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Abstract

We analyze a class of imitation dynamics with mutations for games with any finite number of actions,
and give conditions for the selection of a unique equilibrium as the mutation rate becomes small and the
population becomes large. Our results cover the multiple-action extensions of the aspiration-and-imitation
process of Binmore and Samuelson [Muddling through: noisy equilibrium selection, J. Econ. Theory 74
(1997) 235-265] and the related processes proposed by Benaim and Weibull [Deterministic approximation
of stochastic evolution in games, Econometrica 71 (2003) 873-903] and Traulsen et al. [Coevolutionary
dynamics: from finite to infinite populations, Phys. Rev. Lett. 95 (2005) 238701], as well as the frequency-
dependent Moran process studied by Fudenberg et al. [Evolutionary game dynamics in finite populations
with strong selection and weak mutation, Theoretical Population Biol. 70 (2006) 352-363]. We illustrate
our results by considering the effect of the number of periods of repetition on the selected equilibrium in
repeated play of the prisoner’s dilemma when players are restricted to a small set of simple strategies.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We study a class of imitation dynamics in large populations playing an n x n game. Our main
assumptions are that at every time step, at most one agent changes his strategy, and that this
agent may only imitate a strategy that is currently in use. In addition, we assume that if only two
strategies are present in the population, the probabilities of the possible transitions depend only on
the current payoffs to these strategies, and that the expected motion is in the direction of the better
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response; this is the sense in which the dynamics are “monotone.” ! Finally we assume that a small
mutation term makes the system ergodic. This class of dynamics encompasses various models
that have been studied in the literature, mainly for 2 x 2 games; e.g. the aspiration-and-imitation
process of Binmore and Samuelson [3], the related imitation processes proposed by Benaim and
Weibull [2], Bjornerstedt and Weibull [4] and Traulsen et al. [23], and the frequency-dependent
Moran process introduced by Nowak et al. [19].

The models we consider have a unique “limit distribution” as the mutation rate becomes small;
we are interested in the convergence of this limit distribution as the population size becomes
large. Our analysis builds on our work in Fudenberg and Imhof [9], which shows that for every
fixed population size, the limit distribution can be obtained as the unique invariant distribu-
tion of the n x n transition matrix of a certain embedded chain. The entries of this matrix are
given by absorption probabilities of the original process restricted to the edges of the state space
where only two strategies are present. The large-population behavior of the limit distribution is
therefore determined by the large-population behavior of these absorption probabilities, so we
need to develop a fairly precise characterization of their asymptotic behavior. To this end we
approximate the probabilities using Riemann sums and apply the Laplace method to analyze
the behavior of the resulting integrals. This yields simple criteria that determine whether the
probabilities converge to zero and, in the case of convergence, explicit expressions for the rate
of convergence. We then show how these rates, if interpreted as transition costs, can be com-
bined with the now-familiar machinery of “least cost graphs”? to solve the equilibrium selection
problem.

In the 2 x 2 case there are only two absorption probabilities to consider and the selected strategy
can be determined by checking whether their ratio converges to O or to infinity. Our selection result
for this case coincides with that of Binmore and Samuelson [3].3 Neither the asymptotics for
the individual absorption probabilities nor the least cost arguments are needed in this case, and
Binmore and Samuelson’s direct analysis of an explicit expression of the ergodic distribution is
simpler than our approach. However, in the general case, the limit distribution cannot be expressed
in terms of ratios of absorption probabilities and the individual rates of convergence are required
to determine the least cost graph.

We apply our methods to a finitely repeated prisoner’s dilemma game and show that if the
population is neither too small nor too large, cooperative behavior will be observed most of the
time. By contrast, in the replicator dynamics on an infinite population, the state “always defect”
is asymptotically stable; we say more about the relevance of this in Section 5.

2. The model

Consider a symmetric two-player game with pure strategies 1, ..., n and payoff matrix A =
(aij)! =1 We consider a population of size N >2 and describe its evolution by a homogeneous

' The “Darwinian” monotonicity assumption in the finite-population model of Kandori et al. [17] requires that the
probability that the no-mutation process moves in the direction of the better response is equal to 1, whereas our monotonicity
condition requires only that this probability is larger than that of a step in the opposite direction.

2 This way of computing the support of the limit distribution was introduced by Freidlin and Wentzell [8]; its use in
evolutionary game theory is due to Kandori et al. [17] and Young [24]. See Fudenberg and Levine [12] or Samuelson [21]
for an introduction to the relevant probability theory and survey of some of its applications to game dynamics.

3 The selection result of Binmore and Samuelson applies to their more general muddling process for 2 x 2 games. In

[10] we analyze a multi-dimensional muddling analog of generalized muddling, and show that it covers the extension of
the Ellison and Fudenberg [6] word-of-mouth learning model to the case of more than two brands.
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Markov chain {X (¢t; ¢, N):t =0, 1, ...} with state space
Sy={(x1....x) €{0,1,...,NY":x; +---+x, = N}.

The ith component of X (¢; ¢, N) is the number of individuals that play strategy i during [¢, r + 1).
The parameter ¢ > 0 corresponds to the size of the mutation rates; { X (z; 0, N)} is the no-mutation
process. We denote the transition probabilities by pe v (x, x”).

