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We examine the local stability of mixed equilibria in a smoothed fictitious play
model. Our model is easy to analyze and yields the same conclusions as other
models in 2.x 2 games. We focus on 3 x 3 games. Contrary to some previous sugges-
tions, learning can sometimes provide a justification for complicated mixed equi-
libria. Whether an equilibrium is stable often depends on the distribution of payoff
perturbations. The totally mixed equilibria of zero sum games are generically stable,
and the totally mixed equilibria of symmetric games with symmetric perturbations
are generically unstable. Journal of Economic Literature Classification Number: C72.
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1. INTRODUCTION

In this paper we explore a potential justification for mixed-strategy equi-
libria based on the idea that an equilibrium distribution might arise in a
large population as the result of a learning process in the style of fictitious
play. The model is similar in spirit to that of Fudenberg and Kreps [4],
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who proposed a “smoothed” version of fictitious play in which small payoff
perturbations in the style of Harsanyi’s purification theorem make players’
behavior random. That paper and several subsequent analyses have shown
that in 2x2 games play in smoothed learning models converges to i
the mixed equilibrium in games like matching pennies, while the
seemingly unreasonable mixed equilibria of coordination games are
unstable.
While the 2 x2 results are quite intuitive, when we should regard a
mixed equilibrium as being reasonable or unreasonable is much less i
obvious in more complicated games. In fact, it is not clear from the existing
literature whether we should ever expect players to learn to play mixed
equilibria that give positive weight to more than two strategies. All 2 x2
games with a unique mixed equilibrium are strategically equivalent to zero-
sum games. In a zero-sum game with a unique mixed equilibrium, a player
who is trying to maximize his own payoff will try to minimize his
opponent’s payoff. If his opponent is maximizing, this will involve equating
the opponent’s payoff across the available pure strategies. In more com-
plicated games, however, maximizing one’s own payoff and equating one’s
opponent’s payoffs across pure strategies are not clearly linked, and thus
the previous intuition does not provide a clear reason to think mixed equi-
libria should arise. Moreover, previous results for 3 x 3 games under other
- learning/evolutionary models have emphasized instability. For example,
Krishna and Sjostrom [15] show that generically the continuous time
version of the standard fictitious play model cannot converge cyclically to
a mixed strategy equilibrium in which both players use more than two
strategies; and Hofbauer and Sigmund [10] note that the totally mixed
equilibria of 3 x 3 games are never asymptotically stable under the two-
population replicator dynamics.
In this paper, we take a first step beyond the 2 x 2 case in exploring the
behavior of a smooth learning model in 3 x 3 games. We regard our results
~ as being favorable to the ideas that learning models can provide a justifica-
tion for some mixed equilibria and can help us think about when mixed
equilibria are or are not reasonable. ‘
In our model, a continuum of player I’s and a continuum of player 2’s '
are randomly matched in continuous time to play a fixed strategic-form
game, with players observing the aggregate frequencies of each strategy in |
each population. There is a small degree of heterogeneity in the preferences
of the players in each population, and hence it is possible, for example, for
those player 1’s with a slight preference for Heads in a matching pennies
game to learn to play Heads while those player 1’s with a slight preference
for Tails come to play Tails. In this way, the aggregate distribution of the
player 1’s play can resemble the mixed strategy (31H, :T) even though no
individual player 1 uses a mixed strategy.
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The model is designed to be easy to analyze and to share the appealing
features of other forms of smoothed fictitious pay. If the time average of
play converges then the instantaneous distribution of play converges as
- well, and the common limit is a “purified” mixed equilibrium of the game.
In 2x2 “games of conflict” with a unique mixed equilibrium, the purified
equilibrium is asymptotically stable; in a coordination game the (inferior)
mixed equilibrium is a steady state of the learning process, but is unstable.

The largest part of the paper is devoted to an analysis of the local
stability of equilibria in 3 x3 games. Our first result provides a general
answer, showing that whether a totally mixed equilibrium is locally stable
when the payoff perturbations are sufficiently small depends on whether
three necessary and jointly sufficient conditions on the payoffs of the game
and the distribution of the heterogeneity are satisfied. The conditions include
a generalization of the game of coordination/game of conflict dichotomy
and conditions related to the possibility of cycling and other behaviors. We
provide intuition for the conditions by examining a number of examples
and restricted classes of games.

We regard our results as fairly supportive of the idea that populations

may learn to play certain mixed strategy equilibria. While mixed equilibria
can fail to be stable even when they are unique, the set of games in which
the mixed equilibrium is stable is not a measure zero subset. More strongly,
in simulations of a model with ii.d. payoff perturbations we find that the
totally mixed equilibria of games which do not have a Pareto superior
equilibrium are stable about 70% of the time.
. Another of our findings is that once one moves beyond the 2 x 2 case,
whether an equilibrium is locally stable is no longer independent of the
distribution of payoff heterogeneity. Nonetheless, one can obtain useful
insights by looking at how the stability of a game is jointly determined by
the nature of the game and the distribution of heterogeneity. In zero-sum
games we find a generic stability result. When the distribution of hetero-
geneity is the same in the two populations, we find that the mixed equi-
libria of symmetric games are generically unstable.

Our formal model is similar to that of Fudenberg and Kreps [4],
although we have a continuum of players on each side and we work from
the outset in continuous time, rather than using stochastic approximation
techniques to relate the asymptotic behavior of a discrete-time model and
its continuous times analog. While the alternative model used here suggests
different interpretations and applications, from a mathematical standpoint
the choice between them is solely a matter of convenience if the goal is to
characterize long-run behavior. Benaim and Hirsch [2], Kaniovski and
Young [14], and Fudenberg and Levine [5,7] consider more general
forms of smoothed fictitious play. Our paper differs from these because we
focus first on the sort of smoothing that arises from payoff perturbations
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and then on various combinations of restrictions on the form of the pertur-
bations and the nature of the game, in order to derive sharper conclusions.?

Hopkins [12] (independently of this paper) explores the behavior of the
smoothing of fictitious play proposed by Fudenberg and Levine [7]. He
shows that the concavity of the smoothing function implies that the
linearization of the dynamic is what he calls a positive definite adaptive
(PDA) dynamic.? The behavior of a PDA dynamic is very easy to analyze
when all eigenvalues of the game’s payoff matrix have real parts which are
of the same sign. In a one population model this allows him to obtain a
general and elegant proof of the stability of learning in symmetric zero-sum
games and in games where the payoff matrix is negative definite.

2. THE MODEL

Let G be a two-player game with strategy space 4, x 4, and payoff
functions g,: 4, x 4, — R. Since our interest is in studying the stability of
“totally mixed” Nash equilibria in which all strategies are played with
positive probability, we restrict attention to games where such equilibria
exist. We further specialize to the (generic) subclass of games where exactly
one totally mixed equilibrium exists; denote this equilibrium ¢*. Note that
we do not rule out the possibility of G having other equilibria that are not
totally mixed.

We'will be interested in population games derived from G, by which we
mean games in which a continuum of player 1’s and a continuum of player
2’s are randomly matched in continuous time to play a game with the same
strategy space as G, but where each player i’s payoff is perturbed according
to his/her “type” 6, € ©,, which is simply a function from 4, to R. We
assume that the distribution of types of player i has a uniformly bounded,
continuous, and strictly positive density on ®R“ and denote the joint
distribution over types by F. When a player i of type 6, plays a, and is
matched with an opponent who plays a_, his payoff in the e-perturbation
of the game, (G, F), is

gia;, a_; 0,)=gla,a_;)+ 0;(a;).

Although the perturbed game depends on the distribution of types F as
well as ¢, we will often just write G° for (G% F) when this will not cause
confusion.

