint open subsets of ∆(BR(Θ, s)), and A− ∪ A+ = ∆(BR(Θ, s))
since Θ†(s, π) = ∅. As ∆(BR(Θ, s)) is connected, either ∆(BR(Θ, s)) = A− or
∆(BR(Θ, s)) = A+. ∆(BR(Θ, s)) = A+ is not possible when π is a JCE since
then, for every α ∈ ∆(BR(Θ(s, π), s)), there is a θ such that u1(θ, s, α) > u1(θ, π).
Thus ∆(BR(Θ, s)) = A−, so u1(θ, s, a) < u1(θ, π) for all a ∈ BR(Θ, s). �

PROOF OF PROPOSITION 2:
If E(s, π) 6= ∅, there is some θ and α ∈ BR(Θ, s) such that u1(θ, s, a) ≥ u1(θ, π).

By Lemma A1, Θ†(s, π) 6= ∅, so Θ(s, π) = Θ†(s, π). Moreover, Θ(s, π) ⊆ E(s, π),

because maxa∈BR(Θ,s) u1(θ, s, a) < u1(θ, π) implies D̃θ(s, π) ∪ D̃0
θ(s, π) = ∅ ⊆ D̃θ′

for any θ′ ∈ Θ. Thus, BR(Θ(s, π), s) ⊆ BR(E(s, π), s). Hence, for all θ ∈ Θ,
mina∈BR(E(s,π),s) u1(θ, s, a) ≤ mina∈BR(Θ(s,π),s) u1(θ, s, a) ≤ u1(θ, π). �

A2. Co-D1

PROOF OF PROPOSITION 3:
Fix s ∈ S. We will argue that Θ(s, π) ⊆ Θ

D1
(s, π). This, along with the

justified response criterion of JCE and the fact that every JCE is a PBE-H,
implies that π is co-D1.

If Θ†(s, π) 6= ∅, then Θ(s, π) = Θ†(s, π). Let θ be a type such that θ 6∈
Θ
D1

(s, π). Then there is some type θ′ 6= θ such that Dθ(s, π) ∪ D0
θ(s, π) ⊆

Dθ′(s, π). This implies that θ′ 6∈ Θ(s, π), so Θ(s, π) ⊆ Θ
D1

(s, π) follows. If
Θ†(s, π) = ∅, by Lemma A1, u1(θ, s, a) < u1(θ, π) for all a ∈ BR(Θ, s). Thus
Θ†,D1(s, π) = ∅ as Dθ(s, π)∪D0

θ(s, π) ⊆ Dθ′(s, π) for all θ, θ′ ∈ Θ. Thus, Θ(s, π) =

Θ = Θ
D1

(s, π). �

A3. NWBR

LEMMA A2: Θ‡(s, π) ⊆ Θ†(s, π) for all s ∈ S and π ∈ Π.
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PROOF:
If θ 6∈ Θ†(s, π), then by definition D̃0

θ(s, π) ⊆ ∪θ′ 6=θD̃θ′(s, π). For α ∈ D0
θ(s, π),

α ∈MBR(Θ, s) ⊆ ∆(BR(Θ, s)) and u1(θ, s, α) = u1(θ, π), so α ∈ D̃0
θ(s, π). Since

D̃0
θ(s, π) ⊆ ∪θ′ 6=θD̃θ′(s, π), there is some θ′ 6= θ such that u1(θ′, s, α) > u1(θ′, π), or

equivalently α ∈ Dθ′(s, π). As α is an arbitrary element of D0
θ(s, π), we conclude

that D0
θ(s, π) ⊆ ∪θ′ 6=θDθ′(s, π), so θ 6∈ Θ‡(s, π). �

LEMMA A3: If π is a PBE-H that satisfies NWBR, then, for every s ∈ S, either
1) Θ‡(s, π) 6= ∅, or
2) u1(θ, s, a) < u1(θ, π) for all θ ∈ Θ and a ∈ BR(Θ, s).

