
MARKET SIZE IN INNOVATION: THEORY AND
EVIDENCE FROM THE PHARMACEUTICAL INDUSTRY*

DARON ACEMOGLU AND JOSHUA LINN

This paper investigates the effect of (potential) market size on entry of new
drugs and pharmaceutical innovation. Focusing on exogenous changes driven by
U. S. demographic trends, we find a large effect of potential market size on the
entry of nongeneric drugs and new molecular entities. These effects are generally
robust to controlling for a variety of supply-side factors and changes in the
technology of pharmaceutical research.

I. INTRODUCTION

This paper constructs a simple model linking innovation
rates to current and future market size, and documents the
empirical relationship between market size and innovation in the
pharmaceutical industry. Our empirical work, which exploits
changes in the market size for different drug categories driven by
U. S. demographic trends, finds economically significant and rela-
tively robust effects of market size on innovation.

Although many historical accounts of important innovations
focus on the autonomous progress of science and on major break-
throughs that take place as scientists build on each other’s work,
economists typically emphasize profit incentives and the size of
the target market. For example, in his seminal study, Invention
and Economic Growth, Schmookler argued that: “. . . invention is
largely an economic activity which, like other economic activities,
is pursued for gain” [1966, p. 206]. To emphasize the role of
market size, Schmookler titled two of his chapters “The amount of
invention is governed by the extent of the market.”

The role of profit incentives and market size in innovation is
also important both for the recent endogenous technological
change models, which make profit incentives the central driving
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force of the pace of aggregate technological progress (e.g., Romer
[1990], Grossman and Helpman [1991], and Aghion and Howitt
[1992]), and for the induced innovation and directed technical
change literatures, which investigate the influence of profit in-
centives on the types and biases of new technologies (see, e.g.,
Kennedy [1964], Drandakis and Phelps [1965], Samuelson [1965],
Hayami and Ruttan [1970], and Acemoglu [1998, 2002, 2003]). A
recent series of papers by Kremer, for example [2002], also builds
on the notion that pharmaceutical research is driven by market
size and argues that there is generally insufficient research to
develop cures for third-world diseases such as malaria, because
those who suffer from these diseases have a limited ability to pay.

In this paper we investigate the effect of market size on drug
entry and pharmaceutical innovation. A major difficulty in any
investigation of the impact of market size on innovation is the
endogeneity of market size—better products will have larger
markets. Our strategy to overcome this problem is to exploit
variations in market size driven by U. S. demographic changes,
which should be exogenous to other, for example scientific, deter-
minants of innovation and entry of new drugs.1 To estimate
potential market size, we construct age profiles of users for each
drug category, and then compute the implied market size from
aggregate demographic and income changes given these (time-
invariant) age profiles.2 We measure entry and innovation using
the Food and Drug Administration’s (FDA) approval of new
drugs.3

Our results show that there is an economically and statisti-
cally significant response of the entry of new drugs to market size.
As the baby boom generation aged over the past 30 years, the
markets for drugs mostly consumed by the young have declined,
and those for drugs consumed by the middle-aged have increased.
The data show a corresponding decrease in the rate of entry of

1. For many drugs non-U. S. markets may also be relevant. Nevertheless, the
U. S. market is disproportionately important, constituting about 40 percent of the
world market [IMS 2000]. Below, we report results using changes in OECD
market size as well as U. S. market size.

2. Loosely speaking, “market size” corresponds to the number of users times
their marginal willingness to pay. Therefore, market size can increase both
because the number of users increases and because their marginal willingness to
pay changes. We focus on changes driven by demographics to isolate exogenous
changes in market size.

3. These data were previously used by Lichtenberg and Virahbak [2002], who
obtained them under the Freedom of Information Act. We thank Frank Lichten-
berg for sharing these data with us.
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new drugs in categories mostly demanded by the young and an
increase for drugs mostly consumed by the middle-aged. Our
estimates suggest that a 1 percent increase in the size of the
potential market for a drug category leads to a 6 percent increase
in the total number of new drugs entering the U. S. market. Much
of this response comes from the entry of generics, which are drugs
that are identical or bioequivalent to an existing drug no longer
under patent protection.

More important, there is a statistically significant response
of the entry of nongeneric drugs, which more closely correspond to
new products and “innovation”: a 1 percent increase in potential
market size leads to approximately a 4 percent increase in the
entry of new nongeneric drugs. We also look at the relationship
between market size and entry of new molecular entities. These
drugs, which contain active ingredients that have not been pre-
viously marketed in the United States, provide a measure of more
radical innovations (there are 442 new molecular entities com-
pared with 2203 new nongenerics during our sample period). We
find that a 1 percent increase in potential market size is associ-
ated with a 4–6 percent increase in the entry of new molecular
entities. These results together show an important effect of po-
tential market size on pharmaceutical innovation.

The effect of market size on the entry of new drugs is gener-
ally robust. We obtain similar results when we use different
measures of market size, when we exploit changes in OECD
market size, and when we control for a variety of supply-side
factors including advances in biotechnology.

We also investigate whether it is current market size or past
or future market sizes that have the largest effect on entry of new
drugs. On the one hand, because changes in demographics can be
anticipated in advance, drug entry may respond to future market
size. On the other hand, because there is typically a 10–15 year
gap between research and FDA approval (e.g., DiMasi, Hansen,
and Lasagna [1991]), entry may respond to past market size. We
find that all nongenerics respond to current market size, while
current and five-year leads of market size have the strongest
effects on new molecular entities and generics. These results
suggest that pharmaceutical research responds to anticipated
changes in market size with a lead of 10–20 years.

The magnitude of the effect of potential market size on drug
entry is quite large. This may be partly because our key variable
measures potential market size rather than actual market size
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(i.e., what the market size would be if the number and incomes of
individuals in a particular age group change without a change in
the age profile of use and expenditure). Results using another
data source suggest that a 1 percent increase in potential market
size is associated with approximately a 4 percent increase in
actual market size, so the estimates for nongenerics and new
molecular entities are consistent with a proportional effect of
actual market size on innovation as predicted by our theoretical
model.4

There are a number of other studies related to our work.
First, Schmookler [1966] documents a correlation between sales
and innovation, and argues that the causality ran largely from
the former to the latter. The classic study by Griliches [1957] on
the spread of hybrid seed corn in U. S. agriculture also provides
evidence consistent with the view that technological change and
technology adoption are closely linked to profitability and market
size. Pakes and Schankerman [1984] investigate this issue using
a more structural approach, linking R&D intensity at the indus-
try level to factor demands and to growth of output. In more
recent research, Scott Morton [1999] and Reiffen and Ward [2004]
study the decision of firms to introduce a generic drug and find a
positive relationship between entry and expected revenues in the
target market. None of these studies exploit a potentially exoge-
nous source of variation in market size, however.

Second, some recent research has investigated the response
of innovation to changes in energy prices. Most notably, Newell,
Jaffe, and Stavins [1999] show that between 1960 and 1980, the
typical air conditioner sold at Sears became significantly cheaper,
but not much more energy-efficient. On the other hand, between
1980 and 1990, there was little change in costs, but air condition-
ers became much more energy-efficient, which, they argue, was a
response to higher energy prices. In a related study, Popp [2002]
finds a strong positive relationship between patents for energy-
saving technologies and energy prices.

Third, there is substantial research focusing on innovation in
the pharmaceutical industry. Henderson and Cockburn [1996],
Cockburn and Henderson [2001], and Danzon, Nichelson, and
Sousa Pereira [2003] study the determinants of success in clinical

4. It is also possible that the marginal innovations induced by an increase in
market size are less productive, so a 4–6 percent increase in the number of new
drugs may correspond to a smaller increase when weighted by effectiveness or
other measures of productivity.
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trials, focusing mainly on firm and project size. Galambos and
Sturchio [1998], Cockburn, Henderson, and Stern [1999], Gam-
bardella [2000], Malerba and Orsenigo [2002], and Ling, Berndt,
and Frank [2003] discuss various aspects of the recent technologi-
cal developments in the pharmaceutical industry.

Most closely related to this study are Lichtenberg and Wald-
fogel [2003], Finkelstein [2004], Cerda [2003], and DellaVigna
and Pollet [2004]. Lichtenberg and Waldfogel [2003] document a
relative decline in mortality among individuals with rare diseases
following the Orphan Drug Act, and argue that this is related to
the incentives created by the Act to develop drugs for these
conditions. Finkelstein exploits three different policy changes
affecting the profitability of developing new vaccines against six
infectious diseases: the 1991 Center for Disease Control recom-
mendation that all infants be vaccinated against hepatitis B, the
1993 decision of Medicare to cover the costs of influenza vaccina-
tions, and the 1986 introduction of funds to insure manufacturers
against product liability lawsuits for certain kinds of vaccines.
She finds that increases in vaccine profitability resulting from
these policy changes are associated with a significant increase in
the number of clinical trials to develop new vaccines against the
relevant diseases.5 Cerda’s Ph.D. dissertation from the Univer-
sity of Chicago is an independent study of the effect of demo-
graphics on innovation in the pharmaceutical sector. Although
Cerda uses a somewhat different empirical methodology, he
reaches similar conclusions to our study. Finally, DellaVigna and
Pollet investigate whether the stock market responds to demo-
graphics-driven changes in the size of the market for a number of
products.

The rest of the paper is organized as follows. We outline a
simple model linking innovation to market size in the next sec-
tion. Section III briefly explains our empirical strategy, and Sec-
tion IV describes the basic data sources and the construction of
the key variables. Section V presents the empirical results and a
variety of robustness checks. Section VI contains some concluding
remarks, and Appendix 1 gives further data details.

