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In May 2005, Dr. Thomas Payzant, the Superintendent of the Boston Public Schools (BPS), 
recommended to the public that the existing school choice mechanism in Boston (henceforth the 
Boston mechanism) should be replaced with an alternative mechanism that removes the incentives 
to “game the system” that handicapped the Boston mechanism.� The mechanism had been used 
to assign over 75,000 students to school from July 1999 until July 2005.� Following Payzant’s 
recommendation, the Boston School Committee voted to replace the mechanism in July 2005 
and adopt a new mechanism for the 2005–2006 school year.

The major difficulty with the Boston mechanism is that students may benefit from mis-
representing their preferences over schools. Loosely speaking, the Boston mechanism attempts 
to assign as many students as possible to their first choice school, and only after all such assign-
ments have been made does it consider assignments of students to their second choices, and so 
on. If a student is not admitted to her first choice school, her second choice may be filled with 
students who have listed it as their first choice. That is, a student may fail to get a place in her 
second choice school that would have been available had she listed that school as her first choice. 
If a student is willing to take a risk with her first choice, then she should be careful to rank a 
second choice that she has a chance of obtaining.

Some families understand these features of the Boston mechanism and have developed rules 
of thumb for submitting preferences strategically. For instance, the West Zone Parents Group 
(WZPG), a well-informed group of approximately 180 members who meet regularly prior to 
admissions time to discuss Boston school choice for elementary school,  recommends two types 
of strategies to its members. Their introductory meeting minutes on October 27, 2003, state:

One school choice strategy is to find a school you like that is undersubscribed and put it as 
a top choice, OR, find a school that you like that is popular and put it as a first choice and 
find a school that is less popular for a “safe” second choice.

� The Boston mechanism is also widely used throughout several US school districts, including Cambridge, MA, 
Charlotte-Mecklenburg, NC, Denver, CO, Miami-Dade, FL, Minneapolis, MN, and Tampa-St. Petersburg, FL.

� Between September 1989 and July 1999, thousands of students were assigned through another version of the 
same mechanism that imposed racial quotas. For the entire history of student assignment in Boston, see page 36 of 
the Student Assignment Task Force, submitted to the Boston School Committee on September 22, 2004, available at 
http://www.bostonpublicschools.com/assignment/.
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Using data on stated choices from the Boston Public Schools from 2000–2004, Atila 
Abdulkadirog ˘lu et al. (2006) describe several empirical patterns which suggest that there are 
different levels of sophistication among the families who participate in the mechanism. Some 
fraction of parents behave as the WZPG suggest and avoid ranking two overdemanded schools 
as their top two choices. On the other hand, nearly 20 percent of students list two overdemanded 
schools as their top two choices, and 27 percent of these students are unassigned by the mecha-
nism.� This empirical evidence, together with the theoretical arguments in Abdulkadirog ˘lu and 
Sönmez (2003) and the experimental study of Yan Chen and Sönmez (2006), was instrumental in 
the decision to replace the Boston mechanism with the student-­optimal stable mechanism (David 
Gale and Lloyd Shapley 1962).

One of the remarkable properties of the student-optimal stable mechanism is that it is strat-
egy-proof: truth-telling is a dominant strategy for each student. If families have access to advice 
on how to strategically misrepresent their preferences from groups like the WZPG or through 
family resource centers, they can do no better than by submitting their true preferences to the 
mechanism. This feature was an important factor in Superintendent Payzant’s recommendation 
to change the mechanism. The BPS Strategic Planning Team, in their May 11, 2005, recommen-
dation to implement a new BPS assignment algorithm, emphasized:�

A strategy-proof algorithm “levels the playing field” by diminishing the harm done to 
parents who do not strategize or do not strategize well.

In this paper, we investigate the intuitive idea that replacing the Boston mechanism with the 
strategy-proof student-optimal stable mechanism “levels the playing field.” To do so, we con-
sider a model with both sincere and sophisticated families,� analyze the Nash equilibria of the 
preference revelation game induced by the Boston mechanism (or simply the Nash equilibria of 
the Boston game), and compare the equilibrium outcomes with the dominant-strategy outcome 
of the student-optimal stable mechanism. In Proposition 1, we characterize the equilibrium out-
comes of the Boston game as the set of stable matchings of a modified economy where sincere 
students lose their priorities to sophisticated students. This result implies that there exists a Nash 
equilibrium outcome where each student weakly prefers her assignment to any other equilibrium 
assignment. Hence, the Boston game is a coordination game among sophisticated students.

We next examine properties of equilibria. While no sophisticated student loses priority to 
any other student, some of the sincere students may gain priority at a school at the expense of 
other sincere students by ranking the school higher on their preference list. As a result, a sincere 
student may still benefit from the Boston mechanism. In Proposition 2, we show that a sincere 
student receives the same assignment in all equilibria of the Boston game.

In Proposition 3, we compare the equilibria of the Boston game to the dominant-strategy out-
come of the student-optimal stable mechanism. We show that any sophisticated student weakly 
prefers her assignment under the Pareto-dominant Nash equilibrium outcome of the Boston game 
over the dominant-strategy outcome of the student-optimal stable mechanism. When only some 
of the students are sophisticated, the Boston mechanism gives a clear advantage to sophisticated 

�  When a student is unassigned by the mechanism, they are administratively assigned to a school that is not on their 
preferences.

�  See Recommendation to Implement a New BPS Algorithm–May 11, 2005, available online at http://boston.k12.
ma.us/assignment/.

