
Machine Learning for Evaluating
and Improving Theories

DREW FUDENBERG

MIT

and

ANNIE LIANG

University of Pennsylvania

We summarize our recent work that uses machine learning techniques as a complement to theoret-

ical modeling, rather than a substitute for it. The key concepts are those of the completeness and
restrictiveness of a model. A theory’s completeness is how much it improves predictions over a

naive baseline, relative to how much improvement is possible. When a theory is relatively incom-

plete, machine learning algorithms can help reveal regularities that the theory doesn’t capture,
and thus lead to the construction of theories that make more accurate predictions. Restrictiveness

measures a theory’s ability to match arbitrary hypothetical data: A very unrestrictive theory will

be complete on almost any data, so the fact that it is complete on the actual data is not very
instructive. We algorithmically quantify restrictiveness by measuring how well the theory approx-

imates randomly generated behaviors. Finally, we propose “algorithmic experimental design” as

a method to help select which experiments to run.
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1. INTRODUCTION

This survey summarizes our recent and ongoing work [Fudenberg and Liang 2019;
Fudenberg et al. 2019; Fudenberg et al. 2020] on how to use machine learning tech-
niques to evaluate and then improve theories. Black-box algorithms can generate
better predictions than parametric theories, but direct application of these methods
generally does not yield an improved understanding into the behavior of interest.
We demonstrate how black-box algorithms can nevertheless contribute to this latter
objective when used as a complement to traditional modeling.

In Section 2, we define the “completeness” of a theory to be the fraction of
achievable prediction that it attains, benchmarked against the performance of a
fully nonparametric black box. We show by example how studying cases where a
machine learning algorithm predicts well, but the theory does not, can allow us to
identify new regularities that the theory has not yet captured. A theory that is
very complete for prediction of the actual data captures most of the important reg-
ularities in the observed behavior. But if a theory can approximate most patterns
of behavior, then its ability to fit the actual data doesn’t speak to its relevance. In
Section 3, we quantify the “restrictiveness” of a model by measuring how well it
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approximates arbitrary behaviors. We illustrate our ideas with two classic predic-
tion problems from experimental economics—predicting certainty equivalents for
binary lotteries and predicting initial play in matrix games—and evaluate models
in these domains from the dual perspectives of completeness and restrictiveness.

Both of our proposed measures depend on the domain of “test cases” used to
evaluate the model, which is generally a choice variable of the experimenter the
collecting data. In Section 4, we show how algorithms can help in designing new
instances for data collection, for example finding cases in which a given theory is
likely to fail. Our work here shows that machine learning techniques are useful not
only for identifying structure in given data, but can also be useful to experimenters
in figuring out what new data to acquire.

1.1 Prediction Problems

Let x be an observable feature vector taking values in a set X, and let y be an
outcome of interest taking values in Y . An analyst observes pairs zi = (xi, yi),
where each xi takes on a finite set of values that were selected by the analyst,
e.g. which games or lotteries to use in a laboratory experiment. We call any
function f : X → Y a predictive mapping or simply mapping. We are interested
in parametric models FΘ = {fθ}θ∈Θ, where Θ is a finite-dimensional, closed, and
compact set and f is continuous in θ.

We evaluate predictions with a loss function, ` : Y × Y → R, where `(y′, y)
is the error assigned to prediction of y′ when the realized outcome is y. The
commonly used loss functions mean-squared error and classification loss correspond
to `(y′, y) = (y′ − y)2 and `(y′, y) = 1(y′ 6= y).

Definition 1.1. Let P denote the joint distribution of (x, y). The (expected)
prediction error for model f is the expected error on a new test case: EP (f) =
EP [`(f(x), y)]. The prediction error for a model FΘ is EP (f∗Θ), where

f∗Θ = arg min
f∈FΘ

EP (f)

is the error-minimizing prediction rule from FΘ.

Typically, the distribution P is not known, so these quantities need be estimated
from the data. For example, to evaluate the error EP (f∗Θ) for a model FΘ, we
might estimate its economic parameter θ from training data, and test the trained
mapping fθ on new observations. We put aside details of estimation for this survey,
and refer interested readers to our papers.

