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Abstract

Misclassification of dependent variables in a discrete-response model causes inconsist-
ent coefficient estimates when traditional estimation techniques (e.g., probit or logit) are
used. A modified maximum likelihood estimator that corrects for misclassification is
proposed. A semiparametric approach, which combines the maximum rank correlation
estimator of Han (1987) (Journal of Econometrics 35, 303-316) with isotonic regression,
allows for more general forms of misclassification than the maximum likelihood ap-
proach. The parametric and semiparametric estimation techniques are applied to
a model of job change with two commonly used data sets, the Current Population Survey
(CPS) and the Panel Study of Income Dynamics (PSID). © 1998 Elsevier Science S.A.
All rights reserved.

JEL classification: C25; C14
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1. Introduction

Misclassification of dependent variables in a discrete-response model causes
inconsistent coefficient estimates when traditional estimation techniques (e.g.,
probit or logit) are used. By ‘misclassification’, we mean that the response is
reported or recorded in the wrong category; for example, a variable is recorded
as a one when it should have the value zero. This mistake might easily happen in
an interview setting where the respondent misunderstands the question or the
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interviewer simply checks the wrong box. Other data sources where the re-
searcher suspects measurement error, such as historical data, certainly exist as
well. Also, researchers often will construct a dummy variable to serve as a proxy
for some underlying ‘true’ variable; the extent of misclassification in this situ-
ation will depend on how good a proxy the constructed variable is.

We show that the researcher can correct the problem of misclassification by
employing a modified maximum likelihood approach and, in doing so, can
explicitly estimate the extent of misclassification in the data. We also discuss a
semiparametric method of estimating the unknown slope coefficients which does
not depend on an assumed error distribution. The semiparametric method, which
combines the maximum rank correlation estimator of Han (1987) with isotonic
regression, allows for more general forms of misclassification than the maximum
likelihood approach. In addition, the semiparametric method allows for estima-
tion of the observed response function with known asymptotic properties.

We apply our methodology to a model of job change with two commonly
used data sets, the Current Population Survey (CPS) and the Panel Study of
Income Dynamics (PSID). In both cases, we construct a job-change variable
from responses about job tenure, a method quite common in the empirical
literature. Unfortunately, tenure responses are well-known to be poorly mea-
sured (see, €.g., Brown and Light 1992) because respondents often misunder-
stand the question, have poor recall, or confuse a change in position with an
actual job change. Both our parametric and semiparametric estimates demon-
strate conclusively that significant misclassification of the job-change variable
exists in both the CPS and PSID samples. Furthermore, the probability of
misclassification is not the same across observed response classes. In the CPS
sample, workers who change jobs are more likely to misreport than workers
who do not change jobs. In the PSID sample, inferences about misclassification
of the constructed job-change variable depend in part on the method used to
construct the variable.

Section 2 of this paper introduces a basic model of misclassification for
a binary dependent variable. Section 3 proposes the natural parametric es-
timators for this model. Section 4 presents the results from a Monte Carlo study.
Section 5 describes the semiparametric approach to the problem of misclassifi-
cation and relaxes the model of misclassification from the previous sections.
Section 6 applies the estimation techniques to the CPS and PSID data. Finally,
Section 7 concludes.

2. Binary choice model with misclassification

We start with the usual latent-variable specification of the binary response
model (cf., Greene (1990) or McFadden (1984)). Let y¥ be the latent variable
(where i ranges from 1 to n, the sample size), given by

yr=xif +s, Y



J.A. Hausman et al. | Journal of Econometrics 87 (1998) 239-269 241

where ¢; is an i.i.d. error disturbance. Let F denote the (common) c.d.f. of — ¢,
Write j; for the true response,

Vi=1¥ 2 0), : @

where 1(E) is the indicator function equal to one if E is true and zero otherwise.
Without misclassification of the dependent variable, the true response j; is
observed. This paper focuses on the situation in which the true response may be
misclassified. '

The model of misclassification that we consider is one in which the probabil-
ity of misclassification depends on the value of j;, but is otherwise independent
of the covariates x;. In particular, if y; denotes the observed binary dependent
variable, the misclassification probabilities are

o = Pr(y; = 1|j; = 0), (3)
ay = Pr(y; = O[5, = 1). )

The probability that a zero is misclassified as a one is given by o,; the probability
that a one is misclassified as a zero is given by o;. This model of misclassification
is called Model 1. A more flexible model of misclassification is considered in
Section 5.

The expected value of the observed dependent variable is

E(ix) = Pr(y; = 1|x)) = o + (1 — oto — ;) F(xif), (%)

which collapses to the usual expression, F(xif§), when there is no misclassifica-
tion (g = ot; = 0).

We briefly mention the connection of this model of misclassification to
a similar concept in the biometrics literature (e.g., Finney 1964). Biometricians
are oftentimes concerned with ‘natural responses’ by experimental subjects
which have nothing to do with the stimulus being tested. For instance, in testing
the toxicity of a substance, some subjects may die of natural causes unrelated to
the experiment. In our terminology, the fraction of those subjects who would
have survived the experiment but die from unrelated natural causes would be
oo (if ‘“death’ corresponds to an observed y; equal to one). Such responses are
effectively misclassified. Similarly, there may be some subjects who are immune
to the treatment. If the immunity is independent of the observables used in the
empirical analysis, the fraction of subjects who always survive the treatment is
given by «, in our notation.!

! Viewed in this way, notice that our model is indistinguishable from the following binary choice
model with heterogeneity incorporated: a fraction o, of individuals always respond with a one,
independent of the observed x;; a fraction o, always respond with a zero, again independent of the
observed x; and, the remaining individuals follow the traditional binary choice model. The
parameters o, and o; would then have a different interpretation, as values describing the degree of
heterogeneity rather than the extent of misclassification.
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3. Parametric estimation

In this section, we assume that F is known (e.g., normal or logistic distribu-
tion) and consider parametric methods for estimating the binary-choice model
with misclassification. One can estimate (a, a5, f) with nonlinear least squares
(NLS), based on the moment condition in Eq. (5), minimizing

3, 0= a0 = (1 — ag — a) Fxip)? ©

over (ao, a3, b). Significance tests on a, and a, can be used as tests of misclassifi-
cation.

Alternatively, one can estimate (g, a;, f) with maximum likelihood estimation
(MLE), maximizing the log likelihood function

n

Z(ao,a,,b) = "_I.Z {yiln(ao + (1 — a, — a,)F(xb))

+ (1 —y)n(l —as—(1 —ap — a,)F(x;b))} U

over (ag, a;, b).

