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Learning Theory and Heterogeneous Play in a  
 Signaling-Game Experiment†

By Drew Fudenberg and Emanuel Vespa*

We study the effect of how types are assigned to participants in a 
 signaling-game experiment. The sender has two actions, In and Out, 
and two types. In one treatment, types are i.i.d. in every period, and 
senders gather experience with both types. In the other, types are 
assigned  once-and-for-all, and feedback is type specific. The theory 
of learning in games predicts that the  non-Nash but  self-confirming 
equilibrium where some fraction of types play Out can persist in the 
 fixed-type treatment but not when types are i.i.d. Our results confirm 
that more senders do play Out in the  fixed-type treatment. (JEL C92, 
D82, D83)

In a Nash equilibrium (NE) and in a  self-confirming equilibrium (SCE) each 
agent’s strategy is a best response to beliefs about the play of his opponents, but 

while NE requires that beliefs are exactly correct, in a SCE, beliefs need only be 
correct along the equilibrium path of play. The notion of a SCE is grounded in the 
idea that equilibrium corresponds to the  long-run outcome of  belief-based Bayesian 
learning by agents who are initially uncertain about the distribution of strategies that 
prevails in the population, as in Fudenberg and Levine (1993b).1 When the game has 
a single round of simultaneous moves, learning the opponents’ moves is the same as 
learning their strategies, and so if agents learn to play a best response to their data 
and play converges, the convergence point must be a NE. However, when the game 
has sequential moves or some other sort of  nontrivial extensive form, the conver-
gence point may not be a NE. In such games, if agents only observe the outcomes 
that are reached in their own play of the game, and do not observe what opponents 
would have selected at  off-path information sets, play can converge while the agents 

1 Kalai and Lehrer (1993) and Fudenberg and Kreps (1995) study related learning models with a single agent 
in each player role.
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maintain incorrect  off-path beliefs, even though their beliefs are consistent with 
their observations.2

One key reason why  non-Nash behavior can arise in equilibrium is the pos-
sibility that incorrect beliefs are not challenged by the data that agents collect 
over time. In this paper, we explore whether laboratory play can indeed converge 
to a  non-Nash outcome when such an outcome is a best response to incorrect 
but  self-confirming beliefs. More specifically, we compare two treatments, where 
learning theory predicts the Nash equilibrium in one of them but not in the other. 
We do this in the context of a simple signaling game, in which the sender has only 
two types, Blue and Red, and chooses between “ In ” and “ Out .” The receiver only 
moves if the sender plays  In , and does not observe the sender’s type. Moreover,  In  
is the optimal choice when the type is Red, regardless of the receiver’s response, 
while the payoff to (Blue,  In ) can be higher or lower than the payoff to  Out  
depending on the choice of the receiver. All equilibrium notions predict that the 
sender will play  In  when Red. The stage game is designed so that if the Red sender 
usually selects  In , the best response for the receiver makes it optimal for a Blue 
sender to select  In  as well. For this reason, the unique NE of the stage game is for 
both types of senders to play  In .

In our sessions, participants are assigned to one role (sender or receiver) and 
our focus is on the  long-run behavior of senders. A sender is anonymously and ran-
domly matched to a receiver in each of the 120 periods. Participants in each role 
know how their own payoffs depend on the sender’s type, the sender’s action, and 
the receiver’s action, but they are not told the payoff function of the participants in 
the other role, so their only source of information about the play of their partners 
comes from their feedback. All participants received feedback at the end of each 
period but senders observe the behavior of receivers only if they selected  In .

Our first hypothesis, Hypothesis 0, is that toward the end of the sessions most 
senders play  In  when Red and most receivers learn to play the corresponding best 
response. Our design presumes that this prediction will be borne out and focuses 
on the contrast in behavior in two treatments that differ in the way that the send-
ers’ type are determined. In the treatment with random types, each sender’s type is 
i.i.d. across periods, so that participants in this role experience the “Red” and the 
“Blue” type many times. Thus, if they play  In  when Red, as theory predicts, their 
feedback will reflect that the receivers’ play makes it optimal to also select  In  when 
the type is Blue. For this reason, in this treatment, the only SCE of this game coin-
cides with the NE. In contrast, in the treatment with fixed types, incorrect beliefs 
may persist. With fixed types, nature assigns a type to senders  once-and-for-all at 
the beginning of the session. That is, some senders are assigned the Blue type and 
others are assigned the Red type, and types are fixed for all periods. It is then pos-
sible that different participants in the sender’s role play differently and so collect 
different observations, which can lead to persistent heterogeneity in their beliefs 
and in their play. To model such persistent heterogeneous beliefs, Fudenberg 
and  Levine (1993a) proposed “ heterogeneous  self-confirming equilibrium” (or 

2 Some applications of SCE include Cho, Williams, and Sargent (2002); Sargent (2001); Fudenberg and Levine 
(2005); Esponda (2008a, b); and Ali (2011).
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heterogenous SCE). “Heterogenous SCE” captures the fact that Blue senders 
who select  In  will receive different  feedback about the play of receivers than Blue 
senders who select  Out . A Blue sender who selects  Out  in every period may have 
incorrect beliefs about what would happen if she were to select  In . Additionally, in 
our  fixed-type game, heterogeneity of beliefs can be specific to each type. Dekel, 
Fudenberg, and Levine (2004) extended heterogeneous SCE to “ type-heterogeneous 
 self-confirming equilibrium” (or  type-heterogenous SCE) to model heterogeneous 
beliefs in  incomplete-information games.3 With fixed types, it is thus possible that 
a Blue sender who selects  Out  never learns that receivers are selecting an action 
that makes it optimal to choose  In . In fact, the game is constructed so that there 
is a  type-heterogeneous SCE in which Blue senders select  Out  while Red senders 
select  In , an outcome that cannot occur in a NE. Moreover, there are also “fully 
heterogenous SCE,” where all Red senders select  In  and some but not all of the Blue 
senders play  Out .

This leads us to our main hypothesis, Hypothesis 1, which is that in the last 20 
rounds, significantly more player 1 Blues select  Out  in the treatment with fixed 
types than with random types. Note that observing appreciably more participants 
play Out when Blue in the  random-type treatment would reject both Nash equi-
librium and learning theory, as would observing similar but  non-Nash behavior in 
both treatments, while observing the Nash outcome in both treatments would be 
uninformative.

In total, 604 UC Santa Barbara students participated in our experiments, and 
our main result is in line with the comparative statics suggested by the theory: 
There is a significant treatment effect of approximately 20 percentage points in 
the behavior of Blue senders, who settle for  Out  more often with fixed types than 
with random types.4 In the treatment with fixed types, in which incorrect beliefs 
need not be inconsistent with collected feedback, we find that approximately 
half of  Blue-type senders converge to  Out , a  non-Nash outcome that is part of a 
 type-heterogenous SCE. In fact, we document that almost all Blue senders who 
settle for  Out  collect very little information throughout the session, thus having no 
data to challenge possibly incorrect beliefs. With random types, meanwhile, the 
majority of our participants (close to 70 percent) settle for the outcome predicted 
by the NE.

Moreover, in both treatments, the behavior of Red senders and receivers is as 
predicted by the theory. All Red senders select the dominant action  In , and toward 
the end of the session receivers select the action that maximizes choosing  In  for 
Blue senders with frequency higher than 95 percent. Because this frequency is not 
100 percent, it is possible for standard  risk-averse preferences to rationalize an 
equilibrium selection of  Out  when the sender’s type is Blue in the treatment with 
random types. Indeed, we observe slightly more than 30 percent of our  participants 

3 The Appendix reviews the definition of this equilibrium concept.
4 Our focus is on the  long-run outcomes that are reached after several periods of play and feedback and, in 

particular, whether the observed difference in  long-run outcomes in the  fixed-type and random-type designs cor-
responds to the predictions derived from learning theory. In this respect, our paper differs from papers such as 
Roth and Erev (1995), Cheung and Friedman (1997), Camerer and Ho (1999), and Stahl (2000) that examine 
 period-by-period models of how people learn.
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making such choices. To further examine the extent to which these choices are 
consistent with risk aversion in an environment with experimentation, we con-
ducted additional treatments using a bandit problem. The main findings from these 
 treatments, reported in the online Appendix, are that many participants collect evi-
dence and respond in a manner consistent with the SCE, and that some partici-
pants’ choices to stay  Out  when Blue in the  random-type treatment are consistent 
with risk aversion.5

Overall, the evidence suggests that the treatment effect in our experiments is con-
sistent with the learning mechanism. Blue senders who select  Out  in the  fixed-type 
treatment collect very little information on the behavior of receivers, while Blue 
senders in the  random-type treatment are closely tracking and responding to the 
information that they collect. Similarly, Fudenberg and He (2019) finds that the rela-
tive experimentation rates of laboratory participants in different roles are ordered as 
Bayesian learning theory predicts. These findings help show the empirical relevance 
of the  learning-in-games program, as does past work that has shown how informa-
tion (or lack thereof) about other players’ payoff functions changes equilibrium 
outcomes in the way that learning theory predicts.6

