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The paper examines a large population analog of fictitious play in which piayers
learn from personal experience, focusing on what happens when a single rational
player is added to the population. Because the learning process naturally generates
contagion dynamics, the rational player at times has an incentive to act nonmyopi-
cally. In 2 X 2 games the dynamics are asymmetric and favor risk dominant
equilibria. A variety of other examples are presented. Journal of Economic Litera-
ture Classification Number: C7.  © 1997 Academic Press

1. INTRODUCTION

One of the most fundamental questions in game theory is the justifica-
tion of Nash equilibrium or other solution concepts. Recently, there has
been a surge of interest in boundedly rational learning processes by which
players might come to play an equilibrium, and in particular in models
related to the classic model of fictitious play.! The standard fictitious play
model is quite stylized; in particular, it involves two players who act
myopically while facing each other repeatedly. If the model is interpreted
literally, it is difficult both to justify why players should do this and to
argue that we as economists should devote so much attention to a model
which could at most tell us that when two players play each other

*This paper is a revised version of an earlier working paper entitled “A Little Rationality
and Learning from Personal Experience.” I thank Dan Friedman, Drew Fudenberg, Peter
Klibanoff, David Kreps, Eric Maskin, a referee, and the associate editor for their helpful
comments. Financial support was provided by National Science Foundation Grants SBR-
9310009 and SBR-9515076.

"This includes Robinson (1951), Miyasawa (1961), Shapley (1964), and the more recent
work of Fudenberg and Kreps (1991, 1993), Jordan (1993), Krishna (1991), Krishna and
Sjostrom (1995a), Milgrom and Roberts (1991), and Monderer and Shapley (1996), among
others. See Fudenberg and Levine (1996) and Krishna and Sjostrom (1995b) for surveys of
the literature.
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repeatedly they eventually come to play an equilibrium of the static game.
The fact that the model has received such great attention is probably a
result of people thinking of it instead as a loose representation of the
process by which each individual in a society comes to learn its conven-
tions.> With such an interpretation myopia may make more sense and we
might draw much more interesting conclusions, e.g., that two players who
are meeting for the first time might be expected to play an equilibrium if
they have grown up in the same society and learned the same conventions.
This paper attempts to develop such an interpretation more fully by
examining an explicit formal model of a large population of players
learning from the personal experience they obtain in of a sequence of
encounters with other members of the population.®

While the paper is motivated generally by a desire to explore what kinds
of things happen in a large population—personal experience model, the
discussion focuses on two more concrete questions: when is it reasonable
in such a model to assume that players act myopically, and is the outcome
of the learning process robust to a slight relaxation of the myopia assump-
tion in the direction of more rationality. The specification of the model
follows closely along the lines suggested by Fudenberg and Kreps (1993). A
population of N players is repeatedly randomly matched to play the game
G, and each player observes only the outcome of matches in which he is
personally involved. The one unusual element of the model is that the
population consists of N — 1 boundedly rational agents who follow speci-
fied myopic learning rules along with one patient rational player who
knows that the others are boundedly rational and may attempt to manipu-
late their play.

The primary motivation for this “one rational guy” model is that the
question of when a large population—personal experience story justifies the
assumption that players are myopic can be addressed by asking when the
rational player will play myopically. The first main point which the paper
makes is that large populations do not provide as clear cut a justification of
myopia as one might have thought. In a 2 X 2 game with two strict
equilibria myopia is justified if one thinks of the population size going to
infinity with the discount factor of the rational player held fixed, but for
any fixed population size it is also true that for discount factors close
enough to one the rational player can attempt to manipulate the play of

2See Fudenberg and Kreps (1991, 1993) for discussions of the possibility of large popula-
tion justifications.

3See Canning (1990), Fudenberg and Levine (1993), and Young (1993) for discussions of
other aspects of large population learning,
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the population even after all other players have coordinated on one of the
equilibria. The reason why manipulation may be profitable is that conta-
gion dynamics naturally arise in the process of learning from personal
experience.* While the rational player is a small part of the population,
what he does in period ¢ is a nontrivial part of the experience of his period
t opponent and thus may affect how that player plays from period ¢ + 1
on, how he and others play from period ¢ + 2 on, etc. Simulations are used
to help assess the practical relevance of the results, with the primary
conclusions being that nonmyopic play may be practically important when
very strong risk-dominance relationships exist, when players put a large
weight on recent experience, and when a population has a local interaction
structure.

The one rational guy approach also provides a minimal and fairly
natural robustness check in that we can ask whether the predictions of a
model change if we merely allow for the possibility that one player might
be rational.> While the result mentioned above makes it obvious that the
stability of equilibria under the learning process will not always be robust,
the further observation which may be of additional interest is that the
nonrobustness is highly asymmetric—the contagion dynamics allow the
rational player to shift play from an equilibrium which is risk dominated to
one which is risk dominant, but not vice versa.

The remainder of the paper presents several examples of things that can
happen outside the class of symmetric 2 X 2 coordination games. One of
these is an. a{dmittedly very special example in which a finite-memory
version of the personal experience fictitious play model always converges
to a state in which the players coordinate on the unique equilibrium of the
game. However, the dynamic process also has a “nearly stable” cycle which
is a very strong attractor, and in the intermediate run (meaning in the first
few thousand or million periods) cycling will be much more common than
equilibrium play. In this environment, a single rational player would be
able to keep the state of play permanently away from the equilibrium (or
any other stable limit set) and achieve supraequilibrium payoffs. Other
examples are used to discuss the scope of nonmyopic play in asymmetric
games and how things might be affected by dominated strategies and the
presence of other equilibria.

“See Kandori (1992) and Ellison (1994) for other examples of contagion dynamics. The
potentially interesting observation here is that such dynamics are not found only in fanciful
bootstrapped equilibria.

°See Banerjee and Weibull (1993), Dekel and Scotchmer (1992), and Matsui and Rob
(1991) for other discussions of rationality in learning and evolutionary models.
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2. MODEL

The basic model of this paper involves a single population of players
named 1,2,..., N, with N an even number. In periods ¢t = 1,2,3,... the
players are randomly matched to play the two player game G. Assume that
the matching is such that there is a uniform lower bound p > 0 on the
probability of any two players meeting at any history. The matching is
assumed to be anonymous, i.e., players are assumed to be unable to
identify or distinguish their previous opponents. I write s; , for the action
chosen by player i in period ¢, and s_; , for the action chosen by his
opponent. The personal experience assumption is that player i observes
only s_; , and not the actions taken by any of the players with whom he
was not matched. In the next three sections the game G will be the 2 X 2
coordination game shown below whose payoff function is denoted by g.
Assume that the payoffs satisfy a > d, b > ¢, and a > b, so that (4, A4)
and (B, B) are both equilibria with the former pareto optimal. Let u be
defined by pa + (1 — w)e = pd + (1 — wb. If u <1/2then Ais said to
be risk dominant. '

A B
A a,a c,d
B d,c b,b

Player i’s information at time ¢ is described by a vector hi € H} giving
the play of player i and his opponent in each previous period. I write
(h!,s,,s_,;) for the period ¢ + 1 information set in which ht is followed by
player i playing s; and his period ¢ opponent playing s_;. In the models
that follow players 1 through N — 1 (and sometimes player N) will be
assumed to follow simple behavioral rules similar to those discussed in
Fudenberg and Kreps (1993) and Milgrom and Roberts (1991). Specifically,
each player is assumed to have a belief function 7;: H} — % giving the
player’s expectation of the play of his opponent. In period ¢, each of these

players plays a myopic best response to his beliefs, choosing

5;; € Argmaxsg(s, ni(hﬁ))-

One model of learning which fits into this class is the analog of fictitious
play in which each player in each period plays a best response to the
empirical frequency distribution of actions he has observed. Another
model which reflects the notion that players may give more weight to more
recent observations and which is particularly tractable is a finite memory
version of fictitious play where players use only observations from the
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previous k periods, i.e., the belief functions n* are given by

e

k
W) = (s =)

where s_; ,_, for r > ¢ represents an initial fictitious history, and I(x) is
the indicator function for condition x being true or false. When discussing
this rule, I will assume also that all players use a fixed mixed strategy not
depending on the history whenever they are indifferent.