1.2 Examples

We illustrate our methodologies using two examples from the economics literature.

Example 1 Risk Preferences. We consider the problem of predicting certainty
equivalents for lotteries, i.e. the certain payment that an individual considers equiv-
alent to the lottery’s random payment. We use a data set from Bruhin et al. [2010]
of the reported certainty equivalents (across different subjects) for a set of 25 binary
lotteries over positive prizes. The feature space X is the set of 25 unique tuples
x = (z, z, p) describing the binary lotteries, where z > z ≥ 0 are the two prizes, and
p is the probability of z. The outcome to be predicted is a given subject’s certainty
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equivalent for a given lottery, so Y = R. We use mean-squared error as the loss
function, so the optimal prediction is the average certainty equivalent in the data.

The economic model that we evaluate is the three-parameter version of Cumu-
lative Prospect Theory suggested by Goldstein and Einhorn [1987] and Lattimore
et al. [1992]. The parameter vector here is θ = (α, δ, γ), and the associated model is
fθ(z, z, p) = w(p)v(z) + (1−w(p))v(z), where w(p) = (δpγ) / (δpγ + (1− p)γ) with
δ ≥ 0 and γ ≥ 0 is a nonlinear probability weighting function, and v(z) = zα with
α ≥ 0 is a value function for money.

Example 2 Predicting Play in Games. Our second example is predicting how peo-
ple will play the first time they encounter a new simultaneous-move game. We use
a data set of play in 3× 3 normal-form games constructed by Wright and Leyton-
Brown [2014] from six previous papers. The feature space X is the set of 86 unique
payoff matrices x ∈ R18. The outcome to be predicted is the action that is chosen
by the row player in a given instance of play, so Y = {a1, a2, a3}. We use the
misclassification rate as our loss function, so the optimal prediction is the modal
action.

The economic model that we evaluate is the Poisson Cognitive Hierarchy Model
(PCHM), which supposes that there is a distribution over players of differing lev-
els of sophistication: The level-0 player randomizes uniformly over his available
actions, while the level-1 player best responds to level-0 play [Stahl and Wilson
1994; 1995; Nagel 1995]. Camerer et al. [2004] defines the play of level-k players,
k ≥ 2, to be the best response to a perceived distribution over (lower) opponent
levels, which is a Poisson distribution with rate parameter τ (truncated at k and
re-normalized). The parameter τ is the only free parameter in this model.

2. COMPLETENESS

In Fudenberg et al. [2019], we define the “completeness” of a model as the amount
that it improves predictions over a naive rule, compared to the best achievable
improvement given the available features. We normalize in this way because in
many cases there is residual variation in the outcome y after conditioning on the
features x, and so perfect prediction is not achievable by any mapping that makes
predictions using the feature set X. The mapping from X to Y that minimizes
prediction error is

f∗(x) = arg min
y′∈Y

EP [`(y′, y) | x] . (1)

For example, if the outcome y is real-valued, and the loss function is mean-squared
error, then f∗ assigns to each feature vector x its conditional mean.

To interpret the prediction error of a model, it is useful to distinguish between
two sources of error. The irreducible error in the prediction problem is the error
EP (f∗) = EP [`(f∗(x), y)] of the ideal rule on a new test observation. This is a
bound on how well any mapping could perform. In addition, there can be error due
to the specification of the class: If FΘ leaves out an important regularity, then the
prediction error of the best mapping from this class, EP (f∗Θ) may be substantially
higher than the irreducible error, EP (f∗).

These two sources of prediction error have very different implications for how to
generate better predictions. If the model’s prediction error is substantially higher
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than the irreducible error, it may be possible to identify new regularities and incor-
porate them into new models that improve prediction given the same feature set.
Conversely, if the model’s prediction error is close to the irreducible error for the
current feature set, the priority should be to identify additional features that will
allow for better predictions.

