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I. INTRODUCTION

Public school districts increasingly use value-added models
(VAMs) to assess teacher and school effectiveness. Conventional
VAM estimates compare test scores across classrooms or schools
after regression-adjusting for students’ demographic characteris-
tics and earlier scores. Achievement differences remaining after
adjustment are attributed to differences in teacher or school qual-
ity. Some districts use estimates of teacher value-added to guide
personnel decisions, while others use VAMs to generate “report
cards” that allow parents to compare schools.1 Value-added es-
timation is a high-stakes statistical exercise: low VAM estimates
can lead to school closures and teacher dismissals, while a growing
body of evidence suggests the near-term achievement gains pro-
duced by effective teachers and schools translate into improved
outcomes in adulthood (see, e.g., Chetty et al. 2011 and Chetty,
Friedman, and Rockoff 2014b for teachers, and Angrist et al.
2016a and Dobbie and Fryer 2015 for schools).

Because the stakes are so high, the use of VAM estimates for
teacher and school assessment remains controversial. Critics note
that VAM estimates may be misleading if the available control
variables are inadequate to ensure ceteris paribus comparisons.
VAM estimates may also reflect considerable sampling error. The
accuracy of teacher value-added models is the focus of a large
and expanding body of research. This work demonstrates that
teacher VAM estimates have predictive value, but has yet to gen-
erate a consensus on the substantive importance of bias or guide-
lines for “best practice” VAM estimation (Kane and Staiger 2008;
Rothstein 2010, forthcoming; Koedel and Betts 2011; Kinsler
2012; Kane et al. 2013; Chetty, Friedman, and Rockoff 2014a,
2016, forthcoming). While the social significance of school-level
VAMs is similar to that of teacher VAMs, validation of VAMs for
schools has received less attention.

The proliferation of partially randomized urban school as-
signment systems provides a new tool for measuring school value-
added. Centralized assignment mechanisms based on the theory

1. The Education Commission of the States noted that, as of 2016, four-
teen states – Alabama, Arizona, Florida, Indiana, Louisiana, Maine, Missis-
sippi, New Mexico, North Carolina, Ohio, Oklahoma, Texas, Utah, and Virginia –
were issuing letter-grade report cards with grades determined at least in part
by adjusted standardized test scores (http://www.ecs.org/html/educationissues/
accountability/stacc_intro.asp).

http://www.ecs.org/html/educationissues/accountability/stacc_intro.asp
http://www.ecs.org/html/educationissues/accountability/stacc_intro.asp
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of market design, including those used in Boston, Chicago, Denver,
New Orleans, and New York, use information on parents’ prefer-
ences over schools and schools’ priorities over students to allocate
scarce admission offers. These matching algorithms typically em-
ploy random sequence numbers to distinguish between students
with the same priorities, thereby creating stratified student as-
signment lotteries. Similarly, independently-run charter schools
often use admissions lotteries when oversubscribed. Scholars in-
creasingly use these lotteries to identify causal effects of enroll-
ment in various school sectors, including charter schools, pilot
schools, small high schools, and magnet schools (Cullen, Jacob,
and Levitt 2006; Hastings and Weinstein 2008; Abdulkadiroğlu
et al. 2011; Angrist, Pathak, and Walters 2013; Bloom and Un-
terman 2014; Deming et al. 2014). Lottery-based estimation of
individual school value-added is less common, however, reflecting
the fact that lottery samples for many schools are small, while
other schools are undersubscribed.

This article develops econometric methods that leverage
school admissions lotteries for VAM testing and estimation,
accounting for the partial coverage of lottery data. Our first
contribution is the formulation of a new lottery-based test of
conventional VAMs. This test builds on recent experimental and
quasi-experimental VAM validation strategies, including the work
of Kane and Staiger (2008), Deutsch (2013), Kane et al. (2013),
Chetty, Friedman, and Rockoff (2014a), and Deming (2014). In
contrast with earlier studies, which implicitly look at average-
across-schools validity in a test with one degree of freedom, ours
is an overidentification test that looks at each of the orthogonal-
ity restrictions generated by a set of lottery instruments. Intu-
itively, the test developed here asks whether conventional VAM
estimates correctly predict the effect of randomized admission at
every school that has a lottery, as well as predicting an overall
average effect. Our test of VAM validity parallels the classical
overidentification test, since the latter can be described either as
testing instrument error orthogonality or as a comparison of alter-
native just-identified IV estimates that should be the same under
the null hypothesis.2

Application of this test to data from Boston reveals moderate
but statistically significant bias in conventional VAM estimates.

2. The theory behind VAM overidentification testing is sketched in Angrist
et al. (2016b).
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This finding notwithstanding, conventional VAM estimates may
nevertheless provide a useful guide to school quality if the degree
of bias is modest. To assess the practical value of VAM estimates,
we develop and estimate a hierarchical random coefficients model
that describes the joint distribution of value-added, VAM bias,
and lottery compliance across schools. The model is estimated
via a simulated minimum distance procedure that matches mo-
ments of the distribution of conventional VAM estimates, lottery
reduced forms, and first stages to those predicted by the random
coefficients structure. Estimates of the model indicate substan-
tial variation in both causal value-added and selection bias across
schools. Nevertheless, the estimated joint distribution of these
parameters implies that conventional VAM estimates are highly
correlated with school effectiveness.

A second contribution of our study is to use the random
coefficients framework and lottery variation to improve conven-
tional VAM estimates. Our approach builds on previous estima-
tion strategies that trade reduced bias for increased variance
(Morris 1983; Judge and Mittlehammer 2004, 2007; Mittleham-
mer and Judge 2005). Specifically, we compute empirical Bayes
(EB) hybrid posterior predictions that optimally combine rela-
tively imprecise but unbiased lottery-based estimates with biased
but relatively precise conventional VAM estimates. Importantly,
our approach makes efficient use of the available lottery informa-
tion without requiring a lottery for every school. Hybrid estimates
for undersubscribed schools are improved by information on the
distribution of bias contributed by schools with oversubscribed lot-
teries. The hybrid estimation procedure generates estimates that,
while still biased, have lower mean squared error than conven-
tional VAM estimates. Our framework provides a general recipe
for combining nonexperimental and quasi-experimental estima-
tors and may therefore be useful in other settings.3

Finally, we quantify the consequences of bias in conventional
VAM estimates and the payoff to hybrid estimation using a Monte
Carlo simulation calibrated to our Boston estimates. Simulation
results show that policy decisions based on conventional estimates

3. These settings include the analysis of teacher, hospital, doctor, firm, and
neighborhood effects, as in Chetty, Friedman, and Rockoff (2014a, 2014b), Chandra
et al. (2016), Fletcher, Horwitz, and Bradley (2014), Card, Heining, and Kline
(2013), and Chetty and Hendren (2016). Chetty and Hendren combine observa-
tional and quasi-experimental estimates of neighborhood effects using a procedure
discussed in Section V.
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that control for baseline test scores or measure score growth are
likely to boost achievement. For example, replacing the lowest-
ranked Boston school with an average school is predicted to gen-
erate a gain of 0.24 test score standard deviations (σ ) for affected
students, roughly two-thirds of the benefit obtained when true
value-added is used to rank schools (0.37σ ). Hybrid estimates are
highly correlated with conventional estimates (the rank correla-
tion is 0.74), and hybrid estimation generates modest additional
gains, reducing mean squared error by 30% and increasing the
benefits of school closure policies by 0.08σ (33%). Conventional
school VAMs would therefore appear to provide a useful guide
for policy makers, while hybrid estimators generate worthwhile
improvements in policy targeting.

The next section describes the Boston data used for VAM
testing and estimation, and Section III describes the conventional
value-added framework as applied to these data. Section IV de-
rives our VAM validation test and discusses test implementation
and results. Section V outlines the random coefficients model and
empirical Bayes approach to hybrid estimation, while Section VI
reports estimates of the model’s hyperparameters and the result-
ing posterior predictions of value-added. Section VII discusses
policy simulations. Finally, Section VIII concludes with remarks
on how the framework developed here might be used in other
settings. All appendix material appears in the Online Appendix.

II. SETTING AND DATA

II.A. Boston Public Schools

Boston public school students can choose from a diverse set
of enrollment options, including traditional Boston Public School
(BPS) district schools, charter schools, and pilot schools. As in most
districts, Boston’s charter schools are publicly funded but free to
operate within the confines of their charters. For the most part,
charter staff are not covered by collective bargaining agreements
or other BPS regulations.4 Boston’s pilot school sector arose as a
union-supported alternative to charter schools, developed jointly
by the BPS district and the Boston Teachers Union. Pilot schools

4. Boston’s charter sector includes both “Commonwealth” charters, which
are authorized by the state and operate as independent school districts, and
“in-district” charters, which are authorized and overseen by the Boston School
Committee.

file:qje.oxfordjournals.org
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are part of the district but typically have more control over their
budgets, scheduling, and curriculum than do traditional public
schools. On the other hand, pilot school teachers work under col-
lective bargaining provisions similar to those in force at tradi-
tional public schools.

Applicants to traditional public and pilot schools rank be-
tween 3 and 10 schools as the first step in a centralized match (stu-
dents not finishing elementary or middle school who are happy to
stay where they are need not participate in the match). Applicants
are then assigned to schools via a student-proposing deferred ac-
ceptance mechanism, as described in Abdulkadiroğlu et al. (2006).
This mechanism combines student preferences with a strict pri-
ority ranking over students for each school. Priorities are deter-
mined by whether an applicant is already enrolled at the school
and therefore guaranteed admission, has a sibling enrolled at the
school, or lives in the school’s walk zone. Ties within these coarse
priority groups are broken by random sequence numbers, which
we refer to as lottery numbers. In an evaluation of the pilot sector
exploiting this centralized random assignment scheme, Abdulka-
diroğlu et al. (2011) find mostly small and statistically insignifi-
cant effects of pilot school attendance relative to the traditional
public school sector.