3. PERSONAL EXPERIENCE AND CONTAGION
DYNAMICS: A SIMPLE EXAMPLE

The example of this section is meant to illustrate how contagion dynam-
ics may arise when players learn from personal experience and how this
may provide an opportunity for a rational player to manipulate the course
of play. Consider a population of myopic learners with fictitious play
beliefs. In a 2 X 2 game where each player’s pure strategies are A and B
this means that each player i begins with weights (w4, w)) reflecting the
number of times he has “seen” each strategy in some “fictitious history”
before play begins. The weights are updated to (w7, w}) over time by
adding one in each period to the count for whatever strategy player i’s
opponent used in that period. At time ¢ player i assumes that his opponent
will play A4 with probability w/,_,/(w/_; + wf _,). Suppose that the
game G is that shown below, and that each of the players initial weights is
(0, 1). The players will then all play B in the first period, their beliefs will
be reinforced, and they will continue to play B in all future periods.

A B
A 10,10 0,0
B 0,0 1,1

To see how contagion dynamics can arise, suppose that player N were to
play A in the first period of the game (and to then revert to following
fictitious play). Call player N’s first period opponent player 1. In period 2,
player 1 will have weights (1,1). Hence, believing each strategy to be
equally likely he has A4 as a best response. He will continue to play A4 in
periods 3 through 10 (assuming he plays A when indifferent). In period 2
player 1 will likely meet a new opponent, say player 2. By the same
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reasoning as above, player 2 will think that A4 is somewhat likely and will
also play A in periods 3 through 10. In the likely event that players 1 and 2
do not meet in period 3, they will “infect” two more players who will play
A from period 4 through 10. As the process continues, the number of
players playing A4 may grow exponentially, with up to four players playing
A in period 4, eight in period 5, sixteen in period 6, and so on.

The growth of this contagion is sufficiently rapid that in a population of
100 players it may be the case that every player will have switched to
playing A by the 10th period, in which case 4 will be played in all future
periods. When this is not the case, each of the players who has seen A
only once in the first 10 periods will return to playing B in period 11, and
the set of players playing A4 will start to grow again (provided there is
some player who has seen A twice). It is then again possible that everyone
will switch to playing 4 before the 20th period; otherwise another contrac-
tion will follow the 20th period.

Imagine now that in the model above player N alone is rational and that
he is aware of the fact that the remaining players are fictitious play
learners with initial beliefs concentrated on B. Would player N play
myopically in such a situation, or is he better off trying to upset the initial
equilibrium? It should not be surprising that the answer is that he should
try to upset the (B, B) equilibrium if he is somewhat patient. If player N
plays myopically, he receives a payoff of 1 in every period. If instead he
plays A in the first period and then follows fictitious play, he suffers a
short term loss in receiving a payoff of 0 when not coordinating in the first
period, and may suffer additional losses from failures to coordinate in
some future periods. The potential gain from this strategy, however, is long
lived—with some probability the population shifts to the (A, A) equilib-
rium and player N gets a payoff of 10 in all periods after this occurs. When
player N is patient, the possibility of such a long term gain can easily
outweigh the short term loss.

Table 1 contains numerical estimates of the value of the discount factor
necessary for the strategy described above to dominate the strategy of
myopic play for a range of population sizes. If the model above is meant to
capture the way in which people may learn to play games from the
experience they obtain in day-to-day interactions, we might imagine that
players are involved in tens or hundreds of matches each year. Even

TABLE 1
Patience Necessary for Simple Nonmyopic Strategy

Population Size: - 4 10 50 100 500 1000 5000 10000
Discount Factor: 0.44 0.55 0.64 0.67 0.74 0.78 0.94 1.00
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incentives which exist only for discount factors like 0.999 might then be
practically relevant. Given the speed with which play can shift from one
equilibrium to the other in this example, far less patience than this is
necessary for a wide range of population sizes.

4. A MANIPULATION THEOREM AND
SOME CONVERSES

This section discusses more generally contagion dynamics and incentives
to manipulate play in personal experience learning models. The principal
insight obtained is that the contagion dynamics are highly asymmetric and
favor movement toward risk dominant equilibria. The practical relevance
of the results in connection with the justification of myopia is also
discussed.

4.1. Properties of Learning Rules

The manipulation theorem of this section will apply to all learning rules
having three properties outlined here. First, I will say that beliefs are
monotonic if for all i, ¢, s;, and s_;, n,(hl,s;,s_Xs_,) = n(h')s_,). This
assumption says simply that the strategy which was observed last period is
thought to be no less likely than it was previously. The assumption seems
innocuous for the problem at hand and is satisfied by each of the examples
mentioned above.®

Second, I will say that beliefs are asymptotically majoritarian if for all i, ¢,
hi, and for all € > 0, there exists 7 such that if +> T and hi =
(hi, 505855, 8771, 631 is such that nf(hIXs) > 1 for all ke
{2,4,...,2Int((r — 1) /2)}, then n(h]Xs) = 1/2 — €. Informally, the re-
quirement is that when s has been played at least half the time in a large
enough number of the most recent periods it is assumed to have a
probability which is not too much less than one-half. The requirement is -
similar in spirit to Fudenberg and Kreps’ asymptotic empiricism, although
less demanding in that it only applies to strategies played at least half of
the time, and only sets a lower bound on beliefs in this case. Note that the
standard fictitious play model always has this property, as do finite memory
fictitious play beliefs with an even memory length.®

6Aoyagi (1996) argues that monotonicity is inappropriate for players who might recognize
cycles or patterns in play. Such cycles, however, will not occur in most of the large population
models considered here.

"Recall that n¥ denotes the k-period finite memory fictitious play beliefs.

81f the memory length is large and odd the property nearly holds and the results presented
below will all go through, provided the game involved has a sufficient degree of risk
dominance.
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Finally, I will say that a system of beliefs induces pure strategy conver-
gence if for any initial history there is probability one that the population
will eventually converge to a state in which all players play A or all players
play B. The assumption rules out the possibility of play converging to the
mixed equilibrium or perpetually cycling in a nonconvergent fashion. It is
not so much a property of the beliefs as a joint property of the myopic
learning rules which the players are following, the game being played, and
the structure of the population interactions.

It is well known that in a standard two player model fictitious play
beliefs will not necessarily induce pure strategy convergence in games
which have both pure and mixed strategy equilibria. For example, Fuden-
berg and Kreps (1991) show that in 2 X 2 coordination games we may get
cycles involving persistent miscoordination rather than convergence to
either pure equilibrium. So that the reader will not worry that for this
reason the set of learning rules satisfying all three of these properties
might be empty, I include here a proposition which establishes that finite
memory fictitious play learning rules (with an even memory length) induce
pure strategy convergence in 2 X 2 coordination games. Intuitively, the
reason why this is true is that because of the randomness in random
matching and the contagion dynamics it is always possible for play to take
off on a path toward one of the pure strategy equilibria.

PrOPOSITION 1. For k even, k-period finite memory fictitious play belief
rules induce pure strategy convergence in 2 X 2 coordination games.