2 See Fudenberg and Kreps [4], Jordan [13], Aoyagi [1], Ellison [3] and chapter 2 of
Fudenberg and Levine [6] for other discussions of fictitious play and its drawbacks.
3 The concept is similar to Hofbauer and Sigmund’s [11] “adaptive” dynamics.
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An equilibrium distribution for G® is a strategy profile o° with the
property that for all / and g, a fraction o%(a;) of the player i’s have a, as
a best response to ¢ ;. A purifying sequence for a mixed strategy equi-
librium ¢* is a sequence of equilibrium distributions ¢° of (G® F ) that
converges to o* as ¢ —» 0.4

The population game is very much in the spirit of the perturbed games
used in Harsanyi’s [8] purification theorem, but as in Fudenberg and
Kreps we assume that the perturbations to player i’s payoff depend only on
his action and not on the complete strategy profile and that the perturba-
tions have unbounded rather than compact support.> We also do not require
that the perturbations be independently distributed across a player’s
strategies.

Our learning model is a straightforward adaptation of fictitious play to
the continuous-time, random-matching, large-population environment,
with players assumed able to observe the distribution of strategy choices in
the population as a whole. Formally, write o,(6,) for the play of a player
i of type 6, at time 7. Write x,, for the distribution of play of the population
of player i’s at time 1,

Xic =J- c.(0)) f:(0,) do,,
9;

and s, for the time average of the play of the player i’s between time 0
and 1, "

Sip = l r X, dr.

r=90

At each time 7> 0 each of the player i’s is assumed to have the same beliefs
over the strategies his opponent might use, with the expected distribution

* The name is justified by the fact that almost all types of player i have a strict preference
for a single pure strategy given any distribution of opponents’ play.

® The issue of bounded versus unbounded support matters when considering equilibrium
distributions that approximate a pure-strategy equilibrium of the original game, but will not
matter here. The restriction to payoff perturbations that only depend on a player’s own type
seems a reasonable simplification and is unimportant in the 2 x 2 case, but we should point
out that in our more general setting the restriction may tend to favor the stability of the
steady state. Our intuition here comes from considering a game where all payoff functions are
identically zero. Here, the adjustment dynamics are degenerate on the unperturbed game,
while in the perturbed game each player type has a dominant strategy and so the equilibrium
distribution is globally stable. Thus, stability always obtains when the payoff perturbations are
large compared to the payoff differences. In contrast, Harsanyi’s more general perturbations
need not lead to stability even when the perturbations are large. ’



LEARNING PURIFIED MIXED EQUILIBRIA 89

of the opponent’s play being a weighted average of the time average of play
to date and an initial fictitious history x;,, i.e.,

TS _ia@_;) + Topio(a_,)
T+ To )

ﬂit(a —i) =

Players are assumed to choose strategies myopically given these beliefs, so
that

ai‘r(gi) = Argmaxd g:(a’ .ui'r; 0:)

We assume that the nature of the random matching is such that the
instantaneous flow of matches exactly matches the distribution of play in
the population. The evolution of beliefs is thus a deterministic process
described by

#- =x—l‘t_lui‘t

it T+ To .

If we renormalize the time dimension by writing ¢ for log(z+ 7o), the
dynamics in #-space are stationary,

. 6
K =X _jy— Hi-

Throughout this paper we will normalize the time dimension in this way
and focus on the evolution of the players’ beliefs over time.”

We will say that the emptrzcal averages converge to o iflim,_,  5;,=0; for
each player i. This is the sense in which the traditional fictitious play model
sometimes converges to a mixed strategy equilibrium. Note that the empiri-
cal averages converge if and only if beliefs converge. We will say that play
converges to o if lim,_, . x, =0, for each i. This form of convergence is
made possible by the smoothing caused by payoff heterogeneity and seems

to better capture what we normally think of as mixing. The following
proposition points out a couple of attractive features of the model.

PROPOSITION 1. (a) The empirical averages converge to o if and only if
play converges to o.

(b) If the empirical averages converge to o then o is an equilibrium
distribution of G°.

S Note that for all i and a,, 8i(a;)/0us(a;) = —1. This means that the system is volume
contracting, a fact that has important implications in dimensions 1 and 2 but seems less useful
more generally.

7 Note that (up to a time normalization) the dynamics of our model coincide exactly with
the dynamics which would be obtained from a variant of the model where the players beliefs
reflect an exponentially weighted average of past play.
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Any equilibrium distribution ¢® of G® is a steady state of the learning
dynamics.

Proof. (a) If s, converges to o then u, converges to o_; for each
player i. Because x, is a continuous function of p,, this implies that x,
converges. Given that s,, is converging to o, g, is clearly the only possible
limit for x,. The reverse implication follows trivially from the definition of
Sy

(b) If x, converges to g, then for each player i we have o;,=lim,_,
xu(iy) = x (o _;) which is exactly the condition for ¢ to be an equilibrium
distribution. That beliefs corresponding to an equilibrium distribution are
a steady state is obvious—when u,=0°, for all i, x_,(u_,) =0, and
hence 4, =0. |

While any equilibrium distribution corresponds to a steady state of our
model, the model allows us to draw distinctions between stable and
unstable equilibria. When a mixed equilibrium is asymptotically stable we
will regard the learning model as providing a reason to think that such an
equilibrium might arise, and when a mixed equilibrium is unstable we will
think of the model as suggesting that the equilibrium may be unreasonable.
To avoid repeating the same phrases over and over, we will abuse terminology
slightly and call a purifying sequence stable if there exists an £> 0 such that
the elements of the purifying sequence o° are asymptotically stable all
g€ (0, £). Similarly, we will call a purifying sequence unstable if there exists
an £> 0 such that the o* are asymptotically unstable all ¢ (0, &).®

3. 2x2 GAMES

This section analyzes the behavior of our model in 2x2 games. The
results here are in large part a recapitulation of past work, but we feel they
are worth presenting for a couple of reasons. First, the calculations are very
straightforward, which may make them useful pedagogically. Second,
laying out the details of this simple case will help set the stage for the
analysis of 3 x 3 games in the next section.

Write a;, and a,, for the pure strategies available to player i. Let 4, =
g1(ayy, @21) + £1(a12, az) — (81(a12, 821) + g1(a11, a2)); this is positive or
negative depending on whether player 1 is better off on the diagonal or off-
diagonal boxes of the payoff matrix. Equivalently it can be thought of as
measuring the degree to which player 1 views the actions as complements
or substitutes. Similarly, let 4, = g,(a1, a21)+ 82(a12, a22) — (82(a12, a21)
+ g,(ay;, ay)). We refer to a 2x2 game as a game of coordination if

8 Note that in principle a purifying sequence might be neither stable nor unstable.
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4,4,>0. In the common-interest game shown below the definition is
satisfied because each player has a preference for on-diagonal play. In the
grab the dollar game the definition is satisfied because each player has a
preference for off-diagonal play. We will refer to a 2 x2 game as a game of
conflict if 4, 4,<0. The definition classifies a standard matching pennies
game shown below as a game of conflict because the players have conflict-
ing preferences as far as on/off diagonal play is concerned (the 4, term is
positive and the 4, term is negative.)’

Matching pennies Common interests Grab the dollar
H T A B In Out
H|1l,-1|-11 A| 2,2 0,0 In |—1,—-1] LO
T| -1,1]1,-1 B| 0,0 1,1, Out| 0,1 0,0

4 1= 4 Al =3 Al = -2

4,=—4 4,=3 4,=—2
Conflict Coordination Coordination

PROPOSITION 2. (a) if G is a game of conflict, then every purifying
sequence for o* is stable.
(b) if G is a game of coordination, then every purifying sequence for
a* is unstable.