Our paper also contributes to the experimental literature on incomplete infor-
mation games by comparing behavior between two different experimental proto-
cols. Most experimental studies of Bayesian games use the  anonymous-matching 
 random-type protocol that corresponds to our  random-type treatment. The surveys of 
Kagel (1995) and Kagel and Levin (2017) discuss a large number of auction exper-
iments with such properties.  Random-type protocols are also common in experi-
ments on  common-value elections (e.g., Guarnaschelli, McKelvey, and Palfrey 2000 
and Esponda and Vespa 2014), informational cascades (e.g., Çelen and Kariv 2004) 
and  cheap-talk communication (e.g., Cai and  Wang 2006 and Vespa and  Wilson 
2016). One aspect common to experiments with  random-type designs is that partic-
ipants gather experience from being assigned different types as the session evolves. 
In contrast, there are relatively few experiments using our  fixed-type treatment.7 The 
 fixed-type design seems a better match for some field settings, for  example, when 

5 The experiments in the online Appendix provide a direct comparison between behavior in our signaling exper-
iment and in a bandit problem where one of the players is replaced by a computer that follows a fixed strategy. As 
far as we know, this is the first experimental comparison of behavior in a game with behavior in a bandit problem. 
Early contributions to the experimental literature on bandit problems include Meyer and Shi (1995) and Banks, 
Olson, and Porter (1997), which reported results consistent with  under-experimentation. For other experiments that 
involve bandit problems, see Cox and Oaxaca (2000); Anderson (2001); Brenner and Vriend (2006); Gans, Knox, 
and Croson (2007); Acuna and Schrater (2008); Biele, Erev, and Ert (2009); Anderson (2012); Norton and Isaac 
(2012); Hu, Kayaba, and Shum (2013); and Boyce, Bruner, and McKee (2016).

6 See, for example, the Fudenberg and Levine (1997) analysis of the difference between the  full-information and 
 partial-information treatments of the best game in Prasnikar and Roth (1992), where play with partial information 
corresponded to a  non-Nash heterogeneous SCE. For a recent example in which learning theory can rationalize 
findings, see Araujo, Wang, and Wilson (2018). Our experimental design goes further as learning theory can not 
only rationalize behavior in each treatment, but crucially predicts a specific treatment effect as well.

7 Shachat and Walker (2004) is the only paper we know of with fixed types and random matching of partners. 
Fukuda et al. (2013); McLaughlin and Friedman (2016); and Che, Choi, and Kim (2017) use a design with fixed 
types and fixed partners.
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an agent’s type corresponds to a personal trait.8      ,  9 This paper is the first experimental 
study that compares behavior under the  fixed-type and  random-type protocols. Our 
results show that these two protocols lead to large differences in behavior in the way 
that learning theory predicts and so provide insight into how to interpret equilibrium 
notions in Bayesian games.

More broadly, our paper is related to the experimental literature on the difference 
between  fixed-role and  changing-role treatments in games of complete information. 
Güth, Schmittberger, and Schwarze (1982) finds that subjects who simultaneously 
make decisions as proposer and responder in an ultimatum game make more gener-
ous offers, while Binmore, Shaked, and Sutton (1985) finds that when participants 
play the two roles sequentially their offers are lower. As far as we know, the only 
such paper to have participants play repeatedly in each role is the contemporane-
ous work of Ponti et al. (2018). They find that changing roles leads participants to 
choose more efficient contracts in a principal agent game, which they explain by 
saying that the  changing-role treatment makes subjects more aware of the “interde-
pendence of decisions taken in different roles.”

In addition, we study how the assignment of types affects  long-run choices in 
an environment where participants are not told all of the primitives. In our game, 
participants are not told the payoff function of the participant in the other role. 
Not providing primitives is standard in market experiments (e.g., Smith 1962), 
where each consumer and each producer only know their own relevant information 
(valuations/costs), and the goal is to evaluate if decentralized markets aggregate 
information.10 In games, the study of behavior when agents do not know all the 
primitives is relatively  under-explored. A small recent literature includes Fudenberg 
and Peysakhovich (2014) and Esponda and Vespa (2018).

Finally, our paper contributes to the experimental literature on signaling games. 
The early experimental work on these games such as Miller and  Plott (1985); 
Brandts and Holt (1992, 1993); Banks, Camerer, and Porter (1994); and Cadsby, 
Frank, and Maksimovic (1990, 1998) tried to evaluate when play corresponds to the 
predictions of refinements of Nash equilibrium. Cooper and Kagel (2003) summa-
rizes this literature by saying “experiments have demonstrated that subjects tend to 
follow simple, history dependent learning processes and, with the right game struc-
ture, can be induced into violating even the simplest of equilibrium refinements.” 

8 For example, consider a worker who currently works in industry  X  and could switch to a more lucrative job 
in industry  Y , but believes that there is discrimination against some personal trait of hers (e.g., ethnicity, religious/
political beliefs, or marital status) in industry  Y . Specifically, in each period, she decides whether to retain her job 
( Out ) or accept a job in industry  Y  ( In ). In each period, she faces different potential employers from industry  Y  
(receiver), and the application process does not ask for the applicant to reveal her personal trait. Once in the job, 
a worker with her personal trait (Blue type) can be discriminated against. Given her beliefs that there currently is 
discrimination in industry  Y , she may never accept the job opportunity. This can result even if employers do not in 
fact discriminate.

9 Yet another possibility is for Nature to make a once-and-for-all choice of type profile that applies to all matches, 
and use that throughout the session so that all participants in a given player role in fact have the same type as in Cox, 
Shachat, and Walker (2001); Mitropoulos (2001); Chen (2003); Oechssler and Schipper (2003); Nicklisch (2011); 
and Feltovich and Oda (2014). Here, the probability distribution  p  used to select the type profile has only an indirect 
effect on the outcome of the experiment and has no direct impact on the realized  complete-information game, so the 
design is only indirectly related to equilibrium in Bayesian games.

10 More recently, Huck, Normann, and Oechssler (1999); Rassenti et al. (2000); and Huck, Leutgeb, and Oprea 
(2017) study behavior in Cournot settings in which participants are not told information regarding other players.
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Similarly, papers by Cooper, Garvin, and Kagel (1997a, b); Potters and Van Winden 
(1996); and de  Haan, Offerman, and  Sloof (2011) show that behavior is history 
dependent in the way suggested by learning models. All of these papers used a 
 random-type design. We use the comparison between fixed and random types to 
develop a testable prediction of learning theory. Our experiments also show how 
learning can lead to a  non-Nash but  self-confirming outcome. Thus, our findings 
suggest that predictions of learning models should receive more attention in the 
experimental literature.

I. Experimental Design

A. Stage Game

The extensive form of the game we study is presented in Figure 1. The tim-
ing is as follows. Nature moves first and with equal probability assigns a 
type   θ 1   ∈  Θ 1   = {Red,  Blue}  to player 1. Player 1 (he) is informed of his type 
and then makes a choice   a 1   ∈  A 1   =  {In,  Out}  . If player 1 selects  Out , payoffs 
are implemented and the stage game is over. If player 1 selects  In , player 2 (she) 
makes a choice   a 2   ∈  A 2   =    { □ ,  △ } without observing Nature’s move.11 Player  i ’s 
payoff, where  i ∈  {1, 2}  , is captured by   x i   (a,  θ 1  )  ∈ X ⊂      ℝ +   , and depends on the 
actions  a =  ( a 1  ,  a 2  )   and on player 1’s type.

Studying the payoff functions, we see that when player 1 is Red he wants to 
play  In  regardless of the play of player 2, and when player 1 is Blue, he wants to 
play  In  only if player 2 is very likely (Probability  > 10/13 ) to play  □ . Player 2 
meanwhile wants to play  □  if the probability of Red is higher than  one-third. Since 
player 1 Red always plays  In , the only Nash equilibrium of this game is for player 2 
to play  □  and both types to play  In , and this is also the only SCE with independent 
types: since all player 1 participants should play  In  when Red, player 2 should learn 
to play  □ , and player 1 participants should therefore learn to play  In  when Blue. 
However, when types are fixed once and for all, there is a  type-heterogeneous SCE 
where some of the player 1 Blues always stay  Out  because they misforecast the play 
of the player 2’s. We explore predictions in further detail as we present our experi-
mental design.

B. Treatments

Participants are told their own payoff functions, the action space, and the type 
space. They are also told that the probability distribution over types is fixed through-
out the experiment. (Section ID explains how we implemented this in more detail.) 
Participants are not told the payoff function of their opponent and are not told the 
probability  p  of player 1’s type being Red, which is set to  1/2 .12

11 We use  □  and  △  to describe player 2’s actions to match the way we presented the game to the participants; 
see Section ID for details.

12 Figures 7 and 8 in online Appendix C present the game in Figure 1 from the perspective of player 1 and player 
2, respectively.
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At the end of the period, agents learn their own realized payoff. Notice that if 
player 1 selects  In , own payoffs are informative in the sense that player 1 can infer 
what player 2’s action was, and player 2 can infer what player 1’s type was.

We implement two treatments that differ on how player 1’s type is assigned. In 
the Game with Random-types treatment (GR), the baseline environment described 
above is repeated in every period  t = 1, …  , T  of the session. At the beginning of 
the session ( t = 0 ), half of the participants are assigned the role of player 1 and 
half the role of player 2.13 In each period, one participant in the role of player 1 is 
randomly matched with one participant in the role of player 2 and then plays the 
game described above. In other words, in each period, participants are randomly 
rematched, and player 1’s type is i.i.d. In what follows, we use the labels “temporary 
Red” and “temporary Blue” to denote a participant in the  random-type treatment in 
the role of player 1 whose current type is Red or Blue, respectively.