In contrast with the centralized match that assigns seats at
traditional and pilot schools, charter applicants apply to individ-
ual charter schools separately before the fall of the school year in
which they hope to enter. By Massachusetts law, oversubscribed
charter schools must select students through public admissions
lotteries, with the exception of applicants with siblings already
enrolled in the charter who are guaranteed seats. Charter offers
and centralized assignment offers are made independently; stu-
dents applying to the charter sector can receive multiple offers. In
practice, some Boston charter schools offer all of their applicants
seats, while others fail to retain complete information on past ad-
missions lotteries. Studies based on charter lotteries show that
Boston charter schools boost test scores and increase four-year
college attendance (see, for example, Abdulkadiroğlu et al. 2011;
Angrist et al. 2016a).

II.B. Data and Descriptive Statistics

The data analyzed here consist of a sample of roughly 28,000
sixth-grade students attending 51 Boston traditional, pilot, and
charter schools in the 2006–2007 through 2013–2014 school years.
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In Boston, sixth grade marks the first grade of middle school, so
most rising sixth graders participate in the centralized match.

Baseline test scores come from fifth-grade Massachusetts
Comprehensive Assessment System (MCAS) tests in math and
English language arts (ELA), while outcomes are measured in
sixth, seventh, and eighth grades. Test scores are standardized
to have mean zero and unit variance in the population of Boston
charter, pilot, and traditional public schools, separately by sub-
ject, grade, and year. Other variables used in the empirical anal-
ysis include school enrollment, race, sex, subsidized lunch eligi-
bility, special education status, English-language learner status,
and suspensions and absences. Online Appendix A describes the
administrative files used to construct the working extract.

Our analysis combines data from the centralized traditional
and pilot match with lottery data from individual charter schools.
The BPS lottery instruments code offers at applicants’ first choice
(highest ranked) middle schools in the match. In particular, BPS
lottery offers indicate applicants whose lottery numbers are below
the highest (worst) number offered a seat at their first-choice
school, among those in the same priority group. Conditional on
application year, first-choice school, and an applicant’s priority at
that school (what we call the assignment strata), offers of seats at
a first choice are randomly assigned. Charter lottery instruments
indicate offers made on the night of the admissions lottery
at each charter school. These offers are randomly assigned for
nonsiblings conditional on the target school and application year.5

The schools and students analyzed here are described in
Table I. We exclude schools serving fewer than 25 sixth graders
in each year, leaving a total of 25 traditional public schools, 9 pi-
lot schools, and 17 charter schools. Of these, 37 schools have sixth
grade as a primary entry point, and 28 (16 traditional, 7 pilot, and
5 charter) had at least 50 students subject to random sixth grade
assignment. Applicants to these 28 schools constitute our lottery
sample. Conventional ordinary least squares (OLS) value-added
models are estimated in a sample of 27,864 Boston sixth graders
with complete baseline, demographic, and outcome information;
8,718 of these students are also in the lottery sample.

5. For a much smaller group of applicants, the centralized BPS mechanism in-
duces random tiebreaking for lower-ranked school choices. The use of tie-breaking
from these choices generates complications beyond the scope of this article; see
Abdulkadiroğlu et al. (forthcoming) for a comprehensive analysis of empirical
strategies that exploit centralized assignment.

file:qje.oxfordjournals.org
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TABLE I
BOSTON STUDENTS AND SCHOOLS

Enrollment Enrollment

OLS Lottery 6th grade Lottery OLS Lottery 6th grade Lottery
sample sample entry school sample sample entry school

(1) (2) (3) (4) (5) (6) (7) (8)

A: Traditional public schools (25) B: Pilot schools (9)
1,095 79 Y Y 538 310 Y Y
1,025 445 Y Y 1,260 433 Y Y
1,713 1,084 Y Y 585 296 Y Y
547 218 Y Y 78 5 Y
217 46 Y 453 46 Y Y

1,354 581 Y Y 380 67 Y Y
263 44 Y 242 179 Y Y

1,637 492 Y Y 558 73 Y Y
472 104 Y 18 12

1,238 591 Y Y C: Charter schools (17)
537 11 738 406 Y Y
331 35 Y Y 361 23
335 82 Y 357 215 Y
952 232 Y Y 393 332 Y Y
294 71 Y Y 338 16
333 90 Y 511 115 Y Y
766 243 Y Y 71 8
372 47 Y Y 300 23
137 14 Y 389 342 Y Y

1,091 225 Y Y 654 34
1,086 127 Y Y 45 3
577 104 Y Y 53 2
622 61 Y 415 305 Y Y
906 270 Y Y 70 6
267 19 104 23

701 92
85 37

Notes. This table counts the students included in each school in the OLS value-added and lottery samples.
The samples cover cohorts attending sixth grade in Boston between the 2006–2007 and 2013–2014 school
years. Columns (3) and (7) indicate schools for which sixth grade is the primary entry grade, while columns (4)
and (8) indicate whether a school has enough students subject to random admission variation to be included in
the lottery sample. Total numbers of schools in each sector appear in parentheses in the school type headings.

About 77% of Boston sixth graders enroll at schools with us-
able lotteries, and, as can be seen in the descriptive statistics
reported in Table II, demographic characteristics for this group
are comparable to those of the full BPS population. Columns (3)
and (4) of Table II report characteristics of the subset of stu-
dents subject to randomized lottery assignment. Lotteried stu-
dents are slightly more likely to be African American and to
qualify for a subsidized lunch, and somewhat less likely to
be white or to have been suspended or absent in fifth grade.
Table II also documents the comparability of students offered
and not offered seats in a lottery. These results, reported in
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columns (5)–(7), compare the baseline characteristics of lottery
winners and losers, controlling for assignment strata. Consistent
with conditional random assignment of offers, estimated differ-
ences by offer status are small and not significantly different from
zero, both overall and within school sectors.6

III. VALUE-ADDED FRAMEWORK

As in earlier investigations of school value-added, the analysis
here builds on a constant-effects causal model. This reflects a basic
premise of the VAM framework: internally valid treatment effects
from earlier years and cohorts are presumed to have predictive
value for future cohorts. Student i’s potential test score at school
j, denoted Yij, is therefore written as the sum of two noninteracting
components, specifically:

(1) Yij = μ j + ai,

where μj is the mean potential outcome at school j and ai is stu-
dent i’s “ability,” or latent achievement potential. This additively
separable model implies that causal effects are the same for all
students. The constant effects framework focuses attention on the
possibility of selection bias in VAM estimates rather than treat-
ment effect heterogeneity (though we explore heterogeneity as
well).

A dummy variable, Dij, is used to indicate whether student i
attended school j in sixth grade. The observed sixth-grade outcome
for student i can therefore be written

Yi = Yi0 +
J∑

j=1

(
Yij − Yi0

)
Dij

= μ0 +
J∑

j=1

β j Dij + ai.(2)

6. Lottery estimates may be biased by selective sample attrition. As shown
in Online Appendix Table A.I, follow-up data are available for 81% of lottery
applicants, while sample retention is 2.8 percentage points higher for lottery win-
ners than for losers, a difference driven by traditional public school lotteries. Ta-
ble II shows that baseline characteristics are balanced in the sample with follow-
up scores, so the modest differential attrition documented in Online Appendix
Table A.I seems unlikely to affect the results reported here.
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The parameter β j ≡ μj − μ0 measures the causal effect of school
j relative to an omitted reference school with index value 0. In
other words, β j is school j’s value-added.

Conventional value-added models use regression methods to
mitigate selection bias. Write

(3) ai = Xi
′γ + εi

for the regression of ai on a vector of controls, Xi, which includes
lagged test scores. Note that E[Xiεi] = 0 by definition of γ . This
decomposition implies that observed outcomes can be written

(4) Yi = μ0 +
J∑

j=1

β j Dij + X′
iγ + εi.

It bears emphasizing that equation (4) is a causal model: εi is
defined so as to be orthogonal to Xi, but need not be uncorrelated
with the school attendance indicators, Dij.

We are interested in how OLS regression estimates compare
with the causal parameters in equation (4). We therefore define
population regression coefficients in a model with the same con-
ditioning variables:

(5) Yi = α0 +
J∑

j=1

α j Dij + X′
i� + vi.

This is a population projection, so the residuals in this model, vi,
are necessarily orthogonal to all right-hand-side variables, includ-
ing the school attendance dummies.

Regression model (5) has a causal interpretation when the pa-
rameters in this equation coincide with those in the causal model,
equation (4). This in turn requires that school choices be unrelated
to the unobserved component of student ability, an assumption
that can be expressed as:

(6) E
[
εi|Dij

] = 0; j = 1, ..., J.

Restriction (6), sometimes called “selection-on-observables,”
means that αj = β j for each school. In practice, of course, regres-
sion estimates need not have a causal interpretation; rather, they
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may be biased. This possibility is represented by writing

α j = β j + bj,

where the bias parameter bj is the difference between the regres-
sion and causal parameters for school j.

IV. VALIDATING CONVENTIONAL VAMS

IV.A. Test Procedure

The variation in school attendance generated by oversub-
scribed admission lotteries allows us to assess the causal inter-
pretation of conventional VAM estimates. A vector of dummy vari-
ables, Zi = (Zi1, .., ZiL)′, indicates lottery offers to student i for seats
at L oversubscribed schools. Offers at school � are randomly as-
signed conditional on a set of lottery-specific stratifying variables,
Ci�. These variables include an indicator for applicants to school �

and possibly other variables such as application cohort and walk-
zone status. The vector Ci = (

C ′
i1, .., C ′

iL

)′ collects these variables
for all lotteries. The models used here also add the OLS VAM
controls (Xi in equation (5)) to the vector Ci to increase precision.

We assume that lottery offers are (conditionally) mean-
independent of student ability. In other words,

(7) E[εi|Ci, Zi] = λ0 + C ′
iλc,

for a set of parameters λ0 and λc. This implies that admission
offers are valid instruments for school attendance after controlling
for lottery assignment strata, an assumption that underlies recent
lottery-based analyses of school effectiveness (Cullen, Jacob, and
Levitt 2006; Abdulkadiroğlu et al. 2011; Deming et al. 2014).