Conditions for identification of (o, ®;, f) are similar to those for the tradi-
tional binary choice model (see, e.g., Example 1.2 of Newey and McFadden
(1994)). In the linear probability model (where F(v) = v), however, the para-
meters are not separately identified since

E(yilx) = oo + (1 — ao — o XxiB) = (0t + Bo) + z{(1 — 0o — aBy),  (8)

where x; = (1, z)' and f = (B, B1). This example shows that identification of the
model parameters stems from the nonlinearity of F, which partly motivates the
semiparametric approach déveloped in Section 5.

The only additional assumption needed for identification is the following:2

Monotonicity condition # 1 (MC1): 0g + a; < 1

To see why MC1 is needed, consider a symmetric F (where F(v) = 1 — F(— 1))
like the normal or logistic distributions. Then, denoting &5 =1 — «,,
Gy=1—0g,and f= — B, notice that

do +(1 — do — &)F(xif) = oo + (1 — 0 — as)F(xiB). 6]

Thus, estimators based on Eq. (5) (like NLS and MLE) cannot distinguish
between the parameter values (a0, o4, f) and (1 —ay,1 — ap, — B). MCI rules out

1In cases of multiple interviews, Chua and Fuller (1987) demonstrate that identification of misclas-
sification probabilities is possible given a sufficient number of interviews, However, generally they
must make special assumptions on the form of misclassification to achieve identification.
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such a situation since oo + &3 < 1 implies (1 — ;) + (1 — eto) > 1. If misclassifi-
cation is so problematic that ag + «; is larger than one (in which case the project
should probably be abandoned!), imposing MC1 will result in estimates of
B (and, in turn, marginal effects) of the wrong sign.

MC1 implies that ag + (1 — oo — o;)F(v) is strictly increasing in v if F is
strictly increasing (i.e., ¢ has positive density everywhere). In combination with
the other identification conditions needed for a given F, MC1 should yield
identification. For instance, the identification result for probit estimation is
given in the following theorem:

Theorem 1. If Fis the normal c.df, E[xx'] exists and is nonsingular,
and MC1 holds, then the parameters (oo, o4, B) are identified by NLS or MLE.

The proof follows immediately from Newey and McFadden (1994) (pp. 2125,
2126).

For the remainder of this section, we focus on MLE estimation since it is
efficient when F is known. If misclassification is ignored and the log-likelihood

LB)=n"'Y. {uInF(b) + (1 — yln(l — Foxb) (10)
i=1 s

is maximized instead, the resulting estimate of 8 will generally be inconsistent
(see Hausman et al. (1996) for a complete discussion). We are particularly
interested in the inconsistency of estimates of B (using Eq. (10)) when only small
amounts of misclassification are present since this might be the most common
case facing a researcher. With no misclassification, the true value f maximizes
the expected log-likelihood (i.e,, the expectation of Eq. (10)). Let Bg(ao, ;)
denote the maximand of the expected log-likelihood when there is misclassifica-
tion (so that B0, 0) = B). The partial derivatives of Bg(ato, ;) With respect to the
misclassification probabilities, evaluated at aq = o; = 0, are given by>

o fB N (B
Oolymsi=o [E<F<x’ﬂx1 —FB) )] E(W")’ an

o8 B B N1 SB)
eeco [E(F(x’ﬁ)(l e )] E(l = F(X’ﬁ)x)' uz

Oat
In general, the degree of inconsistency will depend on the distributions of the
index x'f and the covariate vector x.

(=]

tn

—

3 A derivation is given in the appendix of Hausman et al. (1996).
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The Fisher information matrix associated with maximization of the log-
likelihood in Eq. (7) is not block diagonal in the parameters (a0, 4, f) since

[ o2 2y oty ]
Do Oagda;  Doydf’
_g| P2 o2 2y
00,00, 002 00,8
* 0%’y 0’y
E A
[ (1 Fy _F1-F) (==l = F) ]
P(1— P) P(1—P) P(1— P)
_E _F(I—F) F? (1 — oy — o )fF |
= P(l— P) PA—P) PL—P)
(1~ay—a)ll —F) _(1_“0““1)fo(1_“0"“1)2f2xx,
PI—P) P(1—P) P(—P)

where f= f(x'f), F = F(x'f), and P = 0y + (1 — 0ty — a;)F(x'f). Thus, previous
papers which assume they know the misclassification probabilities from
exogenous sources (e.g., Poterba and Summers 1995) suffer from two defects.
First, their estimates are likely to be inconsistent unless their assumed misclas-
sification probabilities are consistent estimates of the true misclassification
probabilities. Second, even with consistent estimates of the misclassification
probabilities, the standard érrors of their coefficient estimates are understated
since these probabilities are not known with certainty.
Without misclassification, the information matrix simplifies to

1-F fl
F _Fl F
E] -1 S - S x . (13)
1—F 1—F
ix — fx i xx'
F 1—-F F(1 — F)

The bottom-right block is the usual information matrix for § in a binary choice
model. Since the information matrix is still not block diagonal, the modified
log-likelihood in Eq. (7) yields less efficient estimates of § than the log-likelihood
in Eq. (10).
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Researchers often care about marginal effects rather than estimates of § itself.
The marginal effects of interest here are

oPr(y=1lx)
o —JXBA, (14)

which can be estimated by plugging in an estimate § and evaluating at different
levels of the estimated index x'f. The marginal effect on the observed response is

FO=I (1 - oy — a1, (15

which is always less than the marginal effect on the true response. The marginal
effects on the observed and true reponses will differ by a factor of (1 — ag — ay)
regardless of the x value at which they are evaluated.

The MLE method described in this section can be easily extended to discrete-
response models with more than two categories; see Hausman et al. (1996) and
Abrevaya and Hausman (1997) for a systematic treatment of this topic. Further-
more, if the researcher thinks that misclassification depends on the covariates
(or other observables), the dependence can be modeled explicitly and incorpor-
ated into the log-likelihood function. This extension is briefly discussed in
Section 7.

4. Monte Carlo simulations

In order to assess the empirical importance of misclassification, we examine
some Monte Carlo simulation results. The Monte Carlo design has three
covariates: the first variable, x,, is drawn from a lognormal distribution; the
second, x, is a dummy variable equal to one with probability 1/3; the third, x,
is distributed uniformly. The error disturbance, ¢, is drawn from a standard
normal distribution. The latent dependent variable is given by

VE= —1+4+02x; + 1.5x;; — 0.6x;3 + ¢;. (16)

The observed dependent variable is generated using symmetric misclassification
(e, 0g = o).