�  This is also consistent with the experimental findings of Chen and Sönmez (2006), who have shown that about 20 
percent of the subjects in the lab utilize the suboptimal strategy of truth-telling under the Boston mechanism.
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students, provided they can coordinate their strategies at a favorable equilibrium.� This result 
might explain why, in testimony from the community about the Boston mechanism, the leader of 
the WZPG opposed changing the mechanism.�

The position of the WZPG may be interpreted as a desire to maintain their strategic advantage 
over sincere students under the Boston mechanism. In a model where all students are sophis-
ticated, the set of Nash equilibrium outcomes of the Boston game coincides with the set of 
stable matchings of the underlying economy (Haluk Ergin and Sönmez 2006).� This theoretical 
result would suggest that in a school district with only sophisticated students, a transition to the 
student-optimal stable mechanism should be embraced by all student groups, for it would be in 
the best interest of all students. In contrast, Proposition 3 may explain why the WZPG did not 
embrace the transition.

Our last result, Proposition 4, examines what happens when a sincere student becomes sophis-
ticated. Comparing the Pareto-dominant Nash equilibrium outcomes of the two scenarios, the 
student in question is weakly better off when she is sophisticated, although each other sophisti-
cated student weakly prefers she remain sincere.

The layout of the paper is as follows. Section I defines the model and Section II characterizes 
the set of equilibria. Section III presents comparative statics, and Section IV concludes. Finally, 
the Appendix contains the proofs.

I.  The Model

In a school choice problem (Abdulkadiroğlu and Sönmez 2003), there are a number of students, 
each of whom should be assigned a seat at one of a number of schools. Each student has a strict 
preference ordering over all schools as well as remaining unassigned, and each school has a strict 
priority ranking of all students. Each school has a maximum capacity.

Formally, a school choice problem consists of:

	 •	 A set of students I 5 5i1, … , in6,

	 •	 A set of schools S 5 5s1, … , sm6,

	 •	 A capacity vector q 5 1qs1
, … , qsm

2 ,

	 •	 A list of strict student preferences PI 5 1Pi1
, … , Pin 2 , and

	 •	 A list of strict school priorities p 5 1ps1
, … , psm

2 .

For any student i, Pi is a strict preference relation over S < 5i6 where sPi i means student i strictly 
prefers a seat at school s to being unassigned. For any student i, let Ri donote the “at least as good 
as” relation induced by Pi . For any school s, the function ps : 51, … , n 6 S 5i1, … , in6 is the priority 
ordering at school s where ps 112 indicates the student with highest priority, ps 122 indicates the 
student with second highest priority, and so on. Priority rankings are determined by the school 
district and schools have no control over them. We fix the set of students, the set of schools, and 

�  As we show through computational experiments in Section IIA, there is a unique equilibrium assignment for a 
vast majority of students in Boston.

� In the testimony, the leader stated, “Don’t change the algorithm, but give us more resources so that parents can 
make an informed choice” (public hearing, June 8, 2005).

� Fuhito Kojima (forthcoming) extends this result to a model with substitutable priorities (Alexander S. Kelso Jr. and 
Vincent P. Crawford 1982).



VOL. 98 NO. 4 1639pathak and sÖnmez: leveling the playing field

the capacity vector throughout the paper; hence the pair 1P, p2 denotes a school choice problem 
(or simply an economy).

The school choice problem is closely related to the well-known college admissions problem 
(Gale and Shapley 1962). The main difference is that in college admissions each school is a (pos-
sibly strategic) agent whose welfare matters, whereas in school choice each school is a collection 
of indivisible goods to be allocated and only the welfare of students is considered.

The outcome of a school choice problem, as in college admissions, is a matching. Formally, a 
matching m : I S S < I is a function such that

	 •	 m 1i 2 o S 1 m 1i 2 5 i  for any student i, and

	 •	 Z m211s 2 Z # qs  for any school s.

We refer to m 1i 2 as the assignment of student i under matching m.
A matching m Pareto dominates (or is a Pareto improvement over) a matching n, if m 1i 2Rin 1i 2 

for all i [ I and m 1i 2Pin 1i 2 for some i [ I. A matching is Pareto efficient if it is not Pareto domi-
nated by any other matching.

A mechanism is a systematic procedure that selects a matching for each economy.

A. The Boston Student Assignment Mechanism

The Boston mechanism is by far the most popular mechanism used in school districts through-
out the United States. For any economy, the outcome of the Boston mechanism is determined in 
several rounds with the following procedure:

Round 1.—In Round 1, only the first choices of students are considered. For each school, con-
sider the students who have listed it as their first choice and assign seats of the school to these 
students one at a time following their priority order until there are no seats left or there is no 
student left who has listed it as her first choice.

Round k.—In general, at Round k, consider the remaining students. Only the kth choices of 
these students are considered. For each school with seats still available, consider the students 
who have listed it as their kth choice and assign the remaining seats to these students one at a 
time following their priority order, until there are no seats left or there is no student left who has 
listed it as her kth choice.

The procedure terminates when each student is assigned a seat at a school.
The Boston mechanism induces a preference revelation game among students. We refer to this 

game as the Boston game.

B. Sincere and Sophisticated Students

We assume that there are two types of students: sincere and sophisticated. Let N, M denote 
sets of sincere and sophisticated, respectively. We have N < M 5 I and N > M 5 ~. Sincere 
students simply reveal their preferences truthfully. The strategy space of each sincere student is 
a singleton under the Boston game. Each sophisticated student, on the other hand, recognizes 
the strategic aspects of the student assignment process, and the support of her strategy space is 
all strict preferences over the set of schools, plus remaining unassigned. We focus on the Nash 
equilibria of the Boston game where only sophisticated students are active players. Each sophis-
ticated student selects a best response to the other students.
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C. Stability

The following concept, which plays a central role in the analysis of two-sided matching mar-
kets, will be useful to characterize the Nash equilibria of the Boston game.

A matching m is stable if:

	 •	 It is individually rational in the sense that there is no student i who prefers remaining unas-
signed to her assignment m 1i 2 , and

	 •	 There is no student-school pair 1i, s 2 such that:

		  S Student i prefers s to her assignment m 1i 2 , and

		  S Either school s has a vacant seat under m or there is a lower priority student j who none-
theless received a seat at school s under m.

