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We study how an agent learns from endogenous data when their prior belief is mis-
specified. We show that only uniform Berk–Nash equilibria can be long-run outcomes,
and that all uniformly strict Berk–Nash equilibria have an arbitrarily high probability
of being the long-run outcome for some initial beliefs. When the agent believes the
outcome distribution is exogenous, every uniformly strict Berk–Nash equilibrium has
positive probability of being the long-run outcome for any initial belief. We generalize
these results to settings where the agent observes a signal before acting.
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1. INTRODUCTION

WE STUDY THE JOINT EVOLUTION of an agent’s actions and beliefs when their action can
influence the distribution of outcomes, and their prior may be misspecified in the sense
that it assigns probability 0 to a neighborhood of the true data generating process. Given
the complexity of the real world, such misspecification is plausible in many settings, and
has been studied in a wide range of applications.

We consider a general environment with finite actions and outcomes and—unlike most
past work—do not restrict the agent’s prior belief to have a finite support or any specific
functional form. In this environment, the agent’s prior is a belief over the set of action-
contingent outcome distributions, so the agent is misspecified if they assign probability 0
to a neighborhood of the true map from actions to distribution over outcomes. The agent’s
prior determines how they perceive the correlation between the outcome distributions
induced by different actions, which we show is a key determinant of the long-run outcome
of the learning process.

Our results characterize the possible limit points of the agent’s actions and their sta-
bility properties. First, Theorem 1 shows that regardless of the agent’s discount factor, if
play converges to an action a, that action is a uniform Berk–Nash equilibrium. Uniform
Berk–Nash equilibrium, which we introduce in this paper, is a refinement of Berk–Nash
equilibrium (Esponda and Pouzo (2016)). Berk–Nash equilibrium requires that the action
is myopically optimal against some belief in the support of the prior that minimizes the
Kullback–Leibler (KL) divergence between the subjective and true outcome distributions
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given that the agent plays a, that is, the action must be a best response to a “KL mini-
mizer.” Uniform Berk–Nash equilibrium strengthens this by requiring that the action is a
best response to any beliefs with support on these KL minimizers. Intuitively, limit points
correspond to myopic optimization even when the agent is not myopic because play will
not converge until the agent no longer perceives an “experimentation value” from non-
myopic play; the intuition for the uniformity requirement is that when play converges, the
agent’s beliefs oscillate over all of the KL-minimizing beliefs.

We then investigate sufficient conditions for two alternative definitions of what it means
for an action to be a long-run outcome. We say that an action is stable if play converges to it
with arbitrarily high probability for some open set of initial beliefs. Theorem 2 shows that
every uniformly strict Berk–Nash equilibrium is stable, regardless of the agent’s discount
factor, where “strict” indicates that the action is the strict myopic best response to the
agent’s beliefs, and “uniformly” requires that this is true for all of the KL-minimizing
outcome distributions (as opposed to being true for at least one of them).

We say that an action is positively attractive if there is positive probability that it is the
limit outcome under every optimal policy for every full-support prior belief. When the
agent believes (either rightly or wrongly) that the distribution of outcomes is the same for
all actions, or in a “subjective bandit problem” where the agent believes that the outcomes
observed when playing one action are uninformative about the outcome distributions in-
duced by other actions, we obtain partial converses to Theorem 1: All uniformly strict
Berk–Nash equilibria are positively attractive. Moreover, in subjective bandit problems
that are weakly identified (Esponda and Pouzo (2016)) we can relax uniformly strict to
strict.

To prove these results, we first establish in Appendix A.3 that with probability one be-
liefs concentrate exponentially fast around the KL minimizers.1 We use this concentra-
tion result to guarantee that the agent starts to play the equilibrium action with positive
probability. We then use the stability result from Theorem 2 to show that, with positive
probability, the agent uses the action forever. We also observe that in a supermodular de-
cision problem, extreme uniformly strict equilibria are positively attractive. In this setting,
the additional structure of the problem lets us dispense with the first step of the proof.

We also generalize our results to a setting in which the agent observes a (potentially)
payoff relevant signal before taking an action. Here, too, a limit action must be a uni-
form Berk–Nash equilibrium. Moreover, if the agents ignore the predictive value of the
signals, that is, the signals are subjectively uninformative, every uniformly strict Berk–Nash
equilibrium is positively attractive.

We illustrate our findings in three economic examples: a monopolist that is misspecified
about the demand function, a central bank choosing an exchange-rate policy, and a seller
that observes a signal and then decides whether to make an investment.

Related Work

Given an objective data generating process, an outcome distribution is a KL-minimizer
if it maximizes the expected likelihood assigned to a randomly drawn outcome over the
support of the agent’s prior. Berk (1966) showed that the beliefs of an agent asymptot-
ically concentrate on the set of KL minimizers when the data generating process is ex-
ogenous. In many economic applications, actions and associated signal distributions are

1This result is in the spirit of Diaconis and Freedman (1990), which assumes a full-support prior, and thus
rules out misspecification.
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not fixed, but change endogenously over time depending on an action taken by the agent,
so the agent’s misspecification has implications for what they observe, and thus for their
long-run beliefs. Arrow and Green (1973) gave the first general framework for this prob-
lem, and Nyarko (1991) pointed out that the combination of misspecification and endoge-
nous observations can lead to cycles.

There has been a surge of theoretical work on misspecified learning since the seminal
work of Esponda and Pouzo (2016), which defines Berk–Nash equilibrium. This is a re-
laxation of Nash equilibrium (for games as as well as decision problems) that replaces
the requirement that players’ beliefs are correct with the requirement that each player’s
belief minimizes the KL divergence between their belief and their observations over the
support of their prior. Esponda and Pouzo (2016) showed that Berk–Nash equilibrium
is a necessary property for limit points when the payoff function is subject to small i.i.d.
random shocks as in Fudenberg and Kreps (1993), and that it is sufficient if in addition
the agent is willing to incur asymptotically negligible optimization losses. Esponda and
Pouzo (2019) generalized Berk–Nash equilibrium to Markov decision problems.

Fudenberg, Romanyuk, and Strack (2017) and Bohren and Hauser (2020) provided
necessary and sufficient conditions for actions to converge when the support of the agent’s
prior contains only two points.2  Heidhues, Kőszegi, and Strack (2018) and He (2019) pro-
vided conditions for global convergence of play of a nonmyopic agent in a environments
with additively separable payoffs that satisfy strong supermodularity restrictions, where
the Berk–Nash equilibrium is unique. Heidhues, Kőszegi, and Strack (2021) established
convergence to a Berk–Nash equilibrium in environments with a normal prior and nor-
mal signals. Molavi (2019) studied misspecification in a temporary equilibrium model of
macroeconomics; his leading example is where agents mistakenly think that some vari-
ables have no impact.

The most closely related papers are Esponda, Pouzo, and Yamamoto (2019) (hence-
forth EPY) and Frick, Iijima, and Ishii (2020) (henceforth FII). EPY used stochastic ap-
proximation to determine when the agent’s action frequency converges in an environment
with finitely many actions and fairly general priors. We provide a sharper characterization
of when play converges to a single action in the long run, but our results do not charac-
terize the long-run distribution when this convergence does not occur. Corollary 2 in the
Appendix combines our results with theirs to derive new results about the limiting ac-
tion frequencies. FII provides conditions for local and global convergence of the agent’s
beliefs without explicitly modelling the agent’s actions when the agent’s prior has finite
support.3

Our paper complements the literature on long-run behavior in misspecified models in
three ways: First, we establish that without the asymptotically vanishing payoff perturba-
tions of Esponda and Pouzo (2016), play never converges to a nonuniform Berk–Nash
equilibrium. This uniformity refinement has no analog in FII because it is with respect to
the optimality of actions. Second, we introduce conditions under which an action has pos-
itive probability of being the long-run outcome from any initial belief. Finally, we provide
the first necessary and sufficient conditions for the choices of forward-looking misspeci-
fied agents to converge to a myopic best reply to their beliefs.4

2Bohren and Hauser (2020) considered myopic agents in discrete time; Fudenberg, Romanyuk, and Strack
(2017) analyzed a continuous time model with Brownian noise without assuming myopia.

3Neither model nests the other. FII assumed finite priors, and impose a continuity assumption that our
model can but need not satisfy. Conversely, we rule out the continuum of actions assumed by FII.

4Theorem 4 of Esponda and Pouzo (2016) shows that Berk–Nash is necessary under weak identification and
payoff perturbations. Other work either assumes myopia or do not obtain convergence to myopic best reply.



1068 D. FUDENBERG, G. LANZANI, AND P. STRACK

Misspecified agents are featured in work in a wide range of fields. There are many
examples in behavioral economics, such as the “law of small numbers,” the “hot-hand fal-
lacy,” the winner’s curse, and the link between overconfidence and prejudice.5 Macroe-
conomists have been interested in misspecified learning both in the form of misspecified
least-squares predictions as well as more sophisticated models of updating and inference.6
In organizational economics, misspecification has been used to explain, for example, the
role of corporate culture and the low rate and low number of minority inventors. In public
economics, misspecification helps explain over or under reaction to changes in tax sched-
ules. And in political economy, misspecification has been used to explain the recurrence
of populism and political polarization.7 There is also a related literature on misspecified
social learning.8

In addition to papers that consider misspecified Bayesian agents, there is a literature
that studies the long-run outcomes under learning heuristics that might be used when
people are unable to formulate a probabilistic assessment of the data generating process.
Many of these heuristics feature a form of neglect of the relevant elements of the en-
vironment, similar to the ones we consider in our Section 4, for example, Tversky and
Kahneman (1973), Rabin and Schrag (1999), and Jehiel (2018). More recently, Gagnon-
Bartsch, Rabin, and Schwartzstein (2018), Fudenberg and Lanzani (2020), and He and
Libgober (2020) analyzed various processes that can lead agents to change or expand the
set of models they consider possible.

2. THE MODEL

2.1. Setup

Actions, Utilities, and Objective Outcome Distributions. We study a sequence of choices
made by a single agent. In each period t ∈ {1�2�3� � � �}, the agent chooses an action from
the finite set A. This choice has two effects. First, each action a ∈A induces an objective
probability distribution p∗

a ∈ �(Y)⊂ R
Y over the finite set of possible outcomes Y .9 Sec-

ond, the action, paired with the realized outcome, determines the flow payoff of the agent
via the utility function u :A×Y → R.

Subjective Beliefs of the Agent. The agent correctly believes that the map from ac-
tions to probability distributions over outcomes is fixed and depends only on their
current action, but they are uncertain about the distribution each action induces. Let
P = Ś

a∈A �(Y)⊂ R
Y×A be the space of all action-dependent outcome distributions, and

let pa ∈ �(Y) denote the ath component of p ∈ P . We endow P with the sup-norm topol-
ogy, and denote by Bε(p) the ball of radius ε around p ∈ P .10

The agent’s uncertainty is captured by a prior belief μ0 ∈ �(P), where �(P) denotes
the metric space of Borel probability measures on P endowed with the topology of weak
convergence of measures.

5See Kagel and Levin (1986), Rabin and Vayanos (2010), Heidhues, Kőszegi, and Strack (2019).
6Bray (1982), Bray and Savin (1986), Cho and Kasa (2015, 2017), Molavi (2019).
7See Gibbons, LiCalzi, and Warglien (2019) and Bell, Chetty, Jaravel, Petkova, and Van Reenen (2019)

for organizational economics, Rees-Jones and Taubinsky (2020), Morrison and Taubinsky (2019) for public
economics, and Levy, Razin, and Young (2020), Eliaz and Spiegler (2018) for political economy.

8See Bohren (2016), Bohren and Hauser (2020), Frick, Iijima, and Ishii (2019), Gagnon-Bartsch (2016), and
Mailath and Samuelson (2020).

9We denote objective distributions with a superscript ∗.
10For every finite dimensional vector v, we let ‖v‖ = maxi vi denote the supremum norm.
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DEFINITION 1: The conceivable outcome distributions are the elements of Θ= suppμ0.
The agent is correctly specified if p∗ ∈Θ, that is, the objective distribution is conceivable.

Throughout the paper, we will maintain the following assumption.

ASSUMPTION 1—Regularity:
(i) For all p ∈Θ, a ∈A, and y ∈ Y , pa(y) > 0 if and only if p∗

a(y) > 0.
(ii) The prior μ0 has subexponential decay: there is Ψ : R+ → R++ such that for every

p ∈ Θ and ε > 0 we have μ0(Bε(p)) ≥ Ψ(ε) with limn→∞Ψ(K/n)exp(n) = ∞ for
all K > 0.