5. Lichtenberg [2003] also presents evidence suggesting that the types of new
drugs changed toward drugs more useful for the elderly after Medicare was
established.
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II. THEORY

This section outlines a simple model that illustrates the
impact of market size on innovation. We consider a small open
economy consisting of a set I of infinitely lived individuals. Time
is continuous t � [0,�). There are two types of goods in this
economy. First, there is a basic good y, which can be consumed,
used for the production of other goods, or for research expendi-
ture. Individual i has an exogenously given endowment yi(t) at
time t. Second, there are J drugs, x1, . . . , xJ, each with a
potentially time-varying “quality,” q1(t), . . . , qJ(t). Each indi-
vidual demands only one type of drug. Hence, we partition the set
I of individuals into J disjoint groups, G1, . . . , GJ with G1 � G2
� . . . � GJ � I, such that if i � Gj, then individual i demands
drug j. More specifically, if i � Gj, then his preferences are given
by

(1) �
0

�

exp��rt��ci�t�1���qj�t�xji�t���� dt,

where r is the discount rate of the consumers and the interest
rate faced by the economy, � � (0,1), ci(t) is the consumption of
individual i of the basic good at time t, and xji(t) is the consump-
tion of drug j. This Cobb-Douglas functional form and the as-
sumption that each individual only consumes one type of drug are
for simplicity and do not affect the main results.6

Normalizing the price of the basic good to 1 in all periods, and
denoting the price of drug j at time t by pj(t), the demand of
individual i � I for drug j is xij(t) � �yi(t)/pj(t) if i � Gj, and
xij(t) � 0 if i � Gj. Summing across individuals, total demand for
drug j is

(2) Xj�t� �
�Yj�t�
pj�t�

,

where Yj(t) 	 ¥i�Gj
yi(t) is the total income of the group of

individuals consuming drug j.
At any point in time, there is one firm with the best-practice

6. The Cobb-Douglas assumption implies that the share of income spent on
drugs is constant. This assumption can easily be relaxed by considering a utility
function with an elasticity of substitution different from one, as in the factor
market models with directed technical change (see, e.g., Acemoglu [1998, 2002]).
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technology for producing each type of drug, and it can produce one
unit of this drug with quality qj(t) using one unit of the basic
good. If there is an innovation for drug line j currently with
quality qj(t), this leads to the discovery of a new drug of quality

qj(t), where 
 � 1. For the purposes of the model, we think that
any innovation is approved (for example, by the FDA) and can be
sold to consumers immediately (and is under patent protection
indefinitely).

There is free entry into R&D, and each firm has access to an
R&D technology that generates a flow rate �j of innovation for
every dollar spent for research on drug j. So if R&D expenditure
at time t is zj(t), the flow rate of innovation (and of entry of new
drugs) for drug j is

(3) nj�t� � �j zj�t�.

Differences in �j’s introduce the possibility that technological
progress is scientifically more difficult in some lines than others.

A key feature of this R&D technology for our focus is that
research is directed in the sense that firms can devote their R&D
to developing particular types of drugs. The pharmaceutical in-
dustry, especially in the recent past, is a prime example of an
industry where companies with fairly sophisticated R&D divi-
sions or specialized R&D firms can undertake research for spe-
cific drug lines (e.g., Gambardella [2000] and Malerba and Or-
senigo [2002]).7

The demand curves in (2) have an elasticity equal to one, so
an unconstrained monopolist would charge an arbitrarily high
price. However, the firm with the best drug in line j is competing
with the next best drug in that line. An arbitrarily high price
would allow the next best firm to capture the entire market.
Therefore, the firm with the best drug sets a limit price to exclude
the next best firm—i.e., to ensure that consumers prefer its prod-
uct rather than the next best drug supplied at the lowest possible
price (i.e., equal to marginal cost, which is 1). If a consumer buys
from the best-practice firm with quality qj(t) and price pj(t) and

7. Naturally, there exist examples of research directed at a specific drug type
leading to the discovery of a different product, such as the well-known example of
Viagra, which resulted from research on hypertension and angina, and was partly
accidentally discovered from the detection of side effects in a clinical study (see,
e.g., Kling [1998]). The working paper version [Acemoglu and Linn 2003] shows
that the results here generalize even when there is a large component of random
R&D, whereby research directed at drug j can result in the discovery of other
drugs.
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chooses her optimal consumption as given by (2), her in-
stantaneous utility at time t is (qj(t))

�(1 � �)1����(pj(t))
��yi(t);

and if she purchases from the next best firm, at quality
qj(t)/
 and price equal to marginal cost, 1, she obtains utility

��(qj(t))

�(1 � �)1����yi(t). The limit price, which equalizes
these two expressions, is

(4) pj�t� � 
 for all j and t.

The profits of the firm with the best product of quality qj(t) in line
j at time t are

(5) j�qj�t�� � �
 � 1��Yj�t�.

Here 
�Yj(t) corresponds to the market size (total sales) for drug
j. Notice that profits of drug companies are independent from
quality, qj(t), which is a feature of the Cobb-Douglas utility.

Firms are forward-looking, and discount future profits at the
rate r. The discounted value of profits for firms can be expressed
by a standard dynamic programming recursion. Vj(t�qj), the
value of a firm that owns the most advanced drug of quality qj in
line j at time t, is8

(6) rVj�t�qj� � V� j �t�qj� � j�qj�t�� � �j zj�t�Vj�t�qj�,

where j(qj(t)) is the flow profits given by (5), and zj(t) is R&D
effort at time t on this line by other firms.9 Intuitively, the value
of owning the best technology in line j, rVj(t�qj), is equal to the
flow profits, j(qj(t)), plus the potential appreciation of the value,
V�j(t�qj), and takes into account that at the flow rate nj(t) � �jzj(t)
there will be an innovation, causing the current firm to lose its
leading position and to make zero profits thereafter.

Free entry into R&D to develop better quality drugs implies
zero profits; i.e.,

(7) if zj�t� � 0, then �jVj�t�qj� � 1 for all j and t

(and if zj(t) � 0, �jVj(t�qj) � 1 and there will be no equilibrium
R&D for this drug).

An equilibrium in this economy is given by sequences of
prices pj(t)�j�1, . . . , J that satisfy (4), consumer demands for

8. Throughout, we assume that the relevant transversality conditions hold
and discounted values are finite.

9. Because of the standard replacement effect first emphasized by Arrow
[1962], the firm with the best technology does not undertake any R&D itself (see,
for example, Aghion and Howitt [1992]).
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drugs xi(t)�i�I that satisfy (2) and R&D levels zj(t)�j�1, . . . , J that
satisfy (7) with Vj� given by (6).

An equilibrium is straightforward to characterize. Differen-
tiating equation (7) with respect to time implies that V�j(t�qj) � 0
for all j and t, as long as zj(t) � 0. Substituting this equation and
(7) into (6) yields the levels of R&D effort in the unique equilib-
rium as

(8) zj�t� � max ��j�
 � 1��Yj�t� � r
�j

; 0� for all j and t.

Equation (8) highlights the market size effect in innovation:
the greater is Yj(t), i.e., the greater is the market size for a
particular drug, the more profitable it is to be the supplier of that
drug, and consequently, there will be greater research effort to
acquire this position. In addition, a higher productivity of R&D as
captured by �j also increases R&D, and a higher interest rate
reduces R&D since current R&D expenditures are rewarded by
future revenues.

Another important implication of this equation is that there
are no transitional dynamics. At any point in time, R&D for a
particular drug line is determined by the current market size—
past and anticipated future market sizes do not affect current
research effort. This is an implication of the linear R&D technol-
ogy, which ensures that whenever there are profit opportunities,
there will immediately be sufficient R&D to arbitrage them, en-
suring that V�j(t�qj) � 0. The intuition for the lack of response to
anticipated changes in future market size highlights an impor-
tant effect in quality ladder models of technological progress:
firms would like to own the best-practice product at the time the
market size actually becomes larger. Investing in R&D far in
advance of the increase in market size is not profitable, since
another firm would improve over this innovation by the time the
larger market size materializes. In fact, with the linear model
here, zj can change discontinuously, so investing even a little in
advance of the actual increase in the size of the market is not
profitable.

Combining equations (3) and (8) gives entry of new drugs as

(9) nj�t� � max ��j�
 � 1��Yj�t� � r; 0�.

This equation relates innovation or entry of new products to
market size (total expenditure of consumers in this line of drug).
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It also encompasses the alternative view of the determinants of
innovation discussed in the Introduction, that the cross-drug
distribution of R&D is determined by technological research op-
portunities or perhaps by other motives unrelated to profits. If
there are large and potentially time-varying differences in �j’s,
then these may be the primary factor determining variation in
R&D across drug lines, and market size may have only a small
effect. Whether or not this is so is an empirical question.

The working paper version of our paper [Acemoglu and Linn
2003] presented a number of generalizations of this framework.
First and most importantly, we modified the R&D technology
captured in equation (3) to allow for within-period decreasing
returns, so that

nj�t� � �j zj�t��� zj�t��,

where ��( z) � 0 (the model studied above is the special case with
��( z) 	 0). Most of the results here generalize, but the model also
implies a potential response to anticipated changes in market
size. In particular, let us assume that Yj(t) � Yj for all t. Then it
is straightforward to show that steady-state R&D will be given by

zj
S � max ���j��zj

S��
 � 1��Yj � r�

�j��zj
S�

; 0�,

which is similar to (8). If there is an unanticipated change in Yj,
there continues to be no transitional dynamics (i.e., zj immedi-
ately jumps to its new steady-state value). But it can be shown
that if there is an anticipated increase in market size, there will
be entry of new drugs in advance of the actual increase. Never-
theless, the same forces emphasized here imply that investing in
R&D too far in advance would not be profitable because another
firm is likely to innovate further before the actual increase in
market size materializes. In terms of our empirical work, even if
demographic changes are anticipated 20 or 30 years in advance,
we may expect significant entry and innovation responses much
later, perhaps 5 or 10 years in advance.