Gale and Shapley (1962) show that the set of stable matchings is nonempty and there exists a sta-
ble matching, the student-optimal stable matching, that each student weakly prefers to any other 
stable matching. We refer to the mechanism that selects this stable matching for each problem 
as the student-optimal stable mechanism. Lester E. Dubins and David Freedman (1981) and Roth 
(1982) show that truth-telling is a dominant strategy for each student under this mechanism.

D. An Illustrative Example

Since a student “loses” her priority to students who rank a school higher in their preferences, 
the outcome of the Boston mechanism is not necessarily stable. However, Ergin and Sönmez 
(2006) show that any Nash equilibrium outcome of the Boston game is stable when all students 
are sophisticated. Based on this result, they have argued that a change from the Boston mecha-
nism to the student-optimal stable mechanism should be embraced by all students, for it will 
result in a Pareto improvement. This is not what happened in summer 2005 when the Boston 
Public Schools gave up the Boston mechanism and adopted the student-optimal stable mecha-
nism. A simple example provides some insight into the resistance of sophisticated players to the 
change of the mechanism.

Example 1. There are three schools, a, b, c, each with one seat and three students, i1, i2, i3. The 
priority list p 5 1pa, pb, pc 2 and student utilities representing their preferences P 5 1Pi1

, Pi2
, Pi3

2 
are as follows:

a b c

ui1
1 2 0 pa: i2 2 i1 2 i3

ui2
0 2 1 pb: i3 2 i2 2 i1

ui3
2 1 0 pc: i2 2 i3 2 i1.

Students i1 and i2 are sophisticated, whereas student i3 is sincere. Hence, the strategy space of 
each of students i1, i2 is 5abc, acb, bac, bca, cab, cba 6 whereas the strategy space of student i3 is 
the singleton 5abc 6. We have the following 6 3 6 3 1 Boston game for this simple example:
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abc acb bac bca cab cba 

abc (0, 0, 1) (0, 0, 1) (1, 2, 0) (1, 2, 0) (1, 1, 1) (1, 1, 1)
acb (0, 0, 1) (0, 0, 1) (1, 2, 0) (1, 2, 0) (1, 1, 1) (1, 1, 1)
bac (2, 0, 0) (2, 0, 0) (0, 2, 2) (0, 2, 2) (2, 1, 2) (2, 1, 2)
bca (2, 0, 0) (2, 0, 0) (0, 2, 2) (0, 2, 2) (2, 1, 2) (2, 1, 2)
cab (0, 0, 1) (0, 0, 1) (0, 2, 2) (0, 2, 2) (2, 1, 2) (2, 1, 2)
cba (0, 0, 1) (0, 0, 1) (0, 2, 2) (0, 2, 2) (2, 1, 2) (2, 1, 2)

where the row player is student i1 and the column player is student i2.
There are four Nash equilibrium profiles of the Boston game (indicated in boldface), each with 

a Nash equilibrium payoff of (1, 2, 0) and a Nash equilibrium outcome of

	 i1	 i2	 i3
	 m 5 a	 b .
	 a	 b	 c

We have the following useful observations about the equilibria:

	 •	 Truth-telling, i.e., the profile 1bac, bca, abc 2 , is not a Nash equilibrium of the Boston 
game.

	 •	 Unlike in Ergin and Sönmez (2006), the Nash equilibrium outcome m is not a stable match-
ing of the economy 1P, p2 . The sincere student i3 not only prefers school b to her assignment 
m 1i32 5 c but also has the highest priority there. Nevertheless, by being truthful and ranking 
b second, she has lost her priority to student i2 at equilibrium.

	 •	 The unique stable matching of the economy 1P, p2 is
	 i1	 i2	 i3
	 n 5 a	 b .
	 a	 c	 b

		  Matchings m and n are not Pareto ranked. While the sophisticated student i1 is indiffer-
ent between the two matchings, the sophisticated student i2 is better off under matching m 
and the sincere student i3 is better off under matching n. That is, the sophisticated student 
i2 is better off under the Nash equilibria of the Boston game at the expense of the sincere 
student i3.

We next characterize the Nash equilibrium outcomes of the Boston game, which will be useful 
to generalize the observations above.

II.  Characterization of Nash Equilibrium Outcomes

A. An Augmented Economy

Given an economy 1P, p2 , we will construct an augmented economy that will be instrumental 
in describing the set of Nash equilibrium outcomes of the Boston game. Given an economy 1P, p2 
and a school s, partition the set of students I into m sets as follows:

I1
s:	 Sincere students who rank s as their first choices under P and all sophisticated students,
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I2
s:	 Sincere students who rank s as their second choices under P,

I3
s:	 Sincere students who rank s as their third choices under P,

	 (	 (
Im

s   : Sincere students who rank s as their last choices under P.

Given an economy 1P, p2 and a school s, construct an augmented priority ordering p̃ s as follows:

	 •	 Each student in I1
s has higher priority than each student in I2

s, each student in I2
s has higher 

priority than each student in I3
s, … , each student in I sm21 has higher priority than each student 

in I sm, and
	 •	 For any k # m, priority among students in Ik

s is based on ps.

Define p̃  5 1p̃ s 2 s[S. We refer the economy 1P, p̃ 2 as the augmented economy.

In the augmented economy, the priorities at each school are adjusted so that sincere students 
who rank a school as their second choice or lower are ordered following all sophisticated stu-
dents. The augmented priorities will reflect the fact that in the Boston mechanism these students 
will receive a lower priority because they do not rank the school as their top choice.

