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Network Structure and the Aggregation of Information: 
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By Vivi Alatas, Abhijit Banerjee, Arun G. Chandrasekhar, 
Rema Hanna, and Benjamin A. Olken*

We use unique data from over 600 Indonesian communities on what 
individuals know about the poverty status of others to study how 
network structure influences information aggregation. We develop a 
model of  semi-Bayesian learning on networks, which we structur-
ally estimate using  within-village data. The model generates quali-
tative predictions about how  cross-village patterns of learning relate 
to network structure, which we show are borne out in the data. We 
apply our findings to a  community-based targeting program, where 
citizens chose households to receive aid, and show that the networks 
that the model predicts to be more diffusive differentially benefit from 
community targeting. (JEL D14, D83, D85, I32, O12, Z13)

Economists are increasingly conscious of the important role played by neighbors 
and friends. In particular, there is a growing interest in how communities aggregate 
information: individuals may have information that is useful or interesting to others, 
but does this information get to those who need it? And, how does the answer to this 
question vary by the community’s social network? Addressing these types of ques-
tions can be important for policy design as information spreading is important for 
technology adoption (e.g., Munshi 2004; Bandiera and Rasul 2006; Duflo, Kremer, 
and Robinson 2004; and Conley and Udry 2010), and social connections have been 
shown to be important in spreading information about jobs, microfinance, and 
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 public health (e.g., Munshi 2003; Bandiera, Barankay, and Rasul 2009; Banerjee 
et al. 2013; and Kremer and Miguel 2007).

A related trend in developing countries is toward the decentralization of policy 
to the local level, e.g., community monitoring of teachers and health professionals 
or decentralized budgeting of local public goods. This is predicated, in part, on the 
idea that communities have more information, and can more effectively aggregate it, 
than central governments. The particular example that motivates us here is the role 
of the community in targeting the poor for government assistance programs.1 The 
idea behind community targeting is that it is difficult for the central government to 
effectively use surveys to identify the poorest people within a village, whereas the 
community may know who they are, simply by virtue of living next to them (Alatas 
et al. 2012). In designing these types of  community-based targeting systems, it is 
crucial to understand how information about poverty flows within villages and how 
it is aggregated through  intra-village processes. It is also important to be able to 
identify the types of villages where the networks are such that information will be 
aggregated well and therefore these decentralized mechanisms can be used more 
effectively.

However, once one thinks about this type of problem, it becomes quickly appar-
ent that existing network models are not sufficiently rich to capture this environ-
ment. Agents often have to learn about a constantly evolving parameter (in our case, 
it is the wealth of others in their village) through the social network, and moreover, 
in assessing who is poorer than whom, they have to compare multiple bits of this 
 noisily-learned and potentially dated information. This environment is more com-
plex than that captured by most existing network learning models. To the extent 
such things get modeled, analytic results are only proven for certain stylized net-
works, whereas  real-world networks differ on so many different dimensions that it 
is  near-impossible to characterize them all analytically.

In this paper, we take a different approach to the problem of predicting the extent of 
information aggregation based on network characteristics. Rather than try to develop 
analytic theorems, we instead build and estimate a realistic model of learning that 
incorporates the fact that the way information spreads in  real-world environments 
often involves learning about a constantly evolving state variable. Learning about 
a changing parameter is rarely studied in the theoretical literature (see Frongillo, 
Schoenebeck, and Tamuz 2011 for an example);2 however, it is a useful description 
for many contexts. Beyond capturing how people learn about others’ incomes—the 
context that we study here—this kind of knowledge transmission may be important 
for understanding topics such as the matching of individuals to transient labor market 
opportunities, technology adoption when the benefits of technology evolve over time 
given the state of the world (e.g., weather and other types of inputs), etc. Having 

1 Examples of  community-targeted programs include Bangladesh’s  Food-For-Education (Galasso and Ravallion 
2005), Albania’s Economic Support Safety Net (Alderman and Haque 2006), and BRAC’s  Ultra-Poor program (Bandeira et al. 2012). 

2 The exception here is Frongillo, Schoenebeck, and Tamuz (2011). However, even there, agents in their model 
need to know the covariance matrix between the information that all of the other agents have, which can be very 
complicated. They justify it by the fact that many social learning models assume that all agents know the entire net-
work structure. We take the approach of developing a model wherein agents do not need to know the entire network 
structure, and take learning shortcuts (consistent with experimental evidence) that radically simplify the problem 
and the amount of information agents need to know. 
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estimated the model, we can simulate the diffusiveness of arbitrary and complex net-
works, and examine the degree to which those networks predicted by the model to be 
more diffusive actually are more diffusive in the real world.