Assumption 1(i) requires that the outcomes that the agent thinks are possible are the
same as those that objectively have positive probability. This assumption guarantees that
Bayes rule is always well-defined.11 Assumption 1(ii) extends Diaconis and Freedman’s
(1990) notion of φ-positivity to the misspecified case, and adds the requirement that the
bounding Ψ vanishes at a subexponential rate around 0. It is always satisfied by priors
with a density that is bounded away from 0 on their support, and by priors with finite
support.12

Our specification allows the agent’s subjective uncertainty to be correlated across ac-
tions. For example, if the agent is certain that every action generates the same outcome
distribution, then they believe the outcome distributions are perfectly correlated across
actions.

Updating Subjective Beliefs. We assume throughout that the agent updates their beliefs
using Bayes rule. Denote by μt(· | (at� yt)) the subjective belief the agent obtains using
Bayes rule after action sequence at = (as)ts=1 and outcome sequence yt = (ys)ts=1,

μt
(
C | (at� yt))=

∫
p∈C

t∏
τ=1

paτ(yτ)dμ0(p)

∫
p∈P

t∏
τ=1

paτ(yτ)dμ0(p)

� (Bayes Rule)

Since the agent’s prior has support Θ, their posterior belief does as well. We sometimes
suppress the dependence of the posterior belief on the realized sequence and just write μt .

Behavior of the Agent. A (pure) policy π :⋃∞
t=0A

t ×Y t →A specifies an action for ev-
ery history. We assume that the agent’s objective is to maximize the expected discounted
value of per-period utility with discount factor β ∈ [0�1), and restrict to optimal policies.
Throughout, we let at+1 = π(at� yt) denote the action taken in period t. The objective
action-contingent probability distribution p∗ and a policy π induce a probability measure

11Assumption 1(i) is satisfied in most applications but it is stronger than necessary. The “if” part is enough
for all our results except the nonmyopic version of Theorem 1. In the Supplemental Material (Fudenberg,
Lanzani, and Strack (2021)), Section B.2, we show how this result can be extended to the case where the “only
if” part is not satisfied.

12Dirichlet priors also satisfy Assumption 1(ii), even though they do vanish at the edge of their support.
Fudenberg, He, and Imhof (2017) showed by example that even correctly specified Bayesian updating can
behave oddly when the prior vanishes exponentially quickly.



1070 D. FUDENBERG, G. LANZANI, AND P. STRACK

Pπ on (aτ� yτ)∞τ=1.13 Standard results guarantee that there is an optimal policy π that is
Markovian and depends on the history only through the agent’s beliefs; we restrict atten-
tion to such policies.

Given a belief ν ∈ �(Θ) we denote by νa the belief over outcome distributions associ-
ated with action a, that is, νa(C)= ∫ 1pa∈C dν(p) for all Borel sets C ⊆ �(Y). We denote
by Epa[f (y)] =∑y∈Y f (y)pa(y) the expectation of f : Y → R under the outcome distri-
bution pa. Am(ν) denotes the set of myopically optimal actions given belief ν, that is,

Am(ν)= argmax
a∈A

∫
�(Y)

Epa

[
u(a� y)

]
dνa(pa)�

2.2. Forms of Misspecification

Our model encompasses many sorts of misspecified learning, including the following.

Subjectively Exogenous Problems. We say that there are subjectively exogenous out-
comes when the agent believes that the realized outcome is not affected by the chosen
action.

DEFINITION 2: Outcomes are subjectively exogenous if for every a�a′ ∈ A, and every
p ∈Θ, we have pa = pa′ .

Note that the agent can believe in exogenous outcomes independent of whether or not
the action really does influence the distribution; if the action does influence the outcome
and the agent ignores this we say the agent exhibits causation neglect. An agent who
thinks the outcome distribution is exogenous updates their beliefs as if they faced an
i.i.d. environment. We will establish that the beliefs in this setting concentrate on the
conceivable outcome distributions closest to the empirical average. We use this result to
show that if a is a uniformly strict Berk–Nash equilibrium, it is positively attractive.

Subjective Bandit Problems. The other extreme case encompassed by our setup is
where the agent thinks that they face a bandit problem, that is, they believe that the dis-
tributions over outcomes induced by different actions are independent. This corresponds
to the case where the agent’s prior μ0 is a product measure.

DEFINITION 3: An agent faces a subjective bandit problem if μ0 = Ś

a∈A μ0�a ∈
(�(�(Y)))A.

We show that uniformly strict Berk–Nash equilibria are positively attractive in this set-
ting as well, provided that the agent is sufficiently patient.

One-Dimensional Problems. In one-dimensional problems, the agent’s uncertainty is
summarized by a parameter γ ∈ R. The parameter determines the distribution over out-
comes through a function φ, which maps parameters to action-dependent outcome dis-
tributions. Formally, the support of the agent’s prior is contained in the image of this
function φ.

13We spell out the details of this measure at the start of the Appendix.
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DEFINITION 4: The problem is one-dimensional if there exists � ⊆ R and a function
φ : �→ P such that Θ⊆ {φ(γ) : γ ∈ �}. A one-dimensional problem is supermodular ifA
can be ordered such that (γ�a) �→ Eφ(γ)a[u(a� y)] is supermodular.

EPY provides a sufficient condition for actions to converge in one-dimensional prob-
lems that are supermodular. Heidhues, Kőszegi, and Strack (2018) showed that a unique
Berk–Nash equilibrium is globally attracting in supermodular problems where the out-
comes are real numbers and φ is an additive shift. Our Example 9 shows that their result
does not hold in our more general setting: a unique (and uniformly strict) Berk–Nash
equilibrium may not be positively attractive. Under a stronger version of supermodular-
ity, our positive attractiveness results do extend to extremal uniformly strict Berk–Nash
equilibria.

Finite Support. Another common assumption is that the support of the prior is finite.
With a finite-support prior, if behavior converges to an action a, a is a best reply to all
outcome distributions that minimize the Kullback–Leibler divergence from p∗

a, so it is a
uniform Berk–Nash equilibrium. However, Example 6 shows that nonuniform Berk–Nash
equilibria can be limit points when the support of the prior is infinite if Assumption 1(ii)
is not satisfied.

Signals. Here, we suppose that each period the agent observes a signal s ∈ S before
taking an action a ∈A. The signal may convey information about the outcome distribu-
tion, and it may also directly enter the payoff function.

We allow the agent to be uncertain about the outcome distributions induced by various
signals and actions. Let P = (�(Y))A×S ⊂ R

Y×A×S be the space of all signal and action
dependent outcome distributions. The agent’s belief is a probability measure μ over P ,
where ps�a(y) denotes the probability under p ∈ P of outcome y after observing signal s
playing action a. Extending the model to signals lets us incorporate the stochastic payoff
perturbations assumed in Esponda and Pouzo (2016). It also lets us model cases where
the agent mistakenly thinks that some information they observe is uninformative.

3. LIMIT POINTS AND BERK–NASH EQUILIBRIA

We are interested in when the agent’s actions converge, and their possible limit points.
Note that these are different questions than whether the agent’s beliefs converge: Beliefs
can oscillate when actions are fixed, as in Berk’s example where the agent does not have
an action choice, and conversely actions can oscillate with fixed beliefs if the agent is
indifferent.14

We say that the action process converges to action a if there exists a time period T ∈ N

such that at = a for all time periods t > T . Action a is a limit action if the action pro-
cess converges to a with positive probability under some optimal policy π.15 Note that
there may be several optimal policies for a given prior; which policy is used can influence
whether the action process converges and if so to which points.

The concept of Berk–Nash Equilibria (Esponda and Pouzo (2016)) will play a key role
in our analysis. Intuitively, a Berk–Nash equilibrium is an action a such that there exists a

14The fact that beliefs can oscillate under a fixed action is the driving force behind the uniformity require-
ment in several of our results, such as Theorem 1.

15Formally, there exists a measurable set C ⊆A∞ ×Y∞ with Pπ[C]> 0 such that at converges to a in C .
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belief for which a is myopically optimal, and which assigns positive probability only to the
conceivable outcome distributions that best match the objective outcome distribution p∗

a.
Formally, given two distributions over outcomes q�q′ ∈ �(Y) we define

H
(
q�q′)= −

∑
y∈Y
q(y) logq′(y)�

Note that −H(q�q′) is the expected log likelihood of an outcome under subjective distri-
bution q′ when the true distribution is q, so q′ with smallerH(q�q′) is a better explanation
for the outcome frequency q. The Kullback–Leibler (KL) divergence between p∗

a and pa
is given byH(p∗

a�pa)−H(p∗
a�p

∗
a), so any pa that minimizesH(p∗

a�p) also minimizes the
KL divergence between p∗

a and pa.
Recall that pa denotes the outcome distribution p assigns to action a. For each a, let

Θ̂(a)= argmin
p∈Θ

H
(
p∗
a�pa

)⊆Θ (1)

denote the set of conceivable action-contingent outcome distributions that minimize the
KL divergence relative to the true distribution p∗

a given that the agent plays a. Note that
the elements of Θ̂(a) specify an outcome distribution for each action a′ ∈A, even though
Θ̂(a) only depends on the distributions corresponding to a. We call Θ̂(a) the set of KL
minimizers for action a.16

Berk (1966) established that the agent’s beliefs concentrate on Θ̂(a) if they always
play a. This motivates Esponda and Pouzo’s (2016) notion of a Berk–Nash equilibrium.
We introduce variations of this concept to capture different senses in which an action is
or is not a long-run outcome of the agent’s learning process.

DEFINITION 5: Two action-contingent outcome distributions p and p′ are observation-
ally equivalent under action a if pa = p′

a. We denote by Ea(p) ⊆ Θ the set of action-
contingent outcome distributions in Θ that are observationally equivalent to p under a.

DEFINITION 6:
(i) Action a ∈A is a Berk–Nash equilibrium (BN-E) if for some belief ν ∈ �(Θ̂(a)), a is

myopically optimal given ν, that is, a ∈Am(ν).
(ii) Action a is a strict BN-E if for some belief in ν ∈ �(Θ̂(a)), a is the unique myopically

optimal action, that is, {a} =Am(ν).
(iii) Action a is a uniform BN-E if for all KL minimizers p ∈ Θ̂(a) there exists a belief

ν ∈ �(Ea(p)) such that a ∈Am(ν).
(iv) Action a is a uniformly strict BN-E if for every belief ν ∈ �(Θ̂(a)), a is the unique

myopically optimal action, that is, {a} =Am(ν).

Uniformity requires that for each class of observationally equivalent KL minimizers for
action a, there is a belief concentrated on that class for which a is the myopically optimal
choice.17 The difference between BN-E and uniform BN-E disappears in the correctly

16Note that if p∗ ∈Θ then each minimizing p explains the observed outcome distribution perfectly, pa = p∗
a.

In particular, this is true if μ0 has full support.
17If p is a KL minimizer, that is, p ∈ Θ̂(a), then all observationally equivalent actions are as well, that is,

Ea(p) ⊆ Θ̂(a). When Ea(p) contains more than one element for some KL minimizer p, uniformity does not
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specified case, where both concepts coincide with self-confirming equilibrium. In settings
where the KL minimizer is unique, the uniformity requirement has no bite. However, in
frameworks with additional structure, such as symmetry or parametric restrictions, multi-
ple KL minimizers can arise naturally. For example, suppose that agent’s payoff depends
on the color y of a ball drawn from an urn, and the agent’s action is to bet on the color of
the drawn ball. The agent correctly believes their action has no impact on the distribution
of outcomes. The urn has 6 balls: 4 of them white, 1 red, 1 blue. Here, there is a finite
number of possible outcome distributions corresponding to the possible urn composition.
If the agent wrongly believes that at most half of the balls share the same color, that is,
p(y) ≤ 1/2 for y ∈ {white� red�blue}, the two KL minimizers are (3 white, 2 blue, 1 red)
and (3 white, 1 blue, 2 red).

The following result motivates our definition of uniform BN-E. It holds regardless of
the agent’s discount factor, and for all optimal strategies. The same is true for all subse-
quent results except those where the dependence on the discount factor is made explicit.

THEOREM 1: Every limit action is a uniform BN-E.

One implication of Theorem 1 is that limit actions must be BN-E. In outline, this follows
from the fact that if actions converge to an action then eventually the agent always plays
that action, and Berk’s (1966) result that the agent’s beliefs converge to the set of KL
minimizers when their observations are a sequence of i.i.d. signals.