The Game with Fixed-types treatment (GF) is identical to GR except that par-
ticipants in the role of player 1 are allocated types once and for all; that is, types 
are fixed for all periods. Specifically, at the beginning of the session and with prob-
ability  1/2  each participant in the player 1 role is assigned the Red type. In each 
period, one participant in the role of player 1 is matched to a participant in the role of 
player 2. Here, we speak of “permanent Red” and “permanent Blue” participants.14

13 We use  t = 0  to refer to the period of time before the first decision takes place.
14 Participants in the role of player 1 are informed of payoffs for both possible types. That is, instructions 

regarding payoffs are distributed to player 1 before he learns his type for the session. Still, player 1 of either type 
is not informed of player 2’s payoffs, and player 2 is not informed of the payoff function for either player 1 type.

Figure 1. Extensive-Form Representation
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C. Analysis

The game in Figure 1 is based on Example 6 in Dekel, Fudenberg, and Levine 
(2004). In the Appendix, we review the definitions of the equilibrium notions that 
we use here.

A (behavior) strategy for player 1 is a map:   σ 1    :   Θ 1   → Δ ( A 1  )  , where  Δ ( A 1  )   is 
the space of probability distributions over   A 1   , and a behavior strategy for player 2 
is a map   σ 2    :   A 1   → Δ ( A 2  ) .  Given the payoff functions specified in Section IB, the 
game has a unique Nash equilibrium in which   σ 1   =  {In, In}   and   σ 2   =   □ . It is easy 
to see that this is a Nash equilibrium. To see why it is unique, note that playing  Out  
when Red is strictly dominated, that  □  is the unique best response to any player 1 
strategy that plays  In  when Red, and that   {In, In}   is the unique best response to  □ .

When player 1’s type is randomly assigned in each period (GR), there is a unique 
SCE, which is unitary (meaning that all of the agents in the role of player 1 have the 
same beliefs), and coincides with the Nash equilibrium characterized above. This 
is because it is again dominant for player 1 to play  In  when Red, that player 2 will 
play  □ , and since all agents in the role of player 1 play  In  when Red, they will learn 
player 2’s response.

Now, consider the game with types fixed throughout the session (GF). In this 
case, it is dominant for player 1 Red to select  In.  Iterated strict dominance then 
requires that player 2’s action is a best response to a belief about 1’s type that puts 
at least the prior probability  p  on red, so it predicts that player 2 selects  □  provided 
that player 2 believes  p  is at least 1/3. As in GR, there is an SCE in which player 1 
Blue learns player 2 choices and  best-responds by selecting  In . However, the appro-
priate version of SCE here allows for type heterogeneity. That is, since the different 
player 1 types have different incentives, it is possible that different types persistently 
select different actions and maintain different beliefs about the responses of the 
player 2s.  Type-heterogeneous SCE allows for this, and in the GF treatment, there 
is a  type-heterogeneous equilibrium where the permanent Reds select  In , the perma-
nent Blues choose  Out , and player 2 selects  □ . If permanent Blues select  Out , they 
will never observe what player 2 is selecting, and since they gather no information, 
they will not change their play. More generally, some of the permanent Blues might 
always play Out and maintain incorrect beliefs about 2’s play, while others could 
play In and learn that this is their best response. This is a fully heterogenous SCE.15

D. Experimental Sessions

General Information.—All sessions in this paper were conducted between 
February and June of 2017 at the Experimental and Behavioral Economics 

15 A permanent Blue may decide not to experiment for several reasons. It is possible that his initial beliefs on 
player 2 selecting  □  are sufficiently pessimistic. Or it may be that his value of the future is not large enough. A 
combination of these features is also possible. Our experimental data will not provide enough information to deter-
mine how much each of these alternatives explains behavior, so we will not focus on exploring such differences.
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Laboratory of the University of California, Santa Barbara, and participants took part 
in only one session. Our game treatments had a total of 300 participants.16

We conducted five sessions of GR, with a total of 90 participants (45 in each 
role). For the GF treatment, we conducted sessions until the number of player 1 
Blue participants was close to the number of player 1 participants in GR. In total, 
we conducted 9 sessions with a total of 45 participants in the player 1 Blue role, 41 
in the player 1 Red role, and 86 in the role of player 2.

In each session, participants were assigned to a computer terminal and general 
instructions were distributed and read aloud. In the general instructions to the game 
treatments, there is no reference to numeric payoffs, but participants were subse-
quently provided with instructions specific to each role that described the payoff 
function. Participants were then prompted to answer questions related to payoffs, 
and the interface would allow them to move on once they answered all questions 
correctly.

We used the strategy method for player 2, which means that in our implemen-
tation player 2 makes a choice at the same time as player 1, but her choice is only 
implemented if player 1 selects  In . The feedback that player 2 received clearly indi-
cated when her choice was used.17 We did this both to get more data, and because 
we were concerned that if player 2s could only act if player 1 selects  In , some player 
2s might get bored.

Experimental Environment.—We tell participants that there are two decks of 100 
cards each, a Blue deck and a Red deck. The interface randomly selects either the 
Red deck of cards or the Blue deck of cards. Participants are not informed that each 
deck is equally likely to be selected. The participants in the “color” role (player 1) 
are informed of the selected deck (once and for all in the  GF sessions and at the 
beginning of each period in the GR sessions). Player 2, described as the “shape” 
role, selects whether all cards have a square or a triangle shape without knowing the 
color of the selected deck of cards. Player 1 selects either to get a card ( In ) or not 
get a card ( Out ) without knowing player 2’s choice. Once choices are submitted, 
payoffs for the period are realized. The participants in each role observe their own 
payoffs, but are not told the payoffs of the participant in the other role.

Figure 2 presents screenshots of the interface at period 7. The top panel displays a 
screen that player 1 type Blue would see. At the top left of the screen, the participant 
is reminded of the period (which is referred to as a round), the color of the selected 
deck, and how payoffs are determined. The participant makes a choice by clicking 
on one of the options.18 On the right side of the screen, the participant is presented 
with information on past play. The table at the top right of the screen reminds them 
round by round of their choices, the choices of the participant in the other role 
(whenever player 1 received information on that choice), and their realized payoff. 

16 Adding participants for the experiments described in online Appendices A and B, the total number of partic-
ipants is 604.

17 Each time her choice was used she can infer the type of player 1. The equilibria described earlier are not 
affected by the use of the strategy method.

18 Once one alternative is selected, a submit button appears below. Participants can change their choices as 
long as they haven’t clicked on the submit button. The experiment was conducted using zTree (Fischbacher 2007).
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At the bottom, they are provided with summary information, which differed in the 
two treatments. The screenshot displayed in Figure 2 corresponds to the GF treat-
ment, where the participant was only provided with the average payoffs they have 
received for each of the two options. In the GR treatment, the participant was given 
two averages, the average payoff of “Get a card” when the deck was Red and when 
it was Blue. Finally, participants are shown the number of times they have observed 
the shape role making each choice. The bottom panel shows the information for the 
case of player 2.

Note that the summary information we provided computes averages giving equal 
weight to all past observations. It is possible that behavior could be changed by a 
different presentation of feedback. For example, from the experiments in Fudenberg 
and Peysakhovich (2014), we know that recent periods may play a larger role in 
 decision making than earlier periods. Our presentation of summary information 

Figure 2. Example of Screenshots in Period 7

Panel A. Player 1-type blue in the �xed-types treatment

Panel B. Player 2

https://pubs.aeaweb.org/action/showImage?doi=10.1257/mic.20180317&iName=master.img-000.jpg&w=296&h=166
https://pubs.aeaweb.org/action/showImage?doi=10.1257/mic.20180317&iName=master.img-000.jpg&w=296&h=166
https://pubs.aeaweb.org/action/showImage?doi=10.1257/mic.20180317&iName=master.img-002.jpg&w=296&h=166
https://pubs.aeaweb.org/action/showImage?doi=10.1257/mic.20180317&iName=master.img-002.jpg&w=296&h=166


196 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS NOVEMBER 2019

may attenuate such effects in both treatments. However, since we used the same 
averaging procedure in both treatments, we doubt that it would drive the treatment 
effect.

Finally, we note that in the GR treatment the summary information for the payoffs 
of selecting  In  when Red or Blue is computed by averaging the payoff observations 
for each type separately. Because information collected when the type was Red 
is useful when deciding what to do if the type is Blue, we also conducted treat-
ment   GR HYP   , which again used random types but gave participants feedback that 
would help temporary Blues use the information that they collect when their type is 
Red. This treatment, which is described in Section IIA, turned out to have no effect.

The Two Parts of Each Session.—Each session consisted of 120 periods that were 
divided into two parts. Part 1 consisted of 60 periods, where each period corre-
sponded to the description above. In period 61, when part 2 started, participants 
were presented with an alternative option to submit their choices. They could either 
choose to submit their choices just as they had in part 1, or they could decide to 
program the interface to make future choices for them. We chose this design so that 
we could tell whether participants who did not change their play from some point on 
would have done so had the session gone on longer.19 In GR, participants indicated 
which choice they would want the interface to implement if the type were Red and 
which choice if the type were Blue. In GF, participants submitted a choice only for 
the type to which they were assigned. Participants in the role of player 2 indicated 
which choice they would like the interface to implement in future periods. If partici-
pants programmed future choices in period 61, the interface implemented the choice 
that they specified from that period onward, and participants did not make any addi-
tional choices in the session. If participants selected to make choices in period 61 
just as in part 1, the alternative to program choices was presented to them every 10 
periods as long as they had been making choices period by period.20

To determine the participant’s payoff for the session, one period was randomly 
selected and the participant received the dollar amount corresponding to the payoff 
in the selected period. The average payoff was $17.80 and each session took approx-
imately 75 minutes.