Assumption 1. For every N >2, the no-mutation transition probabilities are such that:

(1) atevery time #, at most one agent changes his strategy,
(i1) absent strategies will never be re-introduced, and
(ii1) for every strategy that is currently played, there is a positive probability that its frequency
increases in the next step, unless all members of the population use the same strategy.

Thus, in the absence of mutations, every state is transient except for the pure states s =
(N,0,...,0),...,5, =(0,...,0, N), which are absorbing. 4 For every pair of different strate-
gies i, j let s;/; denote the state where every agent plays i except for one, who plays j. The next
assumption specifies how the mutations modify the no-mutation process.

Assumption 2. (i) If ¢ > 0, then {X (¢; ¢, N)} is irreducible.
(ii) The transition probabilities p; y (x, x") depend continuously on &.
(ii1) For every i # j, the limit

- PeN(siySifj)

i = U;;
e—0 & 'ul]

exists and does not depend on N.

(iv) The matrix ('“ij)?,j=1’ where u; =--- = u,, =0, is irreducible.

(v) For every N >2, every strategy i and all x = (xq, ..., x,) € Sy withx; <N — 2,
lim Pe.N (i, X) —0.
e—0 &

Assumption 2 implies that each transition probability out of a pure state has a well-defined
limiting order, with the probability that a single mutant invades a pure population being exactly
of order ¢ or of order o(¢), while the probability that two or more mutants invade simultaneously
is o(e). Assumptions 1 and 2 imply that for every N >2 and every sufficiently small ¢ > 0, the
process { X (t; ¢, N)} spends most of the time at the pure states and transitions occur mainly along
the edges of the state space where only two pure strategies are present in the population. >

We now place more restrictions on the behavior of the no-mutation process on these edges. For
every pair of different strategies i, j let

k k k+1 k—+1
I’ij(k,N):pO’N{NSi-I-(l —N)Sj,TSi-F(] —T)Sj},

k=0,...,N —1,

4 Part (ii) of this assumption rules out processes where adjusting agents play the best response (or even a smoothed best
response) to the current state, as in Benaim and Hirsch [1], Fudenberg and Kreps [11], Sandholm [22], and Young [24].
Theorem 2 of Fudenberg and Imhof [9] relaxed (ii). We do not know to what extent a similar extension is possible here.

5 See Young [24, Theorem 4] or Fudenberg and Imhof [9].
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k k k—1 k—1
tij(k, N) = po,n vt l_ﬁ Sj» St 1—T Sj(

k=1,...,N.

Thus if k agents play strategy i and the rest play j, then r;; (k, N) is the probability that one agent
switches from j to i, and ¢;; (k, N) is the probability that one agent switches from i to j. Clearly,
r,-j(k, N) = Eji(N — k, N)

If the population is in state x = (x1, ..., x,) € Sy and x; > 1, then, under random matching,
the average payoff to agents that use strategy i is

n .. . ..
Zj:] ajjxj — dijj
N —1

ui(x) =

b

where we assume that agents play infinitely ® often and do not interact with themselves.’ The
following assumption characterizes our imitation model by specifying how the transition proba-
bilities may depend on the payoff functions u; (x). Let uyjn = min; ; a;; and umax = max; ; a;;.

Assumption 3. (i) There is a strictly positive Lipschitz continuous function f on [#p;n, Umax |2
such that for each pair of different strategies i, j,

rij(k, N) 7 k +N—k k +N—k
ATt wi [ —s; + "5 ) ui [ == si )|,
¢k, N) AN N )N N
k=1,...,N—1land N >2.
(i1) For all u, v € [Umin, Umax ]

> >
fwu,v) 1 < u .
< <

Assumption 3(i) says that along an edge the relative probabilities of upwards and downwards
shifts in the number of agents playing i depend only on the current payoffs, and that this dependence
has a well-behaved limit as N grows large. Assumption 3(i1) adds the condition that the expected
motion is in the direction of the better response. By “monotone imitation dynamics” we will mean
any dynamics that meet Assumptions 1, 2, and 3.

3. Examples

We now present several examples of models that meet our assumptions. In each case, we
describe only the no-mutation process and assume that mutations are modeled in agreement with
Assumption 2.

Example 1. In the aspiration-and-imitation model of Binmore and Samuelson [3], u; (x) is con-
sidered as an expected payoff and the realized payoff to any individual is given by the expected

6 We explore the consequences of randomness due to finitely many pairings per period in Ellison et al. [7]. Imhof and
Nowak [16] consider a frequency-dependent Wright—Fisher process and compare its behavior when the game is played
infinitely often to the behavior when the game is played just once in each period.

7 All our results carry over to the case where each player may also play against himself, where u; (x) would be replaced
by u;(x) = Z;‘: | @ijxj/N.For simplicity, we restrict attention to the functions u; (x).
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payoff plus a random variable that captures aggregate shocks. These random perturbations are
assumed to be identically distributed and independent across all players and rounds. Let F denote
the common distribution function. At each time step, a randomly chosen player compares his
realized payoff to a deterministic aspiration level A. If the realized payoff is above that level, he
keeps his strategy. Otherwise he imitates the strategy of a randomly chosen individual. Thus

rij(k, N) = KN =0 [A— U <£s,~ N _ksj>] :

N(N —1) N N
k(N — k k N —k
Lij(k,N) = ﬁF |:A—u,- (Nsi + N Sj)i|.