Table 1 reports the results of the Monte Carlo simulations. Misclassification
probabilities of 2%, 5%, and 20% are considered. A sample size of 5000 is used
for each simulation. Results from ordinary probit estimation and modified MLE
(where we restrict oy = a,) are reported. Even in the case of a small amount of
misclassification, ordinary probit produces estimates that are biased by
15-25%. The problem worsens as the amount of misclassification grows. Notice
that the estimated standard errors for the modified MLE increase with the level
of misclassification, whereas the standard errors for the ordinary probit do not.
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Table 1
Monte Carlo simulation results (n = 5000)
True Probit MLE (o = ot = a4)
Coefficient Ratio to Coefficient Ratio to
estimates constant estimates constant
o 0.02 —_ — 0.0192 —_
(0.0054)
Bo —-10 —0.787 — —0.990 —
(0.069) (0.068)
il 02 0.158 0.20 0.199 0.20
(0.001) : (0.008)
B, 1.5 1.27 1.61 1.49 1.51
(0.06) (0.08)
B - 0.6 —0.158 0.66 - 0.598 0.60
(0.023) (0.026)
o 0.05 — — 0.0497 -
(0.0076)
Bo -1.0 —0.567 —_ — 1.007 —
0.073) (0.084)
B 0.2 0.114 0.20 0.201 0.20
{0.010) (0.010)
B, 1.5 1.06 1.87 1.50 1.50
(0.05) (0.08)
B3 —0.6 —0431 0.76 —0.599 0.60
(0.019) (0.032)
o 0.02 — — 0.198 —
(0.014)
Bo - 1.0 —0.163 — — 0991 —
(0.061) (0.168)
By 0.2 0.037 0.23 0.198 0.20
(0.005) (0.023)
B, 1.5 0.554 3.40 1.48 1.49
(0.045) (0.18)
B -0.6 - —0228 1.40 —0.592 0.60
(0.018) - (0.072)

Note: See text for Monte Carlo design. Results are from 146 Monte Carlo simulations. The standard
deviations of the simulation results are reported in parantheses.

Thus, not only does probit yield inconsistent estimates, but it can also overstate
the precision of the estimates. The ratios of the estimated coefficients are also
reported, and ordinary probit yields inconsistent estimates of these ratios as
well4

“The estimated ratios remain consistent if the simulated covariates are drawn from normal
distributions, even if the estimates of the individual parameters are biased. See Ruud (1983) for
a discussion of this resuilt.
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Additional simulations, which consider the logit specification and NLS es-
timation, are reported in Hausman et al. (1996). The results are qualitatively
similar to those reported here.

5. Semiparametric analysis

The assumption of normally distributed (or extreme value) disturbances
required by probit (or logit) specifications is not necessary for estimating the
binary choice model with misclassification. One can instead use semiparametric
methods which do not require distributional assumptions.® Recall from Sec-
tion 3 that the MC1 condition implies that the expected value of the observed
dependent variable is an increasing function of the underlying index. This latter
condition will be the underlying identification condition for the semiparametric
method that we propose. The proposed method involves two stages of estima-
tion, each of which is based on this identification condition.

The first stage estimates § up-to-scale ‘using the maximum rank correlation
(MRC) estimator of Han (1987). Unlike some other alternatives (e.g., Powell et
al. 1989), this binary response estimator is straightforward to calculate even in
the presence of multiple explanatory variables and dummy variables; in addi-
tion, no bandwidth selection or trimming is required for estimation of . Unlike
the parametric method, a more flexible model of misclassification is sufficient for
consistency; the exact form of misclassification need not be specified (nor
estimated, as in the parametric case). As a result, the MRC estimates are more
robust, both with respect to distributional assumptions and the misclassification
mechanism.

The second stage estimates the expectation of the observed response y as
a function of the estimated index x'B,.. using isotonic regression (IR). Unlike
kernel regression methods, IR does not require the researcher to make any
decisions about window widths or kernel weights. As shown by Groeneboom
(1993), IR is pointwise consistent and, like kernel regression methods, is \3/5-

consistent. The key insight here is that the \/r_t-consistent estimate of § can be
treated as the true § in deriving the asymptotic distribution of the IR estimates
since the MRC convergence rate is faster than the IR convergence rate. As
a result, the asymptotic distribution results derived by Groeneboom (1993) can
be used. This approach differs from Cosslett (1983), in which B and the response
function are estimated jointly and, to date, have no known asymptotic distribu-
tions.

5 Manski (1985) discusses use of the maximum score estimator when there is symmetric misclassifica-
tion (& = &) in the data. The maximum score estimator is not \/r_t-consistent, however.
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The key condition needed for the semiparametric analysis is the following:

Semiparametric  identification  condition (SIC): E[y|x] = G(x'B), where
G: #—(0,1) is a strictly increasing function.

This condition states that the observable dependent variable is a function of
x only through the index value x'fl, sometimes called ‘index sufficiency’ (see
Manski 1988). SIC is stronger than index sufficiency, though, since strict mono-
tonicity is also required. The following theorem formally states that SIC is
a weaker condition than MC1 in Model I:

Theorem 2. If Model I and MC1 hold and F is strictly increasing (i.e., every-
where positive density), then SIC holds.

In this case, the response function is given by G(v) = o + (1 — oty — oq)F(v).

SIC allows for more flexible forms of misclassification than described by
Model I. For instance, the probability of misclassification might depend on the
level of the latent variable y* rather than Just its sign. One might expect lower
misclassification probabilities for extreme negative or positive values of y* and
higher misclassification probabilities for values of y* closer to zero.

The more flexible model of misclassification is called M. odel I1. Like Model I,
Model II restricts misclassification to depend on x only through y*. Unlike
Model I, however, misclassification probabilities are not restricted to be con-
stant for all negative y* and for all positive y*. In particular, Model II replaces
Eq. (3) and Eq. (4) with the following:®

EQ/x, y*) = E(yly*). 7)
The analogue to MC1 in Model II is the following monotonicity condition:
Monotonicity condition #2 (M C2): Y(y*) = E(yly*) is an increasing Junction
of y*.
SIC is a direct consequence of MC2:

Theorem 3. If Model II and MC2 hold and F is strictly increasing (i.e., every-
where positive density), then SIC holds.

In fact, condition MC2 is a special case of a stochastic-dominance condition
used in Abrevaya and Hausman (1997) to show consistency of rank estimators
in a more general linear index model than the binary-choice model considered
here. The stochastic-dominance condition, briefly stated, is that the random

¢ Alternatively, the misclassification probability can be a function of x’8 as long as the expectation of
the observed y is increasing in the index x'B.
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variable associated with a larger latent dependent variable first-order stochasti-
cally dominates the random variable associated with a smaller latent dependent
variable. Although this condition describes the complete distribution of y condi-
tional on y*, it is equivalent to MC2 in the binary-choice case since y can take on
only the values of zero and one.

3.1. First-stage estimation: maximum rank correlation

Throughout the remainder of this section, the k x 1 covariate vector x is
understood not to contain a constant term since MRC estimation does not
identify the location parameter in 8. MRC estimation only identifies the remain-
ing components of f up-to-scale, so a normalization of the parameter vector is
required as well. Like Sherman (1993), we fix the last parameter so that the
parameter space, denoted %, is taken to be a compact subset of
{Bed (B = 1}.