The proof of this proposition will be easier to read after seeing Proposi-
tion 2 and hence has been relegated to the Appendix.’

4.2. A Manipulation Theorem

To examine the justification of the assumption of myopic play, consider
now a model in which players 1,2,..., N — 1 react myopically to beliefs 7,
while player N is rational with discount factor & and knows the belief
functions 7; of the other players. Note that this specification makes the
Nth player more informed about the type of irrationality present than is
reasonable, but still limits him greatly by not allowing him to recognize

°As an aside, it is interesting to note that if players’ choices when indifferent are allowed to
depend on histories, the proposition is false. Whenever uk is an integer we may make play
converge (in time averages) to the mixed strategy equilibrium with an appropriate starting
point by assuming particular responses when the players are indifferent. Simply consider a
population in which indifferent players play whatever strategy they used k periods ago and an
initial history in which all players played A in the first wk periods and B in the next k — pk
periods. Then, regardless of the realization of the matching, all players remain indifferent and
play cycles through periods in which everyone plays 4 and periods in which everyone plays B.
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opponents or observe any aggregate statistics.'” For myopia to be justified
by this large population model, we would want to say that the rational
player plays as if he were myopic.

The following proposition identifies a fairly general set of circumstances
in which a single rational player will try to manipulate the play of an entire
population of opponents. Specifically, such behavior is shown to be optimal
whenever the N — 1 irrational players all have beliefs initially concen-
trated on the equilibrium (B, B) which is both pareto inferior and risk
dominated provided that the rational player is sufficiently patient. The
pareto inferiority of (B, B) makes the rational player want to shift play to
the (A4, A) equilibrium. The risk dominance of (4, 4) ensures that he is
capable of doing so (with positive probability).

PROPOSITION 2. Suppose players 1,2,...,N — 1 play myopic best re-
sponses to belief functions m; which are monotonic, asymptotically majoritar-
lan, and which (together with some my having these properties) induce pure
Strategy convergence. Suppose further that 1(hiXA) < u for all i so that all
myopic players will play B in period 1. If (A, A) is risk dominant, (i.e., if
p < 1/2), then there exists § < 1 such that for & > O the rational Nth player
will not play B in every period.

Proof. If player N plays myopically, he plays B in every period. By the
monotonicity assumption, all other players continue to play B as well, and
player N’s expected per period payoff is b. To show that the myopic
strategy is not optimal, I show that there exists a strategy o7 for player N
which yields a higher expected payoff provided he is sufficiently patient
because it causes the population to switch to the equilibrium A4 with
positive probability. In particular, for a value of T to be determined below,
the strategy o” will consist simply of playing A for the first T periods and
then reverting to myopic play given the beliefs 7, (k).

Write s, for the vector of actions chosen at time ¢, and A and B for the
vectors in which all players play 4 and B respectively. With the strategy
o, the assumption of induced pure strategy convergence implies that in
the limit as & — 1, player N’s per period payoff approaches

a Prob{s, — A} + b(1 — Prob{s, > A}).

Hence, it suffices to show that 37 such that Prob{s, = A} > 0 under
strategy o 7.

®1In fact, it is not necessary for the rational player to know the belief functions. It would
suffice for Proposition 2 for him to know that the rules satisfy the three properties (with a
known T as a function of e).
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Using asymptotic majoritarianism and the risk dominance of 4, we may
choose T, such that n;(h{)X(A) > u whenever t > T; and s_; ,, = A for
all t' <t odd. Define T, analogously for player 2 when he sees A4 in even
periods and set T = Max(T},T,}. Now, consider all realizations of the
matching in which player N is alternately matched with players 1 and 2 in
the first T periods (an event of nonzero probability). In period T + 1
players 1 and 2 will play 4, and all players will henceforth follow their
myopic rules. It now suffices to establish the following

Claim. In a population of N myopic learners with beliefs satisfying
monotonicity and asymptotic majoritarianism, s, — A with positive proba-
bility if there exists a period T for which two players have beliefs with

The claim may be proved by a simple inductive argument starting from
the initial fact that when N players simultaneously have such beliefs
monotonicity guarantees convergence to A with probability one. If the
result holds when r + 2 players have such beliefs for r > 2 even, suppose
players 1,2,...,r have such beliefs and consider realizations of the match-
ing in which those players are matched among themselves in periods
T + 1,...,T + 7,. By monotonicity, each of them plays A in those peri-
ods. Asymptotic majoritarianism then guarantees the existence of a 7,
such that players 1 and 2 play A in all future periods if they see A in all
subsequent even periods. Hence, consider matchings in which players 1
and 2 are matched alternately with themselves and with players » + 1 and
r + 2 for the next 7, periods while players 3,...,r are matched among
themselves. (Again this event has positive albeit small probability.) For 7,
sufficiently large, the first r + 2 players will all assign probability greater
than u to A in period T + 7, + 7,. The claim and hence the proposition
follow by induction.

While the inductive argument may not make it clear, the process
described above may grow exponentially. If, for example, players 3 through
r had been matched alternately with players not playing A, the contagion
would have doubled with each interval of time periods rather than growing
in size by two players. QED

Remarks. (1) The assumption that learning is from personal experience
alone is critical. If players observed the outcomes of all matches, one
player’s actions could not significantly affect anyone’s beliefs. The effect of
learning from personal experience can be thought of as similar to the
effect of local interaction discussed in Ellison (1993) in that each player
reacts to the actions of a small number of past opponents. One or a few
actions can thus have an impact on the process, and “evolution” from the
neighborhood of one equilibrium to the other can be both more rapid and
possible given a smaller push away from the initial state.
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(2) A direct corollary of this proposition is that in a model with r
rational players there will be no Nash equilibrium in which all r players
play myopically (at all histories). If they did, each of them would find
himself in the situation of the one rational player above, and hence have
an incentive to manipulate play. :

(3) While the statement of the proposition only notes that player N
deviates from myopic play at least once, one can deduce from the fact that
manipulation is profitable that player N at least occasionally succeeds in
dramatically altering the course of play. When players use finite memory
learning rules an even stronger conclusion follows. Because there is no
buildup of experience to deter him, a rational player in such a model will
try to manipulate play again if he ever thinks everyone has returned to
playing B, and hence with probability one he will eventually succeed in
moving the population to the (A, 4) equilibrium. See part 1 of Proposi-
tion 5.

(4) The proposition does not establish that a sufficiently patient
rational player will behave in a way which is incompatible with Fudenberg
and Kreps’s (1993) asymptotic myopia. Asymptotic myopia would, however,
be violated if for arbitrarily large ¢ there remains a positive probability of
reaching a state in which player N believes that the population is suffi-
ciently delicately balanced between tipping toward A4 and B so that he
should again try to push things toward A. I would conjecture that for this
reason behavior is not asymptotically myopic, although such violations may
not be of much interest because they occur with vanishing probability.

4.3. Myopia and Patience

If one wanted to use the large population—personal experience story as
a justification for the assumption of myopic play in a standard two player
model, one could have written down a model identical to that used here
and featured instead a proposition like that given below.

ProPOSITION 3. Let G be an arbitrary game with (s,s) a strict Nash
equilibrium of G. Suppose players 1,2,..., N — 1 play myopic best responses
to monotonic beliefs, and that their initial beliefs are such that they all strictly
prefer to play s in the first period. Then for any & < 1 there exists a population
size N such that whenever N > N a rational player N with discount factor &
will play myopically in every period.