More strongly, Theorem 1 shows that a limit action must be a uniform BN-E. When a
is not a uniform BN-E, there is an equivalence class of KL minimizers such that a is not a
myopic best reply when beliefs concentrate on that class. The proof of Theorem 1 works
by contradiction: Consider an action a which is not a uniform BN-E. If play converges
to a with positive probability there must exist a history after which it is optimal in every
future period to play a. We thus study the agent’s belief process under the assumption
that a is played in every period. As we prove in Proposition 1 in the Appendix, the agent’s
beliefs concentrate around the set of Kullback–Leibler minimizers relative to the realized
outcome frequency exponentially fast. This result allows us to determine the agent’s long
run actions from the long-run frequency of outcomes. If a is not a uniform BN-E, there
is a KL minimizer p′ under which action a is not optimal. Moreover, the number of times
each outcome is realized is a random walk, and by the central limit theorem the outcome
frequency converges to objective outcome frequency p∗

a at rate 1/
√
t. This implies that

the probability with which the outcome frequency will be in a ball of radius 1/
√
t centered

around p∗
a(1 − 1/

√
t)+p′

a(1/
√
t) in a given period t converges to a constant. These balls

are chosen in the direction of the outcome frequency p′
a such that the action a is not

optimal for large enough t when the empirical frequency is in these balls. We then apply
the Kochen–Stone lemma, which implies that the probability that the agent’s outcome
frequency will be in such a ball infinitely often is nonnegative and the Hewitt–Savage zero-
one law implies that it must equal one. Thus with probability one, the outcome frequency
will eventually be such that the agent takes an action different from a. Thus, a cannot be
a limit action if it is not a uniform BN-E.

The same technique can be applied to obtain a starker result in subjective bandit prob-
lems. There Corollary 1 shows that if an action performs poorly under some KL mini-

require that the equilibrium action is a best reply to every KL minimizer in Θ̂(a). The only other equilibrium
refinement we know of that, like uniform BN-E, tests for optimality against all beliefs in a nonsingleton set is
Fudenberg and He (2020), which studies nonequilibrium learning in a steady-state model where the agents are
correctly specified Bayesians. They do not study the dynamics away from the steady state.
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mizer, the agent will stop playing it in finite time with probability 1, even if the action is
objectively optimal and the agent is very patient.

Example 6 in the Supplemental Material shows that Theorem 1 can fail without As-
sumption 1(ii). Here, the agent’s prior has countable support and assigns vanishingly low
probability to distributions that are close to one of the KL minimizers. However, Assump-
tion 1(ii) does not ensure that a uniform BN-E exists, as shown in the following example.
As a consequence, actions need not converge.

EXAMPLE 1—Nonexistence of Uniform BN-E: A monopolist is uncertain about the
demand for their product. Every period it posts a price in {3�4�5�6�7}, and then a ran-
domly selected consumer observes the price and decides whether to buy, y = 1, or not buy,
y = 0, the good. The monopolist’s maximizes revenue u(a� y)= ay , and the true distribu-
tion of customer values is uniform on [3�7]. The monopolist overestimates the variance
of consumer values, and believes that they are either uniformly distributed on [0�8] or on
[2�10]. As we show in the Supplemental Material, the unique BN-E is nonuniform and
strict, with price 5. Both distributions are KL-minimizing for this price, but price 5 is my-
opically optimal only if the valuations are uniformly distributed on the high range [2�10].
Theorem 1 implies that the monopolist’s actions do not converge, even though there is
a unique and strict BN-E. This is because when a = 5, the monopolist eventually sees a
sequence of outcomes where few consumers buy, becomes very confident in the low range
of valuations [0�8], and switches to a lower price.

Theorem 1 implies the nonconvergence theorem of Nyarko (1991) as a corollary since
also in that setting there is no uniform BN-E. Moreover, in the case of myopic agents,
Corollary 2 in the Appendix combines the result with Theorem 2 of Esponda, Pouzo,
and Yamamoto (2019) to show the empirical action frequencies cannot converge to some
nonuniform BN-E.

4. SUFFICIENT CONDITIONS FOR LONG-RUN PERSISTENCE

Theorem 1 shows that play can only converge to a given action a if that action is a
uniform BN-E. This section gives sufficient conditions for a to be a long-run outcome in
two different senses, namely stability and attractiveness.

4.1. Stability

We say that action a is stable if play converges to a with high probability starting from
every belief in a neighborhood of a KL minimizer for a. For ν ∈ �(Θ), let Bε(ν) = {ν′ ∈
�(Θ)|d(ν′� ν) ≤ ε} be the set of beliefs over conceivable distributions that are within ε
of ν. Define the set Θ̂ε(a) as all outcome distributions whose marginal distribution with
respect to action a is at most ε away from a KL minimizer,

Θ̂ε(a)= {p ∈Θ : there exists p′ ∈ Θ̂(a) with
∥∥p′

a −pa
∥∥≤ ε}� (2)

DEFINITION 7:
(i) An action a is stable if for every κ ∈ (0�1), there is an ε > 0 and a belief ν ∈ �(Θ)

such that for all initial beliefs in Bε(ν), the action prescribed by some optimal policy
converges to a with probability larger than 1 − κ.

(ii) An action a is uniformly stable if for every κ ∈ (0�1), there is an ε > 0 such that for
all prior beliefs ν ∈ �(Θ) such that ν(Θ̂ε(a)) > 1 − ε, the action prescribed by any
optimal policy converges to a ∈A with probability greater than 1 − κ.
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Theorem 1 shows that stable actions must be uniform BN-E. The next theorem shows
that an action is a uniformly strict BN-E if and only if it is uniformly stable.

THEOREM 2: An action is uniformly stable if and only if it is a uniformly strict BN-E.

Theorem 2 differs from past work by providing the first if and only if characterization of
the stability of actions under misspecified learning with nonbinary priors, and by allowing
the agent to be nonmyopic, and thus perceive an information value from experimenta-
tion.18 Its proof has two parts, corresponding to the two directions of the if and only if
statement. To show that every uniformly strict BN-E is uniformly stable, we first show
that if beliefs assign sufficiently high probability to a neighborhood of the KL minimizers,
the only optimal action is the uniformly strict BN-E a. That such a neighborhood exists for
a myopic policy follows from the definition of uniformly strict BN-E. Under a nonmyopic
policy, since beliefs are not degenerate, some actions may have an experimentation value.
However, when the beliefs are sufficiently concentrated around the minimizers, the value
of any alternative action cannot be much higher than its value against the most favorable
minimizer, and since a is a uniformly strict BN-E this value is strictly lower than that of a.
Then we combine an observation from FII with a generalization of the arguments in Fu-
denberg and Levine (1992) and the Dubins’ upcrossing inequality to guarantee that if the
probability initially assigned to the neighborhood is sufficiently high, it is unlikely to drop
below the threshold that makes action a suboptimal.

The proof of the converse direction is much simpler: If a is not a uniformly strict BN-E,
there is a distribution p in Θ̂(a) that makes some other action b the best response, and if
we set ν to be a point mass on p the agent always plays b.

Theorem 2 is in contrast to the nonconvergence in the monopoly pricing example of
Heidhues, Kőszegi, and Strack (2021), where there is a continuum of actions, and actions
that are sufficiently near the strict best response are best responses to nearby beliefs. As
we explain in Section 6, it is not clear what the right definition of uniform stability is for
that setting.

Example 1 shows that Theorem 2 does not extend to strict BN-E that are not uniformly
strict. The next example shows that in Theorem 2 we cannot replace uniformly stable with
stable.

EXAMPLE 2—A Stable BN-E That is Not Uniformly Strict: Suppose there are 2 actions,
a and b, that induce the same distribution on Y = {0�1} and such that u(a� ·) = u(b� ·).
The agent has an arbitrary belief supported on {p : pa = pb}, that is, they know the actions
induce the same distribution. Here, since the agent is always indifferent, even though
action a is not a uniformly strict BN-E, it is stable under the optimal policy that always
prescribes a.

In general, there is a gap between uniformly strict BN-E and stability, but in sufficiently
rich problems, this gap is absent.

18Bohren and Hauser (2020) and Fudenberg, Romanyuk, and Strack (2017) characterized stability when the
agent has a binary prior. FII’s Theorem 1 gives a sufficient condition for stability when the agent’s prior has
finite support. The statement of the theorem is for their general model, which takes the evolution of the belief
process as a primitive, and does not describe the agent’s actions, discount factor, or optimization. The paper’s
three applications all assume myopic choice.
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DEFINITION 8: A problem is rich if for every action a, minimizer p ∈ Θ̂(a) and ε > 0
there exists a p′ ∈Θ \ Θ̂(a) with ‖p−p′‖ ≤ ε such that

Epa

[
u(a� y)

]− max
b∈A\{a}

Epb

[
u(b� y)

]
> Ep′

a

[
u(a� y)

]− max
b∈A\{a}

Ep′
b

[
u(b� y)

]
�

In words, a problem is rich if for every KL minimizer for every action a, the support
of the agent’s prior includes a nearby distribution under which a performs relatively less
well.19 This rules out the previous example and also rules out finite-support priors.

THEOREM 3: If a problem is rich, the following are equivalent:
(i) a ∈A is a uniformly strict BN-E.

(ii) a ∈A is stable.

Richness guarantees that if a is not a uniformly strict equilibrium, there is a KL min-
imizer for action a that can be approximated with a sequence of outcome distributions
(pn)n∈N under which action a is strictly suboptimal. To prove this theorem, for every ν we
build a sequence of beliefs (νn)n∈N that have have pn has the unique KL minimizer for
action a, and combine this with Theorem 1 to show that the probability that the actions
converge to a starting from νn is 0. To summarize our stability results,

Uniformly Strict BN-E = Uniformly Stable ⊆ Stable ⊆ Uniform BN-E�

where the first inclusion is an equality if the problem is rich, and the second inclusion can
be strict as shown by Example 11 in the Supplemental Material.

4.2. Positive Attractiveness

The previous section gave sufficient conditions for an action to be played in the long-
run with high probability for some initial beliefs. Another natural notion of a being a
long-run outcome is that for every initial belief with support Θ there is strictly positive
probability that the agent’s action converges to a.

DEFINITION 9: The action a ∈A is positively attractive if for every optimal policy π and
every initial belief ν with suppν =Θ,

Pπ

[
lim
t→∞

at = a
]
> 0�

Below we give sufficient conditions for uniformly strict BN-E to be positively attrac-
tive. Benaïm and Hirsch (1999) obtained a similar conclusion for the linearly stable Nash
equilibria of stochastic fictitious play.20 These arguments rely on Proposition 1 in the Ap-
pendix, which shows that beliefs about the outcome distribution concentrate around the
distributions that best fit the empirical frequency of outcomes. Importantly, our result ap-
plies pathwise and does not require that either actions or empirical frequencies converge.

19Note that “relatively less well” allows the action to be a best response to all distributions near p.
20The Bayesian foundation of fictitious play (Fudenberg and Kreps (1993)) assumes that the players believe

that the environment is stationary. Away from a steady state the players are misspecified, but when the system
converges to a steady state the stationarity assumption is asymptotically correct. In our setting, “substantial”
misspecification can persist even when behavior converges.
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Our results on positive attractiveness cover three different cases: subjectively exoge-
nous outcomes, subjective bandit problems, and strongly supermodular problems. In the
first two cases, we are able to identify a particular empirical distribution that is sufficient
for analyzing convergence. With subjectively exogenous outcomes, the agent only tracks a
single empirical distribution. In subjective bandit problems, the agent does consider mul-
tiple empirical distributions, but it is sufficient to study the distribution corresponding to
the action in question. In supermodular problems, we instead show that certain outcome
realizations can lead the agent to lock on to the highest or lowest action.

4.2.1. Subjectively Exogenous Problems

In subjectively exogenous problems, the agent believes that the distribution over out-
comes is the same for all actions. This is a fairly stark assumption; more typically the agent
might believe that their action influences some dimensions of the outcome but not others.
We present the case where the agent believes the action has no effect at all because the
extension to “partially exogenous” outcomes does not bring any additional insight.

THEOREM 4: Suppose outcomes are subjectively exogenous. If a is a uniformly strict BN-E,
then it is positively attractive.