E. Hypotheses

Before describing our results, we present our hypotheses, which specify how 
we will test for the theoretical predictions in light of our experimental design. Our 
main hypotheses are concerned with the  long-run behavior of the participants, once 
they have had the opportunity to learn from their observations. For this reason, we 

19 When reading the general instructions, participants were informed that the experiment consisted of 120 peri-
ods divided in two parts and were told that part 2 is identical to part 1 except that in part 2 the interface will provide 
an additional way for them to submit their choices.

20 The last period when they are offered to program choices is period 111. All participants were paid once the 
120 periods were over. Selecting to program the interface did not lead to participants leaving the laboratory earlier, 
and participants were informed of this.
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express the hypotheses in terms of behavior in the last 20 periods of the  120-period 
session.21

HYPOTHESIS 0: In the last 20 periods of GR and GF, most player 1 Reds select  In  
and most player 2s select  □ .

If many player 1 Reds selected  Out  in the last 20 periods, or if a substantial pro-
portion of player 2s ended up selecting  △  , there would be evidence against both NE 
and learning theory.

If Hypothesis 0 is satisfied, we can focus on the main comparative static predic-
tion, which involves the behavior of player 1 Blues. Learning theory predicts that 
some participants in the role of player 1 Blue may select  Out  in GF, a prediction that 
is not part of a NE. Both NE and learning theory predict that player 1 Blues would 
select  In  in GR. The next hypothesis presents the predictions in terms of a treatment 
effect in the behavior of player 1 Blue.

HYPOTHESIS 1: In the last 20 periods, significantly more player 1 Blues select  Out  
in GF than in GR.

If both hypotheses are validated in the data, there would be evidence in support of 
learning theory. If the data is consistent with Hypothesis 0 but there is no difference 
across treatments in Hypothesis 1, our experiment would not distinguish between 
learning theory and NE. Finally, if more player 1 Blues selected  Out  in GR, the evi-
dence would support neither NE nor learning theory.22

While our focus is on  long-run behavior, models of learning also lead to predic-
tions for earlier periods, when participants collect information. However, our exper-
iment was not designed with the aim of characterizing which particular learning 
strategies participants may use, and there are many ways that learning can lead to 
equilibrium. For example, in GR, one participant may decide to explore the behavior 
of player 2 by selecting  In  for both types, while another may only explore when the 
type is Red. Moreover, since the collection of information during experimentation 
periods is endogenous, it is extremely challenging to find reliable evidence of sys-
tematic responses to feedback.23

Despite these complications, there are some patterns during experimentation 
periods that, if observed, would falsify learning theory. Assume that hypotheses 0 
and 1 are verified in the data, then according to learning theory player 1 Blues who 
settle for  Out  in GF have incorrect beliefs with respect to the behavior of player 
2s. That is, we would expect that player 1 Blues who settle for  Out  in GF collect 
little to no information or get misleading samples that suggest that Out is optimal. 

21 Our analysis will show that the “long-run” results hold throughout the second half of the session.
22 If we observed the participant’s beliefs, we would be able to make a direct test of learning theory’s expla-

nation that player 1 Blues playing Out in GF is due to incorrect beliefs. We did not elicit beliefs because we wor-
ried that this would change behavior and also because we expected that the elicitation would be very inaccurate. 
Moreover, what matters for rational experimentation is the participants’  second-order beliefs (beliefs over probabil-
ity distributions) and not just their  first-order beliefs.

23 An experiment designed to study how participants learn in an environment like ours would find a way to, for 
example, confront several participants with the same feedback.
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If, instead, such participants collect a lot of information showing that the player 2s 
mostly play  □ , the evidence would be against learning theory.

Another pattern that would be inconsistent with learning theory concerns the 
behavior of player 2s: if as the session evolves, player 2s select  □  with lower fre-
quency, there would be evidence against learning theory.

After documenting the evidence with respect to hypotheses 0 and 1, we will 
describe the main patterns during experimentation periods, with particular attention 
to patterns that can falsify learning theory.

II. Results

A. Behavior in the Last 20 Periods

The main goal of this section is to evaluate hypotheses 0 and 1 focusing on the 
last 20 periods of the session.24 With this aim, we are particularly interested in 
participants who do not change their choices from some period onward, as this indi-
cates that the participants do not need to collect more information. We provide two 
definitions of participants whose choices are fixed from some period onward.

DEFINITION (Stable ( S ) participant): A participant is said to be Stable if start-
ing at period   t   S  ≤ 111  the participant did not change her choices from period   t   S   
onward.25 We will refer to   t   S   as the first period of stable choices.

Overall, the vast majority of participants are  S  participants. Starting at 
some   t   S  ≤ 111 , 97.7 and 90.8 percent of participants do not change their choices in 
the player 1 and player 2 role, respectively.

DEFINITION (Locked (  S L   ) participant): A participant who locked in her choices 
at period   t    S L    ∈ {61,   71,   81,   91,   101  , 111} . That is, at period   t    S L     the participant pro-
grammed the interface to make choices for her. We refer to   t    s L     as the first period of 
 locked-in choices.

By definition,   S L    participants are a subset of  S  participants. Overall, 89.3 and 85.5 
percent of participants in the role of player 1 and player 2, respectively, are classified 
as   S L    participants. Notice that the proportion of  S  participants who are not classified 
as   S L    participants is relatively small.

According to Hypothesis 0, in both treatments, most player 1 Reds should settle 
for  In , and most player 2s should settle for  □ .

RESULT 0: In GR and GF, all player 1 Reds select In in the last 20 periods. In the 
last 20 periods of GR and GF, the frequency of  □  choices by player 2s is higher 
than 95 percent.

24 In the next section, we show that the main patterns we document hold for earlier periods as well.
25 In GR, we say that a player 1 is stable if the participant is not changing her choices for both types 

from   t   S  ≤ 111  onward.
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Table 1 presents some summary statistics on the treatments that we have already 
described (GR and GF), as well as treatment   GR HYP   . This last treatment, which we 
describe in detail later in this section, is identical to GR except for the way in which 
feedback is presented. As shown in Table 1, 100 percent of participants in the role of 
player 1 Red select  In . This holds if we focus on all participants (last 20 periods),  S  
or   S L    participants, and there is no difference across treatments. Meanwhile, in both 
treatments close to 90 percent of player 2 participants select  □  in each of the last 
20 periods. The small difference across treatments is not statistically significant.26 
Among  S  participants and   S L    participants, the proportions are close to 100 percent.

While not all player 2s eventually select  □ , choices of  △  are relatively rare. In 
fact, the aggregate frequency of choices for  □  in the last 20 rounds is 96.6 and 95.2 
percent in GR and GF, respectively. We now turn to evaluate the comparative statics 
prediction of Hypothesis 1 about the  long-run behavior of the player 1 Blues.

In GF, approximately 40 percent of the permanent Blues select  In  in the last 20 
periods, and among  S  and   S L    participants, the frequency is at 48.8 and 45 percent. 
This means that among player 1s who decide to fix their choices from some point 
onward, slightly less than half make choices that are consistent with the  equilibrium 

26 To test for a treatment effect, we run a panel regression with random effects using the last 20 periods and 
clustering standard errors by session. The dependent variable takes value one if the participant selected  □  and zero 
otherwise. The  right-hand side includes a constant and a treatment dummy. The coefficient on the treatment dummy 
is small (0.013), and the corresponding  p-value is 0.585. 

Table 1—Summary of Choices toward the End of the Sessions by Treatment

Participants who selected

Last 20 periods  S  participants   S L    participants

GR GRHYP GF GR GRHYP GF GR GRHYP GF

P1 Red

In (percent) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Out (percent) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mix (percent) 0.0 0.0 0.0 — — — — — —
Participants 45 19 41 44 18 41 40 11 37

P1 Blue

In (percent) 62.3 57.9 40.0 65.9 66.7 48.8 65.0 63.6 45.0
 Out  (percent) 33.3 26.3 48.9 34.1 33.3 51.2 35.0 36.4 55.0
Mix (percent) 4.4 15.8 11.1 — — — — — —
Participants 45 19 45 44 18 43 40 11 40

P2

□ (percent) 91.1 84.2 87.2 97.7 100.0 100.0 97.6 100.0 100.0
△ (percent) 2.2 0.0 0.0 2.4 0.0 0.0 2.4 0.0 0.0
Mix (percent) 6.7 15.8 12.8 — — — — — —
Participants 45 19 86 43 19 76 41 19 71

Notes: In “last 20 periods” columns, percentages are computed using all participants. Percentages in “ S  partici-
pants” compute the choices of participants classified as not changing their choices starting at t S ≤ 111. “SL par-
ticipants” columns compute results using only participants who at some point selected to lock choices in for all 
remaining periods. The actual number of participants in each case is reported in the corresponding Participants row. 
Additionally, In indicates that the participant selected In in all corresponding periods (last 20), that an  S  participant 
selected In from some period onward, or that an SL participant who decided to program her choices selected to pro-
gram the computer to select In. Similar categories apply to Out and to the options of player 2. Mix indicates the pro-
portion of player 1s (player 2s) who selected In and Out (□ and △) in some periods. By definition, S participants 
and SL participants do not mix. Also, GR, GRHYP, and GF indicate the treatments: random types, random types with 
hypothetical payoffs, and fixed types, respectively; GRHYP is a robustness treatment described later in this section. 
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in which permanent Blue selects  In , and slightly more than half make choices that 
are consistent with the equilibrium in which permanent Blue selects  Out .27

In GR, 62.5 percent of the temporary Blues select  In  in the last 20 periods. The 
proportion is at 65.9 and 65 percent for  S  and   S L    participants, respectively. In other 
words, the treatment effect is around 20 percentage points.