Proof. Because playing anything other than s incurs a loss in the first
period and all payoffs are bounded, it is possible to choose T and e such
that a rational player will play s in the first period if with a probability of
at least 1 — € his opponents will play s in all of the first T periods
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TABLE 1I
Discount Factors Sufficient for Nonmyopic Play

’ Population Size, N
Payoff, a 4 10 50 100 500 1000 5000 10000

15 0.16 0.35 0.60 0.66 0.73 0.75 0.78 0.79
10 0.23 0.44 0.66 0.70  0.76 0.79 0.87 1.00
8 0.27 0.49 0.69 0.73 0.82 0.86 1.00 1.00
6 0.33 0.55 0.75 0.80 1.00 1.00 1.00 1.00
4 0.44 0.67 0.91 1.00 1.00 1.00 1.00 1.00
2 0.77 0.98 1.00 1.00 1.00 1.00 1.00 1.00

regardless of how he plays in the first period. If one chooses N sufficiently
large so that there is less than an e chance that a player will meet anyone
he has played or anyone who has met anyone he has played, etc., in the
first T periods, this is true and thus playing s is optimal. QED

The conflicting conclusions of Propositions 2 and 3 arise from changing
the order of the N — » and & — 1 limits. Given this conflict, perhaps the
best way to try to understand whether or when nonmyopic play may be
practically important is simply to check numerically whether one rational
player would act myopically for various parameter values.

Table II presents Monte Carlo estimates of how patient players must be
for a simple strategy of playing 4 in the first four periods and then
reverting to fictitious play to dominate fictitious play when initial beliefs
are very weak.!’ A uniform matching model with N — 1 players following
fictitious play learning rules is assumed, with the players’ initial fictitious
histories assumed to consist of having seen B in a single previous period.
Payoffs are as described in Section 2, with b fixed at 1, ¢ and d fixed at
zero, and a varied across the various experiments.

The most striking regularity in the table is that the degree of risk
dominance reflected in the payoff a greatly affects the ease with which
play can be manipulated. When a is small and the population size is at all
large we are unable to distinguish the required discount factors from one.
When the degree of risk dominance is more extreme, manipulation is fairly
easy. For a wide range of population sizes the contagion simply grows
exponentially until it takes over, and hence the requisite degree of pa-
tience increases only very slowly. If one takes the numbers in the table

The discount factor is listed as 1.00 if this simple strategy dominates fictitious play only
for discount factors which are so close to one as to be indistinguishable from one in the
simulations which were carried out. The optimal manipulation strategy would be profitable
for players who are somewhat less patient than is indicated in the table.
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seriously, one would conclude that nonmyopic play may be relevant when
very strong risk-dominance relationships are present or in not so large
populations.

On the taking seriously question, it should be noted that the calculations
above are based on a model which is in one regard extreme in facilitating
manipulation. Because players are assumed to have very little prior experi-
ence, seeing A once may lead them to change their play. There are some
economic situations where such a sensitivity of behavior to a single
observation seems reasonable. For example, we might expect an individual
who is mugged while walking down a particular dark alley to change his
behavior for a substantial period of time thereafter even if he has walked
down that alley with no ill effects a hundred times before. In a business
context, it is common also to talk of managers as being careful to avoid
making the same mistake twice.

The one experimental paper I am aware of which examines how much
weight players put on their most recent observations relative to accumu-
lated experience is that of Cheung and Friedman (1995), which finds
players to react even more strongly to new observations than is assumed
above. In their random matching/personal experience treatments they
find that there is significant heterogeneity but that the typical player
dramatically discounts the distant (and even relatively recent) past. In
estimating models in which players react to an exponentially weighted
average of their previous observations they typically find that the median
player discounts t-period ago observations by a factor of about 0.5".12
While I have to admit that such discounting seems extreme, if each
member of a population were to use such a rule manipulation would be
very easy. The number of players playing A could never decrease and if a
is at least two the rational player needs only to play A once to ensure that
everyone ends up playing A in the long run. Table III reports the discount
factors necessary for playing A a few times and then reverting to 0.5-ex-
ponentially weighted fictitious play to dominate myopic play when all other
players use 0.5-exponentially weighted fictitious play and have initial
beliefs which reflect seeing an infinite sequence of B’s.!* The results
indicate that when players place such a large weight on recent experience,
manipulation no longer requires strong risk dominance relationships and
increases in the population size have a very small effect on the requisite
degree of patience.!*

1 They do not always report estimates based on this treatment alone, but find such results
both when pooling data from this treatment with data from their other no-history treatment
and when pooling with their other random matching treatment.

A few is taken to be 10 for @ = 2 and 2 for a > 4.

" While computational concerns have led me to stop the table at a population size of 5000,
a rough calculation suggests that for a > 4 manipulation would still be profitable with
reasonable discount factors at population sizes in the tens of millions.
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TABLE III
Sufficient Discount Factors with 0.5-Exponential Fictitious Play

Population Size, N

Payoff, a 4 10 50 100 500 1000 5000
10 0.29 0.51 0.67 0.71 0.76 0.77 0.80
8 0.35 0.55 0.69 0.73 0.77 0.79 0.82
6 0.43 0.62 0.75 0.78 0.82 0.83 0.85
4 0.55 0.70 0.80 0.82 0.85 0.86 0.88
2 0.73 0.86 0.95 0.96 0.98 0.99 0.995

Is manipulation a relevant concern other than in situations where
players may react strongly to a single observation? The answer obviously
depends on how unlikely a chain of events is necessary to make the
contagion take off. To give us some feel for this, Table IV repeats the
experiment of Table II but with initial histories consisting of five observa-
tions of B. Here, manipulation appears profitable in games without an
extreme degree of risk dominance only if the population is very small.

While the table above is more negative on relevance, one can also make
things look a little better by noting that while a population of 10 or 50
players is not what models of learning in a social setting are intended to
capture, large population—local interaction models where each player
mostly interacts with 10 or 50 neighbors may behave similarly. To illustrate
this point Table V reports discount factors sufficient to make nonmyopic
play profitable despite 5 period initial histories in a local matching model
where players interact with their 20 closest neighbors on a circle. In these
simulations it appears that manipulation will be possible in larger popula-
tions if it is possible in a population of 50 players.'

4.4. Some Nonmanipulation Theorems

In Proposition 2, it was shown that a single rational player could shift
play from an equilibrium which is risk dominated to an equilibrium which
is risk dominant. To help clarify how the model’s dynamics are dependent

To facilitate simulation of the local matching, for this model alone it has been assumed
that random matchings occur asynchronously, with each player being matched on average
once per period. The discount factors are those which are estimated to make a strategy of
deviating from fictitious play to play A in the first 10 periods profitable. Note that this change
tends to make manipulation more profitable for players with very small discount factors, as
the specification of the random matching allows a player to be matched several times in the
first period before any discounting is applied. The standard errors of the large population
estimates are approximately 0.01.
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TABLE IV
Sufficient Discount Factors with Stronger Initial Beliefs

Population Size, N

Payoff, a 4 10 50 100 500 1000 5000
15 0.16 0.32 0.54 0.61 0.71 0.75 0.84
10 0.23 0.40 0.62 0.70 0.90 1.00 1.00
8 0.27 0.45 0.76 0.89 1.00 1.00 1.00
6 0.34 0.65 0.99 1.00 1.00 1.00 1.00
4 0.72 0.96 1.00 1.00 1.00 1.00 1.00
2 0.99 1.00 1.00 1.00 1.00 1.00 1.00

upon risk dominance relationships, Proposition 4 presents a partial con-
verse to this result, showing that manipulation is unprofitable when the
initial equilibrium is risk dominant.