This model satisfies our assumptions with

F(A —v)

V) = ———»

Sl v) = — @
provided that F is strictly increasing and Lipschitz continuous and that F (A — upax) > 0. The
inequality means that there is a positive probability that the shock is large enough that even a
strategy whose expected payoff is umax can lead to a realized payoff below the aspiration level.

Example 2. Suppose that at each time step, an agent A; is chosen at random to re-evaluate his
strategy. To this end, he chooses randomly another individual, A,. If A, uses the same strategy
as Ay, then A keeps his strategy. If they use different strategies, say i; and i», then A imitates
the strategy of A, with a probability that depends on their respective payoffs. Let this probability
be given by glu;, (x), u;, (x)]. With probability 1 — g[u;, (x), u;, (x)], A1 keeps his strategy. This
model satisfies our assumptions with f(u,v) = g(u,v)/g(v, u), provided g is positive and
Lipschitz continuous and g(u, v) > g(v, u) if and only if u > v.

In [2], Benaim and Weibull consider a model of aspiration and imitation of success, where the
individual that reviews his strategy switches to the strategy of another individual if the payoff
difference exceeds a random threshold. Denoting the distribution function of the threshold by F,
we can cover this scheme by choosing f(u,v) = F(u —v)/F(v — u).

If we choose

O4+u—v

f) =

where 0 > umax — Umin, We obtain the evolutionary process with the local updating rule introduced
by Traulsen et al. [23].

In Bjornerstedt and Weibull’s [4] success-oriented imitation dynamics, the probability that the
reviewing agent A imitates the strategy of A; is a strictly increasing function A, say, of Az’s
payoft, but does not depend on A;’s own payoff. A finite population version of their model can
be obtained from ours by setting f (u, v) = h(u)/h(v).

Example 3. In the frequency-dependent Moran process introduced by Nowak et al. [19], the
fitness of an individual using strategy i in a population in state x is given by ¢; (x) = 1—w+wu; (x),
where w € (0, 1] is a parameter that describes the intensity of selection. At each time step, one
individual is chosen to reproduce and the probability that an individual using strategy i is chosen
isxj;(x)/ O i ¢ j(x)). The offspring then replaces a randomly chosen individual. This model
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satisfies our assumptions with

1 —w+ wu

flu,v) =

l—w+wv

To see what our assumptions rule out, consider a model where at each time step, an agent
is drawn at random and chooses a best reply to the current population. This model would in
general not satisfy Assumption 1(ii) because even without mutations absent strategies could be
re-introduced. In addition, even if the agent is only allowed to choose the best reply among the
currently present strategies, the functions r;; and £;; would in general fail to be positive, so that
Assumptions 1(iii) and 3(i) would not be satisfied. Assumption 1(iii) can be satisfied by using
smooth best replies as in Fudenberg and Kreps [11] and Benaim and Weibull [2], but even with
smooth best replies Assumption 3(1) can still fail. To see this, consider the neutral 2 x 2 case, where
either strategy is a best reply and thus chosen with probability % Thenrya(k, N) = (N —k)/(2N)
and £12(k, N) = k/(2N) fork = 1,..., N — 1, so that the ratio rj(k, N)/€12(k, N) would be
unbounded.

However, the following variant of a smooth best reply dynamics is consistent with our as-
sumptions. Suppose that at each time step, one of the currently present strategies, iy, . . ., iy say, is
chosen at random. One of the agents that use this strategy makes noisy observations on the current
average payoffs to iy, . . ., iy and then chooses the strategy with the highest observed payoft.

4. Equilibrium selection in large populations
Suppose throughout that {X(¢; ¢, N)} satisfies Assumptions 1-3. By Assumption 2(i),

{X(t; ¢, N)} has a unique invariant distribution n(x; ¢, N), provided ¢ > 0. As we noted ear-
lier, it is easy to show that for every N,

lim n(x; e, N) =0 forallx € Sy \ {s1,..., 8.}
e—0
To determine the limits for x = s1,...,s, consider for every pair of distinct strategies i, j

the probability that the no-mutation process will be absorbed at s; if initially N — 1 agents play
i and one agent plays j. Denote this absorption probability by p;;(N). Define the n x n matrix
A(N) = [4;;(N)] by

A (NY = iy (N, # 0 AN = 1= 3 55 (N).