To summarize our findings about the behavior of the Blue players, we have the 
following result.

RESULT 1: 

 (i) In the last 20 periods of GR, approximately  two-thirds of the temporary Blues 
select In.

 (ii) In the last 20 periods of GF, approximately half of the permanent Blues select 
In. The treatment effect is between 15 and 20 percentage points and is signif-
icant at p = 0.023.

Columns 4, 5, and 6 of Table 2 present regressions of the treatment effect using 
the last 20 periods,  S  participants, and   S L    participants, respectively. The depen-
dent variable in all regressions is a dummy that takes value 1 if the participant 
selected  In . In column 4, the unit of observation is the choice of a participant in 
period  t ∈  [101, 120]  , while in columns 5 and 6 there is one observation per par-
ticipant. The  right-hand side includes a constant and a  treatment-effect dummy that 
takes value 1 if the observation is from GR.28 The treatment effect is statistically 
significant and negative, indicating that fewer participants settle for  In  when Blue 
in GR, and the magnitude is slightly below 20 percentage points. Specifically, the 
treatment effect coefficients in 4, 5, and 6 equal −17.8, −17.3, and −19.7 percent-
age points with  p-values of 0.007, 0.023, and 0.032, respectively.

While the proportion of player 1 Blues who select  In  is higher in GR relative 
to GF, consistent with Hypothesis 1, about a third of the participants in GR make 
choices that are not consistent with equilibrium behavior. One possible reason for 
this deviation is related to our particular implementation of GR. Recall that we 
provide participants with three measures of summary information. First, they are 
reminded of the number of times they observed the participants in the shape role 
making each choice. This information on player 2’s behavior is collected whenever 
player 1 selects  In . We also provide them with: (i) the average payoff of  In  when 
Red and (ii) the average payoff of  In  when Blue. To see why these measures of aver-
age payoffs do not use all the information available, consider a participant in GR 
who has selected  In  when Red 20 times and has never selected  In  when the type is 

27 When the type is Blue, if the probability of  □  is  10/13 ≈ 0.77 , the expected payoff of selecting In is equal 
to the payoff of selecting Out. In GF, the aggregate frequency of  □  in the last 20 periods is 95.2 percent. For those 
who select Out, this suggests that permanent Blues’ beliefs that player 2s would select  □  were incorrect by at least 
18 percentage points.

28 Because columns 1–3 of Table 2 show that there is no difference in the behavior of player 1 Blue between 
GR and   GR HYP   , we pool these two treatments in columns 4–6 for the comparison with GF, but the treatment effect 
between GF and GR is present even if we do not pool GR with   GR HYP   .
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Blue. Because this participant has never selected  In  when Blue, we cannot compute 
an average for this choice. However, the participant has collected observations on 
the behavior of player 2 that are informative of the payoff he would get if he were 
to select  In  when Blue. He could compute an expected payoff of selecting  In  when 
Blue by using the frequencies of observed  □ s and  △ s that he has already collected. 
This leads us to wonder whether the fact that the average payoffs do not take into 
account all collected information may have led participants to miss the connection 
between what they learn when the type is Red and what they should do when the 
type is Blue.

To evaluate this possible explanation, we conducted two additional sessions with 
random types (total of 38 participants, 19 in each role) in which the participants 
were told the hypothetical payoff of selecting  In  when Blue and the hypothetical 
payoff of selecting  In  when Red, where we use the frequencies of observed choices 
in the shape role to provide them with these computations.29 We refer to this treat-
ment as   GR HYP   .30 We use this treatment to evaluate to what extent choices in GR 
are driven by difficulties in computing expected payoffs and/or incorrect beliefs. 
We find that there is no difference between the outcomes in GR and   GR HYP   , so the 
evidence does not suggest that the reason player 1s select Out when Blue in GR is 
incorrect beliefs or difficulties computing expected payoffs.31 Hereafter, we merge 
the GR and   GR HYP    sessions under the name GR.

29 As an illustration, consider the case of a participant who never selected  In  when Blue but has observed a 
frequency of  □ s at 90 percent. This participant would observe the hypothetical payoff of selecting  In  when Blue 
computed at 16.7, which results from  18 × 0.9 + 5 × 0.1 .

30 See online Appendix D (Instructions), where we provide details on how   GR HYP    was implemented. 
31 All participants in the role of player 1 Red select  In  in the last 20 periods of both treatments. There is no 

difference in terms of the behavior of player 2 (e.g., 97.7 and 100 percent of   S L    participants select to lock in  

Table 2—Player 1 Blue: Treatment Effects

  In t     In Blue     In Blue     In t     In Blue     In Blue   

(1) (2) (3) (4) (5) (6)

  D  0= GR HYP    
1=GR    − 0.008  − 0.008  0.014 

  (0.077)    (0.079)    (0.087)  

  D  0=GR or  GR HYP    
1=GF   

− 0.178 − 0.173 − 0.197
  (0.066)    (0.068)    (0.083)  

Constant 0.666 0.667 0.636 0.660 0.661 0.647
  (0.030)    (0.029)    (0.026)    (0.049)    (0.050)    (0.062)  

Observations  615  62  51  1,515  105  91 

Notes: Columns 1 and 4 display results from a random effects regression. Columns 2, 3, 5, and 6 display results of 
a linear regression. In columns 1 and 4, the dependent variable takes value 1 if in period t > 100 the type assigned 
is Blue and the participant selected In and 0 if the type assigned is Blue and the participant selected Out. In col-
umns 2 and 5, the dependent variable takes value 1 if the participant is an S participant selecting In when the type 
is Blue. In columns 3 and 6, the dependent variable takes value 1 if the participant is an SL participant selecting In 
when the type is Blue. S (  S L   ) participants do not change their choice from   t   S   ≤ 111 onward (lock in choices at 
some   t    S L     ≤ 111). Columns 1, 2, and 3 compare results using data for GR (treatment dummy equals 1 if the obser-
vation corresponds to the random-type treatment) and GRHYP (treatment dummy equals 0 if the observation corre-
sponds to the random-type treatment with hypothetical payoffs). Columns 4, 5, and 6 compare results between GF 
(the treatment with fixed types, in which case the treatment dummy equals 1) and GR and GRHYP (in which case the 
treatment dummy equals 0). Standard errors are in parentheses. Standard errors are clustered by session. 
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B. The Time Path over the Course of the Sessions

The behavior of Red player 1s is consistent with Result 0 throughout the session. 
Overall, player 1 Reds select  In  in 99.9 percent of the cases. The behavior as the 
session evolves when player 1’s type is Blue is summarized in Figure 3. The figure 
shows for each period the proportion of participants who selected  In , by treatment. 
In the case of GF, 47 percent of choices in the first 20 periods correspond to  In , 
which is close to the 48.1 percent in the last 20 periods. Meanwhile, in GR, the 
fraction of  In  choices in the last 20 periods (67 percent) is higher than in the first 
20 periods (43.3 percent).32 The treatment effect documented in Result 1 starts to 
appear at about the fiftieth period and is consistently present from then on.33

Further scrutiny of the behavior of player 1 Blue, but now at the individual level, 
is provided in Figure 4. These graphs consider  S  participants, that is, the  participants 

to  □ ). More importantly, there is no significant difference in terms of the behavior of player 1 Blue: 65.9 (65) and 
66.7 (63.6) percent of  S  (  S L   ) participants select  In  in GR and   GR HYP   , respectively (see Table 2). That is, we find no 
evidence that the presentation of summary measures of past choices is driving the  one-third of participants in GR 
that are selecting  Out  when the type is Blue.

32 There is more volatility throughout the session in choices of player 1 when assigned the Blue type in GR 
(relative to GF). The reason for this is that in GR, types are randomly assigned, and so it is possible that in any given 
period the composition of the participants assigned the Blue type includes a few more or a few less participants 
that select  In  relative to the average. For this reason, the GR line in Figure 3 is computed taking averages over a 
 five-period bin. Figure 9 of online Appendix C is identical to Figure 3 except that averages for player 1 Blue in GR 
are taken period by period. 

33 Statistical support for these claims is provided in Table 9 of online Appendix C, which reproduces the regres-
sion reported in column 4 of Table 2 for several subsets of earlier periods.
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Notes: GR and GF indicate the treatments: random types and fixed types, respectively; GR also includes partici-
pants who participated in   GR HYP   , the  random-type treatment with hypothetical payoffs. There is more volatility in 
the choices of player 1 in GR because types are randomly assigned across periods, so the GR line displays averages 
over  five-period bins.
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who did not change their choices from period   t   S   onward. For each period, the fig-
ures show the proportion of participants who did not change their choices from that 
period onward, depending on whether they locked on  In  or  Out . The results are 
consistent with the aggregate patterns in Figure 3. In GF (Figure 4, panel B), the 
fraction of participants selecting  In  and the fraction selecting  Out  are growing at 
comparable rates as the session evolves. In GR, meanwhile, there is an increase in 
the difference between the two groups in the second half of the session, with rela-
tively more participants settling on  In . Comparing GR and GF, the treatment effect 
is clearly present throughout the second half of the session.