Proof. The space of beliefs (u,, 1,) is nominally four dimensional, but
the system is really only two dimensional because uraz)=1—ulaz)

and p,(a;) =1—pa{ay,). Writing (z;, z,) for the (u,(ay1), #1dan)), the
dynamics of the system (with the log-time normalization) are

z;=Prob{0,(a;)) + gi(as, p.)/e> 0.(as) + gaim, n)le} —z,
=Fi((gi(ai1’ pi) — 8@, pi))/e) — Zu

where F, is the cumulative distribution function of 6;(a;;) — 6,(a;).

9 Note that the names “coordination” and “conflict” may seem odd when applied to games
without a mixed equilibrium, as some games with a dominant strategy are classified as games
of conflict.
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Let {o°} be a purifying sequence for *. As noted in Proposition 1, each
o® is a steady state of the dynamics. Write 7, for the probability density func-
tion of 6,(a;;)—0,(a,;), and let hi(e) =.7;'(1/8(g1(ail5 0",) — gi(ai, 6°.)))).
Linearizing the differential equation around ¢*, we find 7 ~ 4z for

1
-1 —A4,h(e)
a=| ¢ ,
El’zhz(s) —1

It is a standard result in differential equations that ¢° is asymptotically
stable if all of the eigenvalues of A4 have negative real parts, and it is
unstable if one of the eigenvalues has a positive real part.

The eigenvalues of 4 are the solutions to

(1+2)*=(1/6%) 4,4, k(&) hy(e),

so that

A= 112 /(o) hoe) 4, 4,

If Gis a game of conflict, then the term in the square root sign is
negative, so far for any ¢ both eigenvalues have a real part of —1, and the
equilibrium is stable.

If G is a game of coordination, then the term in the square root sign is
positive. The fact that o° is a purified equilibrium implies that

~ (1
U?(ail) =F, (E (g:(a;, 6°,)— giap, Ue_,-)))-

Taking limits as & goes to zero we find

1 ~
E (g:(an, 6% ) — gia;, %) "Fi_l(a';|= (an)),

so that the continuity of f, ensures that h;(e) converges to a positive
constant:

hi(&) = F(F (0¥ (an))).

The term inside the square root sign in the expression for A is thus
converging to a positive constant as - 0. For ¢ sufficiently small the
system will then have one positive and one negative eigenvalue, and the
purified equilibrium will be unstable. ||
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Remarks.

1. Note that classification of equilibria as being stable/unstable does
not depend on the distribution of the payoff perturbations.

2. Increasing the degree of heterogeneity in the population (as
parameterized by increasing ¢) tends to contribute to the stability of mixed
equilibria. In games with contlicting interests we have stability for all & In
games with common interests, we also have stability whenever the O(1/¢)
term is not so large as to outweigh the —1 term in the expression for the
eigenvalue.

3. Since the system is volume contracting and has dimension two, it
cannot have a nontrivial limit cycle, nor can it have outwards spirals. Thus,
in the case of conflicting interests, where the game has a unique Nash equi-
librium, local and even global stability follows immediately without the
need to compute the eigenvalues of the linearized system, as noted by
Benaim and Hirsch [2].

4. While we focus in this paper on mixed strategy equilibria, our
model has implications also for the stability of pure strategy equilibria in
heterogeneous populations. We have shown (details available on request)
that strict pure equilibria are locally stable in games of coordination
—provided that additional technical assumption holds, essentially that the
distribution of payoff perturbations puts vanishing weights on extreme
values. Without this assumption, there may be multiple equilibrium dis-
tributions in the neighborhood of the strict equilibrium, and not all of these
distributions need be stable.

5. The stability result could clearly be generalized well beyond the
fictitious play model. The crucial features of the dynamics are that
Ofida_i1)/0usla_,1) <0 and that Opiifa_;)/0u _i(a;y) has the same sign
as 4 _,.

4. 3x3 GAMES

The stability conditions for mixed equilibria in 2 x2 games had been
informally known for a long time before the formal results of Fudenberg
and Kreps [4], Benaim and Hirsch [2], and Kaniovski and Young [14].
It is less clear how intuitive notions of stability and instability extend to
more general environments, and as we mentioned the existing results on
learning mixed equilibria are predominantly negative. Krishna and Sjostrom
[15] show that generically a continuous-time exact fictitious play model
cannot converge to a cycle whose time-averages correspond to a mixed
strategy equilibrium where both players mix over more than two pure
strategies. In a two-population version of the replicator dynamic, mixed
equilibria are never asymptotically stable, and Hofbauer [9] shows that in
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generic 3 x 3 games the replicator dynamic cannot have a neutrally stable
steady state.

In this section, we explore the behavior of our learning model in 3 x 3
' games and come to a much less negative conclusion. Our discussion begins
with a general result providing a set of (almost) necessary and jointly
sufficient conditions for stability. The theorem shows that whether a
~ purification of a totally mixed equilibrium is stable for small & depends on
where the game fits into an extension of the coordination/conflict dichotomy
and whether two additional conditions are satisfied. Subsequently, we
present a number of examples and derive implications within particular
classes of games to provide more intuition for the content of the general
result.

4.1. A General Analysis

Write ay,, a,,, and a5 for player 1’s pure strategies and a,;, a,,, and a,,
for player 2’s pure strategies. The dynamics of the learning process with the
log-time normalization) are once again given by

B =X _; (1 _ge) = M.
We analyze these dynamics as a four-dimensional system parameterized by
Z1,= Halay) Z3 = Had@13) 23, = U1(a3) Z4e = p1(a3).

Let {¢°} be a purification of the totally mixed equilibrium o* When the
system is linearized about a given o° we have 7~ Az with the matrix A4
being given by

-1 0 my(e) miye)
0 —1 m:l“(s) m;z(a)
A= 2 2 _1 >
mi,(e) miy(e) 0
m3(e) miy(e) 0 —1

for my(e) = (d/du.{a_x)) xpe)(ay) — (dldu,la_z)) x,(1a)a,). We write
M7 for the upper right 2x2 submatrix and M¢ for the lower left 2 x2
submatrix.

Computing Det(A — AI) we find that the eigenvalues of 4 are the roots
of

(14 A)* — Tr(M{M35)(1 + 1) + Det(M?) Det(M3) =0.

This quartic has no linear or cubic terms, so we can solve it to find

(1+24)2=3 (Tr(M{ M3) + /Tr(M M3)* — 4Det( M5 M),
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which gives

re—14— V Tr(M® M%) + ./ Tr(M% M%)* — 4Det( M, M?).

72

PROPOSITION 3. Let G be a 3x3 game, and let {c°} be a purifying
sequence for its totally mixed equilibrium o*. Let M| and M3 be the
matrices defined above. Assume that for i=1,21lim,_, ,eM exists and define
M, =lim,_, oeM¢. Then, the purifying sequence is stable if all three of the
conditions below are satisfied, and the sequence is unstable if the reverse of
any of the inequalities holds strictly.

(1) Tr(MM,)<0
(2) Tr(M,M,)*>4Det(M|M,)
(3) Det(M,) Det(M,)>0

Proof. From the expression above we know that the eigenvalues are of
the form

A= ——1+7—~\/x(8)+«/y(8

for x(e) = Tr(eM%eM?%) and y(e) = Tr(eMeM3)* — 4Det(e M’ eM 3). Provided
that x(¢) and y(e) have well-defined limits x and y as ¢ approaches zero,
the eigenvalues will have negative real parts for all small ¢ if x + \/; and

x= \/; are both negative real numbers. This will be the case if x <0, y >0,
and x2> y, which gives the three conditions above. Conversely, if any of
the inequalities above is strictly violated we will have a root with a positive
real part for sufficiently small &. |}

Remark. Note that the reason for the “sufficiently small &” requirement
varies between the stability and instability results. In deriving the stability
result, “¢ sufficiently small” is used only in a continuity argument letting us
say that the conditions which hold for M, M, hold for eM{eM? as well.
For the instability result, the fact that 1/e goes to infinity is needed so that
small real components of the eigenvalues get blown up and overwhelm the
minus one in the expression. We thus might expect that smaller &’s will be
necessary to ensure that a system which is eventually unstable is in fact
unstable.