The MRC estimator is the value f that maximizes the objective function

S(b) = 3. Rank(xb)-y; (18)
i=1
over 4, where Rank(-) gives the rank of the associated index value (1 for the
lowest, n for the highest).”

Han (1987) proves strong consistency of B, and Sherman (1993) proves
asymptotic normality of j. Since SIC ensures that their arguments apply to the
binary-choice model with misclassification, we direct the reader to Sherman
(1993) for the regularity conditions and the asymptotic distribution.® The result
is stated in the following theorem:

Theorem 4. If SIC holds - and Assumptions Al, A3, and A4 of Sherman
(1993) hold, then the MRC estimator J is \/%-consistent and asymptotically normal.

Assumption Al restricts § to the interior of the compact parameter space 4.
Assumption A3 has two parts, a full-rank condition on x and a condition that
one component of x is continuous (everywhere positive Lebesgue density)
conditional on the other components of x. Assumption A4 consists of regularity
conditions that allow for a Taylor-expansion argument in the asymptotic
normality proof.

7 The fastest sorting algorithms, used to evaluate the Rank(:) function, require O(nlog n) computer
instructions. Thus, it takes O(nlog ) instructions to evaluate the objective function S(b) for any
given b.

®Note that Eq. (20) of Sherman (1993) should read V = -.- rather than 2V = ..., Likewise, the
asymptotic distribution for the binary choice model that follows (p. 134) should not have a 2 multi-
plying V.



250 J.A. Hausman et al. | Journal of Econometrics 87 (1998) 239-269

The MRC and MLE estimates of § can be compared using a Hausman (1978)
specification test. The MLE estimates are consistent and efficient under Model
I and the correct specification of the distribution F. The MRC estimates remain
consistent under the more flexible Model II and arbitrary (i.i.d.) specification of
F. The Hausman test may reject from either a misspecification of functional
form or a misspecification of the model of misclassification.

Whereas MLE estimation explicitly incorporates the misclassification
(through the parameters a, and «;) into the objective function, MRC estimation
essentially ignores the presence of misclassification. As such, another method
must be used in order to investigate the underlying misclassification mechanism.
The MRC estimate j is used to form an estimated index x'f for use in the second
stage of the estimation procedure. The second stage estimates the response function
G(-) using the observed dependent variables and the estimated index values.

5.2. Second-stage estimation: isotonic regression

Estimation of the response function G(-) requires a nonparametric regression
of y on the estimated index x'B. The standard technique used in the literature is
kernel regression (see, e.g., Cavanagh and Sherman 1997). In this section, we
instead use isotonic regression. One advantage of isotonic regression is that, like
MRC estimation, no bandwidth selection is needed for estimation. Isotonic
regression also restricts the response function to be monotonic, which is simply
condition SIC used for consistency of MRC estimation. Kernel regression, on
the other hand, does not impose monotonicity even though monotonicity has
already been used for the first stage. Another advantage for the application
considered here is that the resulting estimate is in the form of a step function, so
that behavior in the tails is less erratic than kernel estimation.

Denote the index value for observation i by #; = x;B. To simplify notation,
re-order the observations so that 9, < i, < --- < #,. An isotonic function is any
nondecreasing function defined at the n index values. The functional estimate, G,
is an isotonic regression (IR) of y on the index values if it minimizes the objective
function

._il i — G (19)

over the set of isotonic functions. Eq. (19) determines G(v) only at the n index
values; at other values, G(v) is given by

0 if v < by,
G(U) = G(ﬁi) if ve(d;, i+ 1) (20)
1 ifv> 0,

The resulting functional estimate is in the form of a step function.
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The algorithm for IR is quite straightforward.® The idea is to organize the
index values into ‘pools’, where each pool is assigned a ‘best guess’ for the value
of y conditional on the index being in the pool. The ‘best guess’ is just the
average of the y; values associated with the index values #; in a pool. The initial
set of pools has each pool corresponding to a distinct index value. Then, the
algorithm compares the lowest-indexed pool with the next lowest-indexed pool.
If the guess for the first pool is less than the guess for the second pool, the pools
are left intact; the second pool is used for the next comparison. Otherwise, the
pools are combined, and the combined pool is used for the next comparison.
This process of comparing adjacent pools is continued until the pools are
exhausted. Finally, if any combinations of pools occurred during the last
pass-through, the process is repeated. Once the pools are in nondecreasing
order, the IR is complete. For each index value §, the estimate G(#;) is the guess
associated with 4;’s pool.

When the index values are known (rather than estimated), Groeneboom (1985,
1993) proves that the point estimates from isotonic regression are %-consis-

tent. Let G4(v) denote the point estimate from an isotonic regression of y on the
true index x'f. Then, Groeneboom (1985, 1993) shows that for G(v)€(0,1),

n1(Gylv) — G((;’)» 4 2z, 03]

1 g@)\'”
(7G(v)(1 - G(U)%)

where g is the derivative of the true function G, h is the density of the index, and
the random variable Z is the last time where two-sided Brownian motion minus
the parabola u? reaches its maximum. The distribution of Z can be written
Groeneboom 1985) as

Jo) = 3s)s( — ), e, (22)
where the function s(-) has a Fourier transform
21/3

= _ 23
Sw) A Wiy’ 23)
and where Ai(+) is the ‘Airy function’ (as defined in Abramowitz and Stegun
(1964), for example) and i = ./ — 1. _

Due to the rate of convergence of 5, the use of the estimated index x'f in place
of the true index x'f has no effect on the asymptotic distribution in Eq. (21). The

key idea is that B converges at a faster rate (n~'/?) than isotonic regression

9 See Barlow et al. (1972), Cosslett (1983), or Robertson et al. (1988) for detailed discussions of IR and
estimation algorithms.
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(n~ ). Note that
n*3(G(v) — G(v) = n''*(G(v) — Gy(v)) + n'*(Gylv) ~ G(v)). 24)

The second term has an asymptotic distribution given by Eq. (21). The first term
converges in probability to zero, as shown in the appendix. The main result is

Theorem 5. If Bis a ﬁ-consistent estimate of B and SIC holds, then for
any v s.t. G(v)€(0,1) and the index x'B has positive density (w.r.t. Lebesgue
measure) in a neighborhood around v,

nP0w - Ge) ¢, 9
©

1/3
(%G(v)u - G(v»f’—)

h(v)

Note that the assumption of a positive density is implied by Assumption A3 of
Sherman (1993), so the conditions of this theorem are no stronger than those for
consistency of MRC.

From the symmetry of f7, we have E(Z) = 0. Also, via numerical approxima-
tion of the Fourier transform and numerical integration, we estimate
Var(Z) ~ 0.26. Eq. (25) then yields

Ay N Gl — G)I(v)) **
Var(G(v) — G(v)) ~ 1.04( ) ) , (26)

where we use the kernel estimate of the index density for A(v). Unfortunately, we
cannot use the numerical derivative of G(v) for §(v) since the derivative of a step
function is zero except at a finite number of points (where it is infinite), so instead
we use another kernel estimate for §(v).