The aggregate behavior of player 2 as the session evolves is summarized in 
Figure 5. A clear pattern in both treatments is that the frequency of  □  choices 
increases as the session evolves. In the first 20 periods of GR (GF), player 2s 
select  □  with frequency 82.6 (80.4) percent, compared to 96.6 (95.2) percent in the 
last 20 periods.34 This suggests that the behavior of player 2s is moving toward the 
equilibrium identified earlier.

We summarize our findings next.

RESULT 2:

 (i) Throughout the session and in both treatments, almost all player 1 Reds 
select In.

34 The proportions in   GR HYP    are 79.7 and 97.6 percent for the first 20 and the last 20 periods, respectively. The 
frequencies change minimally if we restrict to player 2 choices that are observed by player 1s. For example, aggre-
gating GR and   GR HYP   , the frequencies are 80.9 and 97.0 percent. Table 10 of online Appendix C provides statistical 
support for the claims. There is a significant difference of about 15 percentage points in the frequency of  □  choices 
when comparing the last 20 to the first 20 periods (see column 1). The difference relative to the last 20 periods 
diminishes as the session evolves. For example, there is only a 2  percentage point increase in the frequency of  □  
when comparing periods 81 to 100 against the last 20 periods. 
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 (ii) Throughout the second half of the sessions, permanent Blues select Out more 
often than temporary Blues.

 (iii) As the session evolves, player 2s select  □  with higher frequency. While in the 
first 20 periods the frequency of  □  in both GR and GF is close to 80 percent, 
in the last 20 periods, it is higher than 95 percent.

Result 2 indicates that the findings documented in Result 0 and Result 1 toward 
the end of the session are also observed earlier in the session. We now inquire to 
what extent these results are in line with the information that participants collect 
as the session evolves. Consider first the SCE where temporary Blues (in GR) and 
permanent Blues (in GF) select  In.  These SCE can arise from the following steps 
taking place as the session evolves. 

Step 1: Temporary Reds in GR and permanent Reds in GF select  In . 

Step 2: Player 2 observes that Red player 1s select  In  and so finds selecting  □  
more attractive. 

Step 3: A player 1 who collects information on the behavior of player 2 observes 
that the frequency of  □  increases and finds it more attractive to settle on  In . 
Eventually, permanent Blues and temporary Blues select  In .

With types fixed in GF, the  type-heterogeneous SCE where permanent Blues 
select  Out  would follow from Steps 1 and 2, but Step 3 does not materialize. 
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Note: GR and GF indicate the treatments: random types and fixed types, respectively; GR also includes participants 
who participated in   GR HYP   , the  random-type treatment with hypothetical payoffs.
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Permanent Blues who select  Out  throughout the session do not receive feedback on 
the behavior of player 2 and have no incentive to revisit their choice.

The evidence in Result 2 is clearly consistent with Steps 1 and 2. The difference 
between the SCE and the  type-heterogeneous SCE is present starting in Step 3. The 
time path over the course of the session would be consistent with the steps if we 
observed that permanent Blues who select  Out  collected substantially less informa-
tion than permanent Blues who select  In . As we summarize next, in our data, this is 
indeed the case.

Table 3 first presents information on   t   S  , the period after which stable participants 
did not change their choices, and   t    S L    , the first period in which   S L    participants lock in 
their choices. By definition, when choices are locked in, participants can no longer 
make any changes, so we must have that   t    S L    ≥  t   S  .35

In GF, permanent Blues who eventually select  In  collect substantially more 
information than those who eventually select  Out . Permanent Blues who select  Out  
lock their choices in at the first available moment (period 61), but the median   t   S   is 
12.5. In other words, participants who lock on  Out  in GF collect very few informa-
tive observations: the median number of periods in which they observed player 2s’ 
choices is 1.5. Meanwhile, the median permanent Blue who eventually selects  In  
does not lock their choices in at the first available moment and collects a median of 
51 observations before locking their choices in.36

Do permanent Blues who select  In  in GF commit to a choice with less informa-
tion than their counterparts in GR? The evidence does not show a meaningful dif-
ference.37 On average, temporary Blues who select  In  in GR collect 60 observations 

35 Not all participants whose choices do not change from   t   S   onward decide to lock in their choices, but as 
described in Table 1, the vast majority of participants are classified as  S  participants, and almost all  S  participants 
are classified as   S L    participants.

36 Notice that, in fact, this number is not far behind the median number of 61 observations collected by those 
who select  In  when Blue in GR, even though in GR participants always observe what player 2 selects when the 
assigned type is Red.

37 In GR, the median period for   t    S L     is 61, which is the first period at which choices can be locked in. At the same 
time, the median   t   S   is 44 for participants who eventually select  In  and 31 for participants who lock on  Out , so that by 

Table 3—Collected Observations by Treatment and Final Choice

 In  when Blue  Out  when Blue
GR GF GR GF

  t   S  Mean 44.8 52 34.3 26.7
Median 44 57 31 12.5

  t    S L    Mean 69.8 73.8 67.1 65.5
Median 61 71 61 61

Number observed at   t    S L    Mean 60.4 54.9 40.6 14.3
Median 61 51 35 1.5

Number observed  △  at   t    S L    Mean 7.3 7.7 5.9 2.1
Median 7 7.5 5.5 1

Notes:   t   S   indicates the first period after which there was no change in choices. Additionally,   t    S L     indicates the first 
period in which the participant locked in her choices. Number observed at    t    S L     indicates the number of times the par-
ticipant selected  In  prior to   t    S L    . Number observed  △  at   t    S L     indicates the number of times the participant selected  In  
and observed a  △  prior to period   t    S L    . Also, GR and GF indicate the treatments: random types (including random 
types with hypothetical payoffs) and fixed types, respectively.
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at   t    S L    , of which approximately 7 are  △ s. Meanwhile, the average permanent Blue 
who locks on  In  gathers approximately 55 observations that include between 7 and 
8  △ s.

So far, the data are consistent with Step 3. Permanent Blues who select  In  collect 
much more information than those who select  Out , but about the same amount that 
is collected by temporary Blues who lock on to  In  when Blue in GR. However, does 
the information collected by permanent or temporary Blues who lock on  In  reflect 
the fact that player 2s increase the frequency of  □  choices as the session evolves? 
The evidence suggests that this is indeed the case.

To evaluate if player 1 participants can assess the behavior of player 2s as the 
session evolves, consider first a measure of initial player 2 behavior. We restrict the 
sample to permanent Blues who lock on  In  in GF and player 1s in GR who lock on  In  
when the type is Blue. Out of the first 20 observations that a participant collected 
(the first 20 times a participant selected  In ), how many resulted in observed  △ ? 
Next, consider a final measure of player 2 behavior: out of the last 20 observations 
collected up until the participant locked her choices in, how many resulted in  △ ?38 
For each player 1   S L    participant who collected at least 40 observations, we have two 
measures of player 2 behavior: one collected at the beginning of the session and 
another closer to   t    S L    . For participants in GR, the initial measure of observed  △  is on 
average 3.25, while the final measure is 1.78.39 The 1.47 reduction is significant at 
the 1 percent level.40 This effect is also present at the individual level: a majority 
of   S L    participants in GR who locked on  In  when the type is Blue experienced initial 
observed  △ s that at least double the final measure.

A similar finding holds for permanent Blues who eventually lock on  In . The fre-
quency of  △  in the initial measure is 4.0, but it is reduced to 1.9 in the final measure, 
with the difference being significant at the 1 percent level.

RESULT 3: Consider temporary Blues in GR and permanent Blues in GF who 
locked their choices to In. The average of observed  △ s using the first 20 collected 
observations is significantly higher than the average of observed  △ s using the last 
20 collected observations.

the first time we allow participants to lock their choices in, most have not changed their choices for several periods. 
This suggests that if we had allowed for choices to be locked in prior to period 61, several participants would have 
taken advantage of such an option.

38 With respect to the initial measure, notice that if in GR the player 1 participant selects  Out  when Blue and  In  
when Red in the first 20 periods, it would take more than 20 periods to collect the first 20 observations. If, instead, 
the participant selects  In  for both types in all periods, it would take 20 periods to collect the first 20 observations. 
With respect to the final measure, note that if a participant locks choices in starting in period 61, the final measure 
looks for the last 20 periods prior to period 61 in which the participant selected  In .

39 Out of 51   S L    participants in GR and   GR HYP   , 38 (75 percent) collected at least 40 observations. Out of 33   S L    
participants who select  In  when Blue, 32 collected 40 observations or more until   t    S L    . There are 6 participants who 
select  Out  when Blue and collect 40 or more observations by   t    S L     and 12 who collect fewer than 40. 

40 To test for significance, we run a panel regression with the number of observed  △  as a dependent variable 
and a dummy that takes value one if the observation corresponds to the final measure and zero if it corresponds to 
the initial measure. The coefficient of the dummy is significant at the 1 percent level. The sample consists of all   S L    
participants in GR and   GR HYP    who collected at least 40 observations. We would reach the same conclusions if we 
condition the regression on   S L    participants who eventually lock in to  In  when Blue. 
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According to Result 3, participants in both treatments who lock on to  In  when 
they are Blue collect data that on average shows that player 2s select  △  less fre-
quently as the session evolves. This is consistent with what Step 3 identified earlier.