With fewer lotteries than schools (that is, when L < J), the
restrictions in equation (7) are insufficient to identify the param-
eters of the causal model, equation (4). Even so, these restric-
tions can be used to test the selection-on-observables assumption.
Equations (6) and (7) imply that L + J orthogonality conditions
are available to identify J school effects, β j. The resulting L overi-
dentifying restrictions generate an overidentification test of the
sort widely used with instrumental variables (IV) estimators.

To describe the overidentification test statistic, let Z denote
the N × L matrix of lottery offers for a sample of N students,
and let C denote the corresponding matrix of stratifying variables,
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with associated projection matrix PC = C(C′C)−1C′ and annihilator
matrix MC = I − PC. The Lagrange multiplier (LM) overidentifica-
tion test statistic associated with two-stage least squares (2SLS)
models estimated assuming homoskedasticity can be written:

T̂ = ε̂′ PZ̃ε̂

σ̂ 2
ε̃

,(8)

where PZ̃ = MC Z(Z′MC Z)−1 Z′MC is the lottery offer projection
matrix after partialing out randomization strata, ε̂ is an N ×
1 vector of OLS VAM residuals (since OLS and 2SLS coincide
when the set of Dij is in the instrument list), and σ̂ 2

ε̃ = ε̂′ MC ε̂

N is an
estimate of the residual variance of εi after partialing out strata
effects. Under the joint null hypothesis described by selection-
on-observables and lottery exclusion (equations (6) and (7)), the
statistic T̂ has an asymptotic χ2

L distribution.7

A simple decomposition of T̂ reveals an important connection
with classical overidentification tests and previously used VAM
validity tests. Let Ŷi denote the fitted values generated by OLS
VAM estimation (computed from regression model (5)), and let Y
and Ŷ denote N × 1 vectors collecting individual Yi and Ŷi. Our
LM statistic can then be written

T̂ = ((Y − ϕ̂Ŷ ) + (ϕ̂ − 1)Ŷ )′ PZ̃((Y − ϕ̂Ŷ ) + (ϕ̂ − 1)Ŷ )
σ̂ 2

ε̃

= (ϕ̂ − 1)2

σ̂ 2
ε̃ (Ŷ ′ PZ̃Ŷ )−1

+ (Y − ϕ̂Ŷ )′ PZ̃(Y − ϕ̂Ŷ )
σ̂ 2

ε̃

.(9)

Here, the scalar ϕ̂ = (Ŷ ′ PZ̃Ŷ )−1Ŷ ′ PZ̃Y is the 2SLS estimate from
a model that uses lottery offers as instruments in an equation
with Yi on the left and Ŷi, treated as endogenous, on the right.
Equation (9) shows that the omnibus test statistic T̂ combines two
terms. The first is a one-degree-of-freedom Wald-type test statistic
for ϕ̂ = 1 (note that the denominator of this term estimates the
asymptotic variance of ϕ̂). The second is the Sargan (1958) statistic

7. The test statistic in equation (8) is derived assuming homoskedastic errors.
An analogous test allowing heteroskedasticity uses a White (1980) robust covari-
ance matrix to test the hypothesis that coefficients on lottery offers equal 0 in a
regression of εi on Zi and Ci.

file:qje.oxfordjournals.org
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for testing the L − 1 overidentifying restrictions generated by the
availability of L instruments to estimate ϕ̂.8

In what follows, the estimate ϕ̂ is called a “forecast coeffi-
cient.” This connects T̂ with tests of “forecast bias” implemented in
previous VAM validation efforts (Kane and Staiger 2008; Chetty,
Friedman, and Rockoff 2014a). These earlier tests similarly ask
whether the coefficient on predicted value-added equals 1 in IV
procedures relating outcomes to VAM fitted values (though the de-
tails sometimes differ). Forecast bias arises when VAM estimates
for a group of schools are off the mark, a failure of average pre-
dictive validity. Importantly, the omnibus test statistic, T̂ , checks
more than forecast bias: this statistic asks whether each over-
subscribed lottery generates score gains commensurate with the
gains predicted by an OLS VAM.

IV.B. Test Results

The conventional VAM setup assessed here includes two
value-added specifications. The first, referred to as the “lagged
score” model, includes indicators for sex, race, subsidized lunch
eligibility, special education status, English-language learner sta-
tus, and counts of baseline absences and suspensions, along with
cubic functions of baseline math and ELA test scores. Specifica-
tions of this type are at the heart of the econometric literature on
value-added models (Kane, Rockoff, and Staiger 2008; Rothstein
2010; Chetty, Friedman, and Rockoff 2014a). The second, a “gains”
specification, uses grade-to-grade score changes as the outcome
variable and includes all controls from the lagged score model
except baseline test scores. This model is motivated by widely-
used accountability policies that measure test score growth.9 As
in Rothstein (2009), we benchmark the extent of cross-school

8. Angrist et al. (2016b) interpret VAM validity tests using the moment-based
theory of specification testing developed by Newey (1985) and Newey and West
(1987). In practice, Wald and LM test statistics typically use different variance
estimators in the denominator.

9. The gains specification can be given a theoretical foundation as follows:
suppose that human capital in grade g, denoted Aig, equals lagged human capital
plus school quality, so that Aig = Aig−1 + qig where qig = ∑

jβjDij + ηig and ηig is a
random component independent of school choice. Suppose further that test scores
are noisy proxies for human capital, so that Yig = Aig + νig where νig is classical
measurement error. Finally, suppose that school choice in grade g is determined
solely by Aig−1 and variables unrelated to achievement. Then a lagged score model
that controls for Yig−1 generates biased estimates, but a gains model with Yig −
Yig−1 as the outcome variable measures value-added correctly.
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FIGURE I

Standard Deviations of School Effects from OLS Value-Added Models

This figure compares standard deviations of school effects from alternative OLS
value-added models. The notes to Table III describe the controls included in the
lagged score and gains models; the uncontrolled model includes only year effects.
The variance of OLS value-added is obtained by subtracting the average squared
standard error from the sample variance of value-added estimates. Within-sector
variances are obtained by first regressing value-added estimates on charter and
pilot dummies, then subtracting the average squared standard error from the
sample variance of residuals.

ability differences using an “uncontrolled” model that adjusts only
for year effects. Although the uncontrolled model almost certainly
provides a poor measure of school value-added, many districts dis-
tribute school report cards based on unadjusted test score levels.10

Figure I summarizes the value-added estimates generated by
sixth-grade math scores. We focus on math scores because value-
added for math appears to be more variable across schools than
value-added for ELA (bias tests for ELA, presented in Online
Appendix Table A.II, yield similar results). Each bar in Figure I
reports an estimated standard deviation of αj across schools,

10. For example, California’s School Accountability Report Cards list school
proficiency levels (see http://www.sarconline.org), while Massachusetts’ school and
district profiles provide information on proficiency levels and test score growth (see
http://profiles.doe.mass.edu).

file:qje.oxfordjournals.org
file:qje.oxfordjournals.org
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expressed in test score standard deviation units and adjusted for
estimation error.11 Adding controls for demographic variables and
previous scores reduces the standard deviation of αj from 0.5σ

in the uncontrolled model to about 0.2σ in the lagged score and
gains models. This shows that observed student characteristics ex-
plain a substantial portion of the variation in school averages. The
last three bars in Figure I report standard deviations of within-
sector value-added constructed using residuals from regressions
of α̂ j on dummies for schools in the charter and pilot sectors.
Controlling for sector effects reduces variation in αj, reflecting
sizable differences in average conventional value-added across
sectors.

Table III summarizes test results for sixth-grade math VAMs
in Panel A. The first row shows the forecast coefficient, ϕ̂. The
estimator used here is the optimal IV procedure for heteroskedas-
tic models described by White (1982). The second row reports
first-stage F-statistics measuring the strength of the relation-
ship between lottery offers and predicted value-added. With a
weak first stage, forecast coefficient estimates may be biased to-
ward the corresponding OLS estimand, that is, the coefficient
from a regression of test scores on VAM fitted values. In simple
models, this regression coefficient must equal 1, so a weak first
stage makes a test of H0: ϕ = 1 less likely to reject.12 First-stage
F-statistics for the sixth-grade lagged score and gains models are
close to 30, suggesting finite-sample bias is not an issue in the full
lottery sample. First-stage strength is more marginal, however,
when charter lotteries are omitted.

Table III also reports p-values for three VAM validity tests.
The first is for forecast bias, that is, the null hypothesis that the
forecast coefficient equals 1. The second tests the associated set of
overidentifying restrictions, which require that just-identified IV
estimates of the forecast coefficient be the same for each lottery
instrument, though not necessarily equal to 1. The third “omnibus
test” combines these restrictions.