To prove the theorem, we first use Proposition 1 to show that beliefs concentrate around
the distributions that minimize the KL divergence from the empirical frequency on every
path of outcome realizations. We then use this concentration to show there is a finite
sequence of outcomes that has positive probability and leads the agent to play a. Since a
is a uniformly strict BN-E, if beliefs concentrate around the minimizers, a becomes the
unique best reply. While using a, the relative probability the agent assigns to distributions
in Θ̂(a) increases in expectation, so we can combine Dubins’ upcrossing inequality with
the fact that a is the unique myopic best reply to beliefs concentrated in Θ̂(a) to show
that, with positive probability, the agent will stick to action a forever.

Proposition 4 in EPY shows that for every uniformly strict BN-E a, there exists at least
one prior with support equal to Θ under which the policy converges to a with positive
probability. FII provides sufficient conditions for the system to converge with probability
1 to a specific BN-E from any initial belief. Our Theorem 4 concludes that every uniformly
strict BN-E has positive probability of being the limit behavior starting from every initial
prior without imposing conditions that imply global convergence to a specific outcome.

EXAMPLE 3—Stackelberg Game Perceived as Cournot: The agent is a seller who every
period faces a competing seller randomly drawn from a large population. The agent first
chooses whether to produce low output, a = 1, or high output, a = 2. The competitor
sets their quantity y at 1 or 2 after observing the agent’s action: If the agent chooses
low output the competitor produces high output with probability 2/3, while if the agent
chooses high output the competitor produces a high quantity with probability 1/3.21 The
agent believes that the competitor chooses output without observing the agent’s action,
and that they choose an high output with some unknown probability p: Θ= {p ∈ �(Y)A :
p2(2)= p1(2)}. The true distribution is p∗

2(2)= 1/3 = p∗
1(1).

The demand function of the consumers is linear, and the agent has no production cost;
the utility function of the agent is u(a� y) = a(4�5 − a − y). High output is objectively

21The randomness could arise from a distribution over production costs in the population of competitors.
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optimal for the agent, and is also a uniformly strict BN-E. However, low output is also
a uniformly strict BN-E, supported by the wrong belief that the observed high level of
production of the competitor would be the same even if the agent increased output. By
Theorem 4, both actions have a positive probability of arising as limit outcomes starting
from every initial prior.

Without the assumption of subjectively exogenous outcomes, uniformly strict BN-E
need not be positively attractive.

EXAMPLE 4—A Uniformly Strict BN-E That Is Not Positively Attractive: A central
bank decides whether to keep a flexible exchange rate, a = f , or peg the currency to
the dollar, a = c. The outcome has two binary components, y = (ye� ys), where ye says
whether the economy is in a boom, and ys whether there is a speculative attack on the
currency. The bank likes booms and dislikes speculative attacks: u(f� y) = ye, u(c� y) =
3
2y

e − ys.
The bank correctly believes that whether there is a speculative attack is independent

of the state of the economy. Furthermore, the bank knows that if they maintain a flexible
exchange rate, the probability of a currency attack is 0, and believes that the probability of
a currency attack under a fixed exchange rate is either 10% (the true value) or 90%. The
bank correctly believes that pegging the currency to the dollar increases the probability of
a boom by 33�3̄% over a baseline probability, which the bank believes is either 33�3̄% or
66�6̄%, and the belief is independent across the two dimensions. In truth the baseline is
50%, so the bank is misspecified. 22

Here, pegging the currency to the dollar is a uniformly strict BN-E, but it is not posi-
tively attractive: For any discount factor, if the prior assigns sufficiently high probability
to the states where a currency attack happens with probability 90% if the currency is not
pegged to the dollar, the bank starts out choosing a flexible exchange rate, and sticks with
that action forever. To see why, note that when the currency is floating the bank does not
update its beliefs about the likelihood of a currency attack under a pegged exchange rate.

4.2.2. Subjective Bandit Problems

Recall that in a subjective bandit problem (Definition 3), the agent believes that the
outcome distribution is independent across actions. An argument similar to that for sub-
jectively exogenous problems shows that uniformly strict BN-E are positively attractive in
subjective bandit problems if the agent is sufficiently patient. However, uniformly strict
BN-E is a very demanding concept in subjective bandit problems, as the Kullback–Leibler
divergence between the true and subjective outcome distributions induced by an action
does not constrain the “off-path” beliefs about the consequences of other actions, and
very optimistic off-path beliefs can make some other action a better reply.

However, in these problems we can replace the uniformity requirement with the re-
quirement that the equilibrium is weakly identified introduced in Esponda and Pouzo
(2016).

DEFINITION 10: A BN-E action a is weakly identified if for all p�p′ ∈ Θ̂(a) we have
pa = p′

a.

22That is, the bank believes that the probabilities of a boom with or without peg are either (100%�66�6̄%)
or (66�6̄%�33�3̄%), respectively, while in truth they are (83�3̄%�50%).
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Weak identification guarantees that once behavior stabilizes on action a, there is no
additional updating about the relative likelihood of the KL-minimizing outcome distribu-
tions. When the agent thinks the outcome distribution is exogenous, the equilibrium can
only be weakly identified if the KL minimizer is unique. Weak identification is significantly
weaker in subjective bandits, as it only requires the existence of a unique conceivable out-
come distribution qa that best matches p∗

a, without imposing any restrictions on what the
agent believes about the consequences of other actions.

THEOREM 5: For every subjective bandit problem there is a β̄ < 1 such that if the discount
factor β≥ β̄, then every weakly identified strict BN-E is positively attractive.

The proof uses the fact that patient agents experiment with actions that they believe
might give them a higher payoff. The conclusion of the theorem is false for myopic agents
even in the correctly specified case, where the BN-E correspond to the self-confirming
equilibria, and with probability 1 the agent may always play whichever action is myopically
optimal given their initial beliefs.

In subjective bandit problems, we can sharpen the conclusion of Theorem 1 for ac-
tions that perform poorly under one of the KL minimizers. We say that action a is quasi-
dominated if there are p̂ ∈ Θ̂(a) and b ∈A such that Ep̂a[u(a� y)] < Epb[u(b� y)] for all
p ∈ Θ. That is, there is a KL minimizer p̂ for action a such that the utility of a under
p̂ is lower than that of action b under any of the p in the support of the prior. Quasi-
dominated actions are not uniform BN-E, so play cannot converge to them with positive
probability.

In a subjective bandit problem, even more is true; quasi-dominated actions can be
played only a finite number of times.

COROLLARY 1: In a subjective bandit problem, any quasi-dominated action is almost
surely played only a finite number of times.

In particular, in two-armed subjective bandit problems where one action is quasi-
dominated, play converges to the other one. Note that this result does not depend on
the discount factor, and is true even if the quasi-dominated action is objectively optimal
and the agent assigns positive probability to it being optimal. In contrast, the probability
that a correctly specified agent locks on to an incorrect action goes to 0 as the discount
factor goes to 1.

4.2.3. Strongly Supermodular Problems

DEFINITION 11: We say that the problem is strongly supermodular if we can strictly order
the space of actions (A�>), outcomes (Y�>), and the set of conceivable distributions
(Θ�>) so that:

(i) u is strictly supermodular in a and y;
(ii) if p�p′ ∈Θ and p>p′, then for all a ∈A and y ∈ Y \ ȳ , we have pa({y ′ : y ′ > y}) >

p′
a({y ′ : y ′ > y}), where ȳ denotes the highest outcome.

THEOREM 6: In a strongly supermodular problem, if p∗
a (resp., p∗

ā) has full support, and
the highest action ā (resp., the lowest action a) is a uniform and strict BN-E, then ā (resp., a)
is positively attractive.
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Strong supermodularity implies that the agent will use action ā if they observe the
highest y ’s sufficiently often. Moreover, the antisymmetric ordering of the elements of
Θ guarantees that every uniform and strict BN-E is uniformly strict, and so Theorem 2
guarantees that there is positive probability that once the agent plays ā they will stick to
it forever.

EXAMPLE 5—Underinvestment Trap: Each period the agent decides how much effort
a ∈ {0�1�2} to exert on a task. The effort can be either successful, y = 1, or unsuccessful,
y = 0. Higher effort makes success more likely: p∗

2(1) = 9/10 > p∗
1(1) = 1/2 > p∗

0(1) =
1/12. Moreover, higher effort also increases the benefit of a success: u(a� y)= ay − a/2.
Thus the objectively optimal action is to exert high effort, a= 2.

The agent mistakenly believes that the probability of success depends on their effort
and their intrinsic skill ψ, and Θ is consists of all p such that p2(1)= 2/3 +ψ> p1(1)=
1/2 +ψ>p0(1)= 1/3 +ψ for some ψ ∈ [−1/4�1/4].

Here, there are two BN-E: a = 0 and a = 2. In the bad equilibrium a = 0, the KL-
minimizing outcome distribution corresponds to the lowest possible skill level ψ= −1/4,
which leads the agent to exert the low effort. Since both BN-E are uniformly strict and
the problem is strongly supermodular, Theorem 6 implies that both the Nash equilibrium
and the bad equilibrium with low effort are positively attractive.

5. SIGNALS

Suppose each period before taking an action the agent observes a signal s from a com-
pact set S, equipped with its Borel sigma algebra. Thus the analog of an action in the
previous sections is now a strategy, that is, a measurable map σ : S →A from signals to
actions. Signals may be payoff relevant, so now utility is a map u :A× Y × S → R, and
signals may also be useful for predicting the outcome distributions, so now pa�s ∈ �(Y)
depends both on this period’s action and on the signal observed at the start of the period.
A policy π(at� yt� st+1) specifies the action in each period t as a function of past actions,
outcomes, and signals.

To complete the model, we also need to specify the objective distribution of signals.
We focus on the case where the distribution of s is fixed (i.i.d.) with distribution ζ that is
known to the agent, as in Esponda and Pouzo (2016).23

Subjective Beliefs. The agent correctly believes that the map from actions and signals
to probability distributions over outcomes is fixed, but they are uncertain about the dis-
tribution each signal and action pair induces. Let P = �(Y)A×S be the space of all signal
and action dependent outcome distributions. The agent’s uncertainty is captured by a
prior belief μ0 ∈ �(P), again with Θ= suppμ0.

ASSUMPTION 1′:
(i) For all p ∈Θ, a ∈A, y ∈ Y , and s ∈ S, pa�s(y) > 0 if and only if p∗

a�s(y) > 0.
(ii) The prior μ0 has subexponential decay: there is Ψ : R+ → R++ such that for every

p ∈ Θ and ε > 0 we have μ0(Bε(p)) ≥ Ψ(ε) with limΨ(K/n)exp(n) = ∞ for all
K > 0.

23A continuum of signals allows payoff shocks that generate continuous best-response distributions.
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Let μt(· | (st� at� yt)) ∈ �(P) denote the agent’s subjective belief obtained using Bayes
rule after observing the sequence of signals and outcomes (st� yt) when taking the ac-
tions at .

We say that two outcome distributions p�p′ ∈ Θ are observationally equivalent under
the strategy σ if pσ(s)�s(y) = p′

σ(s)�s(y) for all s ∈ S and y ∈ suppp∗
σ(s)�s, and we let Eσ(p)

denote the outcome distributions that are observationally equivalent to p under σ . To
simplify the analysis, we make the following assumption, which is satisfied for example if
the signals are payoff shocks, or if there are only finitely many signals.

DEFINITION 12: The environment is finite dimensional if there is a partition Ξ =
{ξ1� � � � � ξN} of S into a finite number of measurable sets such that the agent correctly be-
lieves the same outcome distribution applies for all s in ξi: pa�s = pa�s′ for all p ∈Θ∪{p∗},
a ∈A, i ∈ {1� � � � �N}, and s� s′ ∈ ξi.

Under this assumption, we abuse the notation by letting pa�ξi denote the outcome dis-
tribution prescribed by p after action a and an arbitrary signal in ξi. With this, the relevant
set of “closest beliefs to the truth” is now

Θ̂(σ)= argmin
p∈Θ

∑
ξi∈Ξ

ζ(ξi)H
(
p∗
σ(s)�ξi

�pσ(s)�ξi
)
�

We use this modified definition of the minimizers to extend the definition of the equilib-
rium concepts to this more general setting. The proofs for all of the results of this section
are in the Supplemental Material.

DEFINITION 6′:
(i) Strategy σ is a BN-E if there exists a belief ν ∈ �(Θ̂(σ)) such that σ is myopically

optimal given ν.
(ii) Strategy σ is a uniform BN-E if for all p ∈ Θ̂(σ) there exists a belief ν ∈ �(Eσ(p))

such that σ is myopically optimal given ν.
(iii) Strategy σ is a uniformly strict BN-E if σ is the unique myopic best reply to any belief

in ν ∈ �(Θ̂(σ)).24

THEOREM 1′: Suppose the agent’s beliefs are finite dimensional. If σ is a limit strategy,
then σ is a uniform BN-E.