An alternative approach to evaluate if behavior is consistent with learning the-
ory is to study whether observed frequencies are predictive of choices. Indeed, we 
find that this is the case. We run a regression restricted to   S L    participants, with one 
observation per participant. The  left-hand side is a dummy variable that takes value 
1 if the participant selected  In  when Blue. The  right-hand side includes the observed 
frequency of  □  at   t    S L    . In GR, for each percentage point that the frequency of  □  
increases, the probability that the participant selects  In  increases by 3.24 percent. 
The coefficient is significant at the 5 percent level (  p-value 0.014). Computing the 
same regression in GF is not feasible because many participants who selected  Out  
when Blue very rarely played In. However, in Figure 10 of online Appendix C, we 
present the distribution of the frequency of  □  depending on the treatment and on 
whether the   S L    participant selected  In  or  Out  when Blue. For both treatments, the 
distribution when the   S L    participant selected  In  is to the right of the distribution 
when the participant selected  Out . Hence, in both treatments, observing a higher 
frequency of  □  is associated with a higher likelihood of selecting  In .

C. Discussion

The vast majority of our data is in line with the theoretical predictions, summa-
rized by hypotheses 0 and 1. When the type is Red, player 1s in both treatments 
behave as predicted. Permanent Blues who select  Out  collect very few observations 
on the behavior of player 2s, which is consistent with the  type-heterogenous SCE. 
Meanwhile, permanent Blues who select  In , and player 1s who select  In  for both 
types in GR, collect close to 60 observations on the behavior of player 2, which on 
average captures the fact that player 2s reduce their selection of  △  as the session 
evolves. In fact, toward the end of the session, player 2s select  □  more than 95 per-
cent of the time in both treatments.41 Overall, this means that the main treatment 
effect documented in Result 1 matches the  comparative-statics predictions well.

However, we do observe one marked deviation from our theoretically derived 
predictions. About a third of player 1s in GR select  Out  when the type is Blue, 
which is not predicted by the SCE or NE. One possible explanation for the  one-third 
of temporary Blues selecting  Out  in GR is imperfect learning. That is, temporary 
Blues may be selecting  Out  when Blue because at the time when they decide to 
lock choices in they have not collected enough information to properly assess the 
 long-run chances of player 2 selecting  □ .42

Another explanation involves risk preferences. To see why, allow first for a utility 
function   u i    over the payoffs in Figure 1, where   u i    is a strictly increasing function 
of   x i   . For any   u 1    it is dominant for player 1 Red to select  In , and for any   u 2   , it is  

41 In fact, 137 out of 138 player 2 participants who at some point make no changes in their choices in GF, GR, 
or   GR HYP   , fix the choices to permanently selecting  □ .

42 As shown in Table 3, the median   S L    participant who locks in to  In  has collected more observations (61) than 
has the median   S L    participant who selects  Out  (35).
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optimal for player 2 to select  □ .43 Moreover, if player 2 selects  □ , it is a best 
response for player 1 Blue to select  In  for any   u 1   . But if the frequency of  □  is not at 
100 percent, it is no longer the case that the behavior of player 1 Blue is independent 
of   u 1   . Depending on participants’ preferences for risk, it is possible that in equilib-
rium some participants end up selecting  In , while others select  Out .44      ,  45

To test the robustness of this  risk-aversion explanation in an environment with 
learning, we conducted a  bandit-problem version of our signaling game in which 
the receiver is replaced by a computer that is programmed to mimic the behavior 
of experienced receivers from the  signaling-game sessions. That is, the machine is 
programmed to select  □  with probability 0.95, which is the frequency observed in 
games toward the end of the sessions. Participants are told that the probability is 
fixed throughout the session, but do know the number it is fixed to. Because the 
frequency is not at 100 percent, it is possible for a  risk-averse sender in the bandit 
problem to select  Out  when their type is Blue even if they have collected substantial 
information on the machine’s choices.

The experimental design and results are described in detail in online Appendix A. 
The main finding is that with random types more Blue senders select  Out  in the ban-
dit relative to the game. This suggests, first, that indeed some Blue senders may be 
selecting  Out  in GR due to risk aversion. But, in addition, it also suggests that some 
participants who were not willing to take the risky prospect in the bandit treatment 
do select  In  when Blue in GR.

The finding that more Blue senders select  Out  in the bandit relative to the game 
suggests that some participants may respond differently in the long run depending 
on whether the frequency is fixed at a high level or increasing toward the high level. 
We leave this for future research.

III. Conclusion

In many economic environments, agents learn from past feedback about realized 
play and do not observe intended  off-path play by their opponents. For this reason, 
learning theory predicts that some sorts of incorrect  off-path beliefs and  non-Nash 

43 The chance of player 2 facing a player 1 Red conditional on player 1 selecting  In  is between  1/2  and 1. If 
player 2 only faces player 1 Red,  □  is a best response. At the other extreme, selecting  □  involves a lottery in which 
with  50-50 chance the payoffs are either 20 or 16, while selecting  △  involves a  50-50 lottery with payoffs 18 or 16. 
Choosing  □  is a best response for any   u 2   .

44 Let    σ ˆ    2  
GR   be player 1’s belief that player 2 will select  □  at the time when player 1 decides to fix her choices. 

Even if    σ ˆ    2  
GR   is a good estimate of the actual choices of player 2, an  expected-utility-maximizer player 1 will 

select  Out  when the type is Blue if    σ ˆ    2  
GR   u 1   (18)  +  (1 −   σ ˆ    2  

GR )  u 1   (5)  <  u 1   (15)  . If the participant’s belief is based 
on observed frequencies, we can then compute the degree of risk aversion that makes a participant indifferent 
between  In  and  Out  under some functional form for   u 1   . Assume that the participant has CRRA preferences at 
  u 1   (x)  =  x    (1−α)  / (1 − α)   for  α ≠ 1 . If    σ ˆ    2  

GR  = 0.8 , which is close to the frequency early in the sessions, then 
the  α  at which the participant is indifferent between  In  and  Out  is 0.33. In the low real treatment of Holt and 
Laury (2002), which comes closest to our incentives, 68 percent of participants make choices consistent with 
α of 0.33 or higher. If    σ ˆ    2  

GR  = 0.95 , which is close to the frequency later in the sessions, the indifference  α  
equals 0.82. There are 17 percent of participants in Holt and Laury (2002) who make choices consistent with this  
value or higher.

45 The choice of  Out  by temporary Blues can also be rationalized by satisficing, as it is possible that participants 
are satisfied with the payoff of  Out  and do not think further about the consequences of selecting  In  when Blue. If 
a participant does not collect information when the type is Blue, we cannot identify this possible mechanism sep-
arately from risk aversion.
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outcomes may persist. This paper presented an experiment in which learning theory 
predicts a treatment effect due to incorrect  off-path beliefs depending on whether 
types are set once and for all or  reassigned each period, a distinction that is  crucial 
from the viewpoint of learning theory but irrelevant in standard analyses of Bayesian 
games.

Specifically, we studied a signaling game where the sender can be one of two 
types (Red or Blue) and in each period selects  In  or  Out . A choice of  In  lets the 
sender learn what the receiver chooses. But a sender who selects  Out  does not 
observe the counterfactual payoff she could have received from selecting  In , as the 
receiver is not called to play. The game is designed so that it is a strictly dominant 
strategy to select  In  if the sender’s type is Red. Treatments differ on how types 
are assigned to senders. With fixed types, Blue senders who initially believe that 
selecting  Out  is optimal will not receive any information and will thus have no rea-
son to change their behavior. For this reason,  type-heterogeneous  self-confirming 
equilibrium allows the outcome in which Blue senders select  Out , even though this 
cannot occur in a Nash equilibrium or in a  self-confirming equilibrium with unitary 
beliefs. With types randomly assigned after each period, senders will play  In  when 
they are Red and so gather information on the receivers’ choices. Thus, even if the 
sender initially believes it is better to stay  Out  when Blue, they will eventually learn 
that it is better to play  In , which is why “both types  In ” is the only  self-confirming 
equilibrium with unitary beliefs.

We find broad support for the  comparative-static predictions. When types are 
fixed, a majority of Blue senders select  Out , starting from early in the session. Blue 
senders who select  Out  indeed collect very little information on receivers. In con-
trast, with random types, most senders do eventually learn to play  In  when Blue. The 
one significant departure of our data from the theoretical predictions is that some 
Blue senders select  Out  with random types. Because not all of the receivers play the 
response that makes In optimal for Blue, staying Out can be rationalized if partici-
pants are risk averse. In a series of treatments described in online Appendix A, we 
find that indeed such behavior is consistent with risk aversion.

Our design illustrates that the  long-run outcome of the laboratory play of a 
Bayesian game depends on the  time series structure of the stochastic process that 
governs types, and not just on their  per-period marginal distribution, because whether 
types are independent or correlated over time can have an effect on what players 
learn about the strategies of others and more broadly on their  long-run behavior. 
While most experimental studies of Bayesian games use a protocol in which types 
are randomly assigned in every period, our findings suggest that it may be useful to 
explore behavior using other protocols, especially given the seeming relevance of 
those protocols to many field settings.