    Example 1 (continued). Let us construct the augmented economy for Example 1. Since only 
student i3 is sincere, p̃  is constructed from p by pushing student i3 to the end of the priority order-
ing at each school except her top choice a (where she has the lowest priority to begin with):

	 pa : i2 2 i1 2 i3  1  p̃ a : i2 2 i1 2 i3 ,

	 pb : i3 2 i2 2 i1  1  p̃ b : i2 2 i1 2 i3 ,

	 pc : i1 2 i3 2 i2  1  p̃  c : i1 2 i2 2 i3 .

The key observation is that the unique Nash equilibrium outcome m of the Boston game is the 
unique stable matching for the augmented economy 1P, p̃ 2 .

While the uniqueness is specific to the example above, the equivalence is general. We are 
ready to present our first result.

Proposition 1: The set of Nash equilibrium outcomes of the Boston game under 1P, p2 is 
equivalent to the set of stable matchings under 1P, p̃ 2 .

This is a generalization of the main result of Ergin and Sönmez (2006), who show that the set 
of Nash equilibrium outcomes of the Boston game is equal to the set of stable matchings of the 
original economy when all students are sophisticated. In this case, any stable matching m can be 
sustained at equilibrium when each student strategically ranks m 1i 2 as her top choice. Moreover, 
any equilibrium outcome is stable for otherwise student j of a blocking pair 1 j, s 2 can have a prof-
itable deviation by ranking s as her top choice. When only a subset of students are sophisticated, 
a sincere student i loses the ability to rank her assignment m 1i 2 at a stable matching m as her first 
choice. She also loses the ability to engage in a profitable deviation when she is in a blocking 
pair of an unstable matching. Hence, a version of Ergin and Sönmez (2006) holds where sincere 
students lose priority to sophisticated students.

A key implication of Proposition 1 is that sophisticated students gain priority at the expense of 
sincere students at Nash equilibria. Another implication is that the set of equilibrium outcomes 
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inherits some of the properties of the set of stable matchings. In particular, there is a Nash 
equilibrium outcome of the Boston game that is weakly preferred to any other Nash equilib-
rium outcome by all students. We refer to this as the Pareto-dominant Nash equilibrium outcome. 
Therefore, the Boston game is a coordination game among sophisticated students.

B. Equilibrium Assignments of Sincere Students

The student-optimal stable mechanism replaced the Boston mechanism in Boston in 2005. In 
the following section we will compare the equilibrium outcomes of the Boston game with the 
dominant-strategy equilibrium outcome of the student-optimal stable mechanism. One of the 
difficulties in such comparative static analysis is that the Boston game has multiple equilibria in 
general. Nevertheless, as we now discuss, multiplicity is not an issue for sincere students.�

Proposition 2: Let m, n be both Nash equilibrium outcomes of the preference revelation 
game induced by the Boston mechanism. For any sincere student i [ N, m 1 i 2 5 n 1 i 2 .

What makes multiple stable matchings possible in school choice is a possible “conflict” 
between school priorities and student preferences (e.g., student i has higher priority at school a 
than student j, student j has higher priority at school b than student i, but student i prefers b to a 
and student j prefers a to b.) Under the augmented priorities, sincere students are never involved 
in such conflicts: they have lower priority than sophisticated students and among sincere students 
a school gives higher priority to the sincere student who ranks it higher in her preferences. That 
is why a sincere student always receives the same assignment in any Nash equilibrium.

III.  Comparative Statics

A. Comparing Mechanisms

The outcome of the student-optimal stable mechanism can be obtained with the following 
student-proposing deferred acceptance algorithm (Gale and Shapley 1962):

Step 1: Each student proposes her first choice. Each school tentatively assigns its seats to its pro-
posers one at a time following their priority order. Any remaining proposers are rejected.

Step k: In general, at this step, each student who was rejected in the previous step proposes to her 
next choice. Each school considers the students it has been holding along with its new proposers 
and tentatively assigns its seats to these students one at a time following their priority order. Any 
remaining proposers are rejected.

The algorithm terminates when no student proposal is rejected and each student is assigned 
her final tentative assignment. Any student who is not holding a tentative assignment remains 
unassigned.

�  Proposition 2 does not require that sincere students report their true preferences to the mechanism. The same result 
is true when sincere students play any fixed strategy.
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Sincere students lose priority to sophisticated students under the Boston mechanism. They 
may also be affected by other sincere students, so that some sincere students may benefit at the 
expense of other sincere students under the Boston mechanism. More precisely, a sincere student 
may prefer the Boston mechanism to the student-optimal stable mechanism since:

•	 She gains priority at her first choice school over sincere students who rank it second or lower, 
and, in general,

•	 She gains priority at her kth choice school over sincere students who rank it 1k 1 12 th or lower, 
etc.

     Example 2. There are three schools, a, b, c, each with one seat and three sincere students, i1, 
i2, i3. Preferences and priorities are as follows:

	 Pi1
 : a b c    pa : i1 2 i2 2 i3,

	P i2
 : a b c    pb : i2 2 i1 2 i3,

	 Pi3 : b a c    pc : i1 2 i2 2 i3.

Outcomes of the Boston mechanism and the student-optimal stable mechanism are

	 i1    i2    i3	 i1    i2    i3	 a	 b  and  a	 b ,
	 a    c    b 	 a    b    c

respectively. Under the Boston mechanism, the sincere student i3 gains priority at her top 
choice school b over the sincere student i2. Hence, student i3 prefers her assignment under the 
Boston mechanism, whereas student i2 prefers her assignment under the student-optimal stable 
mechanism.

Unlike a sincere student, a sophisticated student may be assigned seats at different schools at 
different equilibrium outcomes of the Boston game. We first concentrate on the Pareto-dominant 
Nash equilibrium outcome of the Boston game. Since this equilibrium outcome is the student-
optimal stable matching of the augmented economy, it is not surprising that a sophisticated 
student weakly prefers it to the student-optimal stable matching of the original economy. This is 
what is shown in our next result.

Proposition 3: The school a sophisticated student receives in the Pareto-dominant equilib-­
rium of the Boston mechanism is weakly better than her dominant-strategy outcome under the 
student-optimal stable mechanism.