J#
Lemma 1. For every N =2, the limits
T (N) = 8li_r)r(1)n(s,~; eN), i=1,...,n,
exist and are strictly positive. Moreover, n*(N) = (n{(N), ..., 7wy (N)) is the unique vector such
that
" (N)A(N) =n*(N), aj(N)+---+m(N)=1. (1)

This lemma says that there is a unique “limit distribution” 7*, and that it is the unique invariant
distribution of the matrix A. The proof of the lemma is simply to verify that the model satisfies
the assumptions of Theorem 1 of Fudenberg and Imhof [9]. See Section 6 for this and all other
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proofs. Intuitively, the result follows from the fact that the system spends almost all of its time on
the edges of the state space: starting from a steady state of the no-mutation process, a single rare
mutation puts the process somewhere on an edge; when the mutation rate is small, the process
will be absorbed at one of the two relevant vertices before the next mutation occurs. 3

We now turn to the asymptotic behavior of the fixation probabilities p;;(N) and p;; (N). The
behavior depends on whether, in the subgame with pure strategies i and j, one strategy dominates
the other, both pure strategies are equilibria, or there is a mixed-strategy equilibrium. We write
ay = by if the ratio ay /by 1s bounded and bounded away from zero.

Lemma 2. Leti, j € {1, ..., n} be two different pure strategies. Let

¢
¢ij(x) =log flxaij + (1 — x)aii, xajj + (1 —x)a;il, ;&) = / ¢ij(x)dx.
0

If i dominates j, that is, if a;; >aj; and a;j > ajj,

pij(N) =< e p(N) = 1.
If j dominates i, that is, if a;; < aj; and a;j <ajj,

pii(N) < 1, pji(N) =< MV,
In the coordination case, that is, if a;; > aj; and a;j <aj; with at least one inequality being strict,

eXP{—NlPij(f;kj)} CXP{—NWij(f:Fj) —¥;; (D1}
9 il = 0 )
N ) Pith) ( N

Jim py; (N)N exp{Ny; (¢} = oo,

pij(N) =0 <

Nli_r)nOO pji(N)N exp{N[lﬁij(f;kj) — (D]} = o0,

*
where &y = (aii — aji)/(aii — aji +ajj — aij).
In the hawk-dove case, that is, if a;; < aj; and a;; > ajj,

p;;(N) < exp {—=N max[0,y;;(D]}.  p;;(N) < exp {N min[0, y;;(1)]} .

If i and j are neutral, that is, if a;; = aj; and a;j = ajj,
1 1
pij(N)ANa pji(N)f\N- (2)
Note that the cases in Lemma 2 are exhaustive. Note also that if a;; = aj; = a;; = ajj,

Assumption 3 implies that r;; (k, N) = £;;(k, N) for every k. Thus on the edge from s; to s, the
no-mutation process is a martingale, and this yields

1
Pij (N) = Pji(N) =

N 3)

improving (2) for this case.

8 Note that it is important here that we first send the mutation probability to 0 and then send the population size to
infinity; with the other order of limits, the result need not be concentrated on the vertices; see for example the discussion
of the hawk-dove game in [14].



236 D. Fudenberg, L.A. Imhof / Journal of Economic Theory 140 (2008) 229-245
The proof of Lemma 2 rests on the representation

v

N—-1
1 ii(N—k, N
:Zexp Zlog rij ) .
pij(N) = — tij(N—k N)

We first show that the interior sum is approximately N, j(v/N),sothat1/p;;(N)is approximately
equal to ZN:_OI exp{Ny;;(v/N)}. We then approximate this sum by N fol exp{Ny;; (<)} d& and

apply the L.:lplace method [5] to analyze the asymptotic behavior of the integral. The underlying
idea is that for large N, the integrand has a sharp peak at the point where ; j attains its maximum,
so that the integral is mainly determined by the integrand in a small neighborhood of that point; this
implies that the asymptotic behavior of the integral is essentially given by exp{N max¢ y;; (<)}
The proof of the lemma then determines the value of this maximum for each of the cases it
considers.

Lemma 2 shows in particular that for every pair i, j with j # i, the limit

log p;; (N
B, = — lim log pi;(N) )

N—o00 N

exists and is a non-negative number. If f§;; > 0, then f;; is the exponential rate with which p; ; (N)
converges to 0. If f; i =0, p;;(N) may or may not converge to 0.

Our main result on equilibrium selection, Theorem 1, is based on the least cost graphs of Freidlin
and Wentzell [8], where we approximate the costs of the edges of the graphs by the exponential
rates. Although these rates contain less accurate information on the asymptotic behavior of the
absorption probabilities than available from Lemma 2, they are often sufficient to determine a
selected strategy. For example, the f; ; contain enough information to find the selected strategy
for coordination games, see Corollary 3. For the prisoner’s dilemma game considered in Example
4, it is even enough to know which f8;; are positive. On the other hand, in Example 5, the more
precise asymptotics of Lemma 2 are needed. For convenience, we collect the exponential rates
for all 2 x 2 games in the following corollary.

Corollary 1. Ifidominatesj(a;; >aj; and a;j > aj;),then ﬁ,-j = np,-j(l) > 0. Inthe coordination
case (a;; > aj; and a;j <aj;j), ﬁij = gbij (f?‘j) > 0. In particular, if i is a strict Nash equilibrium
(ail- > aji), ﬁij > 0.

In the hawk-dove case (ai; < aj; and aij > ajj), f;; = max{0, tpij(l)}. If i and j are neutral
or j dominates i (a;; <aj; and a;j <aj;), ﬁ,-j =0.