The proof of this result is very similar to the proof of Theorem 1. The main difference
is that the relevant random walk is the empirical distribution over joint realizations of
signals and outcomes.

Similarly, we can extend our result on the stability of uniformly strict BN-E. Specifically,
we have the following.

THEOREM 2′: Suppose σ is a uniformly strict BN-E. Then there is a belief ν ∈ �(Θ) such
that for every κ ∈ (0�1) there exists an ε′ > 0 such that starting from any prior belief in Bε′(ν):

Pπ

[
lim
t→∞

1
t + 1

t∑
r=0

1π(ar �yr �sr+1)=σ(sr+1)
≥ 1 − κ

]
> 1 − κ�

24Here, uniqueness is up to a set of signals that have zero probability under ζ.
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Example 10 in the Supplemental Material illustrates the long-run biases that can be
induced when the agent mistakenly thinks that signals are uninformative. There, a seller
receives a signal about the current period’s market, and decides whether to undertake an
investment that may boost sales. The seller does not realize that when more consumers
show up, a lower fraction of them buy; we show that this can lead to persistent underin-
vestment when market attendance is high.

When the agent thinks the signals are uninformative, their prior has support on distri-
butions of y given a that are independent of s. Here, the only reason they might influence
the agent’s choices is that they may directly enter their payoff function. The next result
shows that all uniformly strict BN-E are positively attractive when signals are subjectively
uninformative and the true data generating process has full support.

THEOREM 4′: If signals are finite and subjectively uninformative and outcomes are subjec-
tively exogenous, then any uniformly strict BN-E σ is positively attractive.

The proof of this result is similar to that of Theorem 4, because when signals are subjec-
tively uninformative we can apply Proposition 1 to the uncontingent empirical distribution.

6. CONCLUDING REMARKS

Learning in Large Population Games. The biases we consider are relevant in non-
equilibrium models of learning about the prevailing distribution of strategies. Consider
a finite I player game, and suppose there is a continuum of agents in each player role
i ∈ I who are matched every period to play the game, and observe the actions played in
their matches but nothing else. In a steady state,25 the problem faced by an agent in popu-
lation i is equivalent to the one we considered in the previous sections: the agent correctly
believes they are facing a stationary environment, and they realize that they do not affect
the next period’s distribution of opponents’ strategies. Causation neglect corresponds to
the bias of an agent who thinks they are playing a simultaneous-move game, when in real-
ity their opponents observe the agent’s choice before moving. Subjective bandit problems
arise when the agent has independent beliefs about the responses to different strategies.
In games of incomplete information, the agent may have signal neglect, and incorrectly
believe that the game has independent private values.

Our results help characterize the possible limit actions in these situations. Of course,
extensive-form games may not have strict equilibria, so some of our results will not apply,
but it may be possible to extend some of our conclusions to equilibria that are on-path
strict in the sense of Fudenberg and He (2020). Also, games need not have pure-strategy
equilibria, but it may be possible to apply our methods to setting where each agent plays
deterministically, and different agents in the same player role choose different actions.26

Infinitely Many Actions. When the agent has a finite number of possible actions or
stage-game strategies, as we have assumed in this paper, an equivalent definition of uni-
formly strict BN-E is an action a that is the unique best response to every belief in a neigh-
borhood of the KL minimizers for a. With infinitely many actions and continuous payoff

25These models do have steady states when there is a steady outflow of agents balanced by an inflow of new
ones; see, for example, Proposition 3 in Fudenberg and He (2018).

26Alternatively, we could consider a model with one agent per player role and payoff perturbations, as in
Fudenberg and Kreps (1993) and Esponda and Pouzo (2016).
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functions, actions that are sufficiently near the strict best response incur arbitrarily small
losses and are best responses to nearby beliefs. Here, the two definitions of uniformly
strict BN-E are not equivalent. Indeed, as shown by an example in Heidhues, Kőszegi,
and Strack (2021), some BN-E that are uniformly strict BN in the sense of Definition 6
may not be positively attractive. However, we conjecture that the positive attractiveness
result continues to hold under the alternative definition.

Summary and Discussion. In many economically relevant settings, it seems plausible
that agents misunderstand some aspects of the world. For this reason, it is important to
understand what beliefs these agents will develop and how they will behave. This paper
provides sharp characterizations of what actions arise as the long-run outcomes of mis-
specified learning. We show that all uniformly strict BN-E are stable, and that under a
mild condition only uniform BN-E can be stable. Moreover, we show that play can only
converge to uniform BN-E. Our work thus suggests uniformity should be imposed as a
refinement of BN-E. We then provide the first sufficient conditions for an action to be
positively attractive under misspecified learning. Here, we highlight the role played by
the correlation that the agent perceives between the outcome distributions associated
with different actions.

APPENDIX A

Section A.1 formally describes the space where our stochastic processes are defined,
Section A.2 states some preliminary technical lemmas, Section A.3 proves that beliefs
concentrate around the KL minimizers at and exponential rate, and Section A.4 contains
the results of the main text for the models that do not have signals.

A.1. Sample Space

We work with the probability space (Ω�F�P). The sample space Ω = (Y∞)A consists
of infinite sequences of action dependent outcome realizations (xa�1�xa�2� � � �)a∈A, where
xa�k determines the outcome when the agent takes the action a for the kth time. F is
the product sigma algebra and the probability measure P is the product measure induced
by independent draws from the relevant component of p∗. The outcome observed by the
agent in period t after action at is yt = xat�k, where k = |{τ ≤ t : aτ = at}| is the number
of times the agent has taken action at up to and including period t.27 The probability
measure Pπ over (aτ� yτ)∞τ=1 induced by the policy π is defined as follows: For every t ∈ N

and cylinder (aτ� yτ)tτ=1,

Pπ

[
(aτ� yτ)

t
τ=1

]=
⎧⎪⎨
⎪⎩

0� if there exists t ′ ∈ {1� � � � � t} : at′ �= π
(
(aτ� yτ)

t′−1
τ=1

)
�

t∏
τ=1

paτ(yτ) otherwise�

27An alternative specification has sample space (xa�1�xa�2� � � �)a∈A, with xa�k denoting the outcome realiza-
tion if the agent takes action a in period k. An argument similar to that of Lemma 5 of Fudenberg and He
(2017) shows that this would not change our results.
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A.2. Preliminary Lemmas and Definitions

Denote the set of conceivable outcome distributions for action a that best match p∗
a by

Θ̂a(a)= argmin
pa:p∈Θ

H
(
p∗
a�pa

)⊂ �(Y)�
LEMMA 1: For every a ∈A and ε > 0, Θ̂(a) defined in equation (1), Θ̂a(a), Θ̂ε(a) defined

in equation (2), and �(Θ̂(a)) are compact.

The proof of Lemma 1 is routine and relegated to the Supplemental Material.
For every p ∈ P and every policy π, let Ep�π denote the expectation operator over action

and outcome sequences that is induced by policy π under outcome distribution p. We
work with the agent’s normalized value throughout, which is

V (π�ν)= (1 −β)
∫
P

Ep�π

[ ∞∑
t=1

[
βt−1u(at� yt)

]]
dν(p)�

The set of policy functions is Π =A⋃∞
t=0A

t×Yt .

LEMMA 2: Π is compact in the product topology, and for all ν ∈ �(Θ), V (·� ν) is continu-
ous with respect to the product topology.

Lemma 2 is a consequence of the more general Lemma 11 which covers cases where
each period the agent observes a signal before choosing their action. This lemma is proved
in the Supplemental Material.

Next, we bound the difference between the value of using action a and the value of any
other action in terms of their expected utility given that beliefs are concentrated around
the outcome distributions Θ̂(a). Denote the set of beliefs over conceivable distributions
that assign at least probability 1 − ε to Θ̂ε(a) by

Mε�a = {ν ∈ �(Θ) : ν(Θ̂ε(a)
)≥ 1 − ε}�

The following lemma shows that if the agent’s beliefs are sufficiently concentrated on the
set of KL minimizers associated with a uniformly strict BN-E a, the agent will play a, even
if the agent is not myopic.

LEMMA 3: If a ∈A is a uniformly strict BN-E, then for every optimal policy π, there exists
an ε̂ > 0 such that for all ε < ε̂, ν ∈Mε�a =⇒ π(ν)= a.

PROOF: Let πa denote the policy that prescribes to always play a. By Lemma 2, the
space of the policy functions endowed with the product topology is compact. Since the
subset of policy functions that do not prescribe a at the initial history is closed, this
subset is compact as well, and because β ∈ [0�1), the value function is continuous at
infinity, so V (πa� ν)−V (·� ν) is a continuous function of the policy. Moreover, since
Ep�π[∑∞

t=1[βt−1u(at� yt)]] is continuous in p, V (πa� ·)−V (π̃� ·) is continuous in ν.
DefineG(ε) as the minimal gain from playing a forever instead of using some best pol-

icy π̃ that does not play a at a belief ν in Mε�a: G(ε) = minπ̃:π̃(ν) �=a minν∈Mε�a(V (πa� ν)−
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V (π̃� ν)). Given that ε→Mε�a is an upper hemicontinuous and compact valued corre-
spondence, G is continuous in ε.

Note thatM0�a = Θ̂(a) which is the set of KL minimizers given action a. For every belief
supported on this set, a is the unique maximizer as it is a uniformly strict BN-E. If the
prior belief is supported on Θ̂(a) so is the posterior after every history, which implies that
the action a is strictly optimal after every history. Consequently, V (πa� ν)−V (π̃� ν) > 0
for every ν ∈ �(Θ̂(a)) and every strategy π̃ that does not prescribe action a in every period
with probability 1. Since G(0) = minπ̃:π̃(ν) �=a minν∈�(Θ̂(a))(V (π

a� ν)−V (π̃� ν)), this implies
that G(0) > 0. By the continuity of G, there is an ε̂ such that if ε≤ ε̂, G(ε) > 0. This im-
plies that for any ε≤ ε̂, any optimal policy prescribes the action a for all ν ∈Mε�a. Q.E.D.

The next lemma extends an argument of Fudenberg and Levine (1992) to take into
account misspecification. It establishes that if the expectation of the lth power of the
likelihood ratio between two subjective outcome distributions is greater 1 then the lth
power of the likelihood ratio of the subjective probability assigned to small environments
of these outcome distributions is a submartingale.

LEMMA 4: Let p�p′�p∗ ∈ �(Y), and l ∈ (0�1) be such that

∑
y∈Y
p∗(y)

(
p(y)

p′(y)

)l
< 1� (3)

Then there is ε′ > 0 such that for all ν ∈ �(�(Y)), if we let ν(C | y)=
∫
q∈C q(y)dν(q)∫

q∈�(Y) q(y)dν(q)
, then

∑
y∈Y
p∗(y)

[(
ν
(
Bε′(p) | y)

ν
(
Bε′
(
p′) | y)

)l]
≤
(
ν
(
Bε′(p)

)
ν
(
Bε′
(
p′))

)l
�

PROOF: The lemma is trivially true if ν(Bε(p′))= 0 for some ε. Therefore, without loss
of generality, we can assume that ν(Bε(p′)) > 0 for all ε. Let ε̂ be such that ‖q−p′‖ ≤ ε̂
implies that q(y) = 0 only if p′(y) = 0. Let Cε = �(Bε(p)) × �(Bε(p

′)) and define G :
[0� ε̂2 ] → R by

G(ε)= max
(ν̄�ν′)∈Cε

∑
y∈Y
p∗(y)

⎛
⎜⎜⎝
∫
Bε(p)

q̄(y)dν̄(q̄)∫
Bε(p′)

q(y)dν′(q)

⎞
⎟⎟⎠
l

�

By the maximum theorem, the compactness of �(Bε(p′)) and �(Bε(p)) and the fact that
G(0) < 1 by equation (3), there is ε′ > 0 such that for all ν′ ∈ �(Bε′(p′)), ν̄ ∈ �(Bε′(p)),

∑
y∈Y
p∗(y)

⎛
⎜⎜⎝
∫
Bε′ (p)

q̄(y)dν̄(q̄)∫
Bε′ (p′)

q(y)dν′(q)

⎞
⎟⎟⎠
l

≤ 1� (4)
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Then

∑
y∈Y
p∗(y)

(
ν
(
Bε′(p) | y)

ν
(
Bε′
(
p′) | y)

)l
=
∑
y∈Y
p∗(y)

⎛
⎜⎜⎜⎝
∫
Bε′ (p)

ν
(
Bε′(p)

)
q̄(y)d

ν(q̄)

ν
(
Bε′(p)

)
∫
Bε′ (p′)

ν
(
Bε′
(
p′))q(y)d ν(q)

ν
(
Bε′
(
p′))

⎞
⎟⎟⎟⎠
l

=
∑
y∈Y
p∗(y)

⎛
⎜⎜⎜⎝
∫
Bε′ (p)

q̄(y)d
ν(q̄)

ν
(
Bε′(p)

)
∫
Bε′ (p′)

q(y)d
ν(q)

ν
(
Bε′
(
p′))

⎞
⎟⎟⎟⎠
l(
ν
(
Bε′(p)

)
ν
(
Bε′
(
p′))

)l

≤
(
ν
(
Bε′(p)

)
ν
(
Bε′
(
p′))

)l
�

where the inequality follows from equation (4). Q.E.D.