In our model, individuals are trying to learn a state variable (the economic 
 well-being of another household in the village), but this state variable is chang-
ing over time as households’ wealth evolves. Information about households’ wealth 
flows over the network. Each period, people receive noisy signals about the wealth 
of others from their neighbors, and then noisily transmit information to their own 
neighbors, and so on. Thus, agents are learning about constantly evolving state vari-
ables (the wealth of other households). This implies that a given individual in the 
network faces a challenging information aggregation problem: they receive multiple 
conflicting sources of information from different paths in the network, and each 
piece of information that they receive is both noisy and (to varying degrees) dated.

Agents in the model aggregate the sequence of signals that they have received to 
develop a guess about the wealth of the target household using a Kalman filter, treat-
ing each piece of information they receive over the network as an independent sig-
nal. On simple, directed networks, this is the same as full Bayesian learning, but on 
arbitrary networks, where people may receive the same piece of information through 
many different paths, this rule will not typically be Bayes optimal since it assumes 
that each piece of information is independent when in fact it is not. However, this 
simplification makes it many orders of magnitude easier for the agent to compute 
beliefs than full Bayesian learning, which would require the agent to understand 
and undo all the sources of correlation between his signals. This behavioral mistake 
is consistent with data from lab experiments (Chandrasekhar, Larreguy, and Xandri 
2012). In addition, we allow people to say that they do not know and to stop passing 
on signals once their posteriors are sufficiently noisy, which is not strictly Bayesian 
(a Bayesian always has a posterior).

We take this model to the data using an unusual dataset on networks from 
631 Indonesian villages that we collected as part of a study on the effectiveness 
of different targeting methodologies. This data has several key features. First, our 
primary data is on how certain individuals rank a set of other villagers in terms of 
their relative economic  well-being (i.e., which of the two households is richer). 
This is information that did not originate with them; it came to them, one presumes, 
through the grapevine. As in the model, it is therefore likely to be both noisy and 
dated. Moreover, in many cases an individual probably got multiple and potentially 
conflicting reports about the same person from different sources, and it is plausible 
that they know that their information is not necessarily reliable. Second, we have 
independent data on who is actually richer, which confirms that our respondents 
often get the ranking wrong, and allows us to assess the overall quality of the infor-
mation aggregation. Finally, the very unusual fact that we have data from 631 vil-
lages, each of which constitutes an independent network, permits us to carry out 
a range of  cross-network comparisons based on the model we estimate. These are 
discussed below.

We begin with some reduced form facts that suggest that this is a reasonable set-
ting in which to consider social transmission of information. In particular, we exam-
ine the relationship between people’s network position and what they know. While 
these results are purely descriptive and do not address the important and difficult 
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identification issues (in particular, the challenge that being better connected may be 
correlated with other unobserved household characteristics that may also determine 
knowledge), the associative patterns are very strong: better connected people are 
better at ranking others, especially if we measure being better connected by number 
of connections. Similarly, people that are socially closer (in terms of path length) 
to their ranker are more likely to be more accurately ranked. Finally, we note that 
many people say that they do not know the answer. This response is more likely if 
the person doing the rankings is socially distant from the ranked households and is 
in general less well connected. Therefore, there is at least prima facie evidence for 
the importance of network channels for information transmission in this context.

We then use the within-village variation in our data to estimate, using simulated 
method of moments, the parameters of our model of learning on networks and use 
that model to simulate information diffusion in every village. Our simulated data 
based on the estimated parameters, reassuringly but unsurprisingly, replicates the 
reduced form correlations reported above. The estimated parameters tell us that 
transmission error is a significant—though not enormous—part of what makes infor-
mation aggregation inefficient: the variance of the transmission error is 9.7 percent 
of the variance of wealth. Further, when an agent is at least four steps away from the 
source, which means that the variance of the transmission error is over 38 percent 
of the variance of the wealth, the agent in our model becomes unwilling to pass 
on information. Evaluated at the average distance between pairs in the sample, the 
variance of the transmission error is 19.9 percent of the variance of wealth. We learn 
from our structural estimates that while transmission error accounts for only a mod-
est share of the variation, if the signal to noise ratio is less than 60 percent, agents 
essentially appear entirely unwilling to pass on information. This suggests that a 
promising line of future research could focus on how learning dynamics operate 
when agents are loathe to pass on information if they are unsure.