The proof of Lemma A3 is analogous to that of Lemma A1, and is given in Online
Appendix Section OA.5.

PROOF OF PROPOSITION 4:
Let π be a PBE-H that satisfies NWBR, and for every off-path s, let αs ∈

MBR(Θ̂(s, π), s) be such that u1(θ, s, α) ≤ u1(θ, π) for all θ ∈ Θ. We will show

that Θ̂(s, π) ⊆ Θ(s, π) for all s, so the profile π̃ = (π1, π̃2) in which π̃2 coincides
with π2 for all on-path s and dictates αs for all off-path s is a JCE that is path-
equivalent to π.

If Θ‡(s, π) 6= ∅, then by Lemma A2, Θ‡(s, π) ⊆ Θ†(s, π), so Θ̂(s, π) ⊆ Θ(s, π).
If Θ‡(s, π) = ∅, then by Lemma A3, u1(θ, s, a) < u1(θ, π) for all θ ∈ Θ and

a ∈ BR(Θ, s), so Θ†(s, π) = ∅ and Θ̂(s, π) = Θ(s, π) = Θ. �

PROOF OF LEMMA 4:
Fix PBE-H π. We show that, for all s ∈ S and θ ∈ Θ, D̃θ(s, π) ∪ D̃0

θ(s, π) 6⊆
∪θ′ 6=θD̃θ′(s, π) if and only ifD0

θ(s, π) 6⊆ ∪θ′ 6=θDθ′(s, π). This means that Θ†(s, π) =

Θ‡(s, π), which implies that Θ(s, π) = Θ̂(s, π).
Suppose that D0

θ(s, π) 6⊆ ∪θ′ 6=θDθ′(s, π). Then there is some α ∈ MBR(Θ, s)
such that u1(θ, s, α) = u1(θ, π) and u1(θ′, s, α) ≤ u1(θ′, π) for all θ′ 6= θ. Since α ∈
∆(BR(Θ, s)), this immediately implies that D̃θ(s, π)∪ D̃0

θ(s, π) 6⊆ ∪θ′ 6=θD̃θ′(s, π).

Suppose that D̃θ(s, π) ∪ D̃0
θ(s, π) 6⊆ ∪θ′ 6=θD̃θ′(s, π). Then there is some α ∈

∆(BR(Θ, s)) such that u1(θ, s, α) ≥ u1(θ, π) and u1(θ′, s, α) ≤ u1(θ′, π) for all
θ′ 6= θ. Moreover, since π is a PBE-H, there is some α′ ∈ ∆(BR(Θ, s)) such
that u1(θ, s, α′) ≤ u1(θ, π). By continuity, there exists some α′′ ∈ MBR(Θ, s)
such that u1(θ, s, α′′) = u1(θ, π) ≤ u1(θ, s, α). Because the game is co-monotonic,
u1(θ′, s, α′′) ≤ u1(θ′, s, α) ≤ u1(θ′, π) holds for all θ′ 6= θ. Thus, D0

θ(s, π) 6⊆
∪θ′ 6=θDθ′(s, π). �

Appendix B: Supporting Results for Theorem 1

We use the following lemma in several proofs and examples. We omit its proof,
which closely follows that of Proposition 5 in Fudenberg and He (2018).
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LEMMA B1: Given γ2 ∈ [0, 1), suppose that πγ2 = (π1,γ2 , π2,γ2) = limk→∞ liml→∞ πγ2,k,l

for some sequence of steady-state profiles πγ2,k,l ∈ Π∗(g, δk, γ1,k,l, γ2), where limk→∞ δk =
1 and liml→∞ γ1,k,l = 1 for all k. Then, for each θ ∈ Θ, π1,γ2(·|θ) puts support
only on the (s,m) that are optimal for type θ against π2,γ2.