PROPOSITION 4. For the standard fictitious play beliefs, if (B, B) is risk

dominant and the initial beliefs are such that all myopic players strictly prefer
B, then

1. For N > 4 player N’s optimal strategy is to play myopically.

2. For no strategy of player N does more than one other player ever play
A in a given period.

The proof of Proposition 4 is based on the observation that when (B, B)
is risk dominant players will not switch to A4 unless they have seen A in
more than half of the periods to date. Clearly, there will never be two or
more players each of whom has played player N more than half the time,
and hence player N’s manipulations cannot directly convince two or more
players to play A. It then remains only to show that he also cannot

TABLE V
Sufficient Discount Factors with Stronger Initial Beliefs
and 20 Neighbor Local Matching

Population Size, N

Payoff, a 4 10 50 100 500
15 0.00 0.08 0.27 0.26 0.25
10 0.03 0.21 0.39 0.40 0.39
8 0.04 0.29 0.52 0.52 0.52
6 0.21 0.53 0.85 0.85 0.85
4 0.70 0.93 1.00 1.00 1.00
2 0.97 1.00 1.00 1.00 1.00
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somehow indirectly convince two or more players by first convincing one
player to play A, etc. Essentially such possibilities do not exist because the
timing of these additional manipulations makes them of no help. A formal
demonstration may be found in the Appendix.

The second part of the proposition extends the first so that we know not
only that manipulation is not profitable, but that it is also impossible. We
can thus conclude that the stability of a risk dominant equilibrium under
fictitious play is robust not only to the introduction of one rational guy, but
also to the introduction of one player of any type.

Note also that the proposition has been stated for fictitious play rather
than for general learning rules. The reason for this is that the conditions
under which manipulation is not profitable vary from model to model and
will not always coincide exactly with risk dominance. In the finite memory
fictitious play model, for example, manipulation is somewhat easier and
thus turns out to be profitable not only when the initial equilibrium is risk
dominated (u < 3), but also when the initial equilibrium is only “a little”
risk dominant (roughly when u € (3, 2)).

PROPOSITION 5. In the model with a single rational player and N — 1
players following k-period memory fictitious play rules for k even, N > 4, and
initial beliefs assigning probability one to B:

1. For | uk| < 3k — 3, there exists a 8 < 1 such that a rational player
with a discount factor of at least & will play nonmyopically and with
probability one he will eventually succeed in shifting play to a state where
everyone plays A.

2. For [ ukl > %k + 1, the rational player will play B in every period
and play cannot converge to everyone playing A regardless of the strategy which
the Nth player uses.

Proof. The proof of the first part of the proposition is similar to the
proof of Proposition 2 and is left for the Appendix. For the second part it
suffices to show that regardless of player N’s strategy at most one other
player will play A in any given period. To establish this result, suppose not
and let ¢ be the first period in which at least two myopic players play A.
Call the players 1 and 2. Because each has seen A in at least [ uk] of the
previous k periods, there must be 2[ uk| — k periods in which both saw 4
simultaneously. In these periods, at most two players play A, so each of
players 3 through N — 1 face opponents playing B. In the last of these
periods, players 3 through N — 1 have seen A in at most k — (2[ k] —
k — 1) of the previous k periods. Under the hypothesis of the proposition,
this number is less than [ uk] so that each of players 3 through N — 1 play
B in this period. This yields a contradiction, because players 1 and 2 could
not have both seen A if they played each other, nor if one of them played
a member of the set {3,4,..., N — 1}. QED



196 GLENN ELLISON

Intuitively, the extra ability of player N to affect play in this model
comes from the possibility that manipulations may be bunched together
and hence appear more common in a particular k period history than they
are in the . entire history.

5. NONEQUILIBRIUM PAYOFFS AND INTERMEDIATE
RUN VS LONG RUN BEHAVIOR

In the 2 X 2 coordination games discussed so far a single rational player
may cause a shift in play from one equilibrium to another. This section
presents an example involving a 3 X 3 game in which more complex
cyclical contagion dynamics allow a rational player to obtain a payoff
which is higher than is possible in any equilibrium. While the example
itself is very special, it may be of broader interest as an illustration of the
fact that large population learning models may have “nearly stable”
behaviors which are more attractive in the intermediate run than are any
of the steady states or cycles which a long run analysis would identify.

Consider the 3 X 3 game shown below, where € is a small positive
number (less than 0.01). Note that (B, B) is the unique pure strategy
equilibrium of the game and that all mixed strategy equilibria also have a
payoff of one. Suppose that N players play the game in a random
matching setting and follow finite memory fictitious play rules with a
memory length of 10 periods. As was the case in 2 X 2 coordination
games, random matching is sufficient to break up cycles, so while the two
player model has a number of stable limit cycles, a four or more player
model converges to the unique pure strategy equilibrium from any initial
condition.!® A proof of the proposition is given in the Appendix.

A B C
A 10 + €,10 + € 0,1 0,11
B 1,0 1,1 1, —100
C 11,0 —100,1 0,0

PROPOSITION 6. In the 10-period memory fictitious play learning model
with N > 4 players, play converges almost surely to all players playing B given
any initial beliefs.

6Seventeen limit cycles are possible in the two player model. The first type of cycle has
period 22 and consists of (4,C), k X (C,C), (B,C), (B, A), 8 — k X (C, A), (C,B), k X
(A, A4), 9 —kx(A4,C) for some k< {1,2,...,8} (or the same with the roles of the two
players reversed). The second has period 20 and consists of 8 X (A4,C), (B,C), (B, A),
8 X (C, 4), (C, B), (A, B).
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A consequence of the global convergence result is that in a large
population any finite set of deviations from the rules will have no effect on
the long run behavior of the model. While this might lead one to think that
there is no scope for nonmyopic play in this game, the ability to affect
limiting behavior with a finite set of manipulations is not a necessary
condition for nonmyopic play. What happens in this example is that a
single deviation from the equilibrium has a dramatic effect on aggregate
behavior in the intermediate run, and (or so I conjecture) the intermediate
run benefit can be sufficiently large so that a sufficiently patient rational
player will deviate infinitely often and achieve a payoff greater than is
possible in any equilibrium.

Let me now describe the unusual cyclical contagion dynamic which the
leaning process engenders in the intermediate run. Suppose that all of the
players have seen only B played in the past, but that one player trembles
and plays A in period 1. His first period opponent will assign a probability
of at least one-tenth to each of 4 and B and hence play 4 in periods 2
through 10. As in the previous section the set of players playing A4 begins
to grow in a contagious fashion.'” After 4 becomes common things start to
change. There will be an increasing number of players who have only seen
A (and C) in the previous 10 periods and who will therefore switch to C.
Later, after most players have switched to C there will be players who no
longer remember seeing A and thus return to playing B. This, however, is
usually not the end of the effects of the single manipulation. Instead,
because different players have different experiences, there will usually be
one player who still remembers seeing A after most others have returned
to B. This player will play A, initiating another cycle in the population.
Hence, while play must converge to B, the convergence may be quite slow
and the distribution of play may move far away from the equilibrium.

Figure 1 illustrates the typical path of play following a single deviation.
For a randomly selected realization of the matching process, the figure
graphs the fraction of the population playing A in each period (and for the
100 player example the fraction playing B as well). Note that instead of
smooth gradual convergence to B we see lengthy dramatic cycles where
the entire population swings back and forth from one strategy to another
before play eventually locks on to B (which is observed here only in the 10
player example). In the 100 player example, the peak fraction of players
playing B in each cycle looks random and seems typically to be fairly far
from one. We may thus think of convergence to everyone playing B as
requiring a very rare random event.