We define the completeness of a model to be the ratio of the reduction in
prediction error (over a selected naive mapping fn) that it achieves compared
to the best possible reduction, which is to the irreducible error. We set the näıve
prediction for a lottery’s certainty equivalent to be its expected value, and we set
the näıve prediction of initial play to be a uniform distribution over the available
actions.

Definition 2.1. The completeness of model FΘ is

EP (fn)− EP (f∗Θ)

EP (fn)− EP (f∗)
. (2)

Table I reports completeness measures for the two economic models and the
corresponding prediction tasks described in Section 1.1.

Risk Preferences Initial Play

Error Completeness Error Completeness

Naive Benchmark 98.32 0% 0.66 0%

(4.00) (0.02)

Economic Model 64.92 91% 0.40 76%
(4.49) (0.02)

Irreducible Error 61.64 100% 0.32 100%

(3.00) (0.03)

Table I. We report the completeness of the CPT and PCHM models in their respective prediction

tasks.

We find that CPT is nearly complete, achieving 91% of the feasible reduction in
prediction error, while its absolute level of prediction error is 64.92. The PCHM
achieves 76% of the achievable reduction, which is good, but leaves room for im-
provements that capture additional regularities. We note additionally that the best
PCHM model on this data set is the simpler 0-parameter Level-1 model, which pre-
dicts the action that is a best response to uniform play.

In Fudenberg and Liang [2019], we trained a bagged decision tree algorithm to
predict play in the games considered in Table I. This algorithm led to a further
improvement in predictive accuracy. We then examined the 14 (out of 86) games
where play was predicted correctly by our algorithm, but not by level-1/PCHM.
Each of these games had an action whose average payoffs closely approximated the
level-1 action, but which led to lower variation in possible payoffs. Players were
more likely in the data to choose this “almost” level-1 action than the actual level-1
action.

One explanation for this behavior is that players maximize a concave function
over game payoffs, as if they are risk averse. This led us to add a single parameter α
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to the level-1 model, so that the prediction is the level-1 action when dollar payoffs u
are transformed under f(u) = uα. The performance of this model, called level-1(α),
weakly improved upon the decision tree ensemble, which shows that atheoretical
prediction rules fit by machine learning algorithms can help researchers discover
interpretable and portable extensions of existing models.

3. RESTRICTIVENESS

The high completeness of CPT and level-1(α) suggest that these models capture
many of the regularities in the data. But because each of these models has free
parameters that are chosen to maximize fit, one explanation for the high complete-
ness measures is simply that these models are flexible enough to accommodate any
pattern of behavior.1 We would thus like to distinguish high completeness because
a model includes most of the functions from X to Y from high completeness be-
cause the model includes the “right” regularities, namely those that are observed
in actual data. In Fudenberg et al. [2020], we propose an algorithmic method for
quantifying the restrictiveness of a model, which allows us to separate these cases.

Our strategy is to generate random mappings f : X → Y from a set FM of
“permissible mappings”—for example, all mappings of certainty equivalents that
are consistent with the property that people prefer more money to less—and evalu-
ate how well these mappings can be approximated using the model FΘ. The more
mappings from FM that can be approximated by a model, the less restrictive that
class is. To operationalize our measure, we define restrictiveness relative to a dis-
tribution µ on FM chosen by the analyst, where we interpret µ as the analyst’s
prior over the space of mappings. (One natural option would be a uniform prior.)

Formally, for any two mappings f and f ′, define d(f, f ′) = EPX
(l(f(x), f ′(x))

to be the (average) distance between their outcomes, where PX is the marginal
distribution over the feature space. If f ′ describes the actual relationship between
the features x and the outcome y, and the distance between f and f ′ is large, then
predictions using the mapping f will (in expectation) lead to large errors. Further
define d(FΘ, f) = inff ′∈FΘ

d(f ′, f) to be the distance between f and the closest
mapping in FΘ, so that d(FΘ, f)/d(fn, f) is a normalized distance between FΘ

and f , relative to the naive prediction rule introduced in Section 2. The models
that we study nest the associated naive rule, so d(FΘ, f) ≤ d(fn, f). Thus the
normalized distance lies between 0 and 1 on any prediction problem.