5.3. Inferences about misclassification under Model I

The attractivenes of the semiparametric approach is that consistency of MRC
and isotonic regression requires only the SIC condition. Without a particular
model of misclassification, however, it is difficult to draw useful inferences about
the misclassification or marginal effects. In this section, we discuss the usefulness
of the semiparametric approach when Model I holds.

The marginal effects are given by

PG =11x) __gxBB

Ox —l—ao—al‘

27)

Even without information on o and a4, a lower bound (in absolute values) for
the marginal effects is given by g(x'f)g. If the misclassification probabilities
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oo and o, are known (or consistent estimates are available from an outside
source), marginal effects can be consistently estimated by the semiparametric
approach even though the underlying c.d.f. F is unknown.

Inference about oy and «; is based on the behavior of the response function in
its tails. Since lim, . -  G(v) = 2 and lim,, 4+ ,G(v) = 1 — a;, the left-tail asym-
ptote gives information about o and the right-tail asymptote gives information
about «;. If the data take on extreme values, the step levels from the isotonic
regression in the tails can suggest the extent of misclassification. Unfortunately,
for any given dataset, one can never know for sure if the index values extend far
enough into the tails since the true c.d.f. F is unknown. Response-function
estimates near zero in the left tail and near one in the right tail may be evidence
against misclassification.’® Asymptotes above zero in the left tail or below one
in the right tail are consistent with misclassification. Estimates of &, and
o, derived from these asymptotes can be thought of as upper bounds on the true
misclassification probabilities since the data may not extend far enough into the
tails. In the application in Section 6, we use the first and last steps of the isotonic
regression estimate to yield information about «¢ and «;. Finally, we note that if
the resulting estimates of the misclassification probabilities are actually upper
bounds, call them d, and &;, then g(x'8)B/(1 — &, — &,) is an upper bound (in
absolute values) for the marginal effects. In practice, it may be worthwhile to
report the marginal effects from Eq. (27) for several plausible values of og + o;.

5.4. Other semiparametric estimators

The approach described in this section utilizes monotonicity in both stages of
estimation. We believe that the monotonicity condition is weak enough to be
applicable in most situations in which misclassification is a concern. If one is
worried that condition MC2 does not hold, however, one can still estimate § and
the observed response function in Model II semiparametrically. In Model II,
y depends on x only through the index x'f, so that any semiparametric
single-index estimator (e.g., the semiparametric least-squares (SLS) estimator of
Ichimura (1993)) will estimate f consistently up-to-scale. A specification test
between the MRC and SLS estimates could detect failure of condition MC2. For

190Of course, even with misclassification, there is the possibility that the lower and upper steps
estimated by isotonic regression will be at zero or one, respectively. If the lowest-ranked index values
have responses of zero, the initial step will be estimated at zero. Likewise, if the highest-ranked index
values have responses of one, the final step will be estimated at one. With misclassification, the
probability of seeing k observations in the left tail with a response of zero is at most (1 — ap)*. In fact,
this observation could be used to construct a test of *he misclassification model. As a practical
matter, a few points in either a lower tail at zero or an upper tail at one is not proof against
misclassification.
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estimation of the response function, a kernel regression of y on the estimated
index would suffice.

3.5. Covariate-dependent misclassification

The methods of this paper rely on misclassification being independent of the
covariates. Abrevaya and Hausman (1997) discuss estimation techniques when
misclassification is possibly covariate dependent. As a simple example, consider
a situation where misclassification depends on a single covariate which is
a dummy variable. For instance, in a given application, one might expect
misclassification probabilities to differ for union and nonunion workers or for
males and females. Denote the covariate of interest as x,, and write x = (x;,x_;)
(i.e, x-, are the components of x excluding x,). In the MLE framework, the
likelihood function now has four misclassification parameters (instead of two)
since 0y and «; are now functions of x,. Under mild restrictions on the
misclassification parameters (akin to MC1 of Section 3), the entire parameter
vector f remains identified. In the semiparametric framework, identification of
the coefficient on x; must be sacrificed in order to estimate the remaining
components of . In particular, one can estimate the remaining components of
B using MRC on those observations having x; = 0 or on those observations
having x, = 1. The two resulting MRC estimates can be combined for greater
efficiency. Specification testing can be used in order to determine whether there
is a significant difference between the estimates when misclassification is as-
sumed to be independent of x; and the estimates when misclassification is
allowed to depend on x,.

6. Application to a model of job change

We now consider an application where misclassification has previously been
considered to be a potentially serious problem. We estimate a model of job
change with two widely used datasets, the Current Population Survey (CPS) and
the Panel Study of Income Dynamics (PSID). For the cross-sectional CPS, we
look at the probability of individuals changing jobs over the past year. For the
longitudinal PSID, there are multiple interviews for individuals, allowing us to
look at the probability of individuals changing jobs between adjacent interviews.
In both cases, questions concerning job tenure are used to construct the relevant
job-change binary variable. Since tenure questions are often misunderstood and
respondents lack perfect recall, misclassification is a potentially serious problem.
We consider parametric models of misclassification, looking at both symmetric
and asymmetric probabilities of misclassification. There is evidence of misclas-
sification for both datasets. We also apply the semiparametric techniques
discussed in the previous section, finding results quite similar to those fouad by
parametric methods.
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6.1. Current Population Survey (CPS)

Our data come from the January 1987 CPS wave from the Census Bureau.
We extracted 5221 complete personal records of men between the ages of 25 and
55 whose wages were reported. Among the questions in the survey is one asking
for the respondent’s job tenure. Those respondents who give tenure as 12
months or fewer are classified as having changed jobs in the last year. Those
individuals who answer more than one year are classified as not having changed
jobs. The sample statistics are reported in Table 2.

In the first column of Table 3, we report the results from a probit specifica-
tion. This specification is quite similar to specifications previously used in the
applied labor economics literature (e.g., Freeman 1984). In the second column of
the table, we estimate a model of symmetric misclassification, restricting
oo = a;. The estimate of the misclassification probability is 5.8%, with an
asymptotic -statistic of about 8.3. Thus, we reject the probit specification
without misclassification. Many of the estimated coefficients also change sub-
stantially.