The next lemma shows that if for every initial belief supported on Θ, always playing b
almost surely leads to a belief at which action b is not prescribed by any optimal policy,
then b is not a limit action.

LEMMA 5: Suppose that for any prior belief ν0 supported on Θ and any optimal policy π̃
Pπb[b= π̃(ντ) for all τ ≥ 0] = 0, then b is not a limit action.

PROOF: Suppose by way of contradiction that there is an optimal policy π̃ and a history
(at� yt) with Pπ̃[(at� yt)]> 0 such that with positive probability π̃ prescribes b after (at� yt)
in every future period. Define ν0 = μ(·|(at� yt)), and notice that suppν0 = suppμ0 = Θ.
Define νt to be the belief if the agent uses the policy πb, that is, plays b in every period. As
the evolution of beliefs under πb is the same as under π̃ for every history where the agent
continues to play b, we have that Pπ̃[b = π̃(μτ) for all τ ≥ t] > 0 if and only if Pπb[b =
π̃(ντ) for all τ ≥ 0]> 0. However, the later equals zero by the assumption of the lemma,
which establishes that b can not be a limit action. Q.E.D.

The next lemma extends Lemma 3 of FII to show that there exists a uniform l such that
all KL minimizers dominate all the distributions that are ε away from the minimizers in
the sense that the expectation of the lth power of the likelihood ratio is lower than 1.

LEMMA 6: Fix an action a and ε > 0. There exists l > 0 such that for all l ≤ l, for every
KL minimizer q ∈ Θ̂(a), and every outcome distribution p′ /∈ Θ̂ε(a),

fl
(
q�p′) :=∑

y∈Y
p∗
a(y)

(
p′
a(y)

qa(y)

)l
< 1�

PROOF: As noted by FII in their Lemma 3, (i) for each KL minimizer q ∈ Θ̂(a) and
every outcome distribution p′ /∈ Θ̂(a) there exists an l(q�p′) such that fl(q�p′) < 1 for all
l ≤ l(q�p′) and (ii) for all q�q′ ∈ Θ, if l̂ > l and fl(q�q′) ≥ 1, then fl̂(q�q

′) ≥ 1. We will
now prove that there exists a uniform l that works for every q ∈ Θ̂(a) and p′ /∈ Θ̂ε(a).
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Suppose by way of contradiction that there was no l > 0 such that for all l ≤ l, fl(q�p′) <
1 for all q ∈ Θ̂(a) and p′ /∈ Θ̂ε(a). Then define a sequence (qn�p′

n)n∈N ∈ (Θ̂(a)�Θ \
Θ̂ε(a))N such that f 1

n
(qn�p

′
n) ≥ 1. Sequential compactness of Θ̂(a)× cl{p ∈ �(Θ) : pa /∈

Θ̂ε(a)} guarantees that this sequence has an accumulation point (q�p′) with q ∈ Θ̂(a)
and p′ /∈ Θ̂(a).28 However, for n > 1

l(q�p′) , f 1
n
(qn�p

′
n) ≥ 1 implies fl(q�p′)(qn�p

′
n) ≥ 1, and

the continuity of fl(q�p′) at (q�p′) leads to a contradiction with fl(q�p′)(q�p
′) < 1. Q.E.D.

A.3. Exponential Concentration of Beliefs

We show next that repeated use of action a implies that the beliefs about the outcome
distribution induced by a concentrate at an exponential rate around the distributions that
“best fit” the empirical frequency of observed outcomes. Importantly, this result does
not require that either actions or empirical frequencies converge. It will be important in
what follows that these results apply pathwise, as they do in the correctly specified case
studied by Diaconis and Freedman (1990), although unlike their result ours only applies
for empirical distributions that are near the true distribution p∗. For brevity, we limit our
analysis to this set of distribution, since this is enough for our results. In a separate note,
Fudenberg, Lanzani, and Strack (2021), we provide a result that resembles more closely
the original result in Diaconis and Freedman (1990).

For every a ∈ A, η ∈ (0�1) and q ∈ �(Y), let qη = (1 − η)p∗
a + ηq, ηt = 2t−

1
2 , and

D= min{(p′
a(y)/pa(y)) : p�p′ ∈Θ�a ∈A�y ∈ Y�p∗

a(y) > 0}.

PROPOSITION 1: Let (ai� yi)τi=1 be a history with positive probability, and suppose that only
action a is played in periods (τ+1� � � � � τ+ t). For every q̂ ∈ Θ̂a(a), there exist I� K̂�K′ ∈R++
such that if the empirical outcome frequency ft = 1

t

∑τ+t
i=τ+1 1yi=y satisfies ‖q̂ηt − ft‖ < ‖q̂ −

p∗
a‖t− 1

2 /K′, then

μτ+t
({
p ∈Θ : ∀y ∈ suppp∗

a�
∣∣pa(y)− q̂(y)∣∣< ε})

1 −μτ+t
({
p ∈Θ : ∀y ∈ suppp∗

a�
∣∣pa(y)− q̂(y)∣∣< ε}) ≥DτΨ

(
K̂ε2 2

It
1
2

)
exp
(
2K̂t

1
2 ε2
)
�

To establish Proposition 1, we first prove a sequence of auxiliary results. Given two
outcome distributions q�q′ ∈ �(Y), η ∈ (0�1), and ε > 0, let

Uε

(
q�q′�η

)= {q′′ ∈ �(Y) : ∥∥ηq+ (1 −η)q′ − q′′∥∥≤ ε}
denote the ball of radius ε around ηq + (1 − η)q′. The next result establishes a form
of local Lipschitz continuity of the function minq′∈C H(·� q′)−H(·� q) for suitably chosen
q ∈ �(Y) and compact C ⊆ �(Y).

LEMMA 7: Fix q ∈ �(Y) with suppq ⊆ suppp∗
a and a compact set C ⊆ �(Y) such that

all the elements of C are absolutely continuous with respect to p∗
a. Then there exists a K > 0

such that for every f ′ ∈Uε(q�p
∗
a�η) with supp f ′ ⊆ suppp∗

a,∣∣∣min
q′∈C

H
(
(1 −η)p∗

a +ηq�q′)−H((1 −η)p∗
a +ηq�q)− min

q′∈C
H
(
f ′� q′)+H(f ′� q

)∣∣∣≤Kε�
28We denote the closure of a set by cl.
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The proof of Lemma 7 is in the Supplemental Material.
Let χ be a Borel probability measure over probability distributions on Y , let

Qε�χ(q̄)=
{
q′ ∈ �(Y) : ∃q′′ ∈ �(Y) :H(q̄� q′′)≤ min

q∈suppχ
H(q̄�q)�

∥∥q′ − q′′∥∥
∞ < ε

}

be the distributions that are within ε of a distribution q′′ with a lower Kullback–Leibler
divergence with the given q̄ than the minimum over suppχ, and let

g
(
p′� ε

)= min
p∈�(Y)\Qε�χ

H
(
p′�p

)− min
p∈suppχ

H
(
p′�p

)
> 0

be the minimal increase of the relative entropy from p′ when it is minimized over �(Y) \
Qε�χ instead of suppχ.

LEMMA 8: Let χ0 be a Borel probability measure over �(Y) and for every t ∈ N and
every sequence of outcomes yt ∈ Y t let χt(·|yt) denote the posterior belief after observing the
outcome sequence yt starting from the prior χ0. Then for all ε ∈ R++ and ft(y)= 1

t

∑t

τ=1 1yτ=y
we have that

χt
(
Qε�χ0(ft) | yt)

1 −χt
(
Qε�χ0(ft) | yt) ≥ χ0

(
Q g(ft �ε)

2R(ft �ε)
�χ0
(ft)
)
e�5tg(ft �ε)�

where

R(ft� ε)= sup
q�q′∈Qε�χ0 (ft )

∣∣H(ft� q)−H(ft� q′)∣∣∥∥q− q′∥∥ �

PROOF: Fix ε ∈ R++ and for any ε̄ ∈ R++, let Q(ε̄) = Qε̄�χ0(p
′). By definition of

R(ft� ε), g(ft� ε)/2R(ft� ε)≤ ε, and so minp∈�(Y)\Q(ε) H(p′�p)−max
p∈Q( g(ft �ε)2R(ft �ε)

)
H(p′�p)≥

�5g(p′� ε). From the definition of χt , we have that for all yt where the empirical distribu-
tion is ft ,

χt
(
Q(ε) | yt)

1 −χt
(
Q(ε) | yt) =

∫
Q(ε)

∏
y∈Y
q(y)tft (y) dχ0(q)

∫
suppχ0\Q(ε)

∏
y∈Y
q(y)tft (y) dχ0(q)

≥

∫
Q(

g(ft �ε)
2R(ft �ε)

)

exp
(−tH(ft� q))dχ0(q)

exp
(
−t min

p/∈Q(ε)
H
(
p′�p

))

=
∫
Q(

g(ft �ε)
2R(ft �ε)

)

exp
(
t min
p/∈Q(ε)

H
(
p′�p

)− tH(ft� q))dχ0(q)

≥ χ0

(
Q

(
g(ft� ε)

2R(ft� ε)

))
e�5tg(p

′�ε),

where the first inequality follows from g(ft� ε)/2R(ft� ε)≤ ε. Q.E.D.

LEMMA 9: For ε > 0 and η ∈ (0�1), if p ∈ Θ̂(a), q = pa, suppχ = {q′ ∈ �(Y) : q′ =
p′
a�p

′ ∈Θ} then g((1 −η)p∗
a +ηq�ε)≥ 2ηε2.
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PROOF: H is linear in its first argument, so for η ∈ (0�1), argminp′
a:p′∈ΘH((1 −η)p∗

a +
ηq�p′

a)= {q}. Then

g
(
(1 −η)p∗

a +ηq�ε)
≥ min

q′∈�(Y)\Qε�χ0

∑
y∈Y

[
(1 −η)p∗

a(y)+ηq(y)] logq′(y)

−
∑
y∈Y

[
(1 −η)p∗

a(y)+ηq(y)] logq(y)

≥ (1 −η) min
q′∈�(Y)\Qε�χ0

∑
y∈Y
p∗
a(y) log

(
q′(y)
q(y)

)
+η inf

q′∈�(Y)\Bε(q)

∑
y∈Y
q(y) log

(
q′(y)
q(y)

)

≥ 0 +η inf
q′∈�(Y)\Bε(q)

∑
y∈Y
q(y) log

(
q′(y)
q(y)

)
≥ 2ηε2�

where the first inequality follows from the definition of g, the second from concavity of
the minimum, the third from the fact that q is a KL minimizer, and the fourth is Pinsker
inequality. Q.E.D.

REMARK 1: Observe that after every finite time t, the posterior μt satisfies the As-
sumption 1. That (i) is satisfied follows from the fact that suppμt ⊆ suppμ0. For (ii), let
Ψ :R+ → R++ be the function whose existence is guaranteed by the regularity assumption
(ii). Bayesian updating implies that for every p ∈ Θ, ε > 0, μt(Bε(p)) ≥ μ0(Bε(p))D

t ≥
Ψ(ε)Dt a.s. Therefore, by definingΨt =DtΨ we have limn→∞Ψt(K/n)e

n = limn→∞Ψ(K/
n)enDt = ∞ for all K > 0, so (ii) is satisfied.