Note that while the growth process is still random it is unlike that described in Section 3
in that strategy 4 cannot simply die out as experience accumulates. Any player who has seen
A in the previous 10 periods cannot play B.
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Fi1G. 1. Typical path of play following a perturbation.
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Table VI presents (fairly imprecise) Monte Carlo estimates of the length
of time until a population of N players return to playing B after a single
perturbation. The length of time for which the population cycles increases
dramatically when the size of the population is increased. Intuitively, what
seems to be going on is that the system has a nearly stable cycle which is
broken up only by an unrepresentative realization of the random matching
(involving all players’ experiences being unusually similar so that they all
return to playing B at about the same time). As the population size
increases, these unrepresentative realizations of the random matching
become more and more unlikely and thus the cycles become more and
more nearly stable.

The version of this model without the single rational player illustrates a
novel way in which intermediate run and long run behavior can differ.
What we see in Fig. 1 (and what seems to happen given virtually any initial
history) is that for thousands or millions of periods the players in the
model will cycle between the strategies. The standard long run analysis of
this model (as contained in Proposition 6) completely misses this in saying
only that eventually everyone ends up playing the equilibrium. Practically
the dynamics would be much better described by a definition which
allowed the cycle to be labeled as an additional “intermediate run limit
set” which turns out to be a very strong attractor.

Returning now to the model with one rational player, the fact that
aggregate behavior is altered so dramatically by a single manipulation and
that manipulations become more effective in larger populations leads one
to conjecture that for any population size there exists a discount factor
sufficient to make nonmyopic play profitable. Table VII presents addi-
tional simulation results which explore this conjecture. What is recorded in
the table is the limit as & — 1 of the per period payoff obtained by a
rational player who follows each of three different strategies when the
initial beliefs are concentrated on B. If the rational player plays myopically
he receives a payoff of one in every period as (B, B) is played in every
match. The second line of the table gives the payoff received by the
rational player when he follows the strategy which differs from 10 period
memory fictitious play only when the player has seen B 10 times in a row,
in which case he is assumed to play 4. The third strategy considered is that
of always playing A. Each of the latter two strategies is more profitable

TABLE VI
Expected Time to Equilibrium Following a Single Perturbation

Population Size: 2 4 10 20 40 60 80
Approximate Expected Wait: 22 24 58 250 4000 40000 400000
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TABLE VII
Estimated Limiting Payoff of Various Strategies

Population Size

Strategy 2 4 10 50 100 500 1000
Myopic 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Memory 10 fictitious play + manipulation 3.3 27 22 22 22 22 22
Always A 00 05 29 43 43 43 43

than myopic play for the larger population sizes listed in the table, and the
pattern of the payoffs in the table suggests that this will be true also in
larger populations.

When the rational player in the model above prefers to manipulate play,
he will deviate from finite memory fictitious play infinitely often. Other-
wise, play will eventually converge back to everyone playing B, and the
rational player will assign probability converging to one to this having
happened and thus eventually will have an incentive to manipulate play.

Let me say again that the example above is admittedly nonrobust to the
learning rules and is meant just to illustrate possible dynamic patterns.
The assumption of a finite memory length is critical both because it makes
the contagion easy to get started and because it allows the cycles to recur.
With standard fictitious play rules there would likely be no discount factor
sufficient to induce manipulation in a sufficiently large population. The
basic observation that a player may want to manipulate play for a medium
run benefit, however, may be regarded as practically robust in that similar
cycles would make manipulation profitable if the game was played by a few
thousand players following standard fictitious play rules.

6. FURTHER EXAMPLES

This section presents a few more examples illustrating some of the
additional considerations which arise outside of the class of symmetric
2 X 2 games.

6.1. Asymmetric Games

The model of this paper can be extended fairly easily to handle asym-
metric games, where the primary observation I would like to make is that
there is perhaps more scope for nonmyopic play than is made obvious by
the previous results. Consider a model where N player 1I’s and N player
2’s are randomly matched to play an asymmetric 2 X 2 coordination game
with equilibria (A4, A), (B, B), and (p A + (1 — u)B, p, A+ (0 -
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u2)B). The obvious consequence of the basic manipulation theorem is that
nonmyopic play will be optimal for a patient player of either type if
uy <1/2 and u, < 1/2. What may be more interesting is that manipula-
tion will also be optimal in two other sets of circumstances exemplified by
the games

A B A B
A 22 ] -90 A 2,2 0,0
B[ 00 1,1 B | —7-21 1,1

First, suppose beliefs also have the property that the probability of a
strategy which is seen from time ¢ on approaches one, and consider a game
like that on the left where u; < 1/2, but u, > 1/2. (The example has
my =1/3 and w, = 5/6.) In such a game, a sufficiently patient rational
player 1 will try to manipulate play. The argument is similar to those of the
previous section and is only sketched here. Consider initial beliefs for
which play converges to B, and suppose the Nth player 1 (N, for short)
plays A in the first several periods and then reverts to fictitious play.
Again A and B are steady states of the dynamic system and it will suffice to
show that a positive probability exists of converging to A after the manipu-
lation. If in the first T periods players N, and 1, are alternately matched
with players 1, and 2,, then players 1, and 2, will eventually switch to A.
Because he sees A4 in every subsequent period, player 1, will then adopt 4
as well (for. T large enough). In the next T periods suppose that 1; and 2,
are matched alternatingly with 1, and 2,, while players N; and 3; meet
players 3, and 4,. The first group will sustain themselves for the rest of the
game, while player N,’s manipulation adds the third and fourth player to
the group playing A. Continuing in this way, we reach a state in which
everyone plays A.

Second, suppose beliefs are asymptotically empirical (as in fictitious
play) and suppose u; + u, < 1. The game on the right above is an
example (u, = 3/5 and u, = 1/10). In such a game a rational player of
either type will want to manipulate play. That a rational player 2 wants to
manipulate play follows from the first example. To see also that there is
scope for a rational player 1 to do so as well, again look at the effect of
player N, playing A at the start of the game. If player 1, is matched with
player N; in a fraction u,; of the periods and with player 1, in the
remainder, eventually player 1, starts playing A, and this in turn causes
player 1, to switch as well (because 1 — u; > u,). Again, the contagion
may now spread to the rest of the population through further manipula-
tions by player N; or simply on its own as an additional player 1 is caused
to play A which in turn adds another player 2, and so on.
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6.2. Dominated Strategies

Among games with more than two strategies, the simplest ones to
analyze are those which reduce to 2 X 2 games after the removal of
dominated or iteratively dominated strategies. For example, consider a
3 X 3 game in which C is strictly dominated and the payoffs when 4 and
B are played are as before. Clearly, all of the results so far showing that
manipulation is possible will remain true with only minor changes. If initial
beliefs assign probability close to one to the risk dominated equilibrium
(B, B), player N can still manipulate play using the same strategy as
before. No strategy other than A or B will ever be played and dynamics
proceed exactly as in the 2 X 2 game. More generally, because no player
other than the rational player will play the strictly dominated strategy,
adding such strategies never reduces the set of opportunities for the
manipulation of play.

On the other hand, the converses in Propositions 4 and 5 do not carry
over so easily. Though they are dominated, the additional strategies
provide player 1 with an additional tool with which to manipulate play. For
example, if we eliminate the dominated strategy in the game below, we
obtain a 2 X 2 game with u = 3 /4, so that manipulation is impossible in a
neighborhood of B in both the finite and infinite memory fictitious play
models. In the full 3 X 3 game, strategy 4 is much better than B when
there is a significant probability of one’s opponent player C. For this
reason, player N can now manipulate play by playing C in the first several
periods. When he does so, there is some probability that two or more
players will assign a probability of at least one-fifth to C and switch to
playing A. If these players are subsequently matched, they will continue to
play A while player N’s actions convince more players to switch to A.
Once enough players are playing 4 (here at least five of them) there is a
positive probability that playing A will spread to the rest of the popula-
tion. The basic point to take away is that dominated strategies cannot be
ignored and may affect the selection the model produces.