PROOF OF LEMMA 1:

Let {πj,k,l ∈ Π∗(g, δj,k, γ1,j,k,l, γ2,j)}j,k,l∈N be a sequence of steady-state profiles
such that limj→∞ limk→∞ liml→∞ πj,k,l = π, where limj→∞ γ2,j = 1, limk→∞ δj,k =
1 for all j, and liml→∞ γ1,j,k,l = 1 for all j, k. By Lemma B1, for every θ ∈ Θ,
π1,γ2,j (·|θ) = limk→∞ liml→∞ π1,j,k,l(·|θ) puts support only on signal-message pairs
that are best replies to π2,γ2,j = limk→∞ liml→∞ π2,j,k,l. Combining this with the
upper hemicontinuity of optimal play implies that π1(·|θ) = limj→∞ π1,γ2,j (·|θ)
puts support only on signal-message pairs that are best replies to π2 = limj→∞ π2,γ2,j .
�

PROOF OF LEMMA 2:

Let q(θ, s,m) = λ(θ)π1(s,m|θ) be the distribution over (θ, s,m) induced by
λ and π1, let Xon be the set of sender signal-message pairs that occur with
positive probability under π, and let p(s,m)(θ) denote the conditional probabil-
ity of θ given (s,m) ∈ Xon. For ε > 0, let Qε = {q′ ∈ ∆(Θ × S × M) :
max(θ,s,m) |q′(θ, s,m) − q(θ, s,m)| ≤ ε}. Because best response correspondences
are upper hemicontinuous, there is an ε > 0 such that every receiver whose belief
g̃2 ∈ ∆(∆(Θ×S×M)) puts probability at least 1−ε on Qε will respond to every
(s,m) ∈ Xon with some a ∈ BR(p(s,m), s).

Given the non-doctrinaire prior g2, Theorem 4.2 of Diaconis and Freedman
(1990) implies that there is some T > 0 such that a receiver who has lived
more than T periods assigns posterior probability of at least 1− ε to probability
distributions q′ within ε/2 distance of whatever empirical distribution they have
observed. Moreover, by the law of large numbers, for any η > 0 we can take this
T to be such that, with probability at least 1−η/2, a receiver who has lived more
than T periods assigns probability of at least 1− ε to Qε/2.

Fix sequences {δn}n∈N, {γ1,n}n∈N, and {γ2,n}n∈N, and let πn = (π1,n, π2,n) ∈
Π∗(g, δn, γ1,n, γ2,n) be a sequence of steady-state profiles such that limn→∞ γ2,n =
1 and limn→∞ π1,n = π1. The share of receivers in the population who have
lived more than T periods is γT2,n, which converges to 1 as n → ∞. Moreover,
qn(θ, s,m) = λ(θ)π1,n(s,m|θ) → q as n → ∞. Thus, for every (s,m) ∈ Xon and
η > 0, there exists some N ∈ N such that π2,n(BR(p(s,m), s)|s,m) ≥ 1− η for all
n > N . �

PROOF OF LEMMA 3:

Let {πj,k,l ∈ Π∗(g, δj,k, γ1,j,k,l, γ2,j)}j,k,l∈N be a sequence of steady-state profiles
such that limj→∞ limk→∞ liml→∞ πj,k,l = π, where limj→∞ γ2,j = 1, limk→∞ δj,k =
1 for all j, and liml→∞ γ1,j,k,l = 1 for all j, k. Since u1(θ, s, π2(·|s,m

s,Θ̃
)) <
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u1(θ, π) for all θ 6∈ Θ̃, Lemma B1 implies that there is some J ∈ N such that,

for all θ′ 6∈ Θ̃ and j > J , limk→∞ liml→∞ πj,k,l(s,ms,Θ̃
|θ′) = 0. Receivers who

have never observed the signal-message pair (s, Θ̃) played by a type outside

of Θ̃ would respond to this pair with an action belonging to BR(Θ̃, s). Thus

limk→∞ liml→∞ π2,j,k,l(BR(Θ̃, s)|s,m
s,Θ̃

) = 1 if limk→∞ liml→∞ πj,k,l(s,ms,Θ̃
|θ′) =

0 for all θ′ 6∈ Θ̃. Since this holds for all j > J , π2(BR(Θ̃, s)|s,m
s,Θ̃

) = 1. �

Appendix C: A Sufficient Condition for Stability

DEFINITION C1: A signaling game is strictly monotonic if, for all θ, θ′ ∈ Θ,
s ∈ S, and α, α′ ∈MBR(Θ, s),