Second, we extended this model to incorporate entry of both
generic and nongeneric drugs and showed that market size has a
positive effect on entry of both types of drugs, and that, under
plausible circumstances, the effect of market size on generic entry
should be larger than on nongenerics.
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III. EMPIRICAL STRATEGY

III.A. Empirical Specification and Estimation Issues

As r 3 0, equation (9) implies that nj(t) is proportional to
�jmj(t), where mj(t) 	 
�Yj(t) is the market size for drug line j
at time t. We measure entry of new drugs (or innovation), nj(t), as
new drug approvals by the FDA in broad drug categories as
described below. This measure, denoted by Nct for drug category
c at time t, includes entry of generic drugs. Although generic
drugs do not correspond to “innovation,” their entry is driven by
the same profit incentives as innovation. After presenting results
using all drug approvals, our analysis focuses on the relationship
between market size and entry of nongenerics and new molecular
entities. Nongenerics include all drugs that are not identical or
bioequivalent to an existing drug, while new molecular entities
are drugs classified by the FDA as containing an active ingredient
previously not marketed in the United States. Throughout, in-
stead of actual market size, we use potential market size driven
by demographic changes, which we denote by Mct. The construc-
tion of this variable is discussed below.

Adding other potential determinants, time effects, and rear-
ranging, equation (9) yields a Poisson model for the conditional
mean of new drugs (see Wooldridge [2002]):

(10) E�Nct��c,X� c� � exp�� � log Mct � X�ct � � � �c � �t�,

where E is the expectations operator, Nct is the number of new
drugs in category c in time period t, Mct is potential market size,
X�ct is a vector of controls, including a constant, �c’s are a full set
of category fixed effects that correspond to the �j terms above, �t’s
are a full set of time effects capturing any common time compo-
nent, and finally, X� c is the vector ((Mc1, . . . , McT)�X�c1� . .
�X�cT�(�1, . . . , �T)), with T denoting the number of time periods
in our sample. This specification ensures that time effects have
proportional impacts on entry of new drugs. Note also that this
equation allows the coefficient of log Mct to differ from 1, which
could be the case if actual market size differs systematically from
the potential market size, log Mct, or if preferences are not Cobb-
Douglas (see Acemoglu [1998, 2002]).

The estimation of (10) would lead to biased estimates, how-
ever, since the nonlinearity in (10) makes it impossible to esti-
mate the fixed effects, the �c’s, consistently. To deal with this
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problem, we follow Hausman, Hall, and Griliches [1984], and
transform (10) to obtain a multinomial distribution for Nct of the
form,

(11) E�Nct��c,X� c,N� c� �
exp�� � log Mct � X�ct � � � �t�

���1
T exp�� � log Mc� � X�c� � � � ���

N� c,

where N� c � ¥��1
T Nc� is the number of drugs approved in category

c over the entire sample. This transformation removes the drug
category dummies, and the coefficient of interest, �, can be esti-
mated consistently. We estimate this equation using quasi-maxi-
mum likelihood (QML). Wooldridge [1999] shows that QML has
good consistency properties, even when the true model is not
Poisson, for example, when there is a different distribution of the
error term.10

Below, we also estimate a linear model of the form,

(12) log Ñct � � � log Mct � dct � X�ct � � � �c � �t � εct,

where the left-hand-side variable is defined as Ñct � Nct if Nct �
1 and Ñct � 1 if Nct � 0, and dct is a dummy that equals 1 when
Nct � 0. This procedure, first used by Pakes and Griliches [1980],
is simple and flexible, but the estimates are biased, since dct is
endogenous.

In addition, we estimate equations with lags and leads of log
Mct to determine whether there are significant delays and antici-
pation effects. Delayed effects are possible, since, as reported by
DiMasi, Hansen, and Lasagna [1991], drug approval may be as
much as fifteen years after the time of initial research. Antici-
pation effects are possible, since changes in demographics can
be anticipated a long time in advance (see the discussion in
Section II).11

10. Define the vector � 	 (�����). Then the QML estimate �̂ maximizes
the log likelihood function ¥c�1

C Lc(�̂), where C is the number of categories,
Lc(�̂) 	 ¥t�1

T Nct log pt(�̂), and pt(�̂) 	 exp(� � log Mct � X�ct � � � �t)/{¥��1
T

exp(� � log Mc� � X�c� � � � ��)}.
The (Huber-White) robust asymptotic variance-covariance matrix is calcu-

lated as Â�1B̂Â�1/C, where Â 	 C�1 ¥c�1
C N� c��p�t(�̂) Dc(�̂)��pt(�̂), B̂ 	 C�1

¥c�1
C ��p�t(�̂) Dc(�̂)ûcû�cDc(�̂)��pt(�̂), p(�̂) 	 [ p1(�̂), . . . , pT(�̂)]�, and Dc(�̂) 	

[diag { p1(�̂), . . . , pT(�̂)}]�1. Here �� denotes the gradient with respect to � and
ûc is the vector of residuals calculated as ûc � Nc � p(�̂)N� c, with Nc 	 [Nc1, . . . ,
NcT]. See Wooldridge [1999] for more details.

11. An additional issue is that the FDA approval process may be faster for
more profitable drugs, and thus potentially for drugs with greater market size (see
Dranove and Meltzer [1994]). Our data do not enable us to investigate this issue.
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III.B. Potential Market Size and Identification

Throughout, we exploit the potentially exogenous component
of market size driven by demographic trends, combined with
differences in the age profiles of expenditure and use for different
types of drugs. We obtain the age profiles from micro drug con-
sumption data, and the changes in U. S. demographics from the
Current Population Survey (CPS) data. Our (income-based) mea-
sure of potential market size is

(13) Mct � �
a

uca � iat,

where iat is the income of individuals in age group a at time t in
the United States, and uca gives the age profile for drug category
c. We compute uca as the average expenditure share of drugs in
category c in the total income of those in age group a. This
income-based measure corresponds closely to the market size in
the theoretical model, which is a combination of the number of
consumers and their incomes. We also check the robustness of our
results with an alternative population-based measure, calculated
using the U. S. population for age group a at time t for iat, and the
average number of drugs in category c used per person in age
group a for uca. It is important that the over-time source of
variation in both measures is not from changes in individual use,
but purely from demographic changes captured by iat; i.e., uca’s
are not time-varying.12 Consequently, changes in prices and drug
quality, which may result from innovations and affect consump-
tion patterns, will not cause over-time variation in Mct. Our
baseline measure uses five-year age groups and time periods
corresponding to five-year intervals. We also check the robustness
of our results using single year age groups and ten-year intervals.

The major threat to the validity of our empirical strategy is
from potentially time-varying omitted variables (the drug cate-
gory fixed effects take out any variable that is not time-varying).
Omitted variables related to market size or profit opportunities

12. Because of data availability, we cannot use estimates of uca that predate
our sample period. Therefore, our estimates of age profiles may have been affected
by the availability of new drugs during the sample. This should not create a
spurious relationship between potential market size, Mct, and entry of new drugs,
since all variation in Mct is driven by aggregate demographic changes, and all of
our regressions control for drug category fixed effects. In any case, the numbers in
Table I suggest that age profiles do not change much over time (in fact, if
preferences are Cobb-Douglas as in (1) and stable, the expenditure measure of uca
should be constant).
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may induce a bias in the implied magnitudes, but will not lead to
spurious positive estimates of the effect of market size (in other
words, the presence of such variables is essentially equivalent to
mismeasurement of the appropriate market size). More threat-
ening to our identification strategy would be omitted supply-side
variables that are potentially correlated with our market size
measure. To show that this is not the source of our findings, we
check for residual serial correlation and control for potential
supply-side determinants of innovation and entry.13

IV. DATA AND DESCRIPTIVE STATISTICS

The demographic data come from the March CPS, 1965–
2000. We compute iat in equation (13) for five-year age groups,
ranging from 0–4 to 90�. Individual income is constructed by
dividing family income equally among the members of the family.
For the purposes of the diagrammatic presentation, we aggregate
the age groups into three broad categories, 0–30, 30–60, and
60�, corresponding to young, middle-aged, and elderly users.
Income and population movements of the five-year age groups
within each of these broad groups are relatively similar.

Figure I shows population shares, and Figure II shows the
corresponding income shares (i.e., income of the corresponding
age group divided by total income in that period) for the three
broad age groups. To facilitate comparison with Figure III, Figure
II starts in 1970. Both figures show a large amount of variation
across age groups over time. In particular, it is possible to trace
the baby boomers, as the fraction of individuals in the age bracket
0–30 in the 1970s, and those in the age bracket 30–60 in the
1980s and the 1990s.