A B C
A 2,2 ~5,0 0, —20
B 0, -5 1,1 —20, —20
C ~720,0 ~20, - 20 —30, -30

6.3. Strategic Risk

Evaluating myopia in games which do not involve simply the addition of
strictly dominated games is much more complicated. It is possible to get a
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generalization of the basic manipulation theorem to some games by adding
hypotheses which ensure that the best response to a mixture of 4 and B is
always either 4 or B (see Kandori and Rob (1993) for an example). With
such an assumption, the same strategy as before will allow a player to
manipulate .play away from a strategy which is pairwise risk dominated. In
general, however, manipulation may be made more difficult by the pres-
ence of additional undominated strategies. The game shown below is an
illustration.

A B C
A 12,12 0,0 — 100,5
B 0,0 8,8 —100,5
C 5, —100 5, —100 0,0

In this game, a rational player who tries to shift play from B to A is
faced with the possibility that at some point along the way one of the
myopic players may assign a probability in the interval (3 /8,5/12) to A.
That player will then play C and may trigger a contagion which leads
everyone to play C. In this steady-state, player N receives a lower payoff
than at B, and because C is a best response to any mixture placing
probability at least 1/2 on C, it would be impossible for player N to
manipulate play back to A or B. Because of this type of strategic risk there
may be more stable states once we move beyond 2 X 2 games.

7. CONCLUSION

In this paper, I have tried to take seriously the idea that learning is a
social process in which individuals react to the experience they gain in a
series of encounters with others over the course of their lifetime. The
primary observation which results is that large population behavior is
complex and a variety of contagion and other dynamics arise quite natu-
rally. For this reason, justifying the assumption that players would want to
act myopically may require that population sizes be extremely large.

The dynamics of learning in large populations suggest a tendency for
play to shift toward risk dominant equilibria. The practical importance of
this effect depends on the degree of risk dominance, with selection most
probable when the pareto optimum is strongly risk dominant, and perhaps
otherwise likely only when players react strongly to their most recent
experiences or with local interaction. Further analyses of large population
models may yield other insights unavailable in two player models.



204 GLENN ELLISON

A couple of connections with the literature on learning and evolution
with noise following Foster and Young (1990), Kandori et al. (1993), and
Young (1993) are probably also worth noting. First, given the rough
similarity between the personal experience model of this paper and Young’s
model of learning by sampling, one might expect that similar dynamics
might make evolution much faster in Young’s model than in the KMR
model (especially if the samples on which players base their beliefs are
small and the degree of risk dominance is strong). Second, the example of -
Section 5 provides another reason to be cautious when applying limiting
analyses to these models. The evolutionary forces created when noise is
added to the example of that section would be powerful—we would expect
to see cycling almost all the time if each member of a population of 100
players were to tremble as often as once every billion periods—but would
not be picked up by the standard limiting analysis.

APPENDIX

Proof of Proposition 1.

The system of myopic responses to the beliefs generates a Markov
process on the state space of the previous k observations of the players.
The state in which everyone has seen A in each of the last k periods and
that in which. everyone has seen B are clearly steady states. Call these
states A and B. It then suffices to show that for any other state z, there
exists T such that Prob{z,, ; = A} > 0 or Prob{z,, ; = B} > 0. Renaming
the strategies if necessary, assume that p < 1/2 and that players play A
with positive probability when indifferent if u = 1/2. Write A(z,) for the
number of players with beliefs such that they play 4 with positive probabil-
ity in period t.

The proof proceeds by considering three cases depending on the value
of A(z,). First, in the proof of Proposition 2, a claim is established which
guarantees (with a minor modification if u = 3) that play converges to A
with positive probability from any state with A(z,) > 2. Second, the result
is trivial when A(z,) = 0—play is already at B. Finally, it remains only to
consider the case of z, with A4(z,) = 1.

For this case, suppose player 1 plays 4 with positive probability and all
other players do not. Consider realizations of the matching in which
players 1 and 2 are matched in the first k£ periods. If in any period both
play B, then because there is a positive probability they will continue to
play B for as long as their beliefs are not adjusted in the direction of A4,
there is a positive probability that the state B will be reached within k
periods. On the other hand, if at least one of players 1 and 2 play A in the
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first k periods, we have n,(hi**) + n,(h5"*) > 1. Noting that the player
who assigns lower probability to 4 always has his belief increase when at
least one player plays A and that k is even, there must have been an
intermediate period ¢ + r in which 7,(h{™") > 1/2 and nz(h’”) >1/2.
Hence, we have a state with A(z, +,) > 2, and there is again a positive
probability of play reaching A. QED

Proof of Proposition 4. Define z;, to be the number of past observations
of player i which would have to be switched from B to A to induce him
to play 4. Formally, set z;, = (u — n(AD)(AN(w; + t — 1) where w; is
the sum of the weights in player i’s initial fictitious history. Let
Xip5 Xgps-+.5 Xy_1, D€ the first through N — 1st order statistics of the z,,.
To show that at most one irrational player plays A in any given period, I
simultaneously establish conditions I and II below by induction on t.

It x, +x,,> 0.
I x,, <0 =x,, + x5, = 2u( =[x, /uD.
(The notation [ x] indicates the smallest integer greater than or equal to x.)
Given the initial conditions on beliefs, z,; > 0 for all i and conditions I

and II are satisfied at ¢ = 1. To see that they hold at ¢ + 1 whenever they
hold at ¢, divide the problem into two cases.

Case 1. x;, > 0. Here, no myopic players play 4 in period ¢, so that at
most one of them has an opponent playing 4. Hence,

xlvt+1 +x2t+1 let'i'ﬂ'— 1+x2t+lL>2/.L'— 1 >0,

and condition I holds at time ¢ + 1.

As for condition II, if x;,,, < 0 it must be that player 1’s opponent
played A in period ¢ and the other myopic players’ opponents did not. (By
player 1 is meant the player with the largest z,,,,). Hence,

Xpppy) T X301 =Xt +x3, +u>2u= ZM(l - [x11+1/lf«]),

with the final inequality from x,,,,/u>p— 1/ > —1.

Case 2. x,, <0. Here, we distinguish between two subcases where
player 1 does or does not meet player N in period ¢. In the first of these,
condition I follows because again at most one myopic player has an
opponent who plays A. In the second subcase, condition I follows because
player 1 does not see A4 giving

Xypr T X0 2 Min{xy, x5, + 20— 1, x5, + x5, + 2 — 2}
>Min{2pu — 1, 2 + 2 — 2} > 0.



206 GLENN ELLISON

To establish condition II for the first subcase, note that

Xppor F X341 =Xg + %5, + 22 2p(1 = [x,,/0] + 1)
> 2p(1 = [x141/11),

again because x;, —x;,,; < 1 — p < u. In the second, we have

x2t+l +x3t+1 szt +x3, + 2[14 - 2 Z 2I.L(1 - [xlt/ﬂ-') '+' 2IL - 2
> 2p(1 - [x1,/p]) = 20 = 2p(1 - [x1t+1/,U«]),

with the last line following from x,,,,; = x;, + u. This completes the proof
that conditions I and II hold.