To formulate our main result on equilibrium selection we need the concept of an i-graph, where
i is a pure strategy. A graph consisting of arrows j — k,where j € {1, ..., n}\{i},k € {1, ..., n}
and j # k, is called an i-graph if it satisfies the following conditions: (a) every !/ € {1, ..., n}\ {i}
is the initial point of exactly one arrow in the graph and (b) forany / € {1, ...,n} \ {i} there is
a sequence of arrows in the graph that leads from / to i. Let G; denote the set of i-graphs and let

G=GIU...UG,.

Theorem 1. Consider a monotone imitation dynamic (i.e. a model satisfying Assumptions 1, 2,
and 3) with invariant distribution (x; ¢, N) and limit distribution 77 (N) = limg_.¢ n(s;; &, N).
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Forall j # k let p jk denote the exponential rate defined by (4). For every graph g € g let

) — { Y (jtres Byt it > 0forall (j — k) € g.
o0

otherwise,

and let y* = min{y(g): g € G}. If i is a strategy such that the minimum y* is not attained by any
i-graph, then

lim 77(N)=0.
N—o00

If there exists a graph g* € G; such that y(g) > y(g*) forall g € G\ G;, then i will be selected,
that is,

lim 7f(N) = 1.
N—o0

The proof of these limit results builds on the fact that, by Lemma 1, ¥ (V) is the unique solution
to (1). According to a well-known representation of solutions to systems of equations of this type,
see Freidlin and Wentzell [8], ] (N) is proportional to a sum of certain products of the entries
Ajr(N), where the choice of the factors is given by the set of i-graphs. The limit behavior of
n*(N) can thus be obtained from the asymptotic behavior of the 4 i (N) as given in Lemma 2.

We now apply Theorem 1 to obtain explicit selection results under suitable conditions on the
underlying game.

Corollary 2. Suppose strategy i weakly dominates every strategy j # i in the subgame with pure
strategies i and j. Suppose further that p;; > 0 for all j # i. Then strategy i will be selected:
i (N) — L

As another immediate consequence of Theorem 1 we obtain the following selection result
for coordination games, where every pure strategy is a strict Nash equilibrium. For Moran pro-
cesses, the special case of 3 x 3 coordination games has already been considered by Fudenberg
et al. [14].

Corollary 3. Consider a monotone imitation dynamic for an n x n coordination game. For
every pair of different strategies j, k let B, = lﬁjk(fjk). Let y; = min{y(g):g € G;} and
y =min{y, ..., .} If y; > V¥, then n7(N) — 0. If i is the unique strategy with y; = y*, then
i (N) — 1.

5. Applications to the prisoner’s dilemma

Consider the prisoner’s dilemma game with strategies ‘cooperate’ and ‘defect’ and payoff

matrix

R S

, T>R>P>S§8>0.
T P

The strategy ‘defect’ strictly dominates ‘cooperate’, so that in our finite-population model ‘de-
fect’ is selected according to Corollary 2. Moreover, because this is a strict equilibrium, it is
asymptotically stable under the replicator dynamics. °

9 More strongly this equilibrium is globally asymptotically stable.
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Now suppose the prisoner’s dilemma game is repeated with an expected number of rounds
m < oo. The strategy ‘defect in each round’ (ALLD) is a strict Nash equilibrium, and so the
corresponding state is asymptotically stable in the replicator dynamics on an infinite population.
This is of some interest here, because our assumptions on the no-mutation process are consistent
with its mean field being the replicator dynamics; the mutation terms generate an additional
drift which will be small when the mutation probability is low. Finally, suppose that the game is
repeated an infinite number of rounds. Here ALLD is weakly dominated by the strategies that are
“conditional cooperators,” so it is no longer asymptotically stable.

To study the behavior of a finite population, assuming monotone imitation dynamics, we focus
on the following four strategies: 1: ‘cooperate in each round’ (ALLC), 2: ALLD, 3: ‘tit-for-tat’
(TFT) and 4: ‘perfect-tit-for-tat’ (PTFT), which is also called ‘win-stay, lose-shift’. TFT and
PTFT are both conditional cooperators; TFT cooperates in the first round and then does what
the opponent did in the previous round, PTFT cooperates in the first round and then cooperates
after receiving R or P in the previous round and defects otherwise. (Recall that PTFT is “perfect”
because, unlike TFT, PTFT is a symmetric subgame-perfect equilibrium in the usual case where
(R, R) is the efficient outcome. 19)

The results of this section are contained in the following three examples. Example 4 shows that
ALLD is selected in the finitely repeated prisoner’s dilemma in the limit where first the mutation
rate goes to 0 and then the population size goes to infinity. Example 5 shows that the conditional
cooperators are selected in the same limit when the number of rounds is infinite. Example 6
gives the main result of this section: Even in finitely repeated prisoner’s dilemmas, the population
consists mostly of conditional cooperators if the population is neither too small nor too large and
the number of rounds is sufficiently large. A similar observation for a simpler model was stated
without proof in Imhof et al. [15]; the results here allow their conjecture to be verified.

For simplicity, we assume that all types of mutations are equally likely. Denote the small
mutation limit of the invariant distribution by (7} (N, m), ..., wj(N, m)), where m < 0.