The FDA classifies all prescription drugs into 20 major drug
categories, which are further subdivided into 159 categories.
These categories are based on a combination of therapeutic intent
and chemical structure. We drop four of the twenty major cate-
gories from this classification: Anesthetics, Antidotes, Radiophar-

13. Another source of endogeneity may be that innovations in certain drug
categories extend the lives of the elderly, thus increasing their Mct. Lichtenberg
[2002, 2003] provides evidence that new drugs extend lives. This source of endo-
geneity is not likely to be quantitatively important, however, since the variation
resulting from extended lives in response to new drugs is a small fraction of the
total variation in Mct. Nevertheless, we also report estimates that instrument Mct
with past demographics, purging it from changes in longevity.
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maceuticals, and Miscellaneous.14 We then subdivide some of
these categories according to the conditions and diseases that the
drugs are used to treat.15 For example, within the Hematologics
major category, we separate Anemia drugs from Anticoagulants
because they treat different diseases. We also subdivide broader
groups when the age distribution of expenditure is sufficiently
heterogeneous. For example, the indications of drugs in Estro-
gens/Progestins and Contraceptives overlap somewhat, but the
age structure of users is quite different: 20–30 year-olds use
Contraceptives most, while 50–60 year-olds use Estrogens/Pro-
gestins most. In one case, we combine categories from different
major classes, Antifungals and Dermatologics, because the drugs
have similar indications and age distributions. The result is a

14. We drop the Anesthetics, Radiopharmaceuticals, and Miscellaneous cate-
gories because most of the items in these categories were not developed for a
distinct market. Radiopharmaceuticals are used for diagnostic purposes, and the
Miscellaneous category mainly contains surgical and dental tools. The Antidote
category is dropped because there are few drugs approved and there is little use
of these drugs in the surveys. See Appendix 1 for further details on the construc-
tion of our categories.

15. Other authors, for example Lichtenberg [2003], have used a more de-
tailed classification system based on diseases. We were unable to construct a
comprehensive mapping of the prescription drugs listed in the micro data surveys
to the detailed disease classes. Our classification system relies on the FDA
categories, but then subdivides those according to disease and age distribution.

FIGURE I
Share of Population by Age Group from CPS, 1965–2000

Share of population is the population of the corresponding age group divided by
total population, computed from the March CPS.
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classification system with 33 categories, which are listed in
Appendix 2.16

Our main data source for drug use is the Medical Expendi-
ture Panel Survey (MEPS), which is a sample of U. S. households
over the years 1996–1998. The survey has age and income data
for each household member, and covers about 28,000 individuals
each year. There is also a list of prescription drugs used by each
person (if any), and the amount spent on drugs, which includes
copayments and payments by insurance companies and govern-
ment programs (e.g., Medicaid and worker’s compensation).17 In
all, there are about 500,000 medications prescribed. We compute
drug expenditure and use by five-year age groups, then divide
these by the corresponding income and population numbers to
construct the income-based and the population-based measures of

16. The working paper version [Acemoglu and Linn 2003] used a system with
34 categories constructed purely based on differences in the age profiles of expen-
diture within the major FDA categories. Results using this alternative classifica-
tion are reported in Table III. Further details on the construction of the 33
categories used here and on our alternative classification system are available
upon request.

17. Respondents list the pharmacy or medical provider where they obtained
the prescription drug, which are then contacted to validate this information and
to gather additional information on prescription drug payments.

FIGURE II
Share of Income by Age Group from CPS, 1970–2000

Share of income is income of the corresponding age group divided by total
income, computed from the March CPS. Individual income is obtained by dividing
total family income equally among family members.
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uca.18 Appendix 2 reports these numbers aggregated to the three
broad age groups used in the figures. It shows a large amount of
variation in the age profiles of expenditure across the 33 drug
categories. The elderly spend more on many categories than do
younger individuals, but there are numerous exceptions. For
example, Antibiotics are used most by individuals in the youngest
group, while Contraceptives and Antivirals are used most by
30–60 year-olds.

To investigate the stability of the age profile of users, we
supplement the MEPS data with the National Ambulatory Medi-
cal Care Survey (NAMCS), which is an annual survey of doctors
working in private practice and includes drug use data for the
years 1980, 1981, 1985, and 1989–2000. Observations are at the
doctor-patient-visit level; there are about 40,000 visits per year.
Doctors are selected randomly, surveyed for a week, and patient-
visits are then selected randomly from all the visits that week
(further details on this survey are given in Acemoglu and Linn
[2003]). We use the same classification system with the NAMCS
as with the MEPS. Because the NAMCS does not contain expen-
diture information and its sampling scheme makes it less repre-
sentative and less reliable than the MEPS, we focus on the MEPS
for our main analysis and use the NAMCS mainly to check the
stability of the age profiles of users.

Table I gives correlations between various measures of drug
use. The first two rows of Panel A show a high degree of correla-
tion between age profiles of use from the NAMCS surveys at
various dates, both unweighted or weighted by total use of each
category in the survey. These results indicate that the age profiles
are similar between the 1980s and the 1990s.19 The third and
fourth rows report mean correlations by drug. These are con-
structed by computing the within category correlation between
the measures and then averaging it across all categories. These
correlations also show a substantial degree of persistence over
time, especially when we look at the weighted correlation in row
4. The difference between the weighted and the unweighted cor-

18. Because income data from the CPS are more reliable, we use income
estimates from the CPS to construct expenditure shares. Using the income esti-
mates from the MEPS leads to very similar results (see the Appendix).

19. Nevertheless, as we will see below, there is evidence of an increase in use
per person in categories that have also experienced an increase in market size due
to demographic changes.
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relations reflects the relatively imprecise estimates of use per
person for the smaller categories.

Panel B performs the same calculation for expenditure shares
from the three waves of the MEPS (weighted correlations now use
total expenditure in each category as weights), and similarly shows
substantial persistence in the age profiles of expenditure. Notably,
there is now an even larger difference between weighted and un-
weighted mean correlations by drug, presumably because the
MEPS, which is a more representative sample of the U. S. popula-
tion than the NAMCS, has only a few observations in some of the
smaller drug categories. This motivates our focus below on weighted
regressions. Finally, Panel C shows high correlations both between

TABLE I
CORRELATIONS BETWEEN DIFFERENT DRUG USE MEASURES

Panel A: NAMCS use per person

1980/1990 1990/2000 1980/2000

Correlation 0.897 0.861 0.861
Weighted correlation 0.906 0.843 0.856
Mean correlation by drug 0.709 0.651 0.626
Weighted mean correlation by drug 0.820 0.825 0.790

Panel B: MEPS expenditure share

1996/1997 1997/1998 1996/1998

Correlation 0.961 0.965 0.929
Weighted correlation 0.962 0.973 0.937
Mean correlation by drug 0.698 0.686 0.575
Weighted mean correlation by drug 0.865 0.881 0.796

Panel C: NAMCS/MEPS use and
MEPS use/expenditure

NAMCS/MEPS use
MEPS

use/expenditure

Correlation 0.869 0.954
Weighted correlation 0.891 0.956
Mean correlation by drug 0.804 0.902
Weighted mean correlation by drug 0.935 0.940

The numbers refer to the correlation of use per person or average expenditure share between the
indicated dates and data sets. Observations are for five-year age groups by drug category (there are 33 � 19 �
627 observations in each case). In weighted correlations, observations are weighted by total use or expendi-
ture from the MEPS or NAMCS. Mean correlation by drug computes correlations separately by drug category,
and then calculates the average.
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the NAMCS and the MEPS measures and between expenditure
shares and use per person in the MEPS.

The last major data source is a list of FDA new drug approv-
als. We exclude over-the-counter drugs, the so-called orphan
drugs,20 and drugs that have the same identifying characteristics
(i.e., same name, company, and category, or the same FDA approval
number). We focus on the time period 1970–2000. Both the quality
of the approvals data and the quality of our measures of potential
market size deteriorate as we go back in time for a number of
reasons. First, we can only match FDA categories for drugs that are
still listed by the FDA; second, before 1970 we cannot separately
identify generics and nongenerics; and finally, we are using age
profiles from the 1990s. Our approvals data set for 1970–2000
comprises 5374 prescription drugs, including both generics and non-
generics (see the Appendix). Since 1970 there have been 2203 non-
generic approvals and 442 new molecular entities.

Figure III shows the share of drug approvals over time to
compare with changes in income shares depicted in Figure II. To

20. These drugs treat rare conditions, affecting fewer than 200,000 people.
An example is botox, first developed to treat adult dystonia, which causes invol-
untary muscle contractions. We drop these drugs because we have difficulty
matching them consistently, and because they receive special inducements under
the Orphan Drug Act.

FIGURE III
Share of FDA Approvals by Age Group, 1970–2000

Share of FDA approvals is computed as approvals of drugs in the corresponding
broad age group divided by total approvals in that period, calculated from the FDA
data set of New Drug Approvals. Each of the 33 drug categories is assigned to one
of the three broad age groups according to which broad age group has the largest
expenditure (see Appendix 2).
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construct Figure III, we allocate each of the 33 categories to the
broad age group that has the largest expenditure in that category.
The share of drug approvals is equal to the number of approvals
in a given category in each five-year period divided by total
approvals in that period.21 Although this cut of the data uses only
a small part of the information that the regression analysis below
exploits, a positive association between changes in income shares
and changes in drug approvals can be detected by comparing this
figure with Figure II. For example, the income share of the 30–60
group increases over the sample, as does the entry of drugs most
used by this group. The shares of income and entry of drugs for
those 0–30, on the other hand, show a downward trend. Finally,
both the shares of income and entry of drugs for the 60� group
are relatively constant over the sample period. We explore these
patterns in greater detail in the regression analysis below.