We then compute  cross-village correlations between standard measures of net-
work characteristics (average degree, the first eigenvalue of the adjacency matrix, 
clustering, link density, and the size of the giant component) and information diffu-
sion in the simulated data, and compare them with the estimated correlations from 
the actual empirical data we collected from our survey. This, from our point of 
view, serves two related but distinct purposes. First, it serves as a validation exer-
cise for our estimated model. Second, it can provide support for the use of these 
characteristics to measure the diffusiveness of particular networks. This is usually 
what we use analytical results for, but those have mostly proved elusive, in part 
at least because networks are very complex objects: they can differ along many 
dimensions, and how each network characteristic relates to the level of information 
aggregation can depend both on the network structure and the underlying model of 
social learning. The one important analytical result in this space is by Jackson and 
Rogers (2007b) who show that networks that are first-order stochastically dominant 
in terms of their degree distribution are more diffusive. To gain traction on study-
ing diffusion, they assume a meeting model wherein each node meets each other 
node with probability proportional to their degree. However, this result still leaves 
most networks not comparable and, further, the meeting model is obviously very 
different from the interaction patterns implied by our reduced form results, which 
highlight persistent, local connections. Moreover, there is no obvious sense in which 
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controlling for a small number of additional network characteristics “solves” this 
problem, which is why Jackson and Rogers (2007b) go all the way to stochastic 
dominance.3

In the absence of analytical results, we propose the comparison of the simulation 
results and the actual  cross-village in a large dataset which admits a wide variety of 
network structures as a way to assess the usefulness of the intuitive claims made for 
the effects of various network characteristics. We call this approach numerical the-
orizing: looking at descriptive evidence on social learning across many independent 
networks to see if it is consistent with an underlying theory.4

The empirical patterns in the  cross-village correlations match up reasonably 
well with the results generated by our model. In almost all cases, whenever either 
the simulated or the actual empirical correlations between network characteristics 
and measures of information aggregation are significantly different from zero, they 
have the same sign. And, for the most part, this sign matches what we would have 
expected based on existing theoretical research.5

However, we also see interesting divergences from what one might have intui-
tively expected. For example, the effect of higher average number of connections on 
information aggregation, controlling for other network characteristics, is negative 
both in our simulations and in the empirical results. Though there is a standard intu-
ition that more connections are better, this is not true once one conditions on other 
network dimensions.

The above analysis showed how existing summary statistics of the network are 
related to diffusiveness, but we can also use the model to simulate, on average for 
any given network, the overall degree of diffusiveness in the model and analyze that 
directly. We make use of the results from our model estimation to try to simulate 

3 To get some feel for the problem consider the fact that while more connections typically facilitate better 
communication, having a higher average number of connections (i.e., in the language of network theory, a higher 
average degree) does not guarantee better information aggregation. To see why, consider an example where there 
could be a group of people in the community who are all connected to each other, but are entirely disconnected 
from the rest of the network, making information aggregation inefficient relative to a network where the average 
number of connections is lower but where everyone is indirectly connected to each other, so there are no isolated 
people (i.e., low clustering in the language of network theory). This effect of segregation is further reinforced by 
the  echo-chamber effect discussed in Golub and Jackson (2012). Of course it could be argued that the networks in 
the above example differ on both the average number of connections and the clustering of those connections which 
suggests that if we want, for example, a general prediction for the effect of number of connections, we should com-
pare networks that have similar clustering patterns, as well as similar patterns for other network features. However, 
no one measure of clustering summarizes all of the relevant information, just as no one measure of number of links 
is sufficient (i.e., the variance of the degree distribution matters, as do higher moments). In particular, controlling 
for the average amount of clustering in the network is not sufficient (see, for instance, Jackson 2008; Watts and 
Strogatz 1998; among others). In the example above, one can imagine a case where the average clustering in the 
two networks is the same because in the first network everyone outside the one densely connected component is 
not connected at all. 

4 Note, to ensure that our results are not driven by the specific parameter values (the degree of noise as well as 
the threshold of certainty that a belief needs to cross before an agent is willing to pass information) that we estimate 
in the diffusion model, especially since the bounds on estimates are not very tight, we redo the cross-village simu-
lation and regression exercise for a wide interval of parameter values centered approximately around the estimated 
values (online Appendix G). The basic predictions turn out to be remarkably robust to different parameter values, 
implying that the patterns that we observe may be portable across varying contexts. 

5 For example, we show that if network  A  has a degree distribution (i.e., the distribution of the number of neigh-
bors) that first-order stochastically dominates the degree distribution of network  B  , then both in the simulations and 
the empirical analysis network  A  is more likely to have more information aggregation. This echoes the Jackson and 
Rogers (2007b) result on stochastic dominance described earlier. Further, we find that the first eigenvalue of the 
link matrix predicts information flow, which echoes the results in the viral transmission model studied by Bollobás 
et al. (2010). 
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overall diffusiveness for each of the 631 independent networks in our data, and 
then,  returning to our original targeting setting, see whether the networks that we 
predict to be more diffusive are indeed those in which communities are better at 
targeting an actual government program. Our  dataset comes from an experiment in 
which villages were randomly assigned to determine eligibility for an  anti-poverty 
program using either  community-based targeting, in which a village meeting ranked 
households from poorest to richest and assigned benefits to the poorest, or using 
 proxy-means tests (PMT), which assign benefits based on a deterministic function 
of a household’s assets. We find that community targeting better reflects people’s 
 self-assessment of their poverty status in villages that our network model predicts 
should have better information passing properties.