A theoretical setback for Proposition 3 is that it does not extend to all Nash equilibria. Our 
next example makes this point.

Example 3. There are two schools, a, b, each with one seat and two sophisticated students, i1, 
i2. Preferences and priorities are as follows:

	 Pi1
 : a b    pa : i2 2 i1,

	P i2
 : b a    pb : i1 2 i2.
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Since both students are sophisticated, the augmented economy 1P, p̃ 2 is the same as the original 
economy 1P, p2 . Hence, 5m, n6 is the set of stable matchings for both economies where

	 i1  i2	 i1  i2
	 m 5 a         b  and  n 5 a         b .
	 a  b	 b  a

Therefore, while m is the dominant strategy outcome of the student-optimal stable mechanism, 
both m and n are Nash equilibrium outcomes of the Boston game. Hence, both students strictly 
prefer the dominant strategy outcome of the student-optimal stable mechanism (i.e., matching m) 
to one of the Nash equilibria of the Boston game (i.e., matching n ).

The case for Proposition 3 would have been stronger if the Boston game had a unique equi-
librium. As we show in Example 3, this is not necessarily the case. There is, however, evidence 
in the literature that suggests that the size of the set of stable matchings may be very small in 
real-life applications of college admissions problems. Using data for years 1991–1994 and 1996 
for the thoracic surgery market, Roth and Elliot Peranson (1999) have shown that there are two 
stable matchings each for years 1992 and 1993, and one stable matching each for 1991, 1994, 
and 1996. One caveat of these computational experiments is that the thoracic surgery market 
used the hospital-optimal stable mechanism in these years, and truth-telling is not a dominant 
strategy for interns or for hospitals under this mechanism. So it is theoretically possible that the 
small number of stable matchings is an implication of preference manipulation. The same com-
putational exercise is on firmer ground for school years 2005–2006 and 2006–2007 for Boston 
Public School student admissions, where the student-optimal stable mechanism was used (which 
is strategy-proof in the context of school choice). The results of these computational experiments 
are very similar to those of Roth and Peranson: at grade K2, the main entry to elementary school, 
for school years 2005–2006 and 2006–2007 (each with more than 2,800 students), there is only 
one stable matching for either year. At grade 6, the situation is not very different. For school year 
2005–2006 there are only two stable matchings, and among more than 3,200 students only two 
are affected by the choice of a stable matching. For school year 2006–2007 there are also two 
stable matchings, and among more than 2,900 students only three are affected by the choice of 
a stable matching. The reason this is happening is that, for most students, the factors that give a 
student higher priority at a Boston school (i.e., proximity and the presence of a sibling) also make 
that school more desirable for the student.

These computational experiments suggest that while the existence of multiple equilibria is 
a theoretical possibility under the Boston game, it likely affects a very small minority of stu-
dents. As we show in Proposition 1, the set of Nash equilibrium outcomes is equal to the set 
of stable matchings of an augmented economy where sincere students lose priority to sophis-
ticated students. Using data for school years 2005–2006 and 2006–0207 and admission to 
grade K2 and grade 6, we ran computational experiments by randomly setting 20 percent of 
students to be sincere and the rest to be sophisticated. We calculated the student-optimal stable 
matching and the school-optimal stable matching for the resulting augmented economy and 
repeated the same exercise 1,000 times to calculate how many students are affected on aver-
age by the multiplicity of the Nash equilibria. We repeated the same experiment for the cases 
where 40 percent, 60 percent, and 80 percent of the students are sincere, respectively. Table 1 
summarizes the results of our computational experiment. Most of the time the augmented 
economy has a unique stable matching and, more specifically, no more than 0.38 students (less 
than 0.013 percent of students) are affected on average by the multiplicity of the Nash equilib-
ria in each of the treatments. Hence, while Proposition 3 does not theoretically extend to all 
equilibria, the computational experiments suggest that multiplicity is not a significant problem 
in our application.
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B. Becoming Sophisticated

Our final result concerns a sincere student i who becomes sophisticated. While student i 
weakly benefits from this transition under the Pareto-dominant Nash equilibrium of the Boston 
game, students who have been sophisticated weakly suffer.

To state this result, we must define additional notation. First, fix an economy 1P, p2 . Let M1 
, I be the set of sophisticated students and N1 be the set of sincere students. Next, consider an 
initially sincere student i [ N1 and suppose she becomes sophisticated. Let M2 5 M1 < 5i6 be 
the set of sophisticated students including i, and let N2 5 N1 \ 5i6 be the set of remaining sincere 
students.

Let n be the Pareto-dominant Nash equilibrium of the Boston game where M1 and N1 are the 
sophisticated and sincere players, respectively. Let m be the Pareto-dominant Nash equilibrium 
of the Boston game where M2 and N2 are the sophisticated and sincere players, respectively.

Proposition 4: Let i, M1, n, m be as described above. Student i weakly benefits from becom-­
ing sophisticated in the Pareto-dominant Nash equilibrium of the Boston game, whereas all 
other sophisticated students weakly suffer. That is,

	 m 1i 2 Ri n 1i 2   and   n 1  j 2 Rj m 1  j 2   for all j [ M1.

This proposition suggests that groups such as the West Zone Parents Group do not exist only to 
share information on how to become strategic, because educating a sincere player will not benefit 
an existing sophisticated player. Rather, this proposition suggests that the theoretical function of 
the West Zone Parents Group may be to share information and coordinate behavior among the 
sophisticated players.

IV.  Conclusion

Boston Public Schools stated that one of their main rationales for changing their student 
assignment system is that it levels the playing field. They identified a fairness rationale for a strat-
egy-proof system. In this paper, we examined this intuitive notion and showed that the Boston 
mechanism favors sophisticated parents at Pareto-dominant Nash equilibrium, providing formal 
support for BPS’s position.