11. The estimated standard deviations plotted in the figure are given by σ̂α =
( 1

J
∑

j [(α̂ j − μ̂α)2 − SE(α̂ j )2])
1
2 , where μ̂α is mean value-added and SE(α̂ j ) is the

standard error of α̂ j .
12. When estimated in the same sample with no additional controls, OLS

regressions on OLS fitted values necessarily produce coefficients of 1. In practice,
the specification used here to test VAM differs from the model producing fitted
values in that it also controls for lottery strata and excludes nonlotteried students.
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TABLE III
TESTS FOR BIAS IN CONVENTIONAL VALUE-ADDED MODELS

All lotteries Excluding charter lotteries

Lagged score Gains Lagged score Gains
(1) (2) (3) (4)

Panel A: Sixth grade
Forecast coefficient (ϕ) 0.864 0.950 0.549 0.677

(0.075) (0.084) (0.164) (0.193)
First stage F-statistic 29.6 26.6 11.2 9.3
p-values:

Forecast bias 0.071 0.554 0.006 0.095
Overidentification 0.003 0.006 0.043 0.052

Omnibus test χ2 statistic (d.f.) 77.7 (28) 72.1 (28) 48.0 (23) 41.7 (23)
p-value <0.001 <0.001 <0.001 0.010
N 8,718 6,162

Panel B: All middle school grades
Forecast coefficient (ϕ) 0.880 0.924 0.683 0.726

(0.055) (0.060) (0.124) (0.133)
First stage F-statistic 14.7 15.0 7.6 7.8
p-values:

Forecast bias 0.028 0.204 0.011 0.039
Overidentification 0.011 0.011 0.062 0.065

Omnibus test χ2statistic (d.f.) 172.8 (75) 167.0 (75) 111.6 (60) 107.9 (60)
p-value <0.001 <0.001 <0.001 <0.001
N 20,935 15,027

Notes. This table reports the results of tests for bias in conventional value-added models (VAMs) for
sixth- through eighth-grade math scores. The lagged score VAM includes cubic polynomials in baseline math
and ELA scores, along with indicators for application year, sex, race, subsidized lunch, special education,
limited English proficiency, and counts of baseline absences and suspensions. The gains VAM drops the
lagged score controls and uses score growth from baseline as the outcome. Seventh- and eighth-grade VAMs
measure exposure to each school using total years of enrollment since the lottery. Forecast coefficients are from
instrumental variables regressions of test scores on fitted values from conventional VAMs, instrumenting
fitted values with lottery offer indicators. IV models are estimated via an asymptotically efficient GMM
procedure and control for assignment strata fixed effects, demographic variables, and lagged scores. The
forecast bias test checks whether the forecast coefficient equals 1, and the overidentificiation test checks
the IV model’s overidentifying restrictions. The omnibus test combines forecast bias and overidentifying
restrictions. Panel A uses sixth grade math scores, while Panel B stacks outcomes from sixth through eighth
grade. Standard errors and test statistics in Panel B cluster by student. Columns (3) and (4) exclude charter
school lotteries.

On average, VAM fitted values predict the score gains gen-
erated by random assignment remarkably well. This can be seen
in columns (1) and (2) of Table III, which show that the lagged
score and gains specifications generate forecast coefficients for
6th graders equal to 0.86 and 0.95; the former is only marginally
statistically different from 1 (p = .07), while the second has p =
.55. At the same time, the overidentification and omnibus tests
reject for both models.13

13. As a point of comparison, Angrist et al. (2016b) report tests of VAM validity
in the Charlotte-Mecklenburg lottery data analyzed by Deming (2014). There as
well the forecast coefficient is close to 1, while the omnibus test generates a p-value
of .02.
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The source of these rejections can be seen in Figure II,
which plots reduced-form estimates of the effects of lottery of-
fers on test scores against corresponding first-stage effects of
lottery offers on conventional VAM fitted values for sixth-grade
math. Each panel also shows a line through the origin with
slope equal to the forecast coefficient reported in Table III (plot-
ted as a solid line) along with a dashed 45-degree line. In other
words, Figure II gives a visual representation of the forecast co-
efficient: VAM models that satisfy equation (6) should generate
points along the 45-degree line, with deviations due solely to
sampling error. Though the lines of best fit have slopes close to 1,
points for many lotteries are farther from the diagonal than sam-
pling variance alone would lead us to expect. Earlier validation
strategies focus on forecast coefficients, ignoring overidentifying
restrictions. Figure II shows that such strategies may fail to de-
tect substantial deviations between conventional VAM predictions
and reduced-form lottery effects for individual lotteries.

Figure II also suggests that a good portion of conventional
VAM estimates’ predictive power for Boston schools comes from
charter school lotteries, which contribute large first-stage and
reduced-form effects. The relationship between OLS value-added
and lottery estimates is weaker in the traditional public and pi-
lot school sectors. This is confirmed in columns (3) and (4) of
Table III, which report results of VAM bias tests for sets of instru-
ments that exclude charter lotteries. At 0.55 and 0.68, estimated
forecast coefficients from traditional public and pilot lotteries are
farther from 1 than the coefficients computed using all lotteries.
Although removal of charter lotteries reduces precision, omnibus
tests computed without them also reject at the 1% level.14

Finally, Panel B of Table III reports test results combining
data from sixth through eighth grade. As in Abdulkadiroğlu et al.
(2011) and Dobbie and Fryer (2013), school effects on seventh-
and eighth-grade scores are modeled as linear in the number of
years spent in each school. In a linear constant-effects framework,

14. The first-stage F-statistics for the specifications without charter lotteries
are 11.2 and 9.3, suggesting weak instruments might be a problem in these models.
It is encouraging, therefore, that limited information maximum likelihood (LIML)
forecast coefficient estimates are virtually the same as the estimates reported
in Table III. A related concern is whether the heteroskedastic-robust standard
errors and test statistics used in Table III are misleading due to common school-
year shocks (as suggested by Kane and Staiger 2002 for teachers). Reassuringly,
cluster-robust test results are also similar to those in Table III.
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(A)

(B)

FIGURE II

Visual Instrumental Variables Tests for Bias

This figure plots lottery reduced-form estimates against value-added first stages
from each of 28 school admission lotteries. The notes to Table III describe the
underlying models. Filled markers indicate reduced form and first stage estimates
that are significantly different from each other at the 10% level. The solid lines
have slopes equal to the forecast coefficients in Table III, while dashed lines in-
dicate the 45-degree line. Omnibus p-values are for the overidentification test
statistic described in Section IV.A.
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regressions of test score outcomes on baseline controls and years
of enrollment in each school recover causal school effects in the ab-
sence of sorting on unobserved ability. The omnibus VAM validity
test in this case regresses residuals from the multigrade (stacked)
model on sixth-grade lottery offers, while the forecast coefficient
is generated by using lottery offers to instrument OLS VAM fitted
values from the multigrade model. The omnibus test results show
clear rejections in the multigrade setup as well as for sixth grade
only, in spite of the fact that the first-stage F-statistics here are
noticeably lower.

IV.C. Heterogeneity versus Bias

The omnibus test results reported in Table III suggest con-
ventional VAM estimates fail to predict the effects of lottery offers
perfectly. This is consistent with bias in OLS VAMs. In a world
of heterogeneous causal effects, however, these rejections need
not reflect selection bias. Rather, these results might signal diver-
gence between the local average treatment effects (LATEs) iden-
tified by lottery instruments and possibly more representative ef-
fects captured by OLS (Imbens and Angrist 1994; Angrist, Imbens,
and Rubin 1996). Moreover, with unrestricted potential outcomes,
even internally valid OLS VAM estimates (that is, those satisfying
selection-on-observables) capture weighted average causal effects
that need not match average effects for the entire sample of stu-
dents attending particular schools (Angrist 1998).

Three analyses shed light on the distinction between hetero-
geneity and bias. The first is a set of bias tests using OLS VAM
specifications that allow school effects to differ across covariate-
defined subsamples (e.g., special education students or those with
low levels of baseline achievement). This approach accounts for
variation in school effects across covariate cells that may be
weighted differently by IV and OLS. The second analysis tests
for bias in OLS VAMs estimated in the lottery sample. This asks
whether differences between IV and OLS are caused by differences
between students subject to lottery assignment and the general
student population. The final analysis estimates OLS VAM sep-
arately for applicants who respond to lottery offers (“compliers”)
and for other groups in the sample of lottery applicants.

Estimates by subgroup, reported in Panel A of Table IV for
the OLS VAM sample, consistently generate rejections in omnibus
tests of VAM validity. Column (2) shows test results computed
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using models that allow VAM estimates to differ by year, thereby
accommodating “drift” in school effects over time (Chetty, Fried-
man, and Rockoff 2014a document such drift in teacher value-
added); columns (3)–(5) show results for subgroups defined by
subsidized lunch eligibility, special education status, and baseline
test score terciles; and column (6) reports results from models
that allow value-added to differ across cells constructed by fully
interacting race, sex, subsidized lunch eligibility, special educa-
tion, English-language learner status, and baseline score tercile.
The forecast coefficients and omnibus test statistics generated by
each of these subgroup schemes are similar to those for the full
sample. Moreover, as can be seen in Panel B of Table IV, test re-
sults for models that use only the lottery sample for OLS VAM
estimation are also similar to the full sample results. This sug-
gests that rejection of the omnibus test is not driven by differences
in OLS VAM between students subject to random assignment and
the general population.15

Lottery-based IV estimates identify average causal effects for
compliers, that is, for lottery applicants whose attendance choices
shift in response to random offers, rather than for the full pop-
ulation of students that enroll in a particular school. To investi-
gate the link between lottery compliance and treatment effects,
we predict value-added at the target school for individual lot-
tery applicants using covariate-specific OLS estimates from the
model in column (6) of Table IV (estimated in the lottery sample).
Maintaining the hypothesis of OLS VAM validity, we allow for
the possibility that heterogeneous effects are reflected in a set of
covariate-specific estimates. These predictions are then used to
compare imputed average value-added for compliers to imputed
average value-added for “never-takers” (those who decline lottery
offers) and “always-takers” (those who enroll in the target school
even when denied an offer) in each lottery. Averages for the three

15. In a subset of the data used here, Walters (2014) documents a link be-
tween the propensity to apply to Boston charter schools and the causal effect of
charter school attendance. This finding is not at odds with our constant effects
assumption because Walters studies the effects of charter schools relative to a
heterogeneous mix of traditional public schools, while we allow a distinct effect
for every traditional public school. The effect heterogeneity uncovered by Walters
may reflect variation in the quality of fallback public school options across charter
applicants. Consistent with this possibility, Walters demonstrates that the rela-
tionship between charter application choices and causal effects is driven primarily
by heterogeneity in outcomes at fallback traditional public schools.
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lottery compliance groups are estimated using methods described
in Online Appendix B.1.

Figure III shows that imputed OLS value-added estimates
for compliers, always-takers, and never-takers are similar. Formal
tests for equality fail to reject the hypotheses that predicted effects
for compliers equal predicted effects for always-takers (p = .80)
or never-takers (p = .33). This suggests that lottery compliance
is not a major source of treatment effect heterogeneity, though
we cannot rule out unobserved differences between compliers and
other groups.