4.2. Interpretation of the General Result

As a first step toward providing some intuition for the meaning of these
conditions, we now provide formulas for the M, matrices in terms of the
payoffs of the game and the distribution of the types in the population.
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Looking at a typical term, we see

d
mil(a) =EZ—3_ PrOb{all eArgmaax gel(a5 ,ul(Z))} |,u1—a; s

where u,(z) is the distribution which places probability z, on a,;, probabil-
ity z4 on a,,, and probability 1 —(z5+z,) on a,;. We will relate this to
properties of the 2 x 2 “restricted games” obtained from G by deleting one
strategy for each player. Let G,,, be the game obtained by deleting the mth
row (strategy a,,,) and the nth column (strategy a,,.) Analogously to the
definition of 4, of Section 3, let 4,(G,,,) measure whether player i is better
off on the diagonal or off-diagonal of G,,,,, e.g., 4,(G5) = gi(ay;, ayy) +

£1(a13, a23) — (81(@13, a21) + g1(a11, a23))-
Expanding the above expression for m], gives

d 1 1
i (6) = = Prob {03(aun) + £x(aun, m(2)) > Os(ae) + ; £1(aia, (=)

1 1
and )+ £1(aun, 11 (2) > Oan) + £1(a1s, 1 (2) |

H1=0)

d J~co J-01+ 1/e g1(a11 — a12, #1(2))

_dZ3 Gy = — 0

61=——<X)

J-Bl + 1/e gi(a11 — a13, p1(2))

J(64, 05, 05) d3d6,db,

&
H1=0,

#1=0§>
#1—a§>

) 0+k{§ 1
- j ~41(Ga) f(0, 0+ Kls, 0) do’ d
G= —o0 VO

o — 0O

03 — o0

00 91+k}§ 1d
=j -[ <——_g1(011—a12,#1(z))

= —00 YO3=— 8d23

X f(0y, 01+ k15, 03) dO db,

o oi+kyy /1 d
+Ll__°oJ. ( agl(all_als’.ul(z))

fy= — 0 €

x f(0y, 0y, 0,+k13) dO, do,

® R LG ) 6.8 0+ k) o dB
+ _ P £ l( 22) .fl( » ) + 13) ’

where ki =1/e(g;(ay, 0°,) — g:(ax, 0% ;) and where we have written
gi(aij_ ay,o_,;) for gi(ay, o_;)—giax,o_,).
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As £ - 0, em},(¢) will thus converge to
my; =h34,(Gx) + h341(G2),

where the A} are positive constants which depend on the density f; of the
type dlstnbutlon By analogy with Section 3, one would expect that kj, =
lim, o 1/e k}; exists and is independent of the particular purification; we
verify this i m the Appendix. The constants k) thus also do not depend on
the particular purifying sequence chosen and are given by

o0

o—k!
w=[ [ 5@.00+ky)drdo

' = — g0

[s o}

0—k!
h;_—.pr[ 2:0f (0+Kk,,0,0)do do

h;=j°°

m — 00

0—ky
[ .06, 0+k12, 6') do’ db.

@ =—o0

The constants 4} can be interpreted as the density of players who are indif-
ferent between playmg the two strategies other than a, against ¢°_, and
who prefer each of these strategies to a,. The 4] do clearly depend on the
distribution of payoff perturbations.

More generally, a similar calculation shows that

my = (=171 h3 4(Gx) + by 4:(Ge),

where j’ is 2 when j=1 and j' is 1 when j=2, and likewise for k'.

We now return to the three conditions which are jointly sufficient for
stability.

Condition (1) is fairly easy to interpret. Plugging the expression for mj.k
given above into the condition Tr(M;M,)<0 we show in the Appendix
that condition (1) is equivalent to

3 3
Z Zh}hidl(ij) 2AGy) <O0.

j=1 k=1

Each term in the sum reflects simply the extent to which one of the 2x2
submatrices of G is a game of conflict or coordination. Condition (1) is
thus a requirement that, in terms of a weighted sum over the submatrices,
the game is more one of conflict than one of coordination. For example, in
a zero-sum game every submatrix is also a zero-sum game and hence is (at
least weakly) a game of conflict. As a result, condition (1) will be satisfied
(generically) regardless of the distribution of types (which just determines
the weights in the average). Similarly in any supermodular game any
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submatrix is a game of coordination and condition (1) will fail to hold
regardless of the distribution of types. Note, however, that in general
whether the condition is satisfied will depend on the weights. For this
- reason, in contrast to the 2 x 2 case, we will not generally be able to classify
an equilibrium of a game as being stable or unstable without making
reference to a specific distribution of the heterogeneity in the population.

When condition (1) is strictly violated (and conditions (2) and (3) hold)
we can see from the proof of Proposition 3 that the instability of the equi-
librium results from the system having two positive real eigenvalues with
corresponding eigenvectors reflecting distinct directions in which players
can adjust their strategies and coordinate to improve their payoffs. Example
1 below provides one illustration of this. The mixed equilibrium which places
probability one third on each of the three pure strategies is unstable. The
first unstable eigenvector corresponds to both populations simultaneously
putting more weight on A and less on B (or vice versa); the second corre-
sponds to both populations putting less weight on C and adding weight
equally on 4 and B.

ExaMpLE 1. Let G be the game below with ¢* the Nash equilibrium
placing weight one third on each of the pure strategies, and suppose that
the 0,(a;) are independently and identically distributed across strategies
within each population. Then, condition (1) is strictly violated, while
conditions (2) and (3) are satisfied (and thus any purifying sequence is
unstable).

A B C

A 3,3 0,0 0,1

B 0,0 3,3 0,1

C 1,0 1,0 1,1

When the 0,(a,) are independently and identically distributed, there is a
one third probability that each of player /’s strategies has the largest 0, so
there is an equilibrium distribution in which each action is played with
probability one third in each population. The integrals defining the 4] are
then also symmetric within each population, and so h}=h}=~h] and
h? = h2 = h%. The matrices M, are proportional to whatever value is taken
on by 4!, and the values of these constants simply scale up or down the
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expressions in each of the three conditions. Hence we may simplify the
calculations without affecting whether the conditions hold by assuming
that ;=1 for all i and j.

© A direct calculation shows that the M, and M, matrices are then given
by,

2 s
M1=M2= N

3 6
and that
45 —-36
M‘Mz_[—ss 45}'

Condition (1) strictly fails because Tr(M,M,) =90 fails to be negative.
The equilibrium is therefore unstable for small &. One can also verify that
conditions (2) and (3) are satisfied:

Tr(M, M.,)* — 4Det( M, M,) = 5184 is positive
Det(M, M,) =729 is positive.

In general, whether condition (1) holds is not directly related to the
existence of Pareto superior equilibria. Condition (1) may fail to be satisfied
even in games with no pure or partially mixed equilibria.

We now discuss condition (3) which we think of as requiring that the
players have common or opposite views of the relative gains from diagonal
vs off-diagonal coordination. Recall that the condition is that Det(M,)
Det(M,) > 0. We show in the Appendix that

Det(M;) = (hilh; + hilhi3 + hizhis)(di(Gss) 4,(Gy) —4,(G3y) 4,(G53)).