1) u1(θ, s, α) ≥ u1(θ, s, α′) if and only if u1(θ′, s, α) ≥ u1(θ′, s, α′), and
2) u1(θ, s, α) = u1(θ, s, α′) implies α = α′.

Here the first condition is exactly the monotonicity of Cho and Sobel (1990).
The second condition requires that the sender preference is a strict order on
MBR(Θ, s).

For a given strategy profile π, let Xon be the set of on-path signal-message
pairs, let p(s,m)(θ) denote the conditional probability of θ given (s,m) ∈ Xon, let

Son be the set of on-path signals, and let Soff be the set of off-path signals.

DEFINITION C2: The JCE π is uniformly justified if
1) For all θ ∈ Θ, there is some sθ ∈ S such that maxm∈M u1(θ, sθ, π2(·|sθ,m)) >

maxs 6=sθ,m∈M u1(θ, s, π2(·|s,m)),
2) For every x = (s,m) ∈ Xon, there is some ax ∈ A such that u2(p(s,m), s, ax) >

maxa6=ax u2(p(s,m), s, a),

3) For all s ∈ Soff, u1(θ, s, a) < u1(θ, π) for all θ ∈ Θ and a ∈ BR(Θ(s, π), s).

Condition 1 says that every sender type plays exactly one signal and that they
have strict incentives to do so. Condition 2 says that the receiver has a strictly
optimal action in response to every on-path signal-message pair. Condition 3
says that all types are strictly deterred from playing any off-path signal for any
justified response.

PROPOSITION C1: If π is a uniformly justified JCE in a strictly monotonic
signaling game, it induces the same distribution over Θ×S×A as a stable profile
for all non-doctrinaire priors g1, g2, including those that do not satisfy initial
trust.

OA.4 in the Online Appendix contains the proof of Proposition C1. Because π
is uniformly justified, there is a receiver behavior strategy that makes each type
strictly prefer to play their corresponding signal in π, and, when each type does
so, leads to the same distribution over Θ × S × A as π. The proof modifies the
aggregate response correspondences so that the receiver response matches this
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behavior strategy with high probability whenever the aggregate sender play is
such that some type gives their corresponding signal in π too little probability.
Lemma B1 implies the aggregate sender play given by the fixed points of the
modified aggregate response correspondence is optimal in the iterated limit. The
modification to the receiver aggregate response thus ensures that the limit ag-
gregate sender strategy uses the signals prescribed by π with high probability.30

Additionally, by strict monotonicity and the optimality of the aggregate sender
play, the receiver response to any on-path signal-message pair must only depend
on the signal, and because receivers strictly prefer to conform to π, the receiver
response to any on-path signal-message pair matches the response in π. We show
that this, along with the fact that π is uniformly justified, implies that, in the
limit, each sender type uses the same distribution over signals as in π1. Con-
sequently, the modified aggregate receiver response matches the true aggregate
receiver response, and the fixed points of the modified response mapping are valid
steady-state profiles that in the limit induce the same distribution over Θ×S×A
as π.

Appendix D: Details Omitted from Section II

Strategy Mapping: The map σδ,γ1 : (∆(H1))Θ × ∆(H2) → Π1 × Π2 taking
the state in period t to the aggregate strategy profile has component mappings

σδ,γ1
1 : (∆(H1))Θ → Π1 and σ2 : ∆(H2) → Π2 given by σδ,γ1

1 (µ1)[s,m|θ] =∑
h1:x

δ,γ1
θ (h1)=(s,m)

µθ[h1] and σ2(µ2)[a|s,m] =
∑

h2:y(s,m|h2)=a µ2[h2].