V. THE DISTRIBUTION OF SCHOOL EFFECTIVENESS

The test results in Table III suggest conventional VAM esti-
mates are biased. At the same time, OLS VAM estimates tend to
predict lottery effects on average, with estimated forecast coeffi-
cients close to 1. OLS estimates would therefore seem to be useful
even if imperfect. This section develops a hybrid estimation strat-
egy that combines lottery and OLS estimates in an effort to quan-
tify the bias in conventional VAMs and produce more accurate
value-added estimates.

V.A. A Random Coefficients Lottery Model

The hybrid estimation strategy uses a random coefficients
model to describe the joint distribution of value-added, bias, and
lottery compliance across schools. The model is built on a set of
OLS, lottery reduced-form, and first-stage estimates. The OLS
estimates come from equation (5), while the lottery reduced-form
and first-stage equations are:

(10) Yi = τ0 + C ′
iτc + Z′

iρ + ui,

Dij = φ0 j + C ′
iφcj + Z′

iπ j + ηi j ; j = 1, ..., J.

Note that Zi is the vector of all lottery admissions offers, Zi� for �

= 1, . . . , L. Assumption (7) implies that the reduced-form effect of
admission in lottery � is given by

ρ� =
J∑

j=1

π�jβ j,

file:qje.oxfordjournals.org
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(A)

(B)

FIGURE III

Comparisons of Conventional Value-Added by Lottery Compliance

This figure compares OLS estimates of average value-added for admission lottery
compliers to estimates for always- and never-takers in each of 28 school lotteries.
OLS estimates come from a lagged-score VAM that allows school effects to dif-
fer across the subgroups used in column (6) of Table IV, estimated in the lottery
sample. Complier, always-taker, and never-taker means are estimated using meth-
ods described in Online Appendix B. p-values are for joint tests of complier and
always/never-taker equality across all schools. The p-value for a test that pools the
estimates in both panels is .289.

file:qje.oxfordjournals.org
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where ρ� and π�j are the elements of ρ and π j corresponding to
Zi�. This expression shows that the lottery at school � identifies
a linear combination of value-added parameters, with coefficients
π�j equal to the shares of students shifted into or out of each school
by the �th lottery offer.

OLS VAM, lottery reduced-form, and lottery first-stage esti-
mates are modeled as noisy measures of school-specific parame-
ters, which are in turn modeled as draws from a distribution of
random coefficients in a larger population of schools. Specifically,
we have:

α̂ j = β j + bj + eα
j ,

(11) ρ̂� =
∑

j

π�jβ j + eρ

� ,

π̂�j = π�j + eπ
�j,

where eα
j , eρ

� , and eπ
�j are mean-zero estimation errors that vanish

as the sample for each school and lottery tends to infinity. Subject
to the usual asymptotic approximations, these errors are normally
distributed with a known covariance structure. Table I shows that
the OLS and lottery estimation samples used here typically in-
clude hundreds of students per school, so the use of asymptotic
results seems justified.

The second level of the model treats the school-specific pa-
rameters β j, bj, and

{
π�j

}L
�=1 as draws from a joint distribution of

causal effects, bias, and lottery compliance behavior. The effect of
admission at school � on the probability of attending this school is
parameterized as

(12) π�� = exp (δ�)
1 + exp(δ�)

,

where the parameter δ� can be viewed as the mean utility in a
binary logit model predicting student compliance with a random
offer of a seat at school �. Likewise, the effect of an offer to attend
school � �= j on attendance at school j is modeled as

(13) π�j = −π�� × exp
(
ξ j + ν�j

)
1 + ∑

k�=� exp (ξk + ν�k)
.
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In this expression, the quantity ξ j + ν�j is the mean utility for
school j in a multinomial logit model predicting alternative school
choices among students that comply with offers made in lottery �.
The parameter ξ j allows for the possibility that some schools are
systematically more or less likely to serve as fallback options for
lottery losers, while ν�j is a random utility shock specific to school
j in the lottery at school �. The parameterization in equations (12)
and (13) ensures that lottery offers increase the probability of en-
rollment at the target school and reduce enrollment probabilities
at other schools, and that effects on all probabilities are between
0 and 1 in absolute value.

Each school is characterized by a vector of four parameters: a
value-added coefficient, β j; a selection bias term, bj; an offer com-
pliance utility, δj; and a mean fallback utility, ξ j. These are mod-
eled as draws from a prior distribution in a hierarchical Bayesian
framework. A key assumption in this framework is that the distri-
bution of VAM bias is the same for schools with and without over-
subscribed lotteries. This assumption allows the model to “borrow”
information from schools with lotteries and to generate posterior
predictions for nonlottery schools that account for bias in con-
ventional VAM estimates. Importantly, however, we allow for the
possibility that average value-added may differ between schools
with and without lotteries. Section VI.B investigates the empirical
relationship between oversubscription and bias.

Let Qj denote an indicator for whether quasi-experimental
lottery data are available for school j. School-specific parameters
are modeled as draws from a conditional multivariate normal dis-
tribution:

(14) (β j, bj, δ j, ξ j)′|Qj ∼ N
(
(β0 + βQQj, b0, δ0, ξ0)′, �

)
.

The parameter βQ captures the possibility that average value-
added differs for schools with lotteries. The matrix � describes
the variances and covariances of value-added, bias, and first-stage
utility parameters, and is assumed to be the same for lottery
and nonlottery schools. Finally, lottery and school-specific utility
shocks are also modeled as conditionally normal:

(15) ν�j |Qj ∼ N
(
0, σ 2

ν

)
.

The vector θ = (β0, βQ, b0, δ0, ξ0, vec(�), σ 2
ν )′ collects the hy-

perparameters governing the prior distribution of school-specific
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parameters. Our empirical Bayes framework first estimates these
hyperparameters and then uses the estimated prior distribu-
tion to compute posterior value-added predictions for individual
schools. Some of the specifications considered below extend the
setup outlined here to allow the prior mean vector (β0, b0, δ0, ξ0)
to vary across Boston’s school sectors (traditional, charter, and
pilot).

V.B. Simulated Minimum Distance Estimation

We estimate hyperparameters by simulated minimum dis-
tance (SMD), a variant of the method of simulated moments
(McFadden 1989). SMD focuses on moments that are determined
by the parameters of interest, choosing hyperparameters to mini-
mize deviations between sample moments and the corresponding
model-based predictions. Our SMD implementation uses means,
variances, and covariances of functions of the OLS value-added es-
timates, α̂ j , lottery reduced forms, ρ̂�, and first-stage coefficients,
π̂�j . For example, one moment to be fit is the average α̂ j across
schools; another is the cross-school variance of the α̂ j . Other mo-
ments are means and variances of reduced-form and first-stage
estimates across lotteries. Online Appendix B.2 lists the full set
of moments used for SMD estimation.

The fact that the moments in this context are complicated
nonlinear functions of the hyperparameters motivates a simula-
tion approach. For example, the mean reduced form is E[ρ�] =∑

jE[π�jβ j]. This is the expectation of the product of normally dis-
tributed random variables (the β j) with ratios (the elements of π j)
involving correlated log-normals, a moment for which no analyt-
ical expression is readily available. Moments are therefore simu-
lated by fixing a value of θ and drawing a vector of school-level
parameters using equations (14) and (15). Likewise, the simula-
tion draws a vector of the estimation errors in equation (11) from
the joint asymptotic distribution of the OLS, reduced-form, and
first-stage estimates. The parameter and estimation draws are
combined to generate a simulated vector of parameter estimates
for the given value of θ . Finally, these are used to construct a
set of model-based predicted moments. The SMD estimator min-
imizes a quadratic form that weights differences between pre-
dicted moments and the corresponding moments observed in the
data. As described in Online Appendix B.2, the SMD estimates
reported here are generated by a two-step procedure with an effi-
cient weighting matrix in the second step.

file:qje.oxfordjournals.org
file:qje.oxfordjournals.org
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V.C. Empirical Bayes Posteriors

Studies of teacher and school value-added typically employ
EB strategies that shrink noisy teacher- and school-specific value-
added estimates toward the grand mean, reducing mean squared
error (see, e.g., Kane, Rockoff, and Staiger 2008 and Jacob and
Lefgren 2008). In a conventional VAM model where OLS estimates
are presumed unbiased, the posterior mean value-added for school
j is

(16) E
[
α j |α̂ j

] =
(

σ 2
α

σ 2
α + V ar(eα

j )

)
α̂ j +

(
1 − σ 2

α

σ 2
α + V ar(eα

j )

)
α0,

where α0 and σ 2
α are the mean and variance of the conventional

OLS VAM parameters, αj. An EB posterior mean plugs estimates
of these hyperparameters into equation (16).

Our setup extends this idea to a scenario where the estimated
α̂ j may be biased but lotteries are available to reduce this bias. The
price for bias reduction is a loss of precision: because lottery es-
timates use only the variation generated by random assignment,
they are less precise than the corresponding OLS estimates. More-
over, because some schools are undersubscribed, there are fewer
lottery instruments than schools and a VAM is not identified using
lotteries alone. Even so, in the spirit of the combination estimators
discussed by Judge and Mittlehammer (2004, 2007), our empirical
Bayes approach trades off the advantages and disadvantages of
OLS and lottery estimates to construct minimum mean squared
error (MMSE) estimates of value-added.

To see how this trade-off works, suppose the first-stage pa-
rameters, π�j, are known rather than estimated (equivalently,
eπ
�j = 0 ∀�, j). Let � denote the L × J matrix of these parame-

ters, and let β, α̂, and ρ̂ denote vectors collecting β j, α̂ j , and ρ̂�.
Online Appendix B.3 shows that the posterior distribution for β

in this case is multivariate normal with mean:

(17) E [β|α̂, ρ̂] = Wα(α̂ − b0ι) + Wρρ̂ + (I − Wα − Wρ�)β0ι,

where ι is a J × 1 vector of ones. Posterior mean value-added is
a linear combination of OLS estimates net of mean bias, (α̂ − b0ι),
lottery reduced-form estimates, ρ̂, and mean value-added, β0ι.
The weighting matrices, Wα and Wρ , are functions of the first-
stage parameters and the covariance matrix of estimation error,

file:qje.oxfordjournals.org
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value-added, and bias. Expressions for these matrices appear in
Online Appendix B.3. As with conventional EB posteriors, an em-
pirical Bayes version of the posterior mean plugs first-step esti-
mates of b0, β0, Wα, and Wρ into equation (17).