Example 4. If the number of rounds m is finite, the payoff matrix is

(R

T

R

S

P

l{S-I—(m— )P}
m

R

n%{T—Ir(m—l)P} %H%JPJF{

R

R

R

m-+1

2

J7]

)

R 1 m P m+ 1 S R R

K m { L 2 J + L 2 J } )
where |z] denotes the largest integer less than or equal to z. ALLC, TFT and PTFT are neutral
against each other. Hence, by Corollary 1, f3; = f43 = 0. Also, ;, = 0. Since ALLD is a strict
Nash equilibrium, ,; > 0, f,3 > 0, and 5,4 > 0. Consider g* = {(4 — 3),3 — 1), (1 —
2)} € G>. We have y(g*) = 0, and for every g € G \ G2, there occurs one of the positive numbers
P21 P23, Pog in the sum defining y(g), so that y(g) > 0 = y(g™*). It follows from Theorem 1 that

limy 00 75(N,m) = 1. Thatis, ALLD is selected in the limit where first the mutation rate goes
to 0 and then the population grows to infinity.

10 TFT Jeads to cycles starting from the history (C, D), so it is not subgame perfect when players are patient and cycles
are inefficient, i.e. when 2R > § + 7. This is why TFT is not an ESS when players make rare trembles or erroneous
moves (Fudenberg and Maskin [13], Nowak and Sigmund [20]).
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Example 5. For the prisoner’s dilemma game with infinitely many rounds, we obtain the payoff
matrix

R S R R
1 1
T P P 5P+ 5T
R P R R
| 1

R 5P+ 3SR R

(A complete derivation is given in Section 6.5; we report only the selection results here.) If PTFT
is a strict Nash equilibrium against ALLD, that is, if 2R > P + T, then n3(N, 00) — % and
my(N, 00) — % That is, for large populations, a monotone imitation dynamics spends nearly all
the time at the states where everyone plays TFT or where everyone plays PTFT, and TFT will be
observed about twice as often as PTFT. In this case the relevant least cost graphs represent the
transitions {(PTFT — ALLC — ALLD — TFT)}, {(ALLC — ALLD — TFT), (PTFT —
TFT)}, which correspond to TFT-graphs, and {(ALLC — ALLD — TFT — PTFT)}, which
corresponds to a PTFT-graph. If PTFT is not a strict Nash equilibrium against ALLD, then

n3(N, 00) — 1, so that most of the time everyone plays TFT. Here the graph specified in the
least cost argument represents the transitions {(ALLC — ALLD — TFT), (PTFT — ALLD)}.

Example 6. Now we reconsider the case m < oo, this time for “intermediate” population sizes.
Then if PTFT is a strict Nash equilibrium against ALLD, for all # > 0, there exists a population
size Ny such that for every N1 > Ny, there is a number of rounds m so that

3 (N, m) — %‘ <,

(N, m) — 3| <n

for every N € {Ny, ..., N1} provided m >my.
If PTFT is not a strict Nash equilibrium against ALLD, then for every # > 0, there exists Ny
such that for every N1 > Ny, there is mg so that

n3(N,m)>1—y

for every N € {No, ..., N1} provided m > my.

For an intuitive explanation consider the dynamics in the case where P + T >2R. We denote
by ALLC (respectively, ALLD, ...) also the state where everyone plays ALLC (respectively,
ALLD, ...). ALLC, TFT, and PTFT are neutral, and so the evolution of a population where only
these strategies occur is determined by random drift. ALLD dominates ALLC and PTFT. Thus
as soon as the population is in the state ALLC or PTFT, an ALLD invader will quickly take over
the whole population and the population is then unlikely to return directly to ALLC or PTFT.
ALLD against TFT is a coordination game, provided m is not too small. Therefore, a population
in state ALLD is to some extent resistant to invasion by TFT. However, if m is sufficiently large,
the basin of attraction of ALLD (i.e. the part of the edge from TFT to ALLD with drift towards
ALLD) is small and if the population is not too large, there will soon be enough TFT players in
the population that can take over the population. ALLD invaders then have only a small chance
of taking over again. Therefore, the time spent at ALLD is relatively short compared to the time
spent at TFT, which explains the result in Example 6. On the other hand, for any fixed m < oo,
the basin of attraction of ALLD corresponds to a fixed proportion of TFT players necessary for
a reasonable chance to take over. As N gets large, it becomes increasingly unlikely that enough
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TFT players appear. Thus for fixed m and N sufficiently large, the process spends most of the
time at ALLD, as shown in Example 4.

6. Proofs
6.1. Proof of Lemma 1

The present Assumptions 1 and 2 ensure that Assumptions 1-4 of Fudenberg and Imhof [9]
are satisfied. Assumption 1 also implies that p;;(N) > 0 for all i # j. By Assumption 2(iv), the
matrix (y;;) is irreducible, and it follows that A(N) is irreducible as well. Therefore there exists a
unique solution *(N) of (1), and #*(N) is positive. In particular, Assumption 5 of [9] is satisfied.
The limit assertion now follows from [9, Theorem 1].