PROOF OF PROPOSITION 1: Set I =R(q̂ηt � ε). If q̂ηt =
∑τ+t
i=τ+1 1yi=y

t
, we have

μτ+t
({
p ∈Θ : ∀y ∈ suppp∗

a�
∣∣pa(y)− q̂(y)∣∣< ε})

1 −μτ+t
({
p ∈Θ : ∀y ∈ suppp∗

a�
∣∣pa(y)− q̂(y)∣∣< ε})

≥ μτ
({
p ∈Θ : ∀y ∈ suppp∗

a�
∣∣pa(y)− q̂(y)∣∣< g(q̂ηt � ε)

2I

})
e�5tg(q̂ηt �ε)

≥ μτ
({
p ∈Θ : ∀y ∈ suppp∗

a�
∣∣pa(y)− q̂(y)∣∣< ε2 2

It
1
2

})
exp
(
tηtε

2
)

≥DτΨ

(
ε2 2

It
1
2

)
exp
(
2t

1
2ε2
)
�

where the first inequality follows from Lemma 8, the second from Lemma 9, and the third
from Assumption 1(ii) and Remark 1.

Finally, by Lemma 7 there exists a K̂�K′ > 0 such that if ‖q̂ηt − ft‖< ‖q̂− p∗
a‖t− 1

2 /K′

then

μτ+t
({
p ∈Θ : ∀y ∈ suppp∗

a�
∣∣pa(y)− q̂(y)∣∣< ε})

1 −μτ+t
({
p ∈Θ : ∀y ∈ suppp∗

a�
∣∣pa(y)− q̂(y)∣∣< ε}) ≥DτΨ

(
K̂ε2 2

It
1
2

)
exp
(
2K̂t

1
2 ε2
)
�

Q.E.D.
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A.4. Proof of Results Stated in the Text

PROOF OF THEOREM 1: We prove the statement by contraposition. Suppose that a is
a limit action under the optimal policy π, and let (ai� yi)τi=1 be a history with positive
probability. We show that if the agent plays a at every period after (ai� yi)τi=1 almost surely
the belief μt reaches a region where no optimal policy prescribes a. By Lemma 5, this
is enough to obtain the desired conclusion. Since a is not a uniform BN-E, then there is
p′ ∈ Θ̂(a) such that if suppν ⊆ Ea(p′), then a /∈ Am(ν). We set q = p′

a throughout this
proof.

CLAIM 1: There exists ε > 0 such that if ν ∈ �(Θ) is such that

ν
({
p ∈Θ : ∀y ∈ suppp∗

a�
∣∣pa(y)− q(y)∣∣< ε})

1 − ν({p ∈Θ : ∀y ∈ suppp∗
a�
∣∣pa(y)− q(y)∣∣< ε}) > 1 − ε

ε
�

then π(ν) �= a.

PROOF: Suppose by contradiction that for every n ∈ N there exists a νn ∈ �(Θ) such
that

νn
({
p ∈Θ : ∀y ∈ suppp∗

a�
∣∣pa(y)− q(y)∣∣< 1/n

})
1 − νn

({
p ∈Θ : ∀y ∈ suppp∗

a�
∣∣pa(y)− q(y)∣∣< 1/n

}) ≥ 1 − 1/n
1/n

and a = π(νn). Because �(Θ) is sequentially compact, (νn)n∈N has a converging subse-
quence (νni)i∈N → ν∗.

To show that this leads to a contradiction, define G(ν) = maxπ̃V (π̃� ν) −
maxπ̃:π̃(ν)=aV (π̃� ν). We claim that if suppν ⊆ {p ∈ Θ : ∀y ∈ suppp∗

a�pa(y) = q(y)}, then
G(ν) > 0. This is because the definition of q implies suppν ⊆ Ea(p′), so a /∈Am(ν), and
suppν ⊆ Ea(p′), together with Assumption 1(i), implies that the experimentation value of
a is 0.

Next, note that as shown in Lemma 2, the space of policy functions endowed with the
product topology is compact and V (·� ν)−V (·� ν) is a continuous function of the policy.
Since for every policy π̃, V (π̃� ·) is continuous in ν, from the maximum theoremG is con-
tinuous. But then ν∗({p ∈Θ : ∀y ∈ suppp∗

a�pa(y)= q(y)})= 1 and G(ν∗)= limn G(νn)=
0, a contradiction. Q.E.D.

In what follows, we fix an ε ∈ R++ that satisfies the conditions of Claim 1. Also, fix
an outcome y0 ∈ suppp∗

a, and let f̃t be the empirical frequency of the other | suppp∗
a| − 1

outcomes in the support ofp∗
a. Denote by p̃∗

a the true probabilities of the same | suppp∗
a|−

1 outcomes.

CLAIM 2: f̃t · t − p̃∗
at is a | suppp∗

a| − 1 dimensional random walk under the distribution
p̃∗
a, and the covariance matrix of its increments is nonsingular.

PROOF: Let y ∈ suppp∗
a \ {y0}. The increment of the y dimension at time t + 1 is equal

to

f̃t+1(y) · (t + 1)−p∗
a(y) · (t + 1)− f̃t(y) · t −p∗

a(y) · t = 1yt+1=y −p∗
a(y)
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and has expected value 0. Therefore, f̃t · t − p̃∗
at is a | suppp∗

a| − 1 dimensional ran-
dom walk. Moreover, the covariance matrix for the increments of f̃t · t − p̃∗

at is given
by Σy�y′ = −p̃∗

a(y)p̃
∗
a(y

′) if y �= y ′ and p̃∗
a(y)(1 − p̃∗

a(y)) if y = y ′. To see this, observe that
the covariance between 1y and 1y′ is given by

p̃∗
a(y)

(
1 −Ep̃∗

a
(1y)

)(
0 −Ep̃∗

a
(1y′)

)+ p̃∗
a

(
y ′)(0 −Ep̃∗

a
(1y)

)(
1 −Ep̃∗

a
(1y′)

)
+ (1 − p̃∗

a

(
y ′)− p̃∗

a(y)
)(

0 −Ep̃∗
a
(1y)

)(
0 −Ep̃∗

a
(1y′)

)
= p̃∗

a(y)
(
1 − p̃∗

a(y)
)(−p̃∗

a

(
y ′))+ p̃∗

a

(
y ′)(−p̃∗

a(y)
)(

1 − p̃∗
a

(
y ′))

+ (1 − p̃∗
a

(
y ′)− p̃∗

a(y)
)(−p̃∗

a

(
y ′))(−p̃∗

a(y)
)

= −p̃∗
a(y)p̃

∗
a

(
y ′)[2 − p̃∗

a(y)− p̃∗
a

(
y ′)− 1 + p̃∗

a

(
y ′)+ p̃∗

a(y)
]

= −p̃∗
a(y)p̃

∗
a

(
y ′)�

By part M35 of Theorem 2.3 of Berman and Plemmons (1994, page 137), if for every
row of the covariance matrix the entry on the diagonal is larger than the sum of the off-
diagonal entries, then the matrix is diagonal dominant, and so nonsingular.29 And for all
y ′ ∈ Y , we have that

p̃∗
a

(
y ′)(1 − p̃∗

a

(
y ′))= p̃∗

a

(
y ′)∑

y �=y′
p̃∗
a(y) > p̃

∗
a

(
y ′) ∑

y �=y′�y0

p̃∗
a(y)

concluding the proof of the claim. Q.E.D.

By the central limit theorem (f̃t − p̃∗
a)

√
t converges to a Normal random variable with

mean 0 and covariance matrix Σy�y′ . Let Ft = B ‖q−p∗
a‖/K′√
t

(p̃∗
a + 1√

t
(q−p∗

a)). We have that

P[f̃t ∈ Ft] = P
[√
t
(
f̃t − p̃∗

a

) ∈ B‖q−p∗
a‖/K′

(
q−p∗

a

)]
�

Taking the limit t → ∞ yields that

lim
t→∞

P[f̃t ∈ Ft] = P
[
Z̃ ∈ B‖q−p∗

a‖/K′
(
q−p∗

a

)]
�

where Z̃ is a random variable that is normally distributed with mean �0 and covariance
matrix Σy�y′ . Thus if we let Et denote the event ft ∈ Ft , it follows that

∑∞
t=1 P[Et] = ∞.

29This statement is the special case in which D is the identity.
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Moreover,

lim inf
t→∞

t∑
s=1

t∑
r=1

P[Es and Et]
(

t∑
s=1

P[Es]
)2 = lim inf

t→∞

1
t2

t∑
s=1

t∑
r=1

P[Es and Er]
(

1
t

∞∑
t=1

P[Et]
)2 ≤ lim inf

t→∞

1
t2

t∑
s=1

t∑
r=1

P[Er]
(

1
t

t∑
s=1

P[Es]
)2

= lim inf
t→∞

1
t

t∑
r=1

P[Er]
(

1
t

t∑
s=1

P[Es]
)2 = 1

lim
t→∞

P[Et]

= 1

P
[
Z̃ ∈ B‖q−p∗

a‖/K′
(
q−p∗

a

)] �
It then follows from the Kochen–Stone lemma (see Kochen and Stone (1964) or Exer-

cise 2.3.20 in Durrett (2008)) that

P

[ ∞⋂
t=1

∞⋃
s=t
Es

]
≥ P
[
Z̃ ∈ B‖q−p∗

a‖/K′
(
q−p∗

a

)]
> 0�

The event
⋂∞

t=1

⋃∞
s=t Es is invariant under finite permutations of the increments (1yt=y1�

� � � �1yt=y| suppp∗
a |−1 − p∗

a) with different time indices, so the Hewitt–Savage zero-one law
(see, e.g., Theorem 8.4.6 in Dudley (2018)) implies that the probability of the event⋂∞

t=1

⋃∞
s=t Es is zero or one, and since it is strictly positive it must equal one.

This implies that ft ∈ Ft infinitely often with probability 1. So, by Proposition 1 the agent
will eventually take an action different from a. Q.E.D.

PROOF OF THEOREM 2: If. Consider a uniformly strict BN-E a, an optimal policy π
and κ ∈ (0�1). By Lemma 3, there exists an ε such that if ν(Θ̂ε(a))≥ 1−ε, then π(ν)= a.

Recall that for every l ∈ (0�1), the function fl : P × P → R̄ is defined by

fl
(
p̄�p′)=∑

y∈Y
p∗
a(y)

(
p̄a(y)

p′
a(y)

)l
�

By Lemma 6, since Θ̂ε(a) is compact by Lemma 1, and since fl is lower semicontinuous
in its first argument, there exists ε′ ∈ (0� ε) such that p′ ∈ Θ̂ε′

(a) implies that fl(p̄�p′) < 1
for all p̄ with p̄ /∈ Θ̂ε(a). Let K = ( ε

1−ε )
l. Then

(
1 − ν(Θ̂ε(a)

)
ν
(
Θ̂ε′
(a)
)
)l
< K =⇒ 1 − ν(Θ̂ε(a)

)
ν
(
Θ̂ε(a)

) <
ε

1 − ε
=⇒ ν

(
Θ̂ε(a)

)
> 1 − ε =⇒ π(ν)= a�
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Let ε̄ < ε′ be such that ν(Θ̂ε̄(a)) > 1 − ε̄ implies that

(
1 − ν(Θ̂ε(a)

)
ν
(
Θ̂ε(a)

)
)l
<
K(1 − κ)

2
�

Then if the agent starts with a belief ν0 with ν0(Θ̂
ε(a)) > ε̄, A(ν0) = {a}. Moreover,

by Lemma 4, Dubins’ upcrossing inequality, the compactness of Θ̂ε(a) guaranteed by
Lemma 1, and the union bound, there is a probability (1 − κ) that the positive super-
martingale ( 1−ν′t (Θ̂ε(a))

ν′t (Θ̂ε(a))
)l never rises aboveK, so the action played is always a, and ε̄ satisfies

the requirement of the statement.
Only if. If a is not a uniformly strict BN-E, there exists p ∈ Θ̂(a) and b �= a such that

b ∈Am(δp). But then if we let ν = δp we have that ν(Θ̂(a))= 1. Moreover, there exists a
policy π that prescribes b at belief ν, so that the agent will never update their belief and
will play b forever. Q.E.D.

PROOF OF THEOREM 3: (i)⇒ (ii) Immediately follows by Theorem 2.
(ii)⇒ (i) We prove the statement by contraposition. Suppose that a is not a uniformly

strict BN-E, and let ν ∈ �(Θ), ε > 0. We construct an initial belief νε that is ε close to ν
but such that the actions do not converge to a.