Table 2
Sample statistics for the CPS sample

mean std dev
Married Full sample 0.7293 0.4443
y=0 0.7468 0.4349
y=1 0.6253 0.4844
Grade Full sample 14.38 2.823
y=0 14.40 2.834
y=1 ) 14.30 2.760
Age Full sample 37.43 8.526
y=0 37.98 8.535
y=1 34.17 7.712
Union Full sample 0.2454 0.4303
y=0 0.2668 0.4424
y=1 0.1173 0.3220
Earn per week Full sample 488.9 240.2
y=0 507.9 2357
y=1 375.1 235.6
West " Full sample 0.2015 0.4012
y=0 0.1946 ’ 0.3960

y=1 0.2427 0.4290
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Table 3
CPS coefficient estimates

Probit MLE MLE MRC/IR
g = 0y oo 7 oy
tg — 0.058 0.061 0.035
(0.007) (0.007) {0.015)
oy — 0.058 0.309 0.395
(0.007) (0.174) (0.091)
Married —0.108 —0.073 —0.103 —0.161
(0.049) (0.077) (0.100) (0.191)
Last grade attended 0.026 0.063 0.080 0.052
(0.009) (0.015) (0.026) (0.043)
Age —0.022 —0.028 —0.033 —0.035
(0.003) (0.005) (0.007) (0.021)
Union membership — 0434 —0.707 — 02811 —0.794
(0.061) (0.148) "~ (0.199) (0.503)
Earnings per week — 0.001 —0.003 —0.004 —0.003
(0.0001) (0.0004) (0.0009) (0.0015)
Western region 0.214 0.301 0.367 0.367
(0.054) (0.086) (0.127) (]
Constant 0.051 0.171 0.581 —
(0.162) (0.259) (0.495)
Log likelihood — 1958.1 — 19414 — 1940.9 —
Number of obs. 5221 5221 5221

Note: Standard errors are in parentheses. The MRC coefficient estimates have been normalized to
have the same value for western region as the MLE with &, # a,. There is no associated standard
error on ‘western region’ due to the normalization. The IR estimates are the point estimates from the
first and last steps of the isotonic regression step-function estimate.

Next, we allow for asymmetric misclassification since we would expect
a priore that non-job changers are less likely to misreport their status. In the
third column of Table 3, «o, the probability of misclassification for non-job
changers, is allowed to differ from «;, the probability of misclassification for job
changers. Freeing the misclassification parameters produces a markedly differ-
ent value for a; than in the case where the two are constrained to be equal.
oy jumps to 0.31 while o remains at 0.06. The difference (x; — o) is 0.248 with
a standard error of 0.164, which is not quite statistically significant.

We now apply the two-step MRC/IR approach detailed in the previous
section. The results of using the estimators on the job change data are reported
in the last column of Table 3. Since MRC only identifies the ratios of the
coeflicients, we have scaled the MRC coefficients so that the coefficient estimate
on ‘western region’ is identical to the coefficient estimate for the unconstrained
MLE of the third column. A quick comparisun of the third and fourth columns
shows very little difference between the coefficient estimates found by our
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adjusted likelihood method and the semiparametric method. The reported
MRC/IR estimates of ¢, and o, are inferred from the heights of the first and last
steps of the estimated step function from the isotonic regression. The standard
errors are computed using the method described in the previous section. We find
the estimated probabilities of misclassification to be 0.035 and 0.395, not far off
from the estimates from the likelihood method. As mentioned above, the
accuracy of the upper asymptote depends on the amount of data we have in that
index range. Since the number of datapoints in the upper range is small, the
estimates of a; should perhaps be viewed with some caution. However, it seems
to us that the lower asymptote is well established. There are plenty of observa-
tions at low values of the index and the lowest step is relatively long.

In Table 4, we investigate the marginal effects associated with the estimates
from Table 3. The marginal effects are reported for the first quartile, the mean,
and the third quartile of the estimated index. The first column contains the
marginal effects for the asymmetric-misclassification MLE estimates, using
Eq. (14). The second and third columns contain marginal effects for the
MRC/IR estimates, using Eq. (27). The second column uses the estimates of
ao and a; obtained in Table 3. The discussion from the previous section suggests
that these marginal-effect estimates can be thought of as upper bound estimates
(in magnitude). For a lower bound, the third column uses %o =0o; =0 in

Table 4
CPS marginal effects

Quartile MLE MRC/IR MRC/IR
oo ¥ 0y do + oty =043 ag+oy =0
Married Ist p —0.0012 —0.0032 —0.0018
mean —0.0073 — 0.0080 — 0.0046
3rd —0.0184 —0.0389 —0.0211
Grade st 0.0009 0.0010 0.0006
mean 0.0057 0.0026 0.0015
3rd 0.0143 0.0127 0.0072
Age 1st - 0.0004 — 0.0007 - 0.0004
mean —0.0023 —0.0018 —0.0010
3rd ~— 0.0058 - 0.0085 — 0.0048
Union 1st —0.0092 -~ 0.0156 —0.0089
mean — 0.0575 —0.0395 —0.0225
3rd —0.1447 —0.1920 —0.1094
Earnings per week 1Ist — 0.0005 —0.0001 —0.0003
mean — 0.0003 —0.0001 — 0.0006
3rd — 0.0007 — 0.0007 — 0.0003
Western region Ist 0.0042 0.0072 0.0041
mean ! 0.0260 0.0182 0.0104

3rd 0.0655 0.0887 0.0506
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Eq. (27). The parametric and semiparametric marginal-effect estimates are rela-
tively similar. Interestingly, many of the parametric estimates fall in between the
two reported semiparametric estimates.

In Fig. 1, we plot the estimated response function from the MLE model with
asymmetric misspecification and also the MRC/IR estimate of the response
function. The results are reasonably similar. Fig. 2 shows the MRC/IR estimate
of the c.df. with a (pointwise) confidence interval of two standard errors in either
direction. The confidence interval demonstrates that the IR step function esti-
mate of the c.d f. is estimated accurately, except when the size of the step function
becomes small. In these situations, we smooth the estimation of the confidence
interval. We also include a comparison of the MRC/IR estimate with a standard
kernel estimate. Fig. 3a uses a fixed-window kernel; this method is problematic
for observations at the ends of the distribution because there are only observa-
tions on one side of the point. One can see that the kernel estimate becomes
nonmonotonic at the upper tail of our data. Fig. 3b tries an alternative ap-
proach by using the 200 nearest neighbors to construct the kernel estimate.
Again, the upper tail of the c.d.f. is quite different from the MRC/IR estimate.
Kernel regression techniques do not seem well-suited to estimating the asymp-
totes of a c.d.f. where data become sparse.

MLE and MRC/IR Estimates

™~
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Fig. 1. MLE and MRC/IR estimates.
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Smoothed Confidence Intervals for IR Step Function

(+/~- two standard errors)
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Fig. 2. Smoothed confidence intervals for IR step function ( + / — two standard €errors).

6.2. Panel Study of Income Dynamics (PSID)

Brown and Light (1992) document the internal inconsistency of tenure re-
sponses using information from successive interviews of the PSID. Fewer than
10% of the observations in their sample contain responses which are in com-
plete concordance over successive interviews on questions concerning job ten-
ure. The authors suggest several different definitions of ‘job separation’ and (in
Table 6 of their paper) report logit estimates of the probability of job separation
(using demographic and work-related variables as covariates).