6.2. Proof of Lemma 2

Fix any two different strategies i and j. We will only prove the assertions for p;; (N). By Karlin
and Taylor [18, p. 113] and Assumption 3(i),

N-1 v N—1l v
rij(N —k, N)
= k,N),v(k, N)], 5
le(N) vgnlﬁuw—k, N) vggf[u( ), v(k, N)] (5)
where
u(k, Ny = (N —k — 1laj; +k6lij’ ok, N = (N —k)aji + (k — Dajj

N -1 N -1
and the empty product is equal to 1. Assumption 3(1) implies that log f is Lipschitz continuous.
Since

w(k. N) — (N — k)a;; —I—ka,-j _0 (%) v N) — (N —k)aj,- —|—kajj _0 (l) ’

N N N
it follows that for some constant ¢y,
k cl k Cl

for all k and N. Hence forv=20,..., N — 1,

v k v Vv k
exp {—cl + > ¢y (ﬁ)} <[] flutk, Ny, vk, N)I< exp {cl +> ¢y (ﬁ)} .
k=1 k=1 k=1

Lipschitz continuity of log f implies that ¢;; is Lipschitz continuous with Lipschitz constant ¢,

say. Thus
v k/N
k k
¢>-~<—) Ny, <N / ( ) ¢ :(x) dx<
/; TAN U Z (k—1)/N 2 2N
Consequently,
N—1 N—1

o C1—C2 Z exp{Nt,bij (%)} < p-iN) L1t Z exp {Nlﬁij (%)}
ij

v=0 v=0
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For every N,
N-—1 y
> e [V ()]
v=0

=N X_:l/iv/;l)/N exp {N [lﬂij (%) - %j(f)]} CXP{N%]'(@} d¢.

If v/N <E<(v+ 1)/N, then, by the mean value theorem,
v v
Ny (57) = Wi ©| <N | = e[ Wi <l = gl < oo,
where | - || denotes the sup-norm on [0, 1]. It follows that

1
pij(N)

1

To complete the proof the asymptotic behavior of [ (1) exp{Ny;; ()} d¢ has to be determined.
If a;; = aj; and a;; = ajj, then by Assumption 3(ii), lpij (&) = 0 forall ¢ € [0, 1], and so
pij(N) < 1/N.If aj; >aji and a;; > ajj, then gb,-j(x) > O for all x € (0, 1]. Thus r,b,-j(é) attains
its unique maximum over [0, 1] at £ = 1 and IM j(l) = ¢@; (1) > 0. The Laplace method for
integrals (see e.g. [5, Chapter 4]) now yields that

1 N, (1)
[ ety ende = %‘W
0

and it follows that p;;(N) < exp{—Nlpl-j(l)}.
In the coordination case, V; j(ﬁ) attains its unique maximum at ¢ = é;-"j and /! ; (é;"j) =
b (f;"j) = 0. Thus, for all ¢ € [0, 1] we have, with some 7 between ¢ and i;kj,

Wi (&) = Wi (G = 1E = ESIIWE L = 1€ = &5l ) — ¢ (EDIS(E = E5)Pen,

where ¢; is a Lipschitz constant of ¢, ;. Hence

1 * 1 ¢ ex
/ NV (© d6>eNlPij(~fij) / e—CzN(C—fij)2 dé
0 0

and f(l) e 2N (=& dé < N71/2 see [5, pp. 63-65]. It now follows that pij(N) = O(N~1/?
exp{—Ny;;(&))). To prove that p;; (N)NeN‘Pij(f?j) — oo note that for any § € (0, 1), ¢() =
max{;; (&) : & € [0, 1], [& — &> 50} < (&) and

1
/ MO g5 < NVED 5 4 NG
0

Therefore, lim inf y o0 p; j (N)N eN Vi (&) > o~ and the assertion follows by letting 0 — O.
The arguments for the remaining cases are similar and are therefore omitted.
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6.3. Proof of Theorem 1

The limit distribution (7} (N), ..., 7 (N)) is determined by (1) in Lemma 1 and the matrix
A(N) is irreducible. It follows from Freidlin and Wentzell [8, Lemma 3.1, p. 177] that the limit
distribution can be expressed as

degi/ H(j—)k)eg Ajk(N)
deg/ n(j—>k)6g Ajk(N) ,
where Gl = {g € G; 1 y(g) <oo}and G’ =G U--- UG, If g € G, then by Lemma 2,

mH(N) = i=1,....n,

exp {—N Y (kg ﬁjk} exp{—N7y(g)}
[T 4= [] ru@V) = 7o (N) T ()

(j—k)eg (j—k)eg

where hg(N) = O (N" 1) and inf >2hg(N) > 0. The assertion is now easily verified.
6.4. Proof of Corollary 2

For every j # i, a;; >aj; and a;j >aj; with at least one of the inequalities being strict.
Therefore, by Corollary 1, f;; = 0 and f§;; > 0. Let g* denote the i-graph that consists of all the
arrows j — i with j # i. Then y(g*) = 0. Every graph g € G \ G; contains one of the arrows
i — j with j # i, and so y(g) > 0. The assertion now follows from Theorem 1.