In addition to postulating a known first stage, suppose also
that all schools are oversubscribed, so that L = J. In this case, the
first-stage matrix, �, is square; if it is also full rank, the causal
effects of all schools are identified using lotteries alone. Lottery-
based value-added estimates may then be computed by indirect
least squares as β̂ = �−1ρ̂, and the posterior mean in equation
(17) becomes

(18) E
[
β|α̂, β̂

] = Wα(α̂ − b0ι) + Wββ̂ + (I − Wα − Wβ)β0ι,

for Wβ = Wρ�. This expression shows that when a lottery-based
value-added model is identified, the posterior mean for value-
added is a matrix-weighted average of three quantities: quasi-
experimental IV estimates, conventional OLS estimates net of
mean bias, and prior mean value-added, with weights (that sum to
the identity matrix) optimally chosen to minimize mean squared
error.

In related work, Chetty and Hendren (2016) combine noisy
quasi-experimental estimates of neighborhood effects based on
movers with relatively precise averages of permanent res-
ident outcomes to generate optimal forecasts of neighbor-
hood causal effects. A further special case of equation (18)
illuminates the link between this approach and ours. Suppose the
estimation error in OLS estimates is negligible (V ar(eα

j ) = 0), and
that IV estimation error, eβ

j , is uncorrelated across schools. Online
Appendix B.3 shows that under these simplifying assumptions,
the jth element of equation (18) becomes

E
[
β j |α̂, β̂

] =
(

σ 2
β (1−R2)

V ar
(
eβ

j

)
+σ 2

β (1−R2)

)
β̂ j +

(
1 − σ 2

β (1−R2)

V ar
(
eβ

j

)
+σ 2

β (1−R2)

)

× (
rα(α̂ j − b0) + (1 − rα)β0

)
,(19)

where σ 2
β is the variance of β j, rα = Cov(β j ,α j )

V ar(α j )
is the slope (also

known as the reliability ratio) from a regression of causal value-
added on OLS value-added, and R2 is the R-squared from this
regression. This expression coincides with equation (9) in Chetty
and Hendren (2016) and can also be seen to be the same as the

file:qje.oxfordjournals.org
file:qje.oxfordjournals.org
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canonical empirical Bayes shrinkage formula expressed by equa-
tion (1.5) of Morris (1983).16

In practice, some schools are undersubscribed, so IV esti-
mates of individual school value-added cannot be computed. Nev-
ertheless, equation (17) shows that predictions at schools without
lotteries can be improved using lottery information from other
schools. Lottery reduced-form parameters embed information for
all fallback schools, including those without lotteries. This is a
consequence of the relationship described by equation (11), which
shows that the reduced form for any school with a lottery depends
on the value-added of all other schools that applicants to this
school might attend. Specifically, as long as π�j �= 0, the reduced
form for lottery � contains information that can be used to im-
prove the posterior prediction of β j. The test results in columns
(2) and (5) of Table V show that estimates of π�j are significantly
different from zero (at the 5% level) for 12 of the 22 undersub-
scribed schools in our sample. The 10 schools not on this list have
primary entry grades other than sixth. In other words, oversub-
scribed sixth-grade lotteries contribute information on all schools
with sixth-grade entry.

Finally, equation (17) also reveals how knowledge of conven-
tional VAM bias can be used to improve posterior predictions even
for schools that are never lottery fallbacks. Online Appendix B.3
shows that the posterior mean for β j gives no weight to ρ̂ when
π�j = 0 and Cov(eα

j , eρ

� ) = 0 across all lotteries, �. In this case the
posterior mean for β j simplifies to

(20) E
[
β j |α̂, ρ̂

] = rα(α̂ j − b0) + (1 − rα) β0.

Even without a lottery at school j, predictions based on
equation (20) improve on the conventional VAM posterior given
by equation (16). The improvement here comes from the fact that
the schools with lotteries provide information that can be used to
determine the reliability of conventional VAM estimates.17

16. The connection with Morris can be made by observing that when α̂ j = α j ,
the term rα(α̂ j − b0) + (1 − rα)β0 is the fitted value from a regression of βj on αj.

17. Using the fact that αj = βj + bj, equation (16) can be written to look more
like equation (20):

E
[
α j |α̂ j

] = rα

(
σ2
β +σ2

b +2σβb

σ2
β +σβb

)
(α̂ j − b0) +

(
1 − rα

(
σ2
β +σ2

b +2σβb

σ2
β +σβb

))
β0 + b0.

This formulation of the conventional EB estimand adds bias, b0, to a weighted
average of bias-corrected OLS and global mean value-added.

file:qje.oxfordjournals.org
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Equations (17) through (20) are pedagogical formulas derived
assuming first-stage parameters are known. With an estimated
first stage, the posterior distribution for value-added does not
have a closed form. Although the posterior mean for the gen-
eral case can be approximated using Markov chain Monte Carlo
(MCMC) methods, with a high-dimensional random coefficient
vector, MCMC may be sensitive to starting values or other tun-
ing parameters. We therefore report EB posterior modes (as in
Chamberlain and Imbens 2004; these are also known as maxi-
mum a posteriori estimates). The posterior mode is relatively eas-
ily calculated, and coincides with the posterior mean when value-
added is normally distributed, as in the fixed first-stage case (see
Online Appendix B.4 for details). As a practical matter, the poste-
rior modes for value-added turn out to be similar to the weighted
averages generated by equation (17) under the fixed first-stage
assumption, with a correlation across schools of 0.95 in the lagged
score model (see Online Appendix Figure A.I).

VI. PARAMETER ESTIMATES

VI.A. Hyperparameters

The SMD procedure for estimating hyperparameters takes as
input a set of lottery reduced-form and first-stage estimates, along
with conventional VAM estimates for each value-added model.
The lottery estimates come from regressions of test scores and
school attendance indicators (the set of Dij) on lottery offer dum-
mies (Zi), with controls Ci for randomization strata and the base-
line covariates from the lagged score VAM specification (strata
controls are necessary for instrument validity, while baseline co-
variates increase precision). Combining the lottery estimates with
OLS estimates of the αj generates hyperparameter estimates for
a particular value-added model.

As can be seen in columns (1)–(3) of Table VI, the hyper-
parameter estimates reveal substantial variation in both causal
value-added and selection bias across schools. The standard devi-
ation of value-added, σβ , is similar across specifications, ranging
from about 0.20σ in the uncontrolled specification to 0.22σ in the
lagged score and gains models. This stability is reassuring: the
control variables that distinguish these models should not change
the underlying distribution of causal school effectiveness if our
estimation procedure works as we hope.

file:qje.oxfordjournals.org
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In contrast with the relatively stable estimates of σβ , the esti-
mated standard deviation of bias, σ b, shrinks from 0.50σ with no
controls to under 0.2σ in the lagged score and gains specifications.
In other words, controlling for observed student characteristics
and past scores reduces bias in conventional value-added esti-
mates markedly. On the other hand, the estimated standard devi-
ations of bias are statistically significant for all models, implying
that controls for demographic variables and baseline achievement
are not sufficient to produce unbiased comparisons. Columns (2)
and (3) of Table VI show that the standard deviations of bias in
the lagged score and gains models equal 0.18σ and 0.17σ , slightly
smaller than the standard deviation of causal value-added.18

Earlier work on school effectiveness explores differences
between Boston’s charter, pilot, and traditional public sectors
(Abdulkadiroğlu et al. 2011; Angrist et al. 2016a). These esti-
mates show large charter school treatment effects in Boston,
a finding that suggests accounting for sector differences may
improve the predictive accuracy of school value-added models.
Columns (4) and (5) of Table VI therefore report estimates
of lagged score and gains models in which the means of the
random coefficients depend on school sector (Online Appendix
Table A.III reports the complete set of parameter estimates for
the lagged score model). Consistent with earlier findings, mod-
els with sector effects show that average charter school value-
added exceeds traditional public school value-added by roughly
0.4σ . Estimated differences in value-added between pilot and
traditional public schools are smaller and statistically insignifi-
cant. By contrast, bias seems unrelated to sector, implying that
conventional VAM models with demographic and lagged achieve-
ment controls accurately reproduce lottery-based comparisons of
the charter, pilot, and traditional sectors (this is also consistent
with the findings of Abdulkadiroğlu et al. 2011). The estimates of
σβ and σ b show that sector effects reduce cross-school variation
in both value-added and bias by about 20–25%. The large char-
ter effect on value-added notwithstanding, most of the variation
in middle school quality in Boston is within sectors rather than
between.

18. Rothstein (2009) assesses bias in teacher VAMs using Granger-type causal-
ity tests that regress lagged test scores on future teacher dummies. Like our ran-
dom coefficients model, these tests generate estimates of the standard deviation
of bias in VAM estimates.

file:qje.oxfordjournals.org
file:qje.oxfordjournals.org
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Estimated covariances between β j and bj, denoted σβb, are
negative and mostly statistically significant, a result that can be
seen in the third row of Table VI. A negative covariance between
value-added and bias suggests that conditional on demographics
and past achievement, students with higher ability tend to enroll
in schools with lower value-added. Conventional VAMs therefore
overestimate the effectiveness of low-quality schools and under-
estimate the effectiveness of high-quality schools. Estimates of
βQ, the lottery school value-added shifter, are close to 0 in models
without sector effects, and positive but small when sector effects
are included. The estimate of βQ for the lagged score model is
statistically significant, implying that schools with lotteries are
slightly more effective than undersubscribed schools in the same
sector.