We follow the same methodology of Brown and Light (1992) to analyze
1981-87 PSID data.!' Two different methods are used to construct the §ob
separation’ dummy, which takes on a value of one if a job separation has

1'We were unable to obtain the 1976-85 abstract used by Brown and Light (1992). Since the 1979
and 1980 questionnaires do not contain questiors pertaining to job or employer tenure, we decided
to use only post-1980 responses so that, for instance, the job separation variable would not be
constructed using ‘adjacent’ 1978 and 1981 interviews.
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IR and Kernel Estimation of CPS Job Change Data

(fixed—window method)
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Fig. 3. (a). IR and kernel estimation of CPS job change data (fixed-window method). (b). IR and
kernel estimation of CPS job change data (k-neighbor method).
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Table 5
Sample statistics for the PSID sample

mean std dev
White 0.65 0.48
Male 0.81 0.39
Education 12.34 252
Age 36.57 . 11.28
Married 0.69 0.46
Poor health 0.07 0.25
Smsa 0.63 0.48
Union 0.24 043
In(weekly wage) 6.73 0.51

occurred between interviews and zero otherwise.!? The first method (called
‘partition T7) assumes that a job separation has occurred whenever reported
tenure is less than the elapsed time since the previous interview. This approach,
then, is quite similar to the approach employed above for the CPS. The second
method (called ‘partition €’) assumes that job separation has occurred if the
change in reported tenure from one interview to the next differs from elapsed
calendar time by more than six months (in either direction). For ease of notation,
let yr and y¢ denote the dummies created by ‘partition T” and ‘partition 6,
respectively.

Our sample consists of household heads between 1981 and 1987 who are
either employed or on temporary layoff at the time of interview. Part-time
workers, government workers, workers with multiple jobs, and self-employed
workers were discarded. Also, interviews in which any of the relevant data were
missing were dropped. Since job separation is defined using adjacent interviews,
the relevant observational unit is an adjacent-interview pair. The sample con-
sists of 8674 such observations. Descriptive statistics for the sample are given in
Table 5. Most of the variables are self-explanatory. The ‘poor health’ variable is
equal to one if the individual has a ‘physical or nervous condition’ that limits
their amount of work. The ‘smsa’ variable is equal to one if the individual lives in
an SMSA whose largest city has a population greater than 50000.

A comparison of the two methods for defining job separation is shown in
Table 6. ‘Partition 6 results in far more instances of job separation than

12 Brown and Light (1992) use seven different methods. We report the results from two of these
methods (‘partition T” and ‘partition 6 in their terminology). The results from the other five methods
are available upon request from the authors, but they do not contribute anything extra to the
discussion of misclassification. In particular, the ‘partition P’ results are quite similar to the
‘partition T” re.ults, and the results from the remaining four partitions are quite similar to the
‘partition 6’ results.
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Table 6
Comparison of job-change variables for the PSID sample (‘partition T vs. ‘partition 6))

yr
0 1
Ve 0 4954 52
1 2655 1013

‘partition T” (3668 vs. 1065). The two methods agree for 68.8% of the observa-
tions. The vast majority of disagreement occurs for observations having yr = 0
and y¢ = 1 rather than vice versa.

The parametric estimation results are reported in Table 7. For each partition,

~ we again estimate a probit model, a symmetric misclassification MLE, and an
asymmetric misclassification MLE. The first three columns report the results for
‘partition T” and the last three columns for ‘partition 6. Unlike our finding for
the CPS, we strongly reject the hypothesis that ao = o, using a likelihood ratio
test of the symmetric vs. asymmetric misclassification models. Misclassification
for nonjob changers is estimated to be over 20% for both partitions, whereas
misclassification for job changers is around 1% for ‘partition T” as compared to
29% for ‘partition 6.

To check the specification of the asymmetric misclassification probit model
against a semiparametric alternative, we report the results of MRC estimation
for both partitions in Table 8. We have normalized the coefficient estimates so
that In(wage) has a coefficient of — 1 across the columns. The first and second
columns show the MLE and MRC estimates for ‘partition T", and the third and
fourth columns show the MLE and MRC estimates for ‘partition 6’. The
standard errors for the MLE estimates are computed using the delta method,
whereas the standard errors for the MRC estimates are computed using the
method of Cavanagh and Sherman (1997). As can be readily seen, the MLE and
MRC estimates do not differ by much. In fact, a Hausman test of their difference
fails to reject the parametric specification for both partitions (test statistic of 2.2
for ‘partition T” and 1.5 for ‘partition 6 with 13 degrees of freedom).

We perform an isotonic regression for each partition as we did for the CPS
sample. Fig. 4a and b graph the step functions with confidence intervals for
‘partition T” and ‘partition €, respectively. Both step functions appear to flatten
out at around 80%. And the step function for ‘partition 6’ seems to have a long
flat region near 30% in the left tail. To further investigate this ‘flattening’, we
find it extremely helpful to re-draw the step functions estimates in a different
way, putting the rank of the observation rather than the index value of the
observation on the x-axis. This approach allows the researcher to see exactly
how many datapoints are along each particular step of the step function
estimate. Fig. 5a and b display the step functions in this manner. Immediately,
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Table 7
Parametric coefficient estimates for the PSID sample

Partition T Partition 6
Probit MLE MLE Probit MLE MLE
%y =0y oy 7 0y %y = 0y g 7 0y
' 0.0068 0.2533 0.2413 0.2017
’ (0.0062) (0.0702) (0.0331) (0.0309)
o 0.0068 0.0135 0.2413 0.2895
: (0.0062) (0.0065) (0.0331) (0.0209)
White - 0.2343 0.2487 0.3207 - 0.1651 —0.3895 — 04372
(0.0440) (0.0490) (0.0680) (0.0320) (0.1046) (0.1047)
Male 0.2861 0.2979 0.3324 0.3426 0.8293 0.9901
(0.0665) (0.0707) (0.0880) (0.0525) (0.2176) (0.2081)
Educ 00198 0.0226 0.0307 —0.0184 —0.0470 —0.0573
(0.0098) (0.0108) .  (0.0137) (0.0069) (0.0204) (0.0228)
Age —0.0252 —-0.02711 —0.0317 0.0039 0.0082 0.0071
(0.0021) (0.0029) (0.0039) (0.0013) (0.0034) (0.0041)
Married - 0.1418 —0.1505 —0.1631 0.0060 0.0526 0.0568
(0.0548) (0.0580) (0.0711) (0.0436) (0.1026) (0.1181)
Poorhlth 0.0720 0.0875 0.0772 0.0290 0.0285 0.0029
(0.0778) (0.0831) (0.1013) (0.0563) 0.1377) (0.1675)
Smsa 0.1215 0.1296 0.1701 0.0118 0.0236 0.0384
. (0.0414) (0.0452) (0.0583) (0.0302) (0.0720) (0.0874)
Union —~0.3573 - 04012 —0.5163 — 0.0996 —0.2365 —0.2726
(0.0551) (0.0735) (0.1071) (0.0346) (0.0958) (0.1145)
Wage — 0.4946 —0.5301 —0.6533 —0.2877 — 0.6883 — 0.8472
: (0.0495) (0.0621) (0.0934) (0.0368) (0.1715) (0.1732)
Const 1.6623 1.8425 2.5150 1.0888 2.6085 3.2729
(0.2756) (0.3371) (0.4886) (0.2052) (0.8341) {0.9232)
Log likeli- —2698.6 —2679.9 — 2693.7 - 5637.5 — 5630.9 — 56269
hood :
LR test vs. 1.30 9.71 13.08 21.09
probit
d.f) (6] (¥} 1) 2)