To help interpret this condition, recall that 4,(G,;) measures the com-
plementarity between a,, and a,, (relative to (ay;, @1))- Similarly 4,(G,,)
measures the complementarity between a,; and a,; and 4,(G;,) measures
the complementarity between a,, and a,;. If all actions are complements
Det(M,) is thus positive if player i regards there as being greater com-
plementarities between the actions on the diagonal than between the
actions off the diagonal. Condition (3) requires that players 1 and 2 have
common views as to where the complementarities are greater. The condi-
tion can also be thought of as requiring either that the payoff differences
in the game for the two players both be log-supermodular or that they
both be log-submodular.

One important observation follows immediately from the definition:
whether condition (3) holds depends only on the game being played and
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not on the distribution of the payoff heterogeneity. The distribution of
heterogeneity enters the expression only through the initial multiplicative
term which is always positive.

A second immediate observation is that condition (3) is satisfied in
generic symmetric games and in generic zero-sum games. In a symmetric
game we have 4,(Gs)=45(Ga), 41(Gz)= A45(Ga), 41(G32) = 42(G23)
and 4,(Gp) = 4,(G3;). In a zero-sum game we have 4,(Gs;3) = —A4,(G33),
4)(Gp) = —A4x(Gx), 4/(Gx) = —A4,(Gx), 41(G3) = —45(G,3). Hence, in
either case

Det(M,) Det(M,)= H,H(4:(G33) 4,(G2) — 41(G3) 4,(G2))?,

for H,=h'hi+ h'h’+hh}, which is generically positive. Given that this
term is usually strictly positive, we can think of the condition as holding
whenever the game is nearly zero sum or nearly symmetric.

When condition (3) is strictly violated (and conditions (1) and (2) hold
at least weakly) the matrix 4 has a single positive real eigenvalue which
reflects a manner in which the strategy profiles in the two populations can
be adjusted to improve the players’ payoffs. Example 2 provides two
illustrations where the improvement results from the populations shifting
toward a Nash equilibrium which Pareto dominates the totally mixed
equilibrium.

~ ExampLE 2. For each of the 3 x 3 games shown below, condition (3) is

strictly violated for all distributions of the payoff heterogeneity. When the
type distributions are independent and identical across types conditions (1)
and (2) are satisfied or only weakly violated.

azn az LX) as az az;
an| 5,5 0,3 0,3 a,| 92 0,0 0,3
a,| 3,0 2,0 0,2 a,| 1,0 7,1 1,13
as| 3,0 0,2 2,0 a;;| 0,14 | 6,15 3,0

Perhaps the easiest way to verify that condition (3) fails is to compute
the matrix of payoff differences, ie., to write down lower right submatrix
of the renormalized game where the players receive a payoff of zero when-
ever a,; Or a,; is played. The renormalized games are:
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A3-a3 Q23-d3) A2-03) ay3-a3)
“ay5-ayy 4,2 2,4 ay-an 15,3 9,12
a13‘a11 2, 4 4, 2 013-011 15, 3 12, - 15

In the game on the left we thus have Det(M,)=H,(4-4—2-2)=12H,
which is positive while Det(M,)=H,(2-2—4-4)= —12H, is negative.
(We have again written H, for hih%+ hihi+h5h5.) In the game on the
right Det(M,)=45H, and Det(M,) = —81H,.

An explicit calculation shows that conditions (1) and (2) are satisfied or
weakly violated (in one case) when all of the A} are set to one. With this
assumption we have Tr(M;M,)=0 and K Tr(M,M,)*>—4Det(M,M,)=
5184 for the game on the left and Tr(M, M,)= —144 and Tr(M, M,)* —
4Det(M, M,) = 151956 for the game on the right.

Each of the above games has a single Nash equilibrium which Pareto
dominates the totally mixed equilibrium. In the game on the left, coor-
dinating on the first strategy gives each player a payoff of 5. While the
game on the right has no pure strategy equilibria, it has two partially
mixed equilibria: (5/9a,,+ 4/9a,3, 2/3a5, + 1/3a,3) and (14/15a,; + 1/15a,3,
1/4a,, + 3/4a,;). The first of these provides both players with a higher
payoff than the totally mixed equilibrium. In each case, the single positive
real eigenvalue of the system reflects the possibility of the populations
moving away from the totally mixed equilibrium in the direction of the
superior equilibrium. In simulations we have found that all games violating
condition (3) have pure or partially mixed equilibria, although these equi-
libria need not Pareto dominate the totally mixed equilibrium.

We think of condition (2) as a no-cycling condition. When condition (2)
is strictly violated (and conditions (1) and (3) hold) the matrix 4 has a
pair of complex eigenvalues with positive real parts when ¢ is sufficiently
small, corresponding to an unstable subspace in which beliefs will spiral
away from the purified equilibrium. See Fig.1 for an illustration of the
dynamics of such a system.

What condition (2) requires is that Tr(M,M,)>>4Det(M,M,). Recall
from the discussion of condition (1) that Tr(M,M,) can be thought of as
a measure of the degree to which the game is one of coordination or
conflict. The requirement of condition (1) that Tr(M, M) be negative is a
requirement that the game be one of conflict. Condition (2) can be thought
of as an additional requirement that the degree of conflict is sufficiently
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a=02 75 x magnification a=03

FIG. 1. Time path of player 1’s play from symmetric initial condition when > 0.

large so as to overcome a tendency of the system to cycle (which
apparently is captured by Det(M, M,)).

The games in the example below contain illustrations of two extremes
where the no-cycling condition will and will not hold. With iid. type
distributions the a-diagonal rock—paper-scissors game with a= +./3 is
just on the boundary between having common and conflicting interests on
average. For values of a which are only slightly smaller than \/3 in
absolute value, the degree of conflict is thus insufficient to prevent cycling.
The second game in the example is one where Det(M, M,) = 0. Any degree
of conflict is then sufficient to satisfy the no-cycling condition.

ExampLE 3. If G is the a-diagonal rock—paper—scissors game on the left
below with |a| < \/3, a#0, and the distribution of payoff heterogeneity is
independent and identical across strategies, the condition (2) is strictly
violated and conditions (1) and (3) are satisfied. In the game on the right
below condition (2) is satisfied regardless of the distribution of the payoff
perturbations.

R P S ansn ax az;
R oc,?x -1,1]1, -1 a;| 0,0 |1,-1 1,'_1
Pl1l,—-1| o | —1,1 a,| —-1,1[3 -3 0,0
S| -L,1|1,-1| o« a;|1,-1|-1,1}2 -2

In the a-diagonal rock-paper-scissors game the symmetry of the pertur-
bations again implies that it is a purified equilibrium to play each strategy
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with probability one third. We may thus again set all of the A equal to one
to simplify the calculations. We then find

—3+3x —6
M“Mz‘[ 6 3+3J'

To show that condition (2) is strictly violated when a # 0, we can then just
use a direct calculation to show that Tr(M; M,)? —4Det(M,M,) = —3888«>
is negative.

Condition (2) is the only condition that fails to hold in this example
when |a| <\/§ .Tr(M;M,)= —54 + 184> is negative and hence condition
(1) is satisfied. Det(M,;M,)=81(3 +«?)* is positive and hence condition
(3) is satisfied.