6.5. A selection result for a class of 4 x 4 games

The following lemma yields the selection results indicated in Example 5. The class of games
considered here is slightly more general and the 1;; need not coincide.

Lemma 3. Consider a 4 x 4 game that satisfies the following four conditions:
(a) Strategies 1, 3, and 4 are neutral against each other:

aj] = a3 = daz| = a3z = a4 = A4] = Q44 = A34 = 443. (6)
(b) In the subgame with strategies 1 and 2, strategy 1 is strictly dominated by strategy 2:

aip <azy, app <an. (7)

(c) In the subgame with strategies 2 and 3, strategy 3 is a strict Nash equilibrium that weakly
dominates strategy 2:

asz > ax3, az=an. (8)
(d) In the subgame with strategies 2 and 4, strategy 2 is a strict Nash equilibrium:
ay > as. )

Then we have the following equilibrium selection result for monotone imitation dynamics
with py > 0 for all j # k. If in the subgame with strategies 2 and 4, strategy 4 is a strict
Nash equilibrium, that is, if

a44 > 24, (10)
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then
lim 7" (N) = (o, 0, Hathas Ha4 ) (11)
N—00 M3a + Hay + M43 H34 + Ha1 + 3
If in that subgame strategy 4 is weakly dominated by strategy 2, that is, if
a44 < a4, (12)
then
lim n*(N)=(0,0,1,0). (13)
N—o0

Proof. We rely on the representation (see Freidlin and Wentzell [8, Lemma 3.1, p. 177] and
Lemma 1)

N
ﬁ(N):degiw(g ), i=1,....4, (14)
l degUJ(g,N)

where for every graph g, w(g, N) = ]_[( j—kyeg MjkPjx(N). To derive the asymptotic behavior of
the functions w(g, N) for N — oo, we first gather asymptotic results for the p ;; (V). It follows
from (6) and (3) that

P13(N) = p31(N) = p14(N) = pg1(N) = p34(N) = pg3(N) = % (15)
By (7) and Lemma 2,
p1p(N) = 1. (16)
By (7)-(9) and Corollary 1, there exists > 0 such that
P (N) = 0@ ™), py(N) = 0™, ppu(N) = 0 ™). (17)
By (8) and Lemma 2,
Jim N py(N) = oo. (18)
Assume now that (10) holds. Then, by Corollary 1, there exists f; > 0 such that
pp(N) = O(e PV, (19)
Consider the three graphs
g ={1-12),2-3),@— D}egs,
g ={(1—-2),2—3),4—3)}eg,

g ={1-2),2—3),3—>4)}ecds
Setting A(N) = Uyair3012(N)pa3(N)/N, we have by (15),

w(g3, N) = g h(N), w(g3™, N) = puy3h(N), w(gy, N) = pzsh(N), (20)
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and by (16),
%~ ()
— =0 ——).
h(N) p23(N)

Every graph g € Gjisoftheformg = {(2 - i), 3 — j), (4 — k)}forsomei, j, k € {1, ..., 4}.
Thus, by (15), (17), (18), and (19),

p23(N)
w(g, N) = 0( N )
and it follows that
w(g, N)
=0 forall )
N RN orallg € 1

A similar argument shows that w(g, N) = O(N~2) for every g € G, so that w(g, N)/h(N) =
O[(N p,3(N))~']. Hence, by (18),

, N
lim wig, N) =0 forall g e G,.
N—oo h(N)
If g € G3UGs\ {83,853, g4}, thenw(g, N)/h(N) = O(N~1). It has thus been shown that
. w(g,N)
wm Ty =0 forallg € G (g5, 837, g4l

The claimed limit assertion (11) is now a consequence of the representation (14) and (20).

If (12) holds, one may prove limit assertion (13) by showing thatlimy . oo w(g, N)/w(g;, N) =
0 forall g € G; UGy U Gy, where g3 = {(1 — 2),(2 — 3), (4 — 2)} € G3. The details are
omitted. [

6.6. Proof of Example 6

To make the dependence on the number of rounds explicit, we write r;j (k, N, m), £;;(k, N, m),
pij (N, m) forr;j(k, N),4;j(k, N), pij(N), respectively. By Assumption 3(i), the ratios of the tran-
sition probabilities r;; and £;; depend continuously on the payoffs, sothatr;; (k, N, m)/¢;; (k, N, m)
— rij(k, N,00)/l;j(k, N, 00) as m — oo. In view of (5), it follows that, for all i, j, and N,
Pij (N, m) — p; j (N, 00). By Lemma 1, n*(N, m) is the unique invariant distribution of a tran-
sition matrix with off-diagonal elements proportional to p;; (N, m). Hence

n*(N,m) — n*(N, 00). (21)

Let n > 0. By Example 5, there exists Ng such that

|Af — 7' (N, 00)| <g foral N>Npandi =1,...,4,

where (1],...,4;) = (0,0, %, %) if PTFT is a strict Nash equilibrium against ALLD, and
(A]s..., 41 = (0,0,1,0) otherwise. Choose any N; > Ny. By (21), there exists mg =
mo(No, N1) < oo such that

7 (Vom) = (N, 00)| < 3 forallm>mo, N=No.....Ni. i=1...4

This completes the proof.
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