Since a is not a uniformly strict BN-E, there exists p̂ ∈ Θ̂(a) with {a} �= Am(δp̂). By
Lemma 1, we can pick a finite collection of open balls (Cε�i)ni=1 of radius ε in �(P) that
covers Θ̂(a) and such that for each Cε�i∩ Θ̂(a) �= ∅. For every Cε�i, choose qε�i ∈Cε�i \ Θ̂(a)
whose existence follows from the assumption of the theorem.

Define �ε :Θ→ 2Θ as

�ε(p)=
{

{qε�i : p ∈ Cε�i} if p ∈Cε�i for some i�
{p} otherwise�

The correspondence �ε is Borel measurable, nonempty, and closed valued, so it has a
measurable selection φε by the Kuratowski selection theorem (see, e.g., Theorem 18.13
in Aliprantis and Border (2013)). Define ν̄ε(C)= ν(φ−1

ε (C)). Because the problem is rich,
there is p′ ∈Θ∩Bε(p̂) such that H(p′

a�p
∗
a) <minp∈supp ν̄ε H(pa�p

∗
a) and a /∈Am(δp′). Set

νε = εδp′ + (1 −ε)ν̄ε. Then νε → ν, but argminp∈suppνε H(p
∗
a�pa)= {p′}, so by Theorem 1,

the probability of converging to a starting from belief νε is 0. Q.E.D.

PROOF OF THEOREM 4: By the hypothesis of the theorem pa(y)= pa′(y), and p∗
a(y) >

0 if and only if pa(y) > 0 for all p ∈Θ by Assumption 1(i). Thus p∗
a(y) > 0 if and only if

p∗
a′(y) > 0 for all a�a′ ∈A, that is, p∗

a, p
∗
a′ are mutually absolutely continuous. Since the

agent believes that actions do not change the outcome distribution, every p ∈ Θ can be
identified with an element of �(Y), and every belief ν ∈ �(Θ) can be identified with an
element of �(�(Y)).

Consider a uniformly strict BN-E a. By Lemma 1, �(Θ̂(a)) is compact. For every ε̄ > 0
and q ∈ �(Y), let Mε̄(q) = Mε̄�μ0�a(q). By Theorem 2, there exists ε′ > 0 such that if
ε′ > ε and ν(cl(Mε(p

∗
a))) > 1 − ε the probability of playing a forever starting from be-

lief ν is larger than 1/2. By the maximum theorem, the correspondence Mε is upper-
hemicontinuous, so there is a sequence of outcomes yt with corresponding empirical fre-



1094 D. FUDENBERG, G. LANZANI, AND P. STRACK

quency p̂t(y)= 1
t

∑t

i=1 1yi=y sufficiently close to p∗
a to have

q̂ ∈Mε′/2(p̂t) =⇒ inf
q∈Mε′/2(p∗

a)
‖q̂− q‖< ε′/2�

This implies Mε′/2(p̂t)⊆Mε′(p∗
a) from the triangle inequality. Thus by Lemma 8 there is

a time T such that for all t ′ > T , if the empirical frequency is p̂t′ = p̂t , ν(cl(Mε(p
∗
a))) >

1−ε. Replicating yt sufficiently many times yields a sequence yt′ with empirical frequency
p̂t′ = p̂t and t ′ > T . Since p∗

a is absolutely continuous with respect to p∗
a′ for all a′ ∈A, this

sequence of outcomes has positive probability, and after it occurs and a is played forever
with positive probability. Q.E.D.

PROOF OF THEOREM 5: Let b be a weakly identified strict BN-E. Then there is
ν ∈ �(Θ̂(b)) with {b} = Am(ν). Since b is a strict BN-E, and the agent believes
the outcome distributions are independent across actions, we can let ν = δp where
pb = argmaxp′

b
:p′∈ΘEp′

b
[u(b� y)], and pa = argminp′

a:p′∈ΘEp′
a
[u(a� y)] for a ∈ A \ {b}. Let

{y(b)i}∞
i=1 be a sequence of outcomes such that the empirical frequency 1

n

∑n

i=1 1y(b)i=y is
converging to pb. By Lemma 8, for every ε ∈ (0�1), there existsKε such that for all t > Kε,
μ0�b(Bε(pb) | y(b)t) > 1 − ε.

Because {b} =Am(ν), there is β̄ ∈ (0�1) such that for all β > β̄, there is (εa)a∈A ∈ R
A
+

such that if the belief ν̄ is such that ν̄b ∈ {μ0�b(· | y(b)t) : 0 ≤ t ≤Kεb} ∪ {ν′
b : ν′

b(Bε(pb)) >
1 − ε}, and for all a′ �= b, νa′(Bεa′ (pa′)) > 1 − εa′ , then b has the highest Gittins index.
For each β > β̄, let εβ < ε be such that if ν̄b(Bεβ(p(b))) > (1 − εβ) then the probability
of converging to play action a is larger than 1

2 under any optimal policy given the dis-
count factor β, whose existence is guaranteed by Lemma 14 and the fact that b is weakly
identified.

For every a �= b, let {y(a)i}∞
i=1 be a sequence of outcomes such that the empirical fre-

quency p̂na(a) converges to pa. By Lemma 8, for every a �= b there is a finite na such
that after na observations νa(Bεa(pa) | p̂na) > 1 − εa. Finally, let nb =Kεβ . Then the array
({y(a)i}nai=1)a∈A has positive probability, so the agent starts to play a after at most

∑
a∈A na

periods, and with probability 1
2 continues to play a forever. Q.E.D.

PROOF OF COROLLARY 1: Let π be an optimal policy. If a is quasi-dominated, with
p̂ ∈ Θ̂(a) as in the definition, there exists ε ∈ (0�1) such that if νa({q : ‖q− p̂a‖ ≤ ε}) >
1 − ε implies π(ν) �= a. Suppose by way of contradiction that a is played infinitely many
times. Then by the last part of the proof of Theorem 1, since the problem is a subjective
bandit there is t such that μa({q : ‖q − p̂a‖ ≤ ε}|(at� yt)) > 1 − ε, so the agent switches
to another action b. Since while playing an action different from a the agent does not
update μa, μa({q : ‖q− p̂a‖ ≤ ε}|(aτ� yτ)) > 1 − ε for all τ > t, so they will not switch to a
anymore, a contradiction. Q.E.D.

PROOF OF THEOREM 6: We prove the statement for ā, the proof for a is analogous.
Denote the optimal policy used by the agent as π. Since the environment is strongly super-
modular, every class of observationally equivalent outcome distributions under action ā is
a singleton, so ā is a uniformly strict BN-E. Theorem 2 and the strong supermodularity of
the environment then imply there is p̄ ∈Θ and K ∈ (0�1) such that if ν({p : p> p̄}) > K,
then the probability that a is used forever is larger than 1

2 . Since the environment is
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strongly supermodular, for every action b ∈A,

μt+1

({p : p> p̄}|(at� yt)� (b� ȳ))
1 −μt+1

({p : p> p̄}|(at� yt)� (b� ȳ)) >
μt
({p : p> p̄}|(at� yt))

1 −μt
({p : p> p̄}|(at� yt)) �

Therefore, there exists a finite number n(b) such that if at = b and yt = ȳ for all t ≤
n(b), then μt({p : p> p̄}|(at� yt))≥K.

Consider the event E that for all b ∈A and t ≤ n(b), xt�b = ȳ . This event has strictly
positive probability Pπ[E]. Moreover, if E realizes, after some T̂ ≤∑b�=ā(n(b)− 1)+ 1,
the policy of the agent prescribes action ā. Moreover, after T̂ +n(ā), for all τ ≤ T̂ +n(ā),
and for all y ∈ Y , P[xτ�ā = y|E] = P[xτ�ā = y]. Therefore, by Theorem 2 the probability of
converging to ā is at least Pπ [E]

2 . Q.E.D.

A.5. Action Frequencies and Mixed Equilibria

By Theorem 1, if action a is not a uniform BN-E, the agent will use a different action b
infinitely often. We can the use a result from of Esponda, Pouzo, and Yamamoto (2019)
to show that if action b’s outcome distribution does not induce a as a myopic best reply,
the agent will spend a nontrivial fraction of time using actions different from a. For every
a ∈A, let Θ(a)= {p ∈ Θ̂(a) : a /∈Am(δp)}. Let Ca ⊆ �(Θ) be the largest path connected
set such that (i) it contains all ν with suppν = Θ(a) \ Θ(a), and (ii) a ∈ Am(ν) for all
ν ∈ Ca. That is, Ca contains all the beliefs supported on the “good” KL minimizers for
action a that induce a as a best reply, as well as the beliefs around them that still support
a as a myopic best reply. Also, let Aa = {b : ∃ν ∈ Ca�b ∈Am(ν)}.

Finally, for every α ∈ �(A) and p ∈Θ, let

Hα

(
p∗�p

)=∑
b∈A

α(b)p∗
b(y) logpb(y) and Θ̂(α)= argmin

p∈Θ
Hα

(
p∗�p

)
�

COROLLARY 2: Let β= 0, and suppose a ∈A is a nonuniform BN-E. If there is p̄ ∈Θ(a)
such that H(p∗

b� p̄b) <H(p
∗
b� p̂b) for all b ∈Aa and p̂ ∈Θ \ {p̄}, then lim inf 1at=a

t
�= 1 a.s.

PROOF OF COROLLARY 2: Let ε > 0 be such that if ‖p̄ − p‖ ≤ ε, then a /∈ Am(δp).
By assumption, there exists ε′ > 0 such that Θ̂(α) ⊆ {p ∈ Θ : ‖p̄ − p‖ ≤ ε} for all
α ∈ �(A) such that ‖α − a‖ < ε′, suppα = Aa ∪ {a}. Suppose by way of contradiction
that lim inf 1at=a

t
= 1. Let Wτ(α) ⊆ �(A)[τ�∞) be the set of all differentiable functions

γ : [τ�∞)→ �(A) such that

∂γt

∂t
∈ �(Am

(
�
(
Θ̂(γt)

)))− γt
and γ0 = α. Define the random variable α̂t to be the empirical frequency of actions up
to time t, that is, α̂t(b) =∑t

τ=1
1aτ=b
t

for all b ∈ A. For every τ ∈ [t� t + 1], let α̂τ(b) =
α̂t(b)(τ− t)+ α̂t+1(b)(t + 1 − τ). From the convergence result (Theorem 2) of Esponda,
Pouzo, and Yamamoto (2019), for all T > 0 limt→∞ infγt∈Wt(α̂t ) sup0≤s≤T ‖α̂t+s(a) −
γt+s(a)‖ = 0 a.s. By Theorem 1, for all t ′ ∈ N almost surely there is a t̂ ≥ t ′ such that
μt̂ /∈ Ca. But then, since the frequency of action a decreases in a ball of size ε outside
Ca, for all γ ∈ Wt̂(α̂t̂), we have ‖γt̂+ε′ t̂ (a) − 1‖ > ε′ and lims→∞ α̂t̂+s = a, a contradic-
tion. Q.E.D.
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There are two reasons that multiple actions can be played with positive probability in
a BN-E: Either every action played can be justified with the same belief over the KL
minimizers, or different beliefs are needed to justify some of them. The first case requires
the agent to be indifferent between the different actions, so here the BN-E cannot be
uniformly strict. However, signals that take the form of payoff perturbations can allow
us to obtain such equilibria as the limit of uniformly strict Berk–Nash equilibria, and the
associated purification can be uniformly stable and positively attractive.

DEFINITION 13: The mixed action α ∈ �(A) is a strongly uniform mixed BN-E if all
actions a ∈ suppα are myopically optimal for all θ ∈ Θ̂(α).

Given a problem (A�Y�p∗�u�Θ) without signals, a problem with signals (A�Y�S�ζ�
p̃∗� ũ� Θ̃) is its (ε� v) perturbation, ε ∈ R+, v :A×Y × S→ R, if (i) ũ(a� y� s)= u(a� y)+
εv(a� y� s), (ii) p̃∗

a�s(y)= p∗
a(y) and (iii) Θ̃= {p̃ : ∃p ∈Θ� p̃a�s(y)= pa(y)�∀(a� y� s) ∈A×

Y × S}.
COROLLARY 3: If α is a strongly uniform mixed BN-E in (A�Y�p∗�u�Θ), there is a

sequence of strategies (σn)n∈N such that each σn is a uniformly stable BN-E of a (1/n)-
perturbation of (A�Y�p∗�u�Θ) and limn→∞ ζ(s : σn(s) = a) = α(a) for all a ∈ A. If
(A�Y�p∗�u�Θ) is subjectively exogenous and p∗ has full support, there are positively at-
tractive σn.

The proof is in Section B.2 of the Supplemental Material.
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