In the game on the right 4,(G,,) =0 and 4,(G5,) =0, ie., there are no
complementarities between a,; and a,; or between ay, and a,; relative to
(@41, as1). Hence, Det(M, M,) =0 for any distribution of the payoff pertur-
bations. Because every 2 x 2 restricted game is at least weakly a game of
conflict and several of them (e.g., Gs;) have strictly conflicting interests
Tr(M,M,) will be strictly negative for any distribution of the perturba-
tions. Hence, condition (2) will always hold. (The discussion above has
established also that condition (1) always holds and conditions (3) is
weakly violated.)

When o is small and nonzero, the 4 matrix for the a-diagonal rock-
paper—scissors game has two complex roots with positive real parts, and
thus the instability takes the form of beliefs spiraling away from the equi-
librium. In the a >0 case if both populations start out playing their first
strategy (“rock” in the rock—paper-scissors interpretation) with probability
slightly more than 1/3, they will synchronously start to shift more weight
to “paper,” then more to “scissors,” then more to “rock,” etc.,, with the
departures from 1/3 — 1/3 — 1/3 mixing becoming more and more pronounced.

Because the player 1’s and the player 2’s always have the same strategy
distribution along this spiral it is easy to graph. Figure 1 illustrates the time
path of player I's play from a symmetric initial condition near the equi-
librium when the payoff shocks are independent normal random variables
with standard deviation 0.1. The leftmost panel in the figure graphs the
evolution of the time averages of play when a=0.2. Play slowly moves
away from the equilibrium in a tight spiral and appears to settle down to
a stable limit cycle. To provide more detail on behavior around the equi-
librium, we present a 75-fold magnification of this figure in the center
panel. the rightmost panel contains a similar graph for a game with « =0.3.
As a increases the distribution of play in the populations seems to move
away from the equilibrium much more quickly, and the limit cycle is
farther from the equilibrium.
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In the a <0 case the unstable spiral in virtually identical, although it is
asymmetric with the two populations always having the opposite deviation

from a 1/3 —1/3 — 1/3 mixture.

4.3. Some Basic Facts

In this section we give four simple propositions pointing out basic facts
about the behavior of our model in 3 x 3 games: it is possible for totally
mixed equilibria to be stable; stability cannot be defined independently of
the distribution of the heterogeneity in the population; an equilibrium can
be unstable even though it is the unique equilibrium of the game; and a
totally mixed equilibrium can be stable even though it is Pareto dominated
by another equilibrium. In each case, the results are established by means
of examples.

First, in light of the fact that totally mixed equilibria in 3 x 3 games are
never stable in the two-population replicator dynamics and that exact
fictitious play also does not converge to such equilibria (Krishna and
Sjostrom [157]) it is interesting to see that such equilibria can be locally
stable in our model.

PROPOSITION 4. There exist choices for the 3x3 game G and for
iid. type distributions such that there is a stable purifying sequence
for o*.

Proof. Consider the slight variant on rock—paper-scissors pictured
below, where ¢ is a small positive number. Again suppose that the distribu-
tions of the types are independent and identical across strategies within
each population. Once again, the game has been defined so that it
(and each G®) has an equilibrium where each pure strategy is played with
probability one third. The calculations required to apply the general
result to determine whether this equilibrium is locally stable can again
be simplified without loss of generality by assuming that ;=1 for all i
and j.

ann ay ass
ap 5,0 ~1-26,1+26| 1+, -1
a1 1, —1 0, —6 ~1,1
ais ~1,1 1, -1-6 0,0
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The M, and M, matrices are given by

—3 —6-—60
M, =
! [ 6 3+35}

—3-35 —6
M2=[ 6+ 66 3}'

We can thus show that condition (1) is satisfied by noting that Tr(M; M,)
— — 54— 546 — 3602 is negative for all §.'°

Because the game is also nearly symmetric, one would expect condition
(3) to hold for small §. In fact, Det(M,) = Det(M,) =27+ 279, so condi-
tion (3) holds for any é # — 1.

Finally, checking condition (2) we find

Tr( M M,)? — 4Det( M, M) = (54 + 546 + 365%)2 — 4(27 + 275)*
= 12966%(6% + 36 + 3),

which is positive for all 6. |

It is also immediate from the proof that the set of parameters, ie., the
payoffs of the game and the six parameters describing the type distribution,
for which totally mixed equilibria are stable is not of measure zero. For any
8> 0 conditions (1), (2), and (3) hold strictly and are continuous in the
parameters; hence the totally mixed equilibria of nearby models will also be
stable.

Another example of a game with a stable totally mixed equilibrium can
be obtained by slightly altering the payoffs in the game on the right in
Example 2 so that condition (3) is strictly satisfied.

In 2x2 games, mixed equilibria are stable or unstable when ¢ is suf-
ficiently small, independent of the distribution of the heterogeneity. In 3 x3
games this is no longer true. We noted earlier that the form of condition
(1) made it seem likely that the form of heterogeneity would matter; we
now provide an example to verify this intuition.

PROPOSITION 5. There exists a 3 x 3 game G with a unique totally mixed
Nash equilibrium c* and two independent distributions F and F for the 6,(a,)
such that (G®, F) has a stable purifying sequence for a* while every purifying
sequence for a* in (G*, F) is unstable.

10 The calculation was not really necessary, as each of the nine 2x2 submatrices has
conflicting interests.
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Proof. Let G be the a-diagonal rock-paper-scissors game of Example 3.
We saw in Example 3 that when the distributions of the types were inde-
pendent and identical across strategies, the symmetric purified equilibria

. were unstable for ¢ small.

Suppose now instead that the distribution of the types is such that A}=1
for all pairs (i, j) other than (1,2) with h} being different from one.“jWe
saw in Example 3 that condition (3) was satisfied with iid. heterogeneity.
Condition (3) is independent of the distribution of heterogeneity, so it will
continue to hold. It remains only to show that we can choose h} so that
conditions (1) and (2) are satisfied.

The M, matrices are then given by

o _[—3+3a+2a(h;—1) —6—(3—a)(h;—1)]
1 6 3+ 3a

—343c -6
Mz'[ 6 3+3a]'

A direct calculation gives
Tr(M, M) = —54 + 180* — 18(h} — 1) + 60*(h} — 1).

This is negative so condition (1) is satisfied for any h>0if ae[—1,1].
Finally, condition (2) requires that

Tr(M, M,)? — 4Det(M, M)
= 36((9 — 6a® + oa*)(hi — 1)*> — 72a%(h — 1) — 1084%) > 0.

For any fixed 4} #1 this inequality will be satisfied for a sufficiently close
to zero. ||

The a-diagonal rock-paper—scissors game can also be used to illustrate
a couple of other properties of our model. First, we note that as in many
other learning and evolutionary models a Nash equilibrium may be
unstable even though it is unique.

PROPOSITION 6. There exist 3 x 3 games G and distributions of the hetero-
geneity for which G has a unique Nash equilibrium o* that is totally mixed
and for which any purifying sequence is unstable.

1 We can generate such a system with independent distributions for the types by choosing
61(ayy), 01(ays), 02(az), 02(ax), and 0,(a,;) to be independent standard normals, with the
distribution of #,(a;;) being normal with variance g2. We will then have that hl=hl=c,,
hl=c,, and h?=h%=h}=c; with ¢,/c; going smoothly from one to infinity as ¢ does the
same. Dividing all of the #"s and A*’s by ¢, and c¢3, respectively, does not affect whether the
conditions hold.
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Proof. If one takes a <0 in the game of Example 3, then the mixed
equilibrium placing weight one third on each pure strategy is unique. We
saw in the example that whenever the type distributions were independent
and identical across actions condition (2) always failed and hence any
purifying sequence was unstable. ||

Second, the reader may have noticed from our previous examples that in
many cases in which an equilibrium is unstable it is Pareto dominated by
a pure or partially mixed equilibrium. An implication of Proposition 6 is
that the existence of such an equilibrium is not necessary for instability. It
turns out that the existence of a Pareto superior equilibrium is also not
sufficient to ensure that the totally mixed equilibrium is unstable.