Despite its theoretical weaknesses, performance in laboratory experiments, and empirical evi-
dence of confused play, the Boston mechanism is the most widely used school choice mechanism 
in the United States. It is remarkable that such a flawed mechanism is so widely used. John E. 

Table 1—Average Number of Students Receiving Different Schools in Student-
Optimal versus School-Optimal Matching

Fraction of sincere students

20 percent 40 percent 60 percent 80 percent

2005–2006
  Grade K2 0.14 0.08 0.04 0.01
  Grade 6 0.38 0.20 0.07 0.01
2006–2007
  Grade K2 0.03 0.01 0.00 0.00
  Grade 6 0.24 0.14 0.05 0.01

Note: This table is based on data provided by Boston Public Schools for Round 1 of their 
admissions process in 2005–2006 and 2006–2007.
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Chubb and Terry M. Moe (1999) argue that important stakeholders often control the mechanisms 
of reform in education policy. In the context of student assignment mechanisms, the important 
stakeholders may be sophisticated parents who have invested energy in learning about the mech-
anism, and the choice of the Boston mechanism may reflect their preferences.

Appendix: Proofs

Proof of Proposition 1:
B (Any stable matching under 1P, p̃ 2 is an equilibrium outcome of the Boston game under 

1P, p2 2 :
Fix an economy 1P, p2 and let m be stable under 1P, p̃ 2 . Let preference profile Q be such that Qi 

5 Pi for all i [ N and m 1i 2 is the first choice under Qi for all i [ M. Matching m is stable under 
1Q, p̃ 2 as well. Let n be the outcome of the Boston mechanism under 1Q, p2 . We first show, by 
induction, that n 5 m.

Consider any student j who does not receive her first choice sj
1 under Q at matching m. By 

construction of Q, student j is sincere. Since m is stable under 1Q, p̃ 2 and since student j does not 
lose priority to any student at school sj

1 when priorities change from p to p̃ , she has lower priority 
under psj

1 than any student who has received a seat at sj
1 under m. Each of these students ranks sj

1 
as their first choice under Q and school sj

1 does not have empty seats under m, for otherwise 1  j, s 2 
would block m under 1Q, p̃ 2 . Therefore, n 1  j 2 Z sj

1. So a student can receive her first choice under 
Q at matching n only if she receives her first choice under Q at matching m. But then, since the 
Boston mechanism is Pareto efficient, matching n is Pareto efficient under 1Q, p2 , which in turn 
implies that n 1i 2 5 m 1i 2 for any student i who receives her first choice under Q at matching m.

Next, given k . 1, suppose:

	 (i)	 Any student who does not receive one of her top k choices under Q at matching m does not 
receive one of her top k choices under Q at matching n either, and

	(ii)	 For any student i who receives one of her top k choices under Q at matching m, n 1i 2 5 
m 1i 2 .

We will show that the same holds for 1k 1 12 , and this will establish that n 5 m. Consider any stu-
dent j who does not receive one of her top k 1 1 choices under Q at matching m. By construction 
of Q, student j is sincere, and by assumption she does not receive one of her top k choices under 
Q at matching n. Consider 1k 1 12 th choice sj

k11 of student j under Qj. Since m is stable under 
1Q, p̃ 2 , there is no empty seat at school sj

k11, for otherwise pair 1  j, sj
k112 would block matching m 

under 1Q, p̃ 2 . Moreover, since m is stable under 1Q, p̃ 2 , for any student i with m 1i 2 5 sj
k11 one of 

the following three cases should hold:

	1 .	  i [ M and by construction sj
k11 is her first choice under Qi,

	 2.	  i [ N and sj
k11 is one of her top k choices under Qi,

	 3.	  i [ N, she has ranked sj
k11 as her 1k 1 12 th choice under Qi, and she has higher priority than 

j under psj
k11.

If either of the first two cases holds, then n 1i 2 5 sj
k11 by the inductive assumption. If Case 3 

holds, then student i has not received one of her top k choices under Qi at matching n by the 
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inductive assumption, and furthermore she has ranked school sj
k11 as her 1k 1 12 th choice under 

Qi. Since she has higher priority than j under psj
k11, n 1  j 2 5 sj

k11 implies n 1i 2 5 sj
k11. Therefore, 

considering all three cases, n 1  j 2 5 sj
k11 implies n 1i 2 5 sj

k11 for any student i with m 1i 2 5 sj
k11, 

and since school sj
k11 does not have empty seats under m, we must have n 1  j 2 Z sj

k11. So a student 
can receive one of her top k 1 1 choices under Q at matching n only if she receives one of her top 
k 1 1 choices under Q at matching m. Moreover, matching n is Pareto efficient under 1Q, p2 and 
therefore n 1i 2 5 m 1i 2 for any student i who receives her 1k 1 12 th choice under Qi at m completing 
the induction and establishing n 5 m.

Next, we show that Q is a Nash equilibrium profile and hence n is a Nash equilibrium outcome. 
Consider any sophisticated student i [ M and suppose sPin 1i 2 5 m 1i 2 for some school s [ S. 
Since n 5 m is stable under 1Q, p̃ 2 and since student i gains priority under p̃ s over only students 
who rank s second or worse under Q, not only does any student j [ I with n 1  j 2 5 s rank school 
s as her first choice under Qi, but she also has higher priority under ps. Therefore, regardless of 
what preferences student i submits, each student j [ I with n 1  j 2 5 s will receive a seat at school 
s. Moreover by stability of n 5 m under 1Q, p̃ 2 , there are no empty seats at school s and hence 
student i cannot receive a seat at s regardless of her submitted preferences. Therefore, matching 
n is a Nash equilibrium outcome.