V. RESULTS

V.A. Basic Specifications

Table II provides the basic results from the estimation of equa-
tion (11) with quasi-maximum likelihood (QML). The top panel is for
all approvals. Panels B and C look at nongenerics and new molecu-
lar entities (nongenerics containing new molecules), and Panel D
reports results for generics. Throughout the paper the standard
errors are corrected for heteroskedasticity using the Huber-White
formula (see footnote 10). In this table we use the basic (income-
based) measure of log Mct, constructed using expenditure data from
the MEPS, and income from the CPS, the time periods correspond to
five-year intervals, and observations are weighted by total expendi-
ture in the corresponding drug category in the MEPS.

Column (1) of Panel A shows that the QML estimate of � for
all new drugs is 6.15 with a standard error of 1.23, which is
significant at the 1 percent level.

The remaining columns of Panel A investigate whether it is
current market size or past or future market size that has the

21. There are large fluctuations in the total number of approvals, partly
because of a number of institutional changes. For example, it was discovered in
1989 that some FDA officials were taking bribes to speed up the approval process
for generic drugs. As a result, in the early 1990s the approval process for generics
was greatly slowed. See, for example, The Washington Post, August 16, 1989. In
fact, there is a large drop in generics approvals in the early 1990s, but only a small
decline for nongenerics. We thank Ernst Berndt for suggestions on this issue.
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TABLE II
EFFECT OF CHANGES IN MARKET SIZE ON NEW DRUG APPROVALS

(1) (2) (3) (4)

Panel A: QML for Poisson model, dep var is count of drug approvals

Market size 6.15 6.84 �2.22
(1.23) (4.87) (4.12)

Lag market size �0.61
(3.85)

Lead market size 10.16 7.57
(4.28) (1.99)

Panel B: QML for Poisson model, dep var is count of nongeneric drug approvals

Market size 3.82 6.72 2.91
(1.15) (7.63) (5.31)

Lag market size �2.49
(5.97)

Lead market size �1.77 1.73
(6.94) (2.02)

Panel C: QML for Poisson model, dep var is count of new molecular entities

Market size 3.54 5.79 �1.38
(1.19) (6.66) (5.16)

Lag market size �1.99
(5.28)

Lead market size 7.35 5.75
(5.11) (2.37)

Panel D: QML for Poisson model, dep var is count of generic drug approvals

Market size 11.81 8.55 1.28
(3.30) (6.85) (7.17)

Lag market size 3.12
(5.94)

Lead market size 13.24 14.65
(8.66) (3.71)

Number of
observations 198 198 165 165

Huber-White robust standard errors are reported in parentheses. The dependent variable in Panel A is
count of drug approvals, in Panel B the dependent variable is count of nongeneric drug approvals, in Panel
C the dependent variable is new molecular entities, and in Panel D, it is generic drug approvals, all calculated
from the FDA data set of New Drug Approvals (see Appendix 1). Market size is log potential market size
calculated from the MEPS and the CPS, using five-year age groups (see text). Lag market size refers to
one-period lag of market size, and Lead market size refers to one-period lead of market size. All regressions
include drug and time dummies, and use the income-based measure of market size. Time intervals are five
years. Estimates are weighted by total expenditure for the category in the MEPS. The Poisson model is
estimated by quasi-maximum likelihood (QML), with the Hausman, Hall, and Griliches [1984] transforma-
tion. See equation (11) in the text.
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strongest effect on entry of new drugs. Column (2) includes cur-
rent and five-year lagged market size together;22 column (3) in-
cludes current and five-year lead market size; and finally, column
(4) looks at the relationship between lead market size and entry
of new drugs.

The entry of all drugs appears to respond to current or
five-year lead market size. When current and lagged market sizes
are included together, the coefficient on current market size has
a similar magnitude to column (1), while lagged market size is
negative, and neither coefficient is significant, presumably be-
cause current and previous market sizes are highly correlated.
When current and lead market sizes are included together, cur-
rent market size is not significant, whereas lead market size is
significant at 5 percent. Moreover, column (4) shows that lead
market size has a somewhat larger effect than current market
size (the estimate of � is now 7.57, with standard error 1.99).

The results in Panel A combine generics and nongenerics.
Entry of generics and nongenerics may be driven by different
processes. Moreover, generics, which are identical to existing
drugs, do not correspond to “innovation.” Panel B shows the
relationship between potential market size and entry of new
nongeneric drugs. The estimate of � is now 3.82, with standard
error 1.15, which is also significant at 1 percent.

Perhaps more relevant for the relationship between market size
and innovation is the response of new molecular entities. These are
drugs classified by the FDA as containing new active ingredients,
and thus correspond to more radical innovations (there are 442 new
molecular entities and 2,203 new nongenerics in our data set). Panel
C shows a significant relationship between market size and new
molecular entities. The estimate of � is 3.54 (standard error � 1.19),
and is again statistically significant at 1 percent. Interestingly,
while all nongenerics are most responsive to current market size,
the coefficient of lead market size is larger with new molecular
entities, 5.75, though the standard error is also larger, 2.37. This
evidence, though not conclusive, is consistent with a limited antici-
pation effect in the response of innovation to market size.23

22. We construct the lagged market size measures for 1960s using demo-
graphic information from the CPS, so the number of observations does not
decline. If we only use the post-1970 data, the results are similar, though
lagged entry is somewhat stronger.

23. Here “limited” does not refer to the strength of the effect, but to the fact
that the response to market size is five years before the change in market size, not
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Finally, for completeness, Panel D shows the effect of poten-
tial market size on the entry of generics. The estimate of � in the
baseline specification of column (1) is 11.81 (standard error �
3.30). This effect is considerably larger than those that are ob-
tained in the cross-sectional studies, such as Scott Morton [1999]
and Reiffen and Ward [2004]. This might partly reflect the com-
plex entry dynamics of generic drugs, though we did not find
evidence of such dynamics in our investigations. Since generics
are not our main focus, we do not pursue potential explanations
for this large effect further.

The magnitude of the effects of market size on entry of
nongenerics and new molecular entities in Table II is also large,
in particular, larger than the proportional effects predicted by our
model.24 Note, however, that our key right-hand-side variable
measures potential market size rather than actual market size,
and these two measures might differ because of changes in ex-
penditure shares. To investigate whether the difference between
actual and potential market size might affect the magnitude of
our estimates, we use the NAMCS, where we can measure actual
market size in terms of total use in each drug category between
1980 and 2000 (recall that the NAMCS data do not contain
expenditure information). A simple regression of actual market
size in each drug category on our measure of population-based
potential market size and category and period dummies yields a
coefficient of 4.06 (standard error � 1.60), which suggests that

further in advance. Two-period (ten-year) lead of market size has a large, but
imprecise effect on new molecular entities (significant at 5 percent), while further
leads are insignificant.

24. Our estimates refer to the effect of market size on the flow of new drugs,
which may differ from the effect on the stock of drugs. To check for this possibility,
we estimate our basic models using ¥��1

t Nc�, i.e., the stock of drugs at time t, as
the dependent variable. Consistent with our finding of limited residual serial
correlation below, this procedure leads to slightly smaller estimates, 1.84 (stan-
dard error � 0.98) for nongenerics, and 3.10 (standard error � 1.06) for new
molecular entities. The evidence is therefore consistent with a broadly similar and
somewhat smaller response of the stock of drugs to market size than the response
of the flow of new drugs.

It also has to be borne in mind that these estimates are informative about the
effect of market size on the composition of research, and the relationship between
total pharmaceutical market size and aggregate research could be quite different.
If we estimate (11) for nongenerics without time effects, we obtain a coefficient of
0.22, with a standard error of 0.09 (for new molecular entities, the estimate is
0.41, with a standard error of 0.06). This is consistent with the view that the
response of the composition of R&D to market size is quite different from the
response of total R&D. Nevertheless, the difference between the results with and
without time effects is at least partly due to the presence of other time-varying
factors affecting entry of new drugs.
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between 1980 and 2000 actual market size went up by 4 percent
for every 1 percent increase in potential market size.25 Assuming
that this relationship also applies to the entire sample and to the
income-based measure of market size, our estimates of 4–6 per-
cent response to potential market size are consistent with a
proportional relationship between entry of new drugs and actual
market size.26

V.B. Robustness

Table III investigates the robustness of the effect of potential
market size on the entry of nongeneric drugs (Panel A) and new
molecular entities (Panel B). Although the entry of new molecular
entities may be responding somewhat more to the five-year lead
of market size than to current market size, we report results for
current market size in Panel B for compatibility with Panel A.
Results for the effect of five-year leads of market size on new
molecular entities are similar, and generally somewhat stronger.

Column (1) replicates the baseline results from Table II for
comparison. In column (2) time periods are ten years instead of
the five-year intervals. The estimate of � for nongenerics is some-
what larger, 4.81 (standard error � 1.31), while the estimate for
new molecular entities is similar to the baseline, 3.91 (standard
error � 1.29). Both estimates are significant at 1 percent.

Column (3) looks at the effect of changes in market size
driven purely by population changes (in this case, regression
weights are total use in the corresponding category in the MEPS).
The estimates in both panels are larger than the baseline, and
continue to be significant at 1 percent. Since the income-based

25. This result implies that use per person went up in categories experiencing
an increase in market size due to demographic changes, which may itself be partly
due to increases in the number and quality of drugs in these categories.