PROPOSITION 7. There exist 3 X 3 games G and distributions of the heter-
ogeneity for which the unique totally mixed equilibrium of G has a stable
purifying sequence despite a* being Pareto dominated by another Nash equi-
librium of G.

Proof. Again let G be the a-diagonal rock—paper-scissors game of
Example 3 and suppose that the distribution of the types is such that A} =1
for all pairs (i, j) other than (1,2) with h; being different from one. For
a> 1, each of the diagonal boxes is a pure strategy equilibrium that Pareto
dominates the totally mixed equilibrium. Let a = \/ﬁ As in the proof of
Proposition 5, condition (3) is satisfied for all A;. Condition (1) becomes

Tr(MM,)= —27—9(h3—1)>0,
which is also satisfied for all A1> 0. Finally, condition (2) becomes
Tr(M, M,)? —4Det(M, M,) = 36(2.25(h} — 1)*> — 108(h3 — 1) — 162) > 0.

This will be satisfied for A} sufficiently large. ||

While the example above exploits a highly asymmetric type distribution,
there are other examples which work with i.i.d. heterogeneity.

4.4. How Common Is Stability? A Monte Carlo Experiment

Looking at the various examples of mixed equilibria for which purifying
sequences are unstable and the two examples we have given of models with
stable equilibria, one might be led to wonder whether it is only in very
special circumstances that our model supports the idea that learning can
lead players to play mixed equilibria which are more complicated than
those in 2 x 2 games. The message of this section is that this is not the case:
it is quite common for purifications of totally mixed equilibria to be stable
in our model.
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To give a feel for how common stability is we conducted a Monte Carlo
experiment. First, we randomly selected 100,000 3 x 3 payoff matrices. As
noted earlier, the three conditions governing the stability of an equilibrium
are unaffected by adding a constant to each player’s payoff in one or more
rows or columns (when the 4 are held constant). We therefore chose to
' construct the games by choosing randomly the eight parameters 4,(Gy),
i=1,2, j,k=2,3, from independent standard normal distributions and
then adding constants to each row and column so that the game has a
mixed strategy equilibrium where each pure strategy is played with prob-
ability 1/3. In this experiment we found that 16.8% of the time a purifying
sequence approaching this mixture in a model with independent and identi-
cally distributed types would be stable.

In a large number of the simulated games in which the purified equi-
librium was unstable, it seemed that the instability was due to the game
also having a pure strategy equilibrium which gave a higher payoff on
which players would be led to coordinate. In the subsample of games that
have no pure or partially mixed equilibria, we found the totally mixed equi-
librium to be stable (for sufficiently small &) 70.4% of the time.

4.5. Zero-Sum Games

More intuition for when games will be stable is provided by the follow-
ing result, which shows that generically the purified equilibria of zero-sum
games are stable. Because the stability conditions hold strictly on the
‘generic set, this also tells us that, except in certain parts of the parameter
" space, games which are sufficiently close to being zero-sum (after adding
separate constants to the rows and columns for each player) will also be
stable.

PROPOSITION 8. In the set of 3 x 3 zero-sum games which have a totally
mixed Nash equilibrium, generically any purifying sequence for the totally
mixed equilibrium is stable.

Proof. Using the formula we derived in Section 4.2, condition (1) is
equivalent to

Y hih24(G,,) 45G,,) <O0.
m,n

In a zero-sum game 4,(G,,,) = —45(G,.,) so each of the terms in this sum
is less than or equal to zero and for a generic set of payoffs at least one is
strictly negative. Hence condition (1) holds.
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Next, we noted also in Section 4.2 that condition (3) is of the form
Hl H2(A I(G33) 4 l(G22) - AI(G32) 4 l(GZS))(A2(G33) AZ(G22) - A2(632) AZ(GZS)) > 0
We noted there also that in a zero sum game

AI(G33) AI(GZZ) - AI(G32) AI(G23) = AZ(G33) AZ(G22) - AZ(G32) AZ(G23)$

and thus condition (3) holds generically.
Finally- when conditions (1) and (3) hold, condition (2) is equivalent to

—Tr(Mle)—Z\/Det(M1M2)>0.

Each of the terms in the expression above can be written as a second
degree polynomial (with no linear or constant term) in four parameters,
41(G1s), 41(G3p), 4,(G23), and 4,(G,,), with the coefficients being func-
tions of the hJ’,. An explicit calculation shows that

— THM, M,) —2 /Det(M; M,) =v'Qb,

where v is the vector (4,(Gs3), 4,(Gs,), 4,(Gas), 41(Gy,))' and Q is the
matrix

(Bl h) A2+ h2) —hRE—hIR2 —hiRE—h1R3 B h2— SH
—hYR2—nin? (Rl 4R} (R4 RD) hih?+ SH —hin?2—hin2
C—h'R2—hlR2 K2+ SH (B +h)(h2+h2)  —hih2—hlk}
hihi~SH —hih}—hihy  —hihi—h3hT (it R)(R]+R3)

In this expression we have written H for

(BB RIRY + RIR)(R2h3 + h3hs + h3h3)

and S for the sign of Det(M,).

To show that condition (2) holds generically, it will suffice to show that
this quadratic form is always positive semidefinite and not identically zero.
For ke {1, 2, 3,4}, let O, be the submatrix consisting of the first £ rows
and columns of Q. The matrix will be positive semidefinite if Det(Qy) is
nonnegative for each k. Computing these determinants we find

Det(Q,) = (hi+ h3)(h} +h3) >0

Det(Q,) = (h' + h1)? (h3h2 + h3h% + h2h2) >0
Det(Q3)=0

Det(Q,)=0.
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Hence, the quadratic form is positive semidefinite and condition (2) holds
generically, which completes the proof. ||

.4.6. Symmetric Games with Symmetric Payoff Perturbations

_The fact that one cannot generally classify equilibria as stable or unstable
without specifying distributions of heterogeneity is potentially troubling if
one wants to use learning models to understand what kinds of mixed equi-
libria we might expect to observe. Given that we are assuming the amount
of heterogeneity in preferences for each action is small, one could argue
that it would be quite problematic to make specific assumptions about the
relative degrees of heterogeneity in the various dimensions.

Nevertheless, in this section we will do exactly that and present an addi-
tional result that holds when he distribution of payoff perturbations is the
same in the two populations.’? In this case, we show that generically the
totally mixed Nash equilibria of symmetric games are unstable.

PROPOSITION 9. Let G be a symmetric. 3 X3 game with a totally mixed
Nash equilibrium a*. Suppose also that the distributions of types in the two
populations are identical and that

h14,(G1) +h341(Gr) +h34,(Gs3) #0.
Then, any purifying sequence for a* is unstable.

Proof. We show that conditions (1) and (2) are incompatible.
- Given that the payoffs in the game are symmetric and the type distribu-
tions are identical we have M, = M, = M. Write m, for the ijth element of
this matrix. Conditions (1) and (2) for stability require that

Tr(M?) = (myy + my)* + 2(myymyy — my my) <0
and
Tr(M?) — 4Det(M?)
= ((myy + my)? + 4(mizmay —myymy))(myy +my)? 2 0.
A simple calculation shows that
My + Moy =h1A,(G1y) + hi4,(Gp) + hi4,(Gss).

Hence, the condition in the proposition implies that (m,; + m,,)*>0. In
this case, comparing the two conditions we see that conditions (1) and (2)

12 Note that the payoff perturbations are not required to be symmetric with respect to the
three pure strategies of each player.
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can be simultaneously satisfied (or at least only weakly violated) only if
Mgy My — My Myy > 0. When this is true and my, + ma, # 0, however, condi-
tion (1) is strictly violated. §

Remarks.