Appendix A. Varieties of  Self-Confirming Equilibrium

There are many versions of  self-confirming equilibrium and related concepts in 
the literature, corresponding to different implicit assumptions about the correspond-
ing learning environment. In this Appendix, we review the definitions that are used 
in the main text, namely unitary SCE, heterogeneous SCE, and  type-heterogeneous 
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SCE. To simplify notation, we restrict to games like our signaling game where 
player 1 has private information. For more discussion of the interpretation and 
motivation of these notions and of the additional issues that arise in games with 
more than two players, see Fudenberg and Levine (1993a) and Dekel, Fudenberg, 
and Levine (2004); and see Fudenberg and Levine (1993b) and Fudenberg and He 
(2019) for explicit learning foundations for heterogeneous and  type-heterogeneous 
SCE, respectively.

We study a learning environment in which the game is played repeatedly. Players 
know their own payoff functions, the sets of possible moves of all other players   (A)  , 
and the set of types ( Θ ). Players know neither the strategies used by other players 
nor the distribution of Nature’s move (  p ). They learn about these variables from 
their observations after each period of play.

What players learn from repeated play depends on what they observe at the 
end of each round of play. After each play of the game, players observe the ter-
minal node  z =  (a, θ) ,  which is their only information about Nature’s and their 
opponents’ moves. Denote (behavior) strategy profiles in the signaling game by 
 σ =  ( σ 1  ,  σ 2  ) ,  where   σ 1   :  Θ 1   → Δ ( A 1  )   and   σ 2   :  A 1   ∈ Δ ( A 2  )  , and let  ρ (z | σ)   be 
the probability of terminal node  z  under strategy profile  σ .

We begin with the equilibrium concepts that are adapted to our i.i.d. types treat-
ment (GR). Let    σ ˆ   −i     ∈  Σ −i    denote player  i ’s conjecture about the play of player  − i .

In some settings, agents may maintain incorrect beliefs about the distribution 
of Nature’s move, and this can be accommodated by SCE, but we restrict the for-
mal presentation here to the case of correct beliefs, because in the game we study 
allowing for incorrect beliefs about Nature’s move would not enlarge the set  
of SCE.46

DEFINITION: A strategy profile  σ  is a unitary  self-confirming equilibrium (unitary 
SCE) of a signaling game if there are conjectures    σ ˆ   −1    and    σ ˆ   −2    such that:

 (i)  ρ (z |  σ i  ,  σ −i  )  = ρ (z |  ( σ i  ,   σ ˆ   −i  ) )   for  i = 1, 2  and all  z ;

 (ii) for any pair   θ 1  ,  a 1    such that   σ 1   ( a 1   |  θ 1  )  > 0 ,

   a 1   ∈  arg max  
 a  1  ′  

     ∑ 
 a 2  

  
 

     u 1   ( a  1  ′  ,  a 2  , θ)    σ ˆ   −1   ( a 2   |  a  1  ′  )  ;

 (iii) for any   a 1    such that   σ 1   ( a 1   |  θ 1  )  > 0   for at least one   θ 1    and any   a 2    such that 
  σ 2   ( a 2   |  a 1  )  > 0, 

   a 2   ∈  arg max  
 a  2  ′  

      ∑ 
 a 1  ,θ

  
 

     u 2   ( a 1  ,  a 2  ,  θ 1  ) p ( θ 1  )    σ ˆ   −2   ( a 1   |  θ 1  )  .

Here, condition (i) says that the joint distribution of Nature’s move and player  i ’s 
opponent’s action is consistent with what player  i  expected to see given their con-
jecture about opponent’s play, and conditions (ii) and (iii) say that each player’s 

46 Player 1’s beliefs about the distribution of Nature’s move is irrelevant, and since 1 always plays In when Red, 
player 2 will learn that  □  is the best response to 1’s play.
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 strategy maximizes its expected payoff given its conjecture. Note that SCE is weaker 
than Nash equilibrium as it allows players to have incorrect beliefs about how their 
opponent plays at unreached information sets. Specifically, in our signaling game, 
if player 1 always plays  Out , then unitary SCE is consistent with any conjecture at 
all about how player 2 would respond to In. Intuitively, this is because in a learning 
model a player 1 who expects a very low payoff from  In  might never try it and so 
never learn how 2 responds.

This version of SCE is “unitary” in the sense that it implicitly assumes there is a 
single agent in the role of player  i  and so requires a single conjecture    σ ˆ   −i    to ratio-
nalize each action that   σ i    assigns positive probability. In the anonymous random 
matching setting of most laboratory game experiments, it is natural to allow differ-
ent participants in a given player role to play different strategies and have different 
conjectures. So suppose now that in the population of agents in each player role  i  
there are several different strategies played, denoted   σ i,  j i     , with associated conjec-
tures    σ ˆ   −i,  j i     ,   j i   = 1, … ,  K i  ,  with distributions   γ 1  ,   γ 2  .  This allows, e.g., some of our 
player 1s to play  In  and learn 2’s play while others play  Out  and maintain incorrect 
conjectures. As shown in Fudenberg and Levine (1997), heterogeneous beliefs are 
not only theoretically natural, but also lead to a better understanding of a number of 
laboratory experiments. Let   σ 1    and   σ 2    be mixed strategies that are equivalent to the 
aggregate play under the distributions   γ 1  ,  γ 2  . 

DEFINITION: A strategy profile  σ  is a heterogeneous  self-confirming equilibrium 
of a signaling game if there are distributions   γ 1  ,   γ 2    on the strategies and conjectures 
of each player  i  such that:

 (i)  ρ (z |  σ i,  j i    ,  σ −i  )  = ρ (z |  ( σ i,  j i    ,   σ ˆ   −i,  j i    ) )   for all  z, i,  j i  ; 

 (ii) for any   j 1    and for any pair   θ 1  ,  a 1    such that   σ 1,  j 1     ( a 1   |  θ 1  )  > 0 ,

   a 1   ∈  arg max  
 a  1  ′  

     ∑ 
 a 2  

  
 

     u 1   ( a  1  ′  ,  a 2  , θ)    σ ˆ   −1,  j 1     ( a 2   |  a  1  ′  )  ;

 (iii) for any   a 1    such that   σ 1,  j 1     ( a 1   |  θ 1  )  > 0  for at least one   θ 1  ,  j 1   , and any   a 2    
with   σ 2,  j 2     ( a 2   |  a 1  )  > 0, 

   a 2   ∈  arg max  
 a  2  ′  

      ∑ 
 a 1  ,θ

  
 

     u 2   ( a 1  ,  a 2  ,  θ 1  ) p ( θ 1  )    σ ˆ   −2,  j 2     ( a 1   |  θ 1  )  .

In some signaling games, there are heterogeneous SCE that are not SCE. But in 
the game of our experiment, in any SCE, all player 1s must play  In  when Red, and 
SCE then requires that they have correct beliefs about how player 2s respond. Thus, 
in the GR treatment, all SCE are not only unitary but are Nash equilibria.

Now suppose that each agent’s type is fixed once and for all as in GF. In a unitary 
 type-heterogeneous  self-confirming equilibrium, all agents in the role of a given 
type   θ i    are required to have the same belief, and this belief is required to be consis-
tent with how they play, but agents in the roles of different types can play differently 
and maintain different beliefs.
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DEFINITION: A strategy profile  σ  is a unitary  type-heterogeneous  self-confirming 
equilibrium of a signaling game if there are conjectures    σ ˆ   −1, θ 1      for each   θ 1    and a 
conjecture    σ ˆ   −2     for player 2 such that:

 (i)  ρ (z |  ( σ 1  ,  σ 2  ) )  = ρ (z |  ( σ 1  ,   σ ˆ   −2  ) )   for all  z , and  ρ (z |  ( σ 1  ,  σ 2  ) )  = ρ (z |  ( σ 2  ,   σ ˆ   −2  ) )   
 for each   θ 1   ;

 (ii) for   θ 1  ,  a 1    such that   σ 1   ( a 1   |  θ 1  )  > 0 ,

   a 1   ∈  arg max  
 a  1  ′  

     ∑ 
 a 2  

  
 

     u 1   ( a  1  ′  ,  a 2  ,  θ 1  )    σ ˆ   −1, θ 1     ( a 2   |  a  1  ′  )  ;

 (iii) for any   a 1    such that   σ 1   ( a 1   |  θ 1  )  > 0  for at least one   θ 1   , and any   a 2    with 
  σ 2   ( a 2   |  a 1  )  > 0, 

   a 2   ∈  arg max  
 a  2  ′  

      ∑ 
 a 1  ,θ

  
 

     u 2   ( a 1  ,  a 2  ,  θ 1  ) p ( θ 1  )    σ ˆ   −2   ( a 1   |  θ 1  )  .

In our game, “ Out  when Blue and  In  when Red” is a unitary  type-heterogeneous 
SCE.

Note that because the different types do not play each other, unitary 
 type-heterogeneous  self-confirming equilibrium can alternatively be defined as a 
unitary  self-confirming equilibrium where each type is treated as a separate player. 
We can relax SCE still more by not requiring all of the agents of a given type to have 
the same beliefs, and thus combining the heterogeneity of the previous two defini-
tions. This fully heterogeneous  self-confirming equilibrium allows different agents 
in the role of the same type to play differently and have different  self-confirming 
beliefs, so it is a heterogeneous  self-confirming equilibrium of the game where each 
type is a separate player. In our signaling game, this allows some Blue types to 
play  In  while others play  Out,  which is what happened in our experiment.
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