26. In any case, our estimate of a 4 percent increase in the rate of entry of
new nongenerics in response to a 1 percent increase in market size is not implau-
sible. There are a total of 2203 nongeneric approvals between 1970 and 2000, thus,
on average, 10 approvals in every five-year interval in each of our 33 categories.
Therefore, our estimate implies that a 2.5 percent increase in market size should
lead to the entry of about one new drug. Total pharmaceutical sales were approxi-
mately $130 billion in 1999 [IMS 2000], which implies an average annual expen-
diture of $3.9 billion per category. A 2.5 percent increase therefore corresponds to
$97.5 million, or about $1.5 billion over fifteen years, which is the life of a typical
nongeneric drug. Since entry costs for nongenerics are around $800 million (in
2000 dollars, DiMasi, Hansen, and Grabowski [2003]), entry of one new drug in
response to an increase of approximately $1.5 billion in revenue is within the
range of plausible responses. Naturally, this calculation is very rough and only
suggestive, since it ignores the difference between average demand and the
demand that a marginal entrant will capture.
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measure is closer to the notion of market size suggested by
theory, we continue to focus on this measure.27 Column (4) shows
similar results using the population-based measure of market
size with our alternative data set, the NAMCS.

Column (5) uses an OECD market size measure combining
West European and Japanese demographic information with the
U. S. information.28 Since we only have information on popula-
tion for the other countries, we perform this exercise for the
population-based measure of market size. The U. S. and OECD
populations by age group have a high correlation, equal to 0.81.
Using the OECD market size measure leads to similar, and
somewhat surprisingly, more precise results. For all nongenerics,
the estimate of � is 3.27 (standard error � 0.86), while for new
molecular entities, the estimate is 3.28 (standard error � 0.84).

Column (6) investigates the effect of weighting on the estimates.
The unweighted estimate of � for all nongenerics is smaller than the
baseline, 1.81 (standard error � 1.61), and no longer statistically
significant. For new molecular entities the estimate is larger and
still significant: 4.62 (standard error � 1.98). In both cases, the
standard errors are significantly larger, reflecting the fact that ex-
penditure shares in smaller cells are less precisely estimated.

Column (7) uses an alternative measure of market size con-
structed with single-age groups for iat’s and uca’s in equation (13).
This procedure uses more information about the age profiles, but
since there are fewer observations in some single-age groups, the
estimates of uca’s are less precise. The estimates using this alter-
native measure are very similar to the baseline results; the esti-
mate of � for nongenerics is 3.67 with a standard error of 1.18,
and the estimate for new molecular entities is 3.35 (standard
error � 1.23).

Column (8) uses the alternative classification system from Ace-
moglu and Linn [2003], which uses only differences in the age profiles
of expenditure to subdivide the major FDA categories. This classifica-
tion system contains 34 categories, and because it includes a number of
small FDA detailed categories that are dropped from the current sys-

27. Instrumenting the income-based market size measure with the popula-
tion-based market size measure leads to similar estimates to the baseline. The
estimate for nongenerics is 4.07 (standard error � 1.37), and the estimate for new
molecular entities is 3.84 (standard error � 1.41).

28. These data were obtained from the United Nations Web site,
esa.un.org/unpp/.
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tem, there are now 106 more approvals (see Appendix 1). The estimate
for nongenerics is similar to the baseline in column (1), 3.68 (standard
error � 1.07), while the estimate for new molecular entities is smaller
than the baseline and insignificant. However, with this classification
system there is a stronger effect of lead market size on new molecu-
lar entities (and thus somewhat stronger evidence for anticipation
effects). For example, the estimate of � with new molecular entities
and lead market size is 6.81 (standard error � 1.29), which is
significant at the 1 percent level (not reported).

Column (9) estimates the model in equation (12) with the
Pakes-Griliches transformation using OLS. The results are simi-
lar to those in column (1). For nongenerics, the estimate of � is
3.37 with a standard error of 1.75, and for new molecular entities,
it is 3.54 with a standard error of 1.40. We also use the linear
model to document that the relationship we observe is not driven
by outliers. Figure IV shows the relationship between the resid-
uals of new molecular entities versus the residuals of market size,
log Mct, after drug category and time period dummies are re-
moved. Observations are labeled by their drug category codes (see
Appendix 2), and each code appears more than once, since there

FIGURE IV
Approvals Residuals versus Market Size Residuals for New Molecular Entities

Approvals residuals and market size residuals are residuals from OLS regres-
sions of log approvals and log income-based market size on category and time
dummies, weighted by expenditure with five-year intervals. Fitted values are
predicted approvals residuals obtained from the OLS regression in Table III,
Panel B, column (9).
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are multiple periods. This figure shows that there are no major
outliers (the figure for nongenerics is similar).29

Finally, column (10) checks the robustness of the results to
dropping the Cardiac category, which includes the most diverse
types of drugs. The exclusion of this category has little effect on
the estimates.30

V.C. Potential Supply-Side Determinants of Innovation

The first part of Table IV investigates the robustness of the
baseline results to controlling for potential supply-side determi-
nants of innovation, such as changes in scientific incentives or
opportunities captured by the �j’s in the theoretical model. Panel
A reports results for nongenerics, while Panel B looks at new
molecular entities.

First, recall that the major threat to our identification strat-
egy is changes in the �j’s (since permanent differences in �j’s are
already taken out by the drug category fixed effects). If the �j’s
vary over time, they are also likely to be serially correlated.
Adding lags of log Nct to our basic specifications is therefore a
simple way to check the importance of these concerns.

Columns (1) and (2) of Table IV report the results of QML
estimation of a lagged dependent variable specification of the form,

(14) E�Nct��c,X� c,N� c�

�
exp�� � log Mct � � � log Ñct�1 � � � dct�1 � �t�

���1
T exp�� � log Mc� � � � log Ñc��1 � � � dc��1 � ���

N� c,

where we use the notation in (11), and in particular,
N� c � ¥��1

T Nc� is the number of drugs approved in category c over
the entire sample. Since Nct�1 can be equal to 0, we follow a
procedure similar to that of Pakes and Griliches [1980], used in
column (9) of Table III above, and define Ñct�1 � Nct�1 if Nct�1 �
1 and Ñct�1 � 1 if Nct�1 � 0, and add the dummy dct�1 that
equals 1 when Nct�1 � 0. The estimate of � for nongenerics in

29. Dropping the one category that appears as a slight outlier, category 14
(Anorexiants/CNS Stimulants), has no effect on the estimate, which only changes
to 3.66 (standard error � 1.46).

30. We have also experimented with dropping each of the other categories
one at a time. The effect of market size on both nongenerics and new molecular
entities remains significant at 5 percent in all cases, except when we drop Anti-
biotics. Without Antibiotics, the estimates are similar to the baseline results, but
no longer significant. For nongenerics the estimate is 1.72 (standard error � 2.01),
and for new molecular entities, 4.14 (standard error � 2.59).
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this case is 3.84 (standard error � 1.07), and the coefficient on
lagged entry is 0.12 (standard error � 0.10), thus small and
insignificant.31 The results for new molecular entities are similar.

The estimates in column (1) treat all right-hand-side vari-
ables as strictly exogenous. Because log Ñct�1 is endogenous,
these estimates are inconsistent. As long as there is no additional
autocorrelation in the errors, instrumenting for log Ñct�1 with �
log Ñct�2 would lead to consistent estimates.32 Since the estimat-
ing equation in (14) is nonlinear, we perform this instrumenta-
tion strategy by adding the residuals from the first-stage regres-
sion as an additional right-hand-side variable to the second stage
(see Wooldridge [2002] Chapter 19.5). Column (2) reports the
results of this exercise. Once again, the coefficients are very
similar to the baseline estimates in all three panels, and show no
evidence of significant effects of lagged entry. For example, for
nongenerics, the estimate of � is 3.98 (standard error � 1.16), and
for new molecular entities, the estimate is 3.69 (standard error �
1.38). Furthermore, as a direct check, we tested and found no
evidence for serial correlation in the residuals from the estima-
tion of equation (11) in Table II. Overall, the results show that the
effect of potential market size on entry of nongenerics and new
molecular entities is robust to controlling for lagged entry, and
there is no evidence of residual serial correlation.

A plausible conjecture is that nonprofit incentives to develop
drugs would be related to opportunities to save lives or cure major
illnesses. Our second strategy controls for differences in the
health benefits of new drugs across categories. New drugs in our
data set include both drugs that are demanded by the consumers
but do not “save lives,” such as Prozac, Paxil, Vioxx, or Viagra,
and those that actually save lives such as heart medicines or
cancer treatments (see Lichtenberg [2002, 2003], on the effect of
pharmaceutical innovations on declines in mortality). We esti-

31. In the estimates reported in columns (1) and (2) of Table IV, we use
information on approvals before 1970 to construct lags, so the sample size remains
the same as in the basic specifications. Because before 1970 we cannot distinguish
generics and nongenerics (though we can identify new molecular entities), we use
all approvals for the pre-1970 lags in Panel A.

Whether or not we use the pre-1970 data is not important for the results.
Estimating the model in (14) without the pre-1970 data for nongenerics gives an
estimate of � of 3.75 (standard error � 1.93), and the lagged dependent variable
is again very small and insignificant. The same is true for new molecular entities.

32. See, for example, Arellano and Bover [1995] and Blundell and Bond
[1998]. We cannot use other commonly used moment restrictions, since equation
(14) cannot be first-differenced.

1078 QUARTERLY JOURNAL OF ECONOMICS



mate the number of life-years lost corresponding to each drug
category using the Mortality Detail Files from the National Cen-
ter for Health Statistics from 1970–1998. Following Lichtenberg
[2002], for each death we subtract the person’s age from 65, then
calculate the total number of life-years lost for all the deaths
resulting from diseases related to drugs in each category.33 Col-
umn (3) adds life-years lost to the right-hand side of our baseline
regression models as a proxy for this source of nonprofit incentive
to undertake research. The estimate of the effect of market size
on nongenerics is now 3.58 (standard error � 1.70), and the
estimate for new molecular entities is 3.64 (standard error �
1.79). In all cases, the variable for life-years lost is not significant.