Studies of teacher value-added use the reliability ratio, rα =
Cov(α j ,β j )

V ar(α j )
, as a summary measure of the predictive value of VAM

estimates (Chetty, Friedman, and Rockoff 2014a; Rothstein forth-
coming).19 The fourth row of Table VI reports model-based esti-
mates of this parameter. The estimated reliability of the uncon-
trolled specification equals 0.08 with a standard error of 0.20,
implying that school average test scores are only weakly related
to school effectiveness. Reliability ratios in the lagged score and
gains models equal 0.64 and 0.75 in models without sector effects,
and 0.69 and 0.78 in models with sector effects. Consistent with
the test results in Section IV, these estimates show that conven-
tional VAM estimates are strongly, but not perfectly, linked to
causal school quality.

VI.B. School Characteristics, Value-Added, and Bias

The individual school value-added posterior modes generated
by our hybrid estimation strategy are positively correlated with
conventional posterior means that ignore bias in OLS value-added
estimates. This is evident in Figure IV, which plots hybrid modes
against posterior means from conventional value-added models.
Rank correlations in the lagged score and gains models are 0.79
and 0.74. The relationship between conventional and hybrid pos-
teriors is weaker for lottery schools (indicated by filled markers)

19. Chetty, Friedman, and Rockoff (2014a) use this parameter to define “fore-
cast bias,” equal to 1 − rα . We use the term “reliability” here to distinguish between
rα and the forecast coefficient, ϕ̂. Online Appendix B.5 discusses the relationship
between ϕ̂ and rα .

file:qje.oxfordjournals.org
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(A)

(B)

FIGURE IV

Empirical Bayes Posterior Predictions of School Value-Added

This figure plots empirical Bayes posterior modes of value-added from the hybrid
model against posterior means based on OLS value-added. Posterior modes are
computed by maximizing the sum of the log-likelihood of the OLS, reduced-form,
and first-stage estimates conditional on all school-specific parameters plus the log-
likelihood of these parameters given the estimated random coefficient distribution.
Conventional posteriors shrink OLS estimates toward the mean in proportion to
1 minus the signal-to-noise ratio. Filled markers indicate lottery schools. Dashes
indicate OLS regression lines linking the two sets of estimates.



908 QUARTERLY JOURNAL OF ECONOMICS

TABLE VII
CORRELATES OF POSTERIOR VALUE-ADDED AND VAM BIAS

Overall Within-sector

Value-added Bias Value-added Bias
School characteristic (1) (2) (3) (4)

Fraction black 0.158 −0.208 −0.050 −0.217
(0.143) (0.075) (0.083) (0.073)

Fraction Hispanic 0.065 0.031 0.268 0.048
(0.201) (0.105) (0.127) (0.112)

Fraction subsidized lunch −0.132 −0.452 0.085 −0.474
(0.306) (0.181) (0.203) (0.164)

Fraction special education −0.977 −0.501 0.009 −0.508
(0.330) (0.157) (0.316) (0.217)

Fraction English-language −0.542 −0.135 0.297 −0.092
learners (0.247) (0.221) (0.243) (0.254)

Mean baseline math score 0.157 0.143 0.012 0.145
(0.088) (0.051) (0.070) (0.047)

Mean baseline ELA score 0.201 0.135 0.039 0.138
(0.085) (0.060) (0.074) (0.060)

Charter and pilot controls? Y Y

Notes. This table reports coefficients from regressions of empirical Bayes posterior modes for causal value-
added and bias on school characteristics. Columns (1) and (2) show coefficients from bivariate regressions,
while columns (3) and (4) show coefficients from regressions controlling for charter and pilot indicators.
Posterior modes come from the lagged score model with sector effects for sixth grade math scores. Robust
standard errors are reported in parentheses.

than for schools without lotteries: rank correlations for these two
groups equal 0.60 and 0.90 in the gains model. This reflects the
fact that lotteries are more informative about causal effects for
schools with randomized admission. Importantly, although hybrid
and conventional posteriors are strongly correlated, hybrid esti-
mation changes some schools’ ranks, so accountability decisions
may be improved using the hybrid estimates.

Hybrid estimation generates posterior modes for bias as well
as value-added. The value-added and bias posteriors therefore
permit an exploration of the associations between school char-
acteristics, causal value-added, and bias. Table VII reports coef-
ficients from regressions of posterior modes for bias and value-
added on school characteristics, with and without controls for
sector. As can be seen in columns (1) and (3), students who ap-
pear more advantaged (as measured by baseline scores and spe-
cial education status, for example) tend to enroll in schools with
higher value-added, but this pattern is largely explained by the
higher likelihood that these students enroll in charter schools. By
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contrast, column (4) shows that VAM bias within sectors is more
positive for schools with more advantaged students, including
those with higher average baseline test scores, fewer black stu-
dents, fewer special education students, and fewer students eligi-
ble for subsidized lunches. The correlation of bias with baseline
scores is especially noteworthy: although we see positive selection
into the Boston charter sector, the popular impression that good
schools have good peers is driven mostly by selection bias.

A key assumption underlying the hybrid approach is that the
distribution of bias in conventional VAM estimates is unrelated to
lottery oversubscription. This assumption implicitly restricts the
relationship between student ability and school enrollment pat-
terns. For example, it requires that students who enroll in more
and less popular schools have similar ability conditional on demo-
graphic variables and lagged achievement. Evidence in support of
this assumption comes from the relationships between oversub-
scription rates, posterior bias estimates, and baseline scores.

As can be seen in the upper panel of Figure V, posterior bias
estimates are uncorrelated with the extent of oversubscription
among lottery schools. Specifically, a regression of predicted bias
from the lagged score model on the log of the oversubscription rate
yields a slope coefficient of −0.02 with a standard error of 0.06.20

The weak relationship between bias and the degree of oversub-
scription apparent in the figure is consistent with the hypothesis
that bias distributions are similar for schools where lottery in-
formation is and is not available. Note also that this finding is
not a mechanical consequence of assumptions imposed by the hy-
brid model, since the model ignores the degree of oversubscription
within the lottery sample.

Recall that Table II shows that baseline scores and other ob-
served characteristics are similar for students enrolled at schools
with and without lotteries. The bottom of Figure V explores this
pattern further by showing that oversubscription rates are un-
correlated with average baseline scores at oversubscribed schools.
A regression of average baseline scores on log oversubscription
produces a coefficient of −0.03 with a standard error of 0.10. This
finding, which does not rely on estimates from the model, shows

20. The oversubscription rate is defined as the ratio of the annual average
number of lottery applicants to the average number of seats for charter schools, and
the ratio of the average number of first-choice applicants to the average number
of seats for traditional and pilot schools.
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(A)

(B)

FIGURE V

Relationship between Oversubscription and Bias for Lottery Schools

Panel A plots posterior mode predictions of bias in sixth-grade math VAMs
against oversubscription rates for schools with admission lotteries. The oversub-
scription rate is defined as the log of the ratio of the average number of first-choice
applicants (for traditional and pilot schools) or the average number of total appli-
cants (for charters) to the average number of available seats for each admission
grade. Bias modes come from the lagged score model with sector effects. Panel B
plots school average baseline math and ELA scores against oversubscription rates.
Points in the figure are residuals from regressions of bias modes, mean baseline
scores, and oversubscription rates on pilot and charter indicators. Dashes indicate
OLS regression lines.
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that the observed ability of enrolled students is unrelated to lot-
tery oversubscription within the lottery sample. We might there-
fore expect unobserved ability to be unrelated to oversubscription
as well. Both panels of Figure V support the assumption postulat-
ing similar bias distributions for schools that are more and less
heavily oversubscribed.21

VII. POLICY SIMULATIONS

We use a calibrated Monte Carlo simulation to gauge the
accuracy and value of VAM estimates for decision making. The
simulation draws values of causal value-added, bias, and lottery
first-stage parameters from the estimated distributions underly-
ing Table VI.22 Estimation errors are also drawn from their joint
asymptotic distribution and are combined with parameter draws
to construct simulated OLS, reduced-form, and first-stage esti-
mates. These simulated estimates are then used to re-estimate the
random coefficients model and construct conventional and hybrid
EB posterior predictions. Each simulation therefore replicates the
information available to a policy maker or parent, armed with
both conventional and hybrid estimates, in a world calibrated to
our model.

VII.A. Mean Squared Error

Our first statistic for model assessment is root mean squared
error (RMSE). Conventional VAMs generate value-added esti-
mates of school quality with an RMSE far below that of a naive
uncontrolled benchmark. This can be seen in Figure VI, which
compares RMSE across specifications and estimation procedures.
RMSE in the uncontrolled model is about 0.5σ , falling to around
0.18σ and 0.17σ in the lagged score and gains VAMs. Adjustments
for past scores and other student demographics eliminate a good
portion of the bias in uncontrolled estimates.

21. Online Appendix C investigates the sensitivity of policy simulation results
to violations of this assumption. These results show that hybrid estimation gener-
ates substantial gains even when the difference in mean bias between lottery and
nonlottery schools is on the order of 0.2σ .

22. Simulation results for seventh and eighth grade, reported in Online Ap-
pendix Tables A.IV and A.V, yield conclusions similar to those for sixth grade.
These and other supplementary simulation results are discussed in Online Ap-
pendix C.
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FIGURE VI

Root Mean Squared Error for Value-Added Posterior Predictions

This figure plots root mean squared error (RMSE) for posterior predictions of
sixth-grade math value-added. Conventional predictions are posterior means con-
structed from OLS value-added estimates. Hybrid predictions are posterior modes
constructed from OLS and lottery estimates. The total height of each bar indicates
RMSE. Dark bars display shares of mean squared error due to bias, and light bars
display shares due to variance. RMSE is calculated from 500 simulated samples
drawn from the data generating processes implied by the estimates in Table VI.
The random coefficients model is reestimated in each simulated sample.

The RMSE of hybrid estimates is impressively stable across
specifications, starting at 0.17σ in an uncontrolled benchmark
model and falling to 0.14σ in the lagged score and gains models.
With sector effects included, hybrid estimation reduces RMSE
from 0.15σ to about 0.12σ in the lagged score model and from
0.14σ to about 0.10σ in the gains model. The relatively stable hy-
brid RMSE shows how the hybrid estimator manages to reduce
bias even when nonlottery estimates are badly biased. Although
the largest bias mitigation seen in the figure comes from control-
ling for covariates, hybrid estimation reduces RMSE by a further
20–30%.