The restrictiveness of model FΘ is then defined to be the average normalized
distance between random mappings f (drawn according to distribution µ on FM)
and the model FΘ.

Definition 3.1. The restrictiveness of model FΘ is r := Eµ
[
d(FΘ,f)
d(fn,f)

]
.

Larger r corresponds to a more restrictive model: If r = 1, then the model fails
to improve upon the naive mapping for most maps f , which implies that FΘ is very
restrictive. If r = 0, then FΘ includes all mappings from the permissible set FM,
so it is completely unrestrictive. In Figure 1, we report a histogram of normalized

1Although there are “representation theorems” that characterize which data are consistent with a
general CPT specification, the empirical content for the 3-parameter functional form is not known,

and the same is true for the PCHM.
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Fig. 1. Left: Distribution of normalized distances between CPT and random mappings; Right:

Distribution of normalized distances between level-1(α) and random mappings.

distances between CPT and level-1(α) and 2000 random mappings of lotteries or
games to certainty equivalents or modal actions respectively.

The estimated restrictiveness of CPT is 0.25, so in expectation CPT approxi-
mates a randomly selected mapping four times as well as the naive mapping does.
In contrast, the restrictiveness of level-1(α) is 0.91, meaning that the level-1(α)
model barely improves upon a naive mapping for approximating random mappings
between games and initial play.

Since the level-1(α) model is a substantially more restrictive theory than CPT,
its high completeness is suggestive that it more precisely captures the observed
regularities.

4. ALGORITHMIC EXPERIMENTAL DESIGN

Our completeness and restrictiveness measures both depend on the underlying
marginal distribution PX over the feature space. Although we expect the con-
ditional distribution P (y | s) to be a fixed distribution describing the dependence
of the outcome on the specified set of features, the marginal distribution on X is a
choice variable for the experimenter. For example, we used a data set of certainty
equivalents for the set of binary lotteries selected by Bruhin et al. [2010], and we
used observations of initial play in 3 × 3 matrix games that had been chosen by
different teams of authors with different purposes in mind. It isn’t feasible, how-
ever, to run experiments on all lotteries or 3 × 3 games. The idea of algorithmic
experimental design is to use machine learning to determine which test cases in X
would be most informative.

In Fudenberg and Liang [2019], we used this approach to select which 3×3 games
to include in a new experiment. Our goal was to identify games where behavior
was likely to depart from the level-1(α) model, as this data could then allow us
to discover further regularities in play. We trained a machine learning algorithm
to predict the frequency of the level-1(α) action, and then selected games that
achieved low predicted frequencies according to this algorithm. This approach is
related in spirit to adversarial machine learning [Huang et al. 2011] and generative
adversarial networks [Goodfellow et al. 2014] in that we are generating instances
to trick the level-1(α) model, although our goal is to design new instances for data
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collection instead of refining predictions for a given data set.
We experimentally elicited play on these “algorithmically-generated” games on

the platform Mechanical Turk, and found that the frequency of level-1(α) play is
indeed low in these games. In keeping with our desire for interpretable conclusions,
we did not simply look for the best black-box algorithm on our new data set.
Instead, we developed a hybrid approach: We identified two models, each of which
fit some of the data reasonably well, and trained a decision tree to predict which
model would perform better on which games. This hybrid model outperformed its
two constituent models, and studying the optimal assignment of games to models
shed light on when the level-1(α) model is outperformed by an equally simple
alternative model.

5. CONCLUSION

As we have shown, machine learning and associated algorithmic techniques can aid
in the improvement of economic theories. When theories are incomplete, machine
learning can help researchers identify regularities that are not captured by existing
models and then develop new theories that predict better. Conversely, when a
theory is highly complete, algorithmic techniques can show whether this is simply
due to the theory’s ability to fit any possible data, or whether the good fit results
from the theory describing behaviors in the real world. Finally, machine learning
can be used to guide researchers in choosing which experiments to run.
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