'{. The basic insight from the proof above is that in symmetric
games the conflicting interest and no-cycling conditions (1) and (2) are
incompatible and cannot be satisfied if the perturbations are symmetric in
the two populations.

2. The genericity restriction in the proposition
h} 4,(Gyy) +hy 4,(G) + h} 4,(G33) #0

fails for symmetric zero-sum games. Condition (2) is thus only weakly
violated, and we cannot say whether the purified equilibria of these games
are stable or unstable.

3. The assumption of symmetric perturbations is necessary to obtain
this result. Recall that the symmetric game used in the proof of Proposi-
tion 5 has a totally mixed equilibrium which is stable for small & with an
asymmetric type distribution. When « is small in this game, only a small
degree of imbalance in the type distributions is needed to make the equi-
librium stable.

5. CONCLUSION

In this paper we have used a smoothed fictitious play model to try to
better understand when purified mixed equilibria might be expected to
emerge within populations of interacting agents. Our conclusions on
stability in these games are more supportive of the idea that learning can
lead to mixed equilibria than might have been expected given previous
analyses of learning models in 3 x 3 games. One way to think intuitively of
what our results are saying may be that the inherent stability of learning
in a heterogeneous population (e.g., the model is globally convergent when
the payoffs of the unperturbed game are all zero) is sufficient to overcome
the instability caused by the fact that maximizing on’s own payoff is
different from minimizing one’s opponent’s payoff, provided that this dif-
ference is not too large.

In light of results on stochastic approximation, we would imagine that
our results can be shown to carry over to other smoothings of fictitious
play. One weakness of our analysis is that we assess the reasonableness of
a mixed equilibrium using a purely local analysis, yet an unstable path
away from an equilibrium may lead to a limit cycle that is close by, and
a stable equilibrium may have a very small basin of attraction. It is
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conceivable that the basins of attraction of equilibria we identify as stable
might also sometimes vanish in the limit as epsilon goes to zero. While we
believe that a substantial degree of heterogeneity is an important feature of

real world learning, a more complete analysis of the dynamics would

clearly be valuable.

‘Our restriction to 3 x 3 games is also a clear limitation of our work, and
it would be nice to know that the basic lessons we have drawn carry over
to larger classes of games. We would guess that zero-sum games will always
be stable and that analogs of the conditions we have derived (in particular
that the game be one of conflict) will still be necessary. However, the
possibilities for cycling may be greater, and we do not know how these will
affect the frequency with which mixed equilibria are stable.

APPENDIX

LEMMA 1. lim, k% exists and is independent of the choice of purifying
sequence.

Proof. Fix a type distribution F and a purifying sequence {o°} for a*.
Recall that k}",’c= 1/e(g(ay, 6°.,) — gax, 6°_,)), so player i prefers action j
to action k if and only if 6,(a;) —0,(ax)> —kj;. Thus, the probability
o%(a,) that i plays a, is exactly the probability of the event {6,(a;)—
0,(a;;) > —k*, and 0,(a,) — 0,(a;3) > —k¥%;}. Hence (k%,, kT3) is a solution
for (x, y) in the equation

oia,)= PrOb{gi(ail) —0,(a;;) > —x and 8,(a;) —0,(a;3) > — y}-
It is similarly also a solution to
oi(a;) = PrOb{ei(ail) —0,(a;z) <x and 0,(a;3) — 0,(a;x) <x— }’}-

Since the type distribution F has a positive density everywhere, the first
of these conditions holds on a downward-sloping curve in the space of
pairs (x, y). The second condition holds on a curve with upward slope.
Hence (k%, k%,) is uniquely determined as the intersection of these two
curves. Each of these curves shifts continuously in ¢ as ¢ -0, and hence
(kiy, kis) =1im, _, o(k', kT,) is well defined.

By continuity (k%,, k},) must satisfy both

gflay)= PrOb{Hi(ail) —0,(a;z) > _ki12 and 0,(a,) —0,(a;5) > “kils}
and

of(ay,)= PrOb{gi(ail) —0,(a;;) <k}, and 0,(a;3) —6,(a;) < ki, —kil3}'
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These equations again have a unique solution which shows that (ki,, ki)
does not depend on the particular purifying sequence for o* which was
chosen. |

berivation of Equivalent Form for Condition (1)
'Expanding the terms in the matrices M, and M, we find
Tr(M; My) =m! m3, + mi,m3, +mim}, + mym3,
= (h} 44(G) + by 41(G2))(h5 4G 23) + b3 45(G2))
+(h} 41(Ga) + b} 41(G1))(— 5 42(G23) + hi 4x(G1))
+(—h3 41(Gs) + b} 41(G12))(h3 45(G13) + b3 45(G1z))
+(—h} 41(Gay) + by 4,(G11))(—h3 4x(Grs) + hi 45(G1y))

Grouping the sixteen terms in this product according to the h} h% terms
gives

Tr(M, M,) =hih3 4,(Gyy) 4,(Gny)
+hih% 4,(G ) 4x(Gr2)
+h1h3 (41(G12) 42(G13) — 41(G11) 42(G13))
+hih3 4,(Gy) 45(Gy)
+hih2 4,(Gp) 45(Gy2)
+h3h3(41(Ga2) 4x(Gas) — 41(Ga1) 45(G23))
+h3h}(41(G31) 42(Ga) — 41(Ga1) 42(G 1))
+h3h3(41(G12) 42(Gra) — 41(G3;) 42(G12))
+h3h3(41(Gsz) 4x(Gas) — 41(G3y) 42(G2s)
+4,(Gay) 45(G13) — 4,(G3) 45(G13)).

It is then straightforward to show that each of the terms in this expression
can be simplified to given the desired result, e.g.

4,(G3y) 45(Gz) — 41(G32) 45(G12)
=A4,(G3,)(g2(a11 — a3, az — As3) — 8212 — a3, Az — ass))
= 4,(G3,) g2(ay —ayz, @z — azs)

= AI(G32) Az( Gsz)- l
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Derivation of Equivalent Form for Condition (3)
Again, we start by expanding the terms in the matrix M, to find
 Det(My)=mj,m3,—mim;
= (h} 41(Ga;) + b 41(G2))(—h3 4,(G3) + hi 4:(Gry))
—(h} 4,(Ga1) + b} 41(Ga))(—h} 41(G32) + by 41(Gr2)).

To simplify the notation in this proof we write x for 4,(Gs3), y for
4,(Gsy), z for 4,(Gys), and w for 4,(G,,). Each of the other A’s in the
expression above can be expressed in terms of these four parameters:

4(G)=w—y
4(Gy)=w—z
4,(Gy)=x+w—y—z
4,(G3y)=y—x.
In terms of these parameters we have
Det(M,) = (h}y +hyw)(—h3(y —x) +hi(x+w—y—2))
—(h3(y — x) + h3(w—2))(—h3y + hi(w — y)).

Multiplying out this expression gives a sum of 24 terms. Grouping these by
the products of x, y, z, and w they contain gives

Det(M,)=(—hih} —hih} + B n) + h1AY) y2 + (hih} — hyh) WP
+(h3h3 + h3hi—h3hy — h3hy) xy
+(hiht —hihY—nln! — BRI+ hYRY + hyRY) yw
+ (AL R+ hihL + h3AY) xw
+(—h3hy—hih]—h3h}) yz.
Cancelling out a large number of terms gives
Det(M,) = (h hL+h1h}+ hinY)(xw — yz)

as desired. The expression for Det(M,) is symmetric. ||
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