Condition I immediately gives the second conclusion of the proposition.
The first conclusion follows from the second, because player N expects to
meet an A player in each period with probability at most 1/(N — 1), and
this is less than u when N > 4. QED

Proof of Proposition 5. (1) As a first step, I show that s, > A with
probability one if the rational player N plays A4 in every period. To see
this, note that as in Lemma 1 we have a Markov process on the state space
of the players’ k period histories and that A is a steady state. It then
suffices to show that there is a positive probability path from every state to
A. To do so, I simply exhibit a realization of the first several periods of
matching which guarantees that play converges to A regardless of the
initial state. Suppose first that player N meets player 1 in the first k
periods. In the next k — | uk| periods suppose that player 1 meets player
2, while player N meets player 3. (Note that players 1 and N play 4 in
these periods.) In the following | k| periods, suppose that player N
alternately meets players 2 and 3. After 2k periods a state has been
reached in which players 2 and 3 have seen A in at least k — [ uk] +
Il ukl/2] of the last k periods. This is at least | uk| + 1 whenever
k—lukl+ Quk] —1)/2 = | pk] + 1, which is equivalent to the assump-
tion | uk] < 2k — 1. In period 2k + 1, players 2 and 3 therefore both play
A.

To finish the argument, we simply repeat the argument above with
players 2 and 3 meeting for the following 2k periods while player N meets
player 1 then alternately meets players 4 and 5 until they switch to 4. In
the next 2k periods we can have player N meet players 1, 6, and 7 until 6
and 7 switch to A, and so on.

Given that the expected per period payoff when player N plays A
approaches a as 8 — 1, it is immediate that the probability of play
converging to B when player N uses his optimal strategy must vanish as
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& — 1. To show in fact that play converges to A with probability 1 for a
neighborhood [ §,1) of discount factors, however, requires a little more
work.

To begin, I show that Je; > 0 such that for any & € (0,1) player N’s
optimal strategy must prescribe playing 4 whenever he assigns a probabil-
ity of at least 1 — ¢, to the true state z, being A. (The state here being the
previous k observations of all N players) For any other strategy, let ¢ be
the first period in which player N plays B despite having the beliefs above.
The expected payoff loss in period ¢ is at least (1 — €,)(a — d) — €(b — ¢).
The expected gain in the future is bounded above by the gain possible
relative to playing A in every future period which is

€ ), 8'Prob{z,,, # Alz,, z, # A}(a — ¢),
s=1

where the probability term concerns the evolution of the state when player
N plays ‘4 in every period. Because the Markov process describing that
evolution converges at an exponential rate, the right-hand sum has a finite
limit (bounded independently of the initial state) as § — 1. Hence, we may
choose €; sufficiently small so that any potential gain is less than the short
term loss regardless of the discount factor. Because the convergence is
exponential, it also follows that for any n > 0 there exists § < 1 such that
6 > & implies that player N’s average payoff conditional on any private
history is at least a — 7.
Next, note that we may choose T such that player N’s belief satisfies

Prob{z, = Als_y ,=Asy ,=AVse{t—1,...,t =T}, h,_;} > 1— ¢,

and such that there is a positive probability that the contagious process
leads everyone to play 4 T periods after the state was B and player N
started playing 4. When player N receives a payoff of a for T periods in a
row he plays A for as long as he continues to see 4. Hence, if player N
receives a payoff of a for T periods in a row infinitely often there is
probability one of playing converging to A.

Now, choose § such that player N’s average payoff conditional on any
history 4, is greater than that obtained when he receives a payoff of a in
at most T out of every T + 1 periods. Suppose & > §. If play does not
converge to A with probability one when the rational player plays his
optimal strategy it must be that for some k there is a positive probability
of the event A, in which he and his opponent play 4 for T periods in a
row exactly k times. By Levy’s zero or one law Prob{A,]A,} — 1, almost
surely, so there exists a positive probability set of histories H, for which
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player N assigns probability at least 1 — e to his never again receiving a
payoff of a in T consecutive periods. For e sufficiently small this is
impossible given player N’s maximization and the choice of 6. Hence, play
converges to A almost surely as desired. QED

Proof of Proposition 6. The dynamics of the model are described by a
Markov process on the finite state space consisting of the 10 previous
observations of each player. Write B for the state in which all players have
seen B in each of the previous 10 periods. This is clearly a steady state. It
then suffices to show that given any other state s there exists a time T
such that there is a positive probability of the system moving from s to B
in T periods. Note further that it suffices to prove the result for the case of
N = 4 players. If the result holds for N =4 we may use an inductive
argument to show that it holds for all larger even N, because there is a
positive probability of a realization of the matching in which the first four
players are matched among themselves for a time sufficiently long to allow
them to all reach B followed by a long period in which players 1 and 2 are
matched with each other (continuing to play B) while players 3 through N
are matched among themselves. If the second long period is long enough
for a group of N — 2 players to have a positive probability of all reaching
B from any initial condition, then with this matching there is a positive
probability of all N players having reached B.

To prove the result for N = 4, I consider a large set of possible first
period action profiles. For each I exhibit a realization of the first several
periods of matching which leads to the state B.

It may make the proof clearer to note the order in which I will show that
first period profiles give a positive probability of a transition to B: (1) all
four players playing B; (2) two or more playing B; (3) one or more B and
one or more C; (4) two or more C; (5) two or more A.

1. First, suppose that all four players play B in period 1. This profile
is repeated forever and the state B is reached.

2. Suppose that two or more players play B in period 1, say players 1
and 2. Consider a realization where players 1 and 2 are matched with each
other for a long time. They continue to play B while players 3 and 4
eventually enter one of the limit sets described above. If players 3 and 4
reach the equilibrium we are done. If they reach the first type of limit
cycle, we break up the cycle by supposing that after the 12th period of the
cycle (with the first period being the profile listed first in the description in
Lemma 2) player 1 meets player 3 and player 2 meets player 4 in periods
13 through 34. It is easy to verify that players 1 and 3 play (B, A4),
9 x (A, A), (C, A), 9 %X (C,C), (C,B), and (B, B) in those periods, and
that players 2 and 4 both play B in all subsequent periods. If instead they
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reach the second type of limit cycle, we obtain the identical path to B if
after the 19th period of the cycle player 1 meets player 3 and player 2
meets player 4 in periods 20 through 41. Players 2 and 4 both play B in all
subsequent’ periods. Players 1 and 3 play (B, A), 9 X (4, A), (C, A),
9 X (C,C), (C, B), and (B, B).

3. Next, consider all profiles where one player plays B and one player
plays C. If two or more play B the result follows from the last paragraph.
If the first period profile is BCAA, then if players 1 and 2 are matched in
the first period, the second period profile (if it does not have two Bs) can
be BAAA, BAAC, or BACC. In the first case match players 1 and 3 in
period 2. Players 2 and 3 have memories B then 4 and A4 then B of the
first two periods, so if they are subsequently matched we get the same path
as in the previous paragraph starting from 9 (4, 4)’s, leading both to play
B (which gives a positive probability of getting to the equilibrium by the
previous paragraph). In the second case matching players 2 and 3 in period
2 implies players 2 and 4 have memories B then A4 and A then B and we
again get a positive probability of reaching B from the state which occurs
after they meet in the next 21 periods. In the third case matching players 3
and 4 they will play (C, C) for 10 periods and then switch to (B, B).

If the first period profile is BCCA, then if players 1 and 2 are matched
we either get a state with two Bs or BACA. Either of these gives a positive
transition probability.

If the first period profile is BCCC, then we again get a profile with
two Bs or BACC. This again gives a positive transition probability.

4. Now, suppose two or more players play C in period 1. If those two
players are matched in period 1 and in the next several periods they will
eventually switch to (B,C) or (B, B). Both of these give a positive
transition probability.

5. Finally, suppose that two or more players play 4 in period 1.
Matching those two players in period 1 and the next several periods, they
eventually switch to (C,C) or to (A4,C) (which leads subsequently to
(B,C) or (C,C)). In any case the result follows from the paragraphs
above. QED
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