Not surprisingly, the RMSE reduction yielded by the hybrid
estimator reflects reduced bias at the cost of increased sampling
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variance. This can be seen by writing the mean squared error of
an estimator, β∗

j , as

E
[(

β∗
j − β j

)2
]

= E
[
V ar

(
β∗

j |β j
)] + σ 2

b∗ ,

where σ 2
b∗ = E[(E[β∗

j |β j] − β j)2] is average bias squared and the ex-
pectation treats the value-added parameters, β j, as random. Dark
and light shading in Figure VI shows the proportions of MSE due
to bias and variance. OLS VAMs are precisely estimated: sam-
pling variance contributes only a small part of their overall MSE.
Hybrid estimation reduces MSE, while also increasing the pro-
portion of error due to sampling variance to around 30%. This
reflects the trade-off motivating the hybrid approach: hybrid pos-
teriors leverage lottery estimates to reduce bias in exchange for
increased sampling variance relative to conventional VAMs.23

VII.B. Consequences of School Closure

Massachusetts’ school accountability framework uses value-
added measures to guide decisions about school closures, school
restructuring, and charter school expansion. A stylized descrip-
tion of these decisions is that they replace weak schools with those
judged to be stronger on the basis of value-added estimates. We
therefore simulate the achievement consequences of closing the
lowest-ranked district school (traditional or pilot) and sending its
students to schools with average or better estimated value-added.

This analysis ignores possible transition effects such as dis-
ruption due to school closure, peer effects from changes in school
composition, and other factors that might inhibit replication of
successful schools. The results should nevertheless provide a
rough guide to the potential consequences of VAM-based policy
decisions. Quasi-experimental analyses of charter takeovers and
other school reconstruction efforts in Boston, New Orleans, and
Houston have shown large gains when low-performing schools are
replaced by schools operating according to pedagogical principles
seen to be effective elsewhere (Fryer 2014; Abdulkadiroğlu et al.
2016). This suggests transitional consequences are dominated by

23. Online Appendix Table A.VI shows that hybrid estimates generate forecast
coefficients close to 1 in both the lagged score and gains specifications, with or
without charter lotteries. The hybrid estimates also pass the overidentification
and omnibus specification tests.

file:qje.oxfordjournals.org
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TABLE VIII
CONSEQUENCES OF CLOSING THE LOWEST-RANKED DISTRICT SCHOOL FOR AFFECTED

STUDENTS

Replacement school

Average Average Average Average
district above-median top-quintile charter
school school school school

Model Posterior method (1) (2) (3) (4)

True value-added 0.370 0.507 0.610 0.711
[0.080] [0.089] [0.094] [0.094]

Uncontrolled Conventional 0.056 0.078 0.095 0.280
[0.191] [0.197] [0.204] [0.198]

Hybrid 0.153 0.223 0.259 0.377
[0.143] [0.156] [0.169] [0.151]

Lagged score Conventional 0.226 0.307 0.367 0.577
[0.159] [0.168] [0.176] [0.165]

Hybrid 0.315 0.437 0.529 0.665
[0.131] [0.141] [0.147] [0.145]

Gains Conventional 0.240 0.327 0.391 0.580
[0.148] [0.156] [0.163] [0.153]

Hybrid 0.316 0.434 0.525 0.657
[0.115] [0.126] [0.136] [0.128]

Notes. This table reports simulated consequences of closing the lowest-ranked BPS district school based
on value-added predictions. The reported impacts are average effects on test scores for students at the
closed school. Standard deviations of these effects across simulations appear in brackets. The scenario in
column (1) replaces the lowest-ranked district school with an average district school. Column (2) replaces
the lowest-ranked school with an average above-median district school, and column (3) uses an average
top-quintile district school. Column (4) replaces the lowest-ranked district school with an average charter
school. Conventional empirical Bayes posteriors are means conditional on OLS estimates only, while hybrid
posteriors are modes conditional on OLS and lottery estimates. All models include sector effects. Statistics
are based on 500 simulated samples, and the random coefficients model is reestimated in each sample.

longer-run determinants of school quality, at least for modest pol-
icy interventions of the sort considered here.

The potential for VAMs to guide decision making is high-
lighted by the first row of Table VIII, which shows the score
gains produced by decisions based on true value-added. Closing
the worst school and replacing it with an average school boosts
achievement by 0.37σ , while more targeted replacement policies
generate even larger gains. Consistent with the high RMSE of
uncontrolled estimates, however, Table VIII also shows that poli-
cies based on uncontrolled test score levels generate only small
gains. For example, replacing the lowest-scoring district school
with an average school is predicted to increase scores for affected
students by 0.06σ on average. Likewise, a policy that replaces
the lowest-ranked school with an average top quintile school
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generates a gain of 0.10σ . These small effects reflect the large
variation in bias evident for the uncontrolled model in Table VI:
closure decisions based on average test scores target schools with
many low achievers rather than low value-added. The bias in un-
controlled VAM estimates also leads to a wide dispersion of sim-
ulated closure effects, with a cross-simulation standard deviation
(reported in brackets) of around 0.2σ .

In contrast, closure and replacement decisions based on con-
ventional lagged score and gains models yield substantial achieve-
ment gains. For instance, replacing the lowest-ranked school with
an average school boosts scores by an average of 0.24σ when rank-
ings are based on the gains specification. This is 65% of the corre-
sponding benefit generated by a policy that ranks schools by true
value-added. Hybrid estimation increases these gains to 0.32σ ,
an improvement of over 30% relative to the conventional model.
This incremental effect closes roughly half the gap between con-
ventional estimates and the maximum possible impact.

The effects of VAM-based policies and the incremental bene-
fits of using lotteries grow when value-added predictions are used
to choose expansion schools in addition to closures. In the gains
specification, for example, replacing the lowest-ranked school with
a typical top-quintile school generates an average improvement
of 0.39σ when conventional posteriors are used to estimate VAM
and an improvement of 0.53σ when rankings are based on hybrid
predictions. The hybrid approach also reduces the uncertainty as-
sociated with VAM-based policies by doing a better job of finding
reliably good replacement schools.

The largest gains seen in Table VIII result from a policy
that replaces the lowest-ranking traditional or pilot school with
a charter school. This mirrors Boston’s ongoing in-district char-
ter conversion policy experiment (Abdulkadiroğlu et al. 2016).
Reflecting the large difference in mean value-added between char-
ter and district schools, charter conversion is predicted to gener-
ate significant gains regardless of how value-added is estimated.
Accurate value-added estimation increases the efficacy of char-
ter conversion, however: selecting schools for conversion based on
the lagged score value-added model rather than the uncontrolled
model boosts the effect of charter expansion from 0.28σ to 0.58σ ,
while use of the hybrid estimator pulls this up to 0.67σ , close to
the maximum possible gain of 0.71σ .

The results in Table VIII show that even when VAM esti-
mates are imperfect, they predict causal value-added well enough
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to be useful for policy. For example, causal value-added is more
than 0.2σ below average for schools ranked at the bottom by the
conventional lagged score and gains specifications. As can be seen
in Table VI, this represents roughly a full standard deviation in
the distribution of true school effectiveness. Value-added for low-
ranked schools is even more negative when rankings are based
on hybrid estimates. Schools selected for replacement may not be
the very worst schools in the district. At the same time, these
schools are likely to be much worse than average, so policies that
replace them with schools predicted to do better generate large
gains.24

VIII. CONCLUSIONS AND NEXT STEPS

School districts increasingly rely on regression-based value-
added models to gauge and report on school quality. This arti-
cle leverages admissions lotteries to test and improve conven-
tional VAM estimates of school value-added. An application of our
approach to data from Boston suggests that conventional value-
added estimates for Boston’s schools are biased. Nevertheless,
policy simulations show that accountability decisions based on
estimated VAMs are likely to boost achievement. A hybrid esti-
mation procedure that combines conventional and lottery-based
estimates generates predictions that, while still biased, achieve
lower mean squared error and improved policy targeting relative
to conventional VAMs.

Hybrid school value-added estimation requires some kind
of lottery-based admissions scheme, such as those increasingly
used for student assignment in many large urban districts in the
United States. As our analysis of Boston’s multiple-offer charter
sector shows, however, admissions need not be centralized for lot-
teries to be of value. The utility of hybrid estimation in other cities
will vary with the extent of lottery coverage, but results for Boston

24. The simulations in Table VIII predict the consequences of decisions based
on the eight years of data in our sample. Districts often estimate value-added
over shorter time periods. To gauge the effects of using four years of data, Online
Appendix Table A.VII reports simulation results that double sampling variance.
This produces results which are qualitatively similar to those from the full sample,
with slightly smaller closure effects. Online Appendix Table A.III reports estimates
from a model (described in Online Appendix C) that allows value-added and bias
to vary by year. These estimates suggest a limited role for idiosyncratic temporal
variation in VAM parameters.

file:qje.oxfordjournals.org
file:qje.oxfordjournals.org
file:qje.oxfordjournals.org
file:qje.oxfordjournals.org


LEVERAGING LOTTERIES FOR SCHOOL VALUE-ADDED 917

show hybrid estimation remains useful even when lottery data are
missing for many schools. Our approach also ignores effect het-
erogeneity linked to school choices, a limitation that may matter
in settings with more specialized schools and very heterogeneous
student populations.

The methods developed here may be adapted to combine
quasi-experimental and nonexperimental estimators in other con-
texts. Candidates for this extension include the quantification
of teacher, doctor, hospital, firm, and neighborhood effects. As-
signment lotteries in these settings are rare, but our hybrid
estimation strategy may be used to exploit other sources of quasi-
experimental variation. A hybrid approach to testing and estima-
tion is likely to be fruitful in any context where a set of credible
quasi-experiments is available as a benchmark for a larger set of
nonexperimental comparisons.

MIT AND NBER
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SUPPLEMENTARY MATERIAL

An Online Appendix for this article can be found at The Quar-
terly Journal of Economics online.
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