Update Rule: The rule that maps the state in period t to the state in period
t+1, f δ,γ1,γ2 : (∆(H1))Θ×∆(H2)→ (∆(H1))Θ×∆(H2), has the following compo-

nents: The mapping f δ,γ1

θ : (∆(H1))Θ×∆(H2)→ ∆(H1) is given by f δ,γ1

θ (µ)[∅] =

1 − γ1, and f δ,γ1

θ (µ)[(h1, (s,m, a))] = γ1µθ[h1]iδ,γ1

θ (h1, s,m)σ2(µ)[a|s,m], where
(h1, (s,m, a)) ∈ H1 is the concatenation of the history h1 ∈ H1 with a period

where the sender plays (s,m) and the receiver responds with a, and iδ,γ1

θ (h1, s,m)
equals 1 if a type θ sender with history h1 plays (s,m) under policy xθ and

equals 0 otherwise. Likewise, f δ,γ1,γ2
2 : (∆(H1))Θ ×∆(H2) → ∆(H1) is given by

f δ,γ1,γ2
2 (µ)[∅] = 1−γ2, and f δ,γ1,γ2

2 (µ)[(h2, (θ, s,m))] = γ2µ2[h2]λ(θ)σδ,γ1
1 (µ)[s,m|θ],

where (h2, (θ, s,m)) ∈ H2 is the concatenation of the history h2 ∈ H2 with a pe-
riod where the receiver is matched with a type θ sender who plays (s,m).

Aggregate Response Mapping: To define the aggregate response mapping,

we first define mappings L δ,γ1
1 : Π2 → (∆(H1))Θ and L γ2

2 : Π1 → ∆(H2), which
output the resulting t → ∞ limit of the distribution of histories in the sender
and receiver populations when the aggregate play of the opposing population is

30Fudenberg and Levine (2006) and Fudenberg and He (2020) proved that some strategy profiles are stable
by considering priors that assign high probability to a neighborhood of the target profile. Modifying
the aggregate response mapping lets us prove stability for a broad class of priors.
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held fixed at a given behavior strategy. For each θ ∈ Θ, L δ,γ1

θ (π2)[∅] = 1 − γ1

is the share of type θ senders with the null history. The share of type θ senders
with histories h1,t of length t > 0 is defined by induction: For each h1,t−1, we
pair the signal-message pair a type θ sender with that history would use with the
aggregate receiver strategy π2 to compute the distribution of period-t outcomes
(st,mt, at) these senders observe, and assign the corresponding probabilities to
the concatenation of these period-t outcomes and h1,t−1. (We do this formally
in OA.2.1 in the Online Appendix.) Likewise, L γ2

2 (π1)[∅] = 1 − γ2 is the share
of receiver agents with the null history. A similar induction procedure gives the
share of receiver agents with various histories of length t > 0: For each history
of length t − 1, we take the strategy these agents would use, pair this with the
distribution of sender types λ and the aggregate sender strategy π1 to compute
the distribution of period-t outcomes (θ, st,mt) these agents observe, and assign
the corresponding probability to the concatenation of the period-t outcomes and
the previous history.

The components of the aggregate response mapping Rδ,γ1,γ2(π) = (Rδ,γ1
1 (π2),Rγ2

2 (π1))

are then found by composing L δ,γ1
1 and L γ2

2 with strategy mapping σδ,γ1 : The

aggregate sender response mapping is given by Rδ,γ1
1 (π2) = σδ,γ1

1 (L δ,γ1
1 (π2)), and

the aggregate receiver response mapping is given by Rγ2
2 (π1) = σ2(L γ2

2 (π2)).