1 (Any equilibrium outcome of the Boston game under 1P, p2 is a stable matching under 
1P, p̃ 2 2 :

Suppose matching m is not stable under 1P, p̃ 2 . Let Q be any preference profile where Qi 5 Pi 
for any sincere student i and where m is the outcome of the Boston mechanism under 1Q, p2 . We 
will show that Q is not a Nash equilibrium strategy profile of the Boston game under 1P, p2 .

First, suppose m is not individually rational under 1P, p̃ 2 . Then, there is a student i [ I with 
iPi m 1i 2 . Since the Boston mechanism is individually rational, student i should be a sophisticated 
student who has ranked the unacceptable school m 1i 2 as acceptable. Let Pi

0 be a preference rela-
tion where there is no acceptable school. Upon submitting Pi

0, student i will profit by getting 
unassigned. Hence, Q cannot be an equilibrium profile in this case.

Next, suppose there is a pair 1i, s 2 that blocks m under 1P, p̃ 2 . Since m is the outcome of the 
Boston mechanism under 1Q, p2 , student i cannot be a sincere student. Let Pi

s be a preference 
relation where school s is the first choice. We have two cases to consider:

Case 1: School s has an empty seat at m.
Recall that by assumption m is the outcome of the Boston mechanism under 1Q, p2 . Since s 

has an empty seat at m, there are fewer students who rank s as their first choice under Q than the 
capacity of school s. Therefore, upon submitting the preference relation Pi

s, student i will profit 
by getting assigned a seat at school s. Hence, Q cannot be an equilibrium profile.

Case 2: School s does not have an empty seat at m.
By assumption m is the outcome of the Boston mechanism under 1Q, p2 and there is a student 

j with m 1  j 2 5 s, although i has higher priority than j under p̃ s. If school s is not j’s first choice 
under Qj, then there are fewer students who rank s as their first choice under Q than the capac-
ity of school s, and upon submitting the preference relation Pi

s, student i will profit by getting 
assigned a seat at school s contradicting Q being an equilibrium profile. If, on the other hand, 
school s is j’s first choice under Qj, then either j is sophisticated or j is sincere, and s is her first 
choice under Pj. In either case, i having higher priority than j under p̃ s implies i having higher 
priority than j under ps. Moreover, since m 1  j 2 5 s, the capacity of school s is strictly larger than 
the number of students who rank it as their first choice under Q while having higher priority than 
j under ps. Therefore, the capacity of school s is strictly larger than the number of students who 
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rank it as their first choice under Q while having higher priority than i under ps. Hence, upon 
submitting the preference relation Pi

s, student i will profit by getting assigned a seat at school s, 
contradicting Q being an equilibrium profile.

Since there is no Nash equilibrium profile Q for which m is the outcome of the Boston mecha-
nism under 1Q, p2 , m cannot be a Nash equilibrium outcome of the Boston game under 1P, p2 .

Proof of Proposition 2:
Fix an economy 1P, p2 . Let m, n be both Nash equilibrium outcomes of the preference revela-

tion game induced by the Boston mechanism. By Proposition 1, m, n are stable matchings under 
1P, p̃ 2 . Let m– 5 m ~ n and m– 5 m ` n be the join and meet of the stable matching lattice. That is, 
m– , m– are such that, for all i [ I,

	 m 1i 2  if m 1i 2Rin 1i 2	 n 1i 2  if m 1i 2Rin 1i 2
	 m– 1i 2 5 e	   m– 1i 2 5 e
	 n 1i 2  if n 1i 2Ri m 1i 2	 m 1i 2  if n 1i 2Ri m 1i 2 .

Since the set of stable matchings is a lattice (attributed to John Conway by Donald Knuth 1976), 
m– and m– are both stable matchings under 1P, p̃ 2 .

Let T 5 5i [ I : m– 1i 2 Z m– 1i 2 6. That is, T is the set of students who receive a different assignment 
under m– and m– . If T # M, then we are done. So suppose there exists i [ T > N. We will show that 
this leads to a contradiction. Let s 5 m– 1i 2 , s* 5 m–  1i 2 , and j [ m–211s* 2 > T. Such a student j [ 
I exists because by the rural hospitals theorem of Roth (1986), the same set of students and the 
same set of seats are assigned under any pair of stable matchings. Note that j [ m–21 1m–  1i 2 2 .

Claim: j [ N.
Proof of the Claim: By construction of m– and m– , sPi s* and therefore school s* is not i’s first 

choice. Moreover, by Roth and Marilda Sotomayor (1989), each student in m– 1s* 2 \ m– 1s* 2 has higher 
priority under p̃ s* than each student in m– 1s* 2 \ m– 1s* 2 , and hence i has higher priority than j under 
p̃ s* . But since i is sincere by assumption and since s* is not her first choice, student j has to be 
sincere as well, for otherwise she would have higher priority under p̃ s* .

Next, construct the following directed graph: each student i [ T > N is a node and there is a 
directed link from i [ T > N to j [ T > N if j [ m– 211m–  1i 2 2 . By the Claim above, there is at least 
one directed link emanating from each node. Therefore, since there are finite numbers of nodes, 
there is at least one cycle in this graph. Pick any such cycle. Let T1 # T > N be the set of students 
in the cycle, and let Z T1 Z 5 k. Relabel students in T1 and their assignments under m– , m– so that the 
restriction of matchings m– and m– to students in T1 is as follows:

	 i1  i2  …  i k	 i1  i2  …  i k21  ik

	  m– 
T1

 5 a	    b ,	  m– T1
 5 a	 b .

	 s1  s2  …  s k	 s2  s3  …  s k  s1

Note that a school may appear more than once in a cycle so that schools st, su do not need to be 
distinct for t Z u (although they would have if the cycle we pick is minimal). This has no rel-
evance for the contradiction we present next.