Note: Four year dummies and elapsed time between adjacent interviews were also included as
independent variables. The estimates are not reported in the interest of saving space. Standard errors
are report in parentheses.

we see that the flattening at 80% is not as severe as one might think at first
glance of Fig. 4a and b. However, the flat region at 30% for ‘partition & is
highlighted even more by this method. Nearly 2000 observations (accounting for
almost a quarter of the entire sample) fall on this step. The height of this step is
remarkably close to tiie estimate of 0.29 found by our likelihood method (see
Table 8).
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Table 8
Comparison of MLE and MRC coefficients for the PSID sample
Paritition T Partition 6
MLE MRC MLE MRC
White 0.4894 0.5570 —0.5161 —0.7497
(0.0907) (0.2049) (0.1303) (0.4331)
Male 0.5073 0.4948 1.1687 1.5327
(0.1316) (0.2892) (0.2166) (0.6282)
Educ 0.0468 0.0472 —0.0676 —0.0876
(0.0182) (0.0418) (0.0279) (0.0763)
Age —0.0485 — 0.0445 0.0084 0.0184
(0.0073) (0.0169) (0.0050) (0.0120)
Married —0.2489 —0.2375 0.0670 —0.0783
(0.1122) (0.2406) (0.1383) (0.3654)
Poorhlth 0.1178 0.1204 0.0034 0.1406
(0.1557) (0.3519) (0.1978) (0.5033)
Smsa 0.2596 0.3097 0.0453 0.0008
(0.0841) (0.1845) (0.1025) (0.2592)
Union —0.7880 —0.8770 —0.3218 - 03770
(0.1624) (0.3994) (0.1458) (0.3471)
In(wage) — 1.0000 — 1.0000 -~ 1.0000 — 1.0000
Hausman test 2.2033 1.5206
(d.r) (13) (13)

Note: Standard errors are reported in parentheses. Coefficients are scaled so that In(wage) has
a coefficient of — 1. The standard errors have been adjusted appropriately.

7. Conclusion

This paper has shown that ignoring potential misclassification of a dependent
variable can result in biased and inconsistent coefficient estimates when using
standard parametric specifications. The researcher can use the adjusted max-
imum likelihood procedure described in Section 3 to consistently estimate the
extent of misclassification and the coefficients. However, should the error
disturbances in the data not have the assumed parametric distribution, these
coefficient estimates may nevertheless be inconsistent. Semiparametric regres-
sion using the MRC estimator of Han (1987) yields consistent estimates of the
coefficients without specifying the error distribution. The MRC estimates are
also consistent for 2 more flexible model of misclassification than the parametric
estimates. Furthermore, the IR techniques detailed above provide pointwise
consistent estimates of the response function. Due to the different convergence
rates of MRC and IR estimation, we are able to derive and estimate the
asymp’otic distribution for both the slope parameters and the response function
estimates.
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IR Step Function for <T> Partition +/— Two Std Errors
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Fig. 4. (a). IR step function for (T’ partition + / — two standard errors. (b). IR step function for
(6> partition + /— two standard errors.
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Applying our econometric techniques to job-change data from the CPS and
PSID, we find that serious misclassification exists when we construct the
job-change variable in very natural ways. Furthermore, the probabilities of
misclassification differ depending on the response. We find reasonably similar
results using both the MLE parametric approach and the distribution-free
semiparametric approach. We find the isotonic regression to be quite useful in
allowing the researcher to view features of the underlying response function.
Our approach is quite straightforward to use on discrete-response models that
are commonly used in applied research. Thus, we hope our approach will be
useful to others working with discrete data for dependent variables, especially in
probit and logit models.

Other model specification problems may exist besides misclassification, e.g.,
heterogeneity or heteroscedasticity. Misclassification in particular need not be
the problem in a case where a probit or logit model does not fit. However, the
types of results we achieve here suggest that misclassification can be a serious
problem. Results that suggest the existence of misclassification certainly justify
looking more closely at the data to determine what error structure does exist.
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Appendix A.

Proof of Theorem 3. Some additional notation is required. Let Gy(-) denote
the functional estimate from an isotonic regression of y on x'b (where b is
normalized to have its last component equal to one or minus one). Then, from
the notation in Section 3, we have G(+) = Gy(-). Let Hy(v) be the cumulative sum
of responses for index values less than v, defined as follows:

Hyv) = Z 1(x}b < v)y,. (A.1)

Fi_n‘ally, let Uy(a) be defined as follows:
Uyla) = sup{v: Hy(v) — av is minimal}. (A2)
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Then, Groeneboom (1985) shows that, with probability one,
Gyv) S a<>Uya) <. (A.3)

The usefulness of this relationship is that the (inverse) process U,(a) is more
tractable than G,(v).
We have

n'3(Gp(v) — G(v) = n*3(Gplv) — Gy(v) + n'(G,(v) — G)). (A4)

The second term has known asymptotic distribution, given in Section 3. To
show that the first term converges in probability to zero, we show that
n'*(Ug(a) — Ug(a)) converges in probability to zero. Note that

Upla) = sup{v: (Hp(v) — Hy(v)) + (H(v) — av) is minimal}. (A.5)

For a given v, we have

H) = Hyo) = 3 (168 < 0) = 168 < oy
= |3 (6B <0 <xp) - if <0< x:-/%)yil
< Y, Umin(xiBxp) < v < max(xB, ¥y

]
-

Since \/r; IB— Bl = O,(1) (for the components of the parameter vector not fixed
by the normalization), it follows that |Hg(v) — Hy(v)| = o,(n~/3) at any v for
which the index x'f has a positive density in a neighborhood around v. Thus, the
(Hp(v) — Hy(v)) term in Eq. (A.5) is negligible in determining the asymptotic
behavior of n'/*(Ug(a) — Ua)), which implies that n'*(Ugla) — Ugla)) = o,(1)
and completes the proof. [
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