We also investigate the implications of differences in scientific
funding for various drug categories. Using the Computer Retrieval
of Information on Scientific Projects (CRISP) data set (details are
contained in Lichtenberg [2001] and Acemoglu and Linn [2003]), we
construct a variable measuring the total amount of federal funding
for research in each drug category, and include this variable as a
control. To the extent that government funding also responds to
potential market size (for example, because drug companies have a
greater tendency to apply for funding in areas where they plan to do
research), this variable would be correlated with our market size
measure. In practice, the correlation is low, and column (4) shows
that the inclusion of this variable has little effect on our estimates.
The estimate of the effect of market size is 3.86 (standard error �
1.20) for nongenerics and 3.56 (standard error � 1.20) for new
molecular entities. The funding variable itself is positive, but small
and insignificant (not reported in the table).

Next, to control for potential trends in scientific opportunities
across drug categories, we add proxies for preexisting trends. We
construct an estimate for preexisting trends as �c � (log Nc,70 �
log Nc,40), where log Nc,70 is the log approvals for category c in
1970 and log Nc,40 is the log approvals in 1940.34 We then add a
full set of interactions between �c and the time dummies. This
specification therefore allows drug categories that have grown

33. For example, if someone dies at age 32, this counts as 33 life-years lost;
people dying older than 65 receive no weight in this calculation. Since many of our
categories contain diseases or conditions that do not lead to death, we obtain
several empty cells.

34. Because we cannot distinguish between nongenerics and generics before
1970, in Panel A, we use total approvals before 1970. Also, since there were no new
molecular entities approved in the 1940 period, in Panel B we construct the
preexisting trend using 1950 and 1970 approvals of new molecular entities.
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differentially between 1940 and 1970 to also grow at different
rates in the later periods. Column (5) reports the results of this
exercise. The estimates are very similar to the baseline in all
three panels. These results are perhaps not surprising, since
pre-1970 approvals are considerably noisier and do not distin-
guish between generics and nongenerics, thus are only an imper-
fect control for preexisting trends.

An alternative, and substantially more demanding, strategy
is to include in-sample linear time trends. To do so, we add linear
time trends for each of the sixteen major FDA categories. We
expect technological differences to be well approximated by the
sixteen major drug categories, which are based on broad thera-
peutic intent. The estimates, reported in column (6), are quanti-
tatively similar to the baseline, but no longer significant because
the standard errors are larger, reflecting the fact that changes in
market size due to demographic trends are relatively smooth, and
thus highly colinear with the time trends (nevertheless, the esti-
mate for new molecular entities is significant if we use lead
market size). Since distinguishing between linear time trends
and changes in market size may be more difficult with the non-
linear model in (11), we also estimate the model in (12) with
linear time trends using OLS. The results, reported in column (7),
are also similar to the baseline, and now the estimate for non-
generics is significant at 5 percent, and the estimate for new
molecular entities is significant at 10 percent.

We also investigate the potential effects of recent advances in
biotechnology, such as the use of recombinant DNA or other tech-
nological changes, which may correspond to changes in the �j’s in
terms of our model. In column (8) we drop the categories of Cancer
and Vascular, which, according to the FDA approval list, have wit-
nessed the entry of the greatest number of orphan drugs (presum-
ably by biotechnology firms). In addition, there is anecdotal evidence
that biotechnology firms were first active in producing insulin (the
Thyroid and Glucose category) and in the Anemia category, so in
column (9) we drop these two categories.35 In both cases, the esti-
mates are very similar to our baseline results.

Finally, to see whether the advent of biotechnology or other
technological advances of the past two decades have changed the

35. Biotechnology firms have also been active in producing human growth
factor, but since there are only a small number of individuals using these drugs in
the MEPS, these drugs are not included in our approvals data set.
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relationship between market size and entry of new drugs, we
estimate our baseline models including an interaction between a
post-1985 (or post-1990) dummy and market size. Our estimates
show no evidence of significant interactions.36

The results in this subsection therefore document that a num-
ber of controls for supply-side factors have little effect on our main
finding regarding the effect of market size on entry of nongeneric
drugs and new molecular entities. Although these results are not
conclusive on the effect of scientific or other supply-side factors in
pharmaceutical research, they suggest that the effect of potential
market size on entry and innovation is relatively robust.

V.D. Changes in Health Insurance Coverage

Our market size measure only exploits changes in potential
market size driven by demographic trends. Another source of varia-
tion in market size comes from changes in coverage of drug expen-
diture in private or public health insurance programs. During our
sample period, there were significant changes in the coverage of
drug expenditures in health insurance plans. For example, the per-
centage of 60� year-olds with private insurance rose from 60 per-
cent to 75 percent between 1974 and 1996 (authors’ calculations).
We now investigate the effect of including information on health
insurance coverage in our market size measure.

We use the National Health Interview Survey (NHIS,
1974 –1996) to construct a market size measure incorpora-
ting information on health insurance coverage as follows:
M̃ct � ¥a uca � iat � fat, where fat is the fraction of those of age a
in period t with private health insurance, and uca and iat are as
defined above. Because there is no consistent information on
prescription drug coverage, we assign prescription coverage to
any individual with both doctor and surgical coverage. Prescrip-
tion drug coverage is highly correlated with this measure in the
years we can observe it. In column (10) we use log M̃ct as our
market size measure instead of log Mct. This leads to similar, and
somewhat more precise, results. For nongenerics, the estimate of
� is 1.92 with standard error 0.44, while for new molecular
entities, it is 2.10 (standard error � 0.51). Despite the greater

36. For example, in a specification parallel to the model for nongenerics in
column (1) of Table II, the estimate of � is 4.29 (s.e. � 1.66), and the interaction
with the post-1985 dummy is �0.13 (s.e. � 0.18), thus small and insignificant. For
new molecular entities, the estimate of � is 4.00 (s.e. � 1.46), and the post-1985
interaction is �0.10 (s.e. � 0.13).
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precision of these results, we have more confidence in our base-
line estimates, since the measure M̃ct effectively assigns 0 expen-
diture to those without insurance and relies on information on
drug coverage imputed from doctor and surgical coverage.

V.E. Reverse Causality

Lichtenberg [2002, 2003] shows that new drugs have in-
creased the average age at death. This introduces the potential
for reverse causality whereby the market size for successful drugs
may be endogenously larger, because their users live longer. This
is unlikely to be a first-order concern, since drug-induced changes
in population are small relative to the demographic changes that
we are exploiting. Nevertheless, we address this issue by instru-
menting for current population using the corresponding popula-
tion from five years before. For example, we use the income of
50–54 year-olds in 1975 as an instrument for the income of 55–59
year-olds in 1980. The fraction of 50–54 year-olds is highly cor-
related with the fraction of 55–59 year-olds five years later, but is
unaffected by new drugs that are developed in the intervening
five years. As described above, the instrumental-variables proce-
dure is performed by adding the residuals from the first-stage as
an additional right-hand-side variable (see Wooldridge [2002]).

These instrumental-variables estimates, reported in column
(11) of Table IV, are similar to the baseline results and show no
evidence of reverse causality. For nongenerics, the estimate of �
is 2.93 (standard error � 1.45), and for new molecular entities,
the estimate is 3.08 (standard error � 1.32).

V.F. Patents

The results so far show a large and robust effect of potential
market size on entry of nongeneric drugs and new molecular
entities, and suggest a strong link between market size and
innovation. In this subsection we briefly investigate the relation-
ship between market size and another measure of pharmaceuti-
cal innovation, patents.37

We obtained data on pharmaceutical patents from Thomson

37. Firms typically apply for a patent prior to the clinical trial stage of drug
development, or about 5–10 years before the drug is approved, and therefore lose
a significant fraction of the life of the patent before it can begin marketing the
drug. Part of the 1984 Hatch-Waxman Act allowed pharmaceutical companies to
apply to the FDA for an extension of the life of their patents, if they could show
that they lost marketing time while waiting for approval. The maximum extension
is five years, and depends, among other things, on the length of the FDA approval
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Derwent Inc., and with the help of a specialist at this company,
we mapped these patents into our classification system.38 Using
these data, we found no significant relationship between market
size and patents, which might be due to a variety of reasons.39

First, this result may simply reflect the imperfect match between
the patent data and the FDA categories, especially bearing in
mind the potential use of certain chemical structures in multiple
drug lines. Second, the significant costs and uncertainty involved
in the development of new molecules and patentable products
may be creating substantial attenuation (e.g., a drug intended for
the 1990s may be patented in the 1980s or 1990s, depending on
delays in the research process). Third, pharmaceutical companies
may respond to profit incentives more during the later stages of
the research process than during the earlier stages. Finally, be-
cause U. S. patents include those taken by foreign companies,
they may be more responsive to OECD demand than to U. S.
demand. To investigate the last possibility, we estimated the
relationship between changes in OECD market size derived from
European, Japanese, and U. S. demographic changes. In this
case, we find a significant relationship between five- or ten-years
leads of OECD market size and patents. With the five-year lead of
market size, the estimate of � is 3.49 (standard error � 1.02) and
with the ten-year lead, the estimate is 5.02 (standard error �
0.63).40 Although this result suggests that OECD demand may be
more important for patents, we are currently unable to make
more progress in distinguishing between these various explana-
tions, and the weaker results for patents remain a puzzle.