Let ri, s be the ranking of school s in Pi (so ri, s 5 < means that s is i’s <th choice). By Roth and 
Sotomayor (1989), i k has higher priority at school s1 than i1 under p̃ s1 , and since i1, ik are both 
sincere,
	 rik, s1 # ri1, s1 .
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Similarly,

	 ri<21, s< # ri<, s<   for any < [ 52, … , k 6.

Moreover, since m– 1i 2Pi m– 1i 2 for each i [ T,

	 skPi k s
1  1  rik, sk , rik, s1,

and, similarly,

	 s<21Pi <21 s<  1  ri<21, s<21 # ri<21, s<  for any < [ 52, … , k 6.

Combining the inequalities, we obtain

	 rik,s1
 # ri1,s1 , ri1,s2 # ri2,s2 , ri2,s3  # … # rik21,sk21 , rik21,sk # rik,sk , rik,s1,

establishing the desired contradiction. Hence, there exists no i [ N with m– 1i 2 Z m– 1i 2 . But that 
means there exists no i [ N with m 1i 2 Z n 1i 2 , completing the proof.

The following lemma will be useful to prove Proposition 3 and Proposition 4. We need the 
following piece of notation to present this lemma. Given a preference profile P and a school s, let 
Fs 1P2 denote the set of students who rank school s as their first choice under P.

Lemma 1: Fix a preference profile P, a list of priorities p, and a set of students J , I. Let pri-­
orities s be such that, for any school s:

	 (i)	 Any student in J < Fs 1P2 has higher priority under ss than any student in I \ 1J < Fs 1P2 2 , 
and

	(ii)	F or any student j [ J < Fs 1P2 and any student i [ I, if j has higher priority than i under ps, 
then j also has higher priority than i under ss.

Let m, n be the student-optimal stable matching for economies 1P, p2 , 1P, s2 , respectively. 
Then:

	 n 1  j 2 Rjm 1  j 2   for any j [ J.

Proof of Lemma 1:
Let m, n be the outcomes of the student-proposing deferred acceptance algorithm for econo-

mies 1P, p2 , 1P, s2 , respectively. Assume by way of contradiction that there exists a student j [ J 
such that m 1  j 2Pjn 1  j 2 . Then, in the execution of the student-proposing deferred acceptance algo-
rithm for economy 1P, s2 , there exists a student who is rejected by her assignment under match-
ing m. Let j* be the first such student in set J and suppose he is rejected by school m 1  j* 2 at Step k* 
of the algorithm. But this rejection means that there exists a student j9 who has higher priority 
at school m 1  j* 2 under s than student j*, and does not propose to school m 1  j* 2 in the algorithm 
for economy 1P, p2 , but has proposed to school m 1  j* 2 in the algorithm for economy 1P, s2 . This 
implies that m 1  j92Pj9m 1  j* 2Rj9n 1  j92 and so student j9 has been rejected from school m 1  j92 before 
Step k* in the execution of the student-proposing deferred acceptance algorithm for economy 
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1P, s2 . Recall that we assumed j* is the first such student in set J. Hence, all that remains to obtain 
the desired contradiction is to show j9 [ J.

Since j9 has higher priority at school m 1  j* 2 under s than student j* (who is a member of set J), 
we must have j9 [ J < Fm 1  j* 2 1P2 . But since j9 does not propose to school m 1  j* 2 in the algorithm 
for economy 1P, p2 , it cannot be her first choice 1 i.e., j9 o Fm 1  j* 2 1P2 .2 Hence, j9 [ J, resulting in 
the desired contradiction.

Proof of Proposition 3:
Let m, n be the student-optimal stable matching for economies 1P, p2 , 1P, p̃ 2 , respectively. We 

have to show that n 1  j 2Rj m 1  j 2 for any j [ M. For any school s, the priority order p̃ s is such that:

	 (i)	 Any student in M < Fs 1P2 has higher priority under p̃ s than any student in I \ 1M < Fs 1P2 2 , 
and

	(ii)	 For any student j [ M < Fs 1P2 and any student i [ I, if j has higher priority than i under ps, 
then j also has higher priority than i under p̃ s.

Therefore, n 1  j 2Rj m 1  j 2 for any j [ M by Lemma 1.

Proof of Proposition 4:
Fix an economy 1P, p2 , and let M1 , I be the set of sophisticated students and N1 be the set 

of sincere students. Next consider an initially sincere student i [ N1 and suppose she becomes 
sophisticated. Let M2 5 M1 < 5i6 be the set of sophisticated students including i, and let N2 5 
N1 \ 5i6 be the set of remaining sincere students. Let n be the Pareto-dominant Nash equilibrium 
of the Boston game where M1 and N1 are the sophisticated and sincere players, respectively. Let 
m be the Pareto-dominant Nash equilibrium of the Boston game where M2 and N2 are the sophis-
ticated and sincere players, respectively. Let p̃ 1 be the augmented priority ordering when M1 is 
the set of sophisticated students, and let p̃ 2 be the augmented priority ordering when M2 is the set 
of sophisticated students. By Proposition 1, n is the student-optimal stable matching for economy 
1P, p̃ 12 and m is the student-optimal stable matching for economy 1P, p̃ 22 .

By the construction of the augmented priorities, student i does not lose priority to any stu-
dent when priorities change from p̃ 1 to p̃ 2, while priorities between other students remain the 
same between p̃ 1 and p̃ 2. Therefore, m 1i 2 Ri n 1i 2 immediately follows from Michel Balinski and 
Sönmez (1999). Moreover, by construction of the augmented priorities, for any school s:

	 (i)	 Any student in M1 < Fs 1P2 has higher priority under p̃ s
1 than any student in I \ 1M1 < Fs 1P2 2 , 

and

	(ii)	 For any student j [ M1 < Fs 1P2 and any other student h [ I, if j has higher priority than h 
under p̃ s

2, then j also has higher priority than h under p̃ s
1.

Therefore, n 1  j 2 Rj m 1  j 2 for any j [ M1 by Lemma 1.
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