Our overall findings are useful for at least three reasons. First, they provide 
empirical support for a new model of social learning, which has some attractive 
properties. Second, they suggest that the standard intuitions about how networks 
function may not be so far from the truth, despite the absence of general analytical 
results behind them, at least if the way we model transmission is broadly correct. 
Finally, the findings offer insights into policy design problems where governments 
aim to harness aggregate local information (e.g., to whom to provide a loan, where 
local infrastructure should be built) or those that rely on understanding the ways 
that information spreads within a network (e.g., public health campaigns, agricul-
tural extension programs). They suggest the possibility of using standard network 
statistics to predict where we would expect effective information aggregation. This 
points to a need for further work to think about which network characteristics could 
be sufficient for these purposes and how to  cost-effectively collect them. We provide 
some guidance on this type of future work below.

The paper is organized as follows. Section I describes the data. Section II presents 
reduced form evidence at the individual level and Section III introduces our model 
and describes the predictions of the numerical model. Section IV describes our 
main empirical results. Section V makes the connection with targeting. Section VI 
concludes.

I. Context and Data

A. Context

This study stems from a broader data collection effort that was designed to study 
the efficacy of different targeting methodologies in Indonesia (Alatas et al. 2012). 
Between November 2008 and March 2009, we conducted a randomized experi-
ment to compare the accuracy of three common methods to identify beneficiaries 
for transfer programs:  proxy-means testing (PMT), wherein one collects asset and 
demographic information on everybody in the census and uses the data to predict 
consumption; a community targeting approach, wherein decisions on beneficiaries 
are made in a communal meeting; and a methodology that combined both commu-
nity and PMT methods (Hybrid).

In this paper, we utilize the detailed data that we collected on social networks, 
as well as data on individuals’ reports about the relative incomes of other villagers, 
described below.
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B. Sample Description

The initial sample consists of 640 hamlets spread across three Indonesian prov-
inces: North Sumatra, South Sulawesi, and Central Java. The provinces were chosen 
to be broadly representative of Indonesia’s diverse geography and ethnic makeup, 
with one province located on each of the three most populous islands (Sumatra, 
Sulawesi, and Java). Within these three provinces, we randomly selected a total of 
640 villages, stratifying the sample to consist of approximately 30 percent urban 
and 70 percent rural locations.6 For each village, we obtained a list of the smallest 
administrative unit within it, and randomly selected one of these units (henceforth 
“hamlets”) for the experiment. Best thought of as neighborhoods, each hamlet has 
an elected or appointed administrative head (“hamlet head”) and contains an aver-
age of 54 households. We make use of 631 hamlets that have network data available.

C. Data

Data Collection.—We primarily use data that was collected as part of the exper-
iment’s baseline survey. SurveyMeter, an independent survey organization, admin-
istered the baseline survey in November to December 2008, before the experiment 
or the social program was announced. For each hamlet, we constructed a census of 
households and then randomly selected eight households to be surveyed. In addition, 
we also surveyed the hamlet heads. From this survey, we used information on social 
networks and on both the perceived and actual income distribution in the hamlet.

To construct the social networks (discussed in Section IC), we used two forms 
of social connections data. First, we used a series of data on familial relationships 
within each hamlet. Specifically, we asked each of the surveyed households to name 
all other households in the hamlet to whom they were related (either through blood 
or marriage). We then asked the respondent to name the formal and informal lead-
ers, the five poorest households in the hamlet, and five richest households in the 
hamlet, and then to list all of the relatives of each person named.7 Second, we asked 
each respondent to name the social groups within the hamlet that any members of 
his/her household had participated in, including neighborhood associations, reli-
gious groups, school groups, ROSCAs, farmers’ associations, etc. This allowed us 
to relate people through common membership in groups.

In this study, we are concerned with how accurately information about house-
holds’ economic status diffuses within a hamlet. Thus, we needed to construct a 
measure of each household’s knowledge and to compare their beliefs to the “truth.” 
To collect data on knowledge, we asked each surveyed household to rank the other 
eight households that were interviewed from their hamlet from the “most  well-off” 
(paling mampu) to the “poorest” (paling miskin). We then collected two measures 
of “truth.” First, we collected a measure of actual per capita expenditure levels at 
the time of the baseline survey, using the standard  28-question expenditure module 

6 Note that