VI. CONCLUDING REMARKS

This paper investigates the response of entry of new drugs
and pharmaceutical innovation to changes in potential market

process. Overall, companies have a maximum of fourteen years of patent protec-
tion after FDA approval.

We were unable to obtain data for a sufficient number of categories for
another possible proxy for pharmaceutical innovation, clinical trials.

38. We could not use the data from the Hall-Jaffe-Trachtenberg patent data
set (see Jaffe, Trachtenberg, and Henderson [2002]) because we were unable to
map their classification based on chemical structure to our drug categories.

39. Finkelstein [2004] also finds weaker results for vaccine patents than for
later stages of development.

40. Part of the difference between the U. S. and OECD results is driven by the
fact that we are using income-based measures for the U. S. and the population-based
measures for the OECD. Using the population-based measure for the U. S. lead
market size with patents yields a coefficient of 2.34 (standard error � 4.63).
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size driven by demographic changes. Our results indicate that a 1
percent increase in the potential market size for a drug category
leads to approximately a 4 percent growth in the entry of new
nongeneric drugs and new molecular entities.

The effect of market size on entry of new drugs and new
molecular entities, if further proved to be robust, has important
implications both for research on the pharmaceutical industry,
and for the endogenous growth and directed technical change
literatures. It provides evidence that, as posited by these models,
R&D and technological change are directed toward more profit-
able areas. These findings also imply that there may be little
pharmaceutical research toward drugs with small markets, espe-
cially toward those intended for groups with limited ability to
pay, which is a key premise of recent work by Kremer [2002].
Based on this premise, Kremer suggests that there need to be
selective government incentives for developing drugs against ma-
laria and other third-world diseases.

We view this research as part of a broader investigation of
the effects of profit incentives on innovation. Evidence from a
single industry may be nonrepresentative, for example, because
pharmaceuticals may be more research oriented than other in-
dustries. Future research investigating the response of innova-
tion and entry of new products to market size both in specific
industries and at the economywide level is necessary to substan-
tiate the results presented here.

APPENDIX 1

A. Medical Expenditure Panel Survey (MEPS) and
Construction of the Drug Classification System

The MEPS is an annual survey of randomly sampled house-
holds; we use the 1996, 1997, and 1998 surveys. We obtain each
person’s age, the name and national drug code of the prescription
drug(s) used, and total expenditure (there are multiple records for
people who use more than one prescription drug). Over the three
years we have about 500,000 drugs used and about 85,000 individ-
uals. Expenditure information includes out-of-pocket expenses, as
well as amounts paid by insurance companies and government
payments (e.g., Medicaid and worker’s compensation). These data
are collected from the pharmacies and medical providers listed by
the respondents.
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We begin with the 159 therapeutic categories, obtained from
the FDA’s National Drug Code (NDC) Directory. The names of
these categories can be found in the second column of Appendix 2.
The NDC Directory contains a file with the therapeutic category
for most FDA-approved drugs currently on the market. We assign
each drug in the MEPS to one of the 159 categories by matching
it by national drug code with a drug in the NDC file. We cannot
match about 10 percent of the drugs mentioned in the MEPS;
these are usually not commonly used drugs, and make up less
than 5 percent of the total drugs used.

Drug expenditure shares and use per person are calculated
by computing drug expenditure and use by five-year age group,
and then dividing by the income and population of the age
group. We use the population numbers from the MEPS (so use
per person is the weighted average of use per person of respon-
dents in the MEPS), but income estimates from the CPS. We
prefer the CPS income estimates because the MEPS income
data are likely to contain greater measurement error; in the
MEPS the sample is smaller, wage and salary incomes for
almost half of the sample are imputed either based on broad
income ranges or other information, nonwage incomes were
generally imputed, and the imputation methods changed be-
tween the 1996 –1997 and 1998 surveys. Nevertheless, the
results are almost identical if we construct expenditure shares
for individuals in the survey (i.e., without using CPS informa-
tion in the same way as we do for use per person). For example,
the estimate of the effect of market size on the entry of non-
generics is 4.08 (standard error � 1.31), and the estimate for
new molecular entities is 3.59 (standard error � 1.35). We also
checked the robustness of our results using an alternative
market size measure constructed with single-age groups, and
the results are reported in Table III. We prefer the measure
using five-year age groups, since there are only a few observa-
tions in some single-age groups in the MEPS.

The FDA has assigned the 159 categories to one of twenty major
therapeutic categories. As noted in the text, we drop four major
categories: Anesthetics, Antidotes, Radiopharmaceuticals, and Mis-
cellaneous.41 Within each major category we first subdivide catego-

41. We also drop several minor categories when there are not sufficient
observations to estimate a reliable age profile. We use about 1,000 observations as
our cutoff rule. We obtain this number from observing that only categories with
more than 1,000 observations have fairly smooth age profiles.
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ries whose drugs have different indications (we determine drugs’
indications by searching by name on the National Institute of
Health Web site, www.nlm.nih.gov/medlineplus/druginforma-
tion.html). For categories that have not been subdivided based on
indications, we then divide them if there is sufficient heterogeneity
in the age profile of users for subcategories. Appendix 2 shows that
we create subcategories when there is considerable age variation
within broad categories. For example, within the Hormones major
category, Estrogens/Progestins are used predominantly by 30–60
year-olds, while Contraceptives are used fairly evenly by 0–30 year-
olds and 30–60 year-olds. This classification system differs some-
what from the working paper version, in which we divided major
classes based entirely on age structure. The previous system in-
cludes several FDA categories that are dropped from the current
one: the CNS Miscellaneous, Hyperlipidemia and Calcium Metabo-
lism categories, which contain drugs used for heterogeneous condi-
tions, and several categories that would have been subdivided based
on drug indications, but had fewer than 1000 observations in the
MEPS. The details of the previous classification system are in Ace-
moglu and Linn [2003], and Table III, column (8), reports results
using this older classification.

B. Drug Approvals from the FDA

The list of FDA drug approvals were obtained by Lichten-
berg and Virahbak [2002] under the Freedom of Information
Act. We thank Frank Lichtenberg for generously sharing these
data with us. Over-the-counter drugs and orphan drugs (of
which only a few can be matched) are excluded. Biologics,
which go through a separate approval process, are not in this
data set.

We match drugs in the approval list to FDA categories by
drug name and FDA approval number. Since 1970, 14,432 of
16,772 prescription drugs (86 percent) approved are matched,
while before 1970, the match rate is about 51 percent. This
motivates our focus on drug approvals between 1970 and 2000.
Drugs that have the same approval number as a previously
approved drug and drugs for which the corresponding FDA
category is dropped because of insufficient observations in the
MEPS are excluded. Finally, we drop drugs with the same
name, MEPS category, and company as a previously approved
drug.
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APPENDIX 2: SUMMARY OF DISEASE CLASSIFICATION AND DRUG EXPENDITURE

BY AGE GROUP

Class Description

Expenditure share � 1000
{Share of expenditure by

age group in total expenditure
in brackets} Age group

with largest
expenditure0–30 30–60 60�

1 Antibiotics
0.95 0.62 0.90

0–30{0.41} {0.40} {0.19}

2 Antivirals
0.03 0.36 0.05

30–60{0.05} {0.91} {0.04}

3 Antiparasitics
0.01 0.05 0.08

30–60{0.10} {0.60} {0.29}

4 Antifungals
0.26 0.23 0.38

30–60{0.32} {0.44} {0.24}

5 Anemia
0.00 0.00 0.01

60�{0.07} {0.47} {0.47}

6 Anticoagulants
0.00 0.06 0.77

60�{0.01} {0.19} {0.80}

7 Glaucoma
0.00 0.03 0.58

60�{0.01} {0.14} {0.85}

8 Acid/Peptic Disorders
0.17 0.89 2.87

60�{0.06} {0.46} {0.49}

9 Antidiarrheals, Laxatives
0.00 0.01 0.03

60�{0.07} {0.45} {0.49}

10 Cardiac
0.03 0.72 4.68

60�{0.01} {0.32} {0.67}

11 Vascular
0.12 1.24 7.00

60�{0.02} {0.34} {0.64}

12

Sedatives/Hypnotics,

Antianxiety
0.05 0.25 0.58

30–60{0.06} {0.54} {0.40}

13

Antipsychotics/Antimanics,

Antidepressants
0.46 1.64 1.28

30–60{0.13} {0.70} {0.18}

14 Anorexiants/CNS Stimulants
0.08 0.05 0.01

0–30{0.52} {0.45} {0.03}

15 Vitamins/Minerals
0.00 0.01 0.05

60�{0.07} {0.36} {0.58}

16

Electrolyte Replenishment/

Regulation, Water Balance
0.01 0.05 0.46

60�{0.03} {0.26} {0.71}

17 Adrenal Corticosteroids
0.05 0.05 0.14

30–60{0.26} {0.40} {0.34}

18 Androgens/Anabolic Steroids
0.00 0.01 0.07

60�{0.03} {0.21} {0.77}

19 Estrogens/Progestins
0.31 0.71 0.97

30–60{0.17} {0.58} {0.26}

20 Contraceptives
0.11 0.08 0.00

30–60{0.47} {0.52} {0.01}

21
Blood Glucose Regulators,
Thyroid/Antithyroid

0.08 0.75 2.90
60�{0.03} {0.43} {0.54}

22 Topical Steroids
0.01 0.02 0.06

60�{0.21} {0.36} {0.43}

23 Topical Anti-Infectives
0.01 0.01 0.02

30–60{0.32} {0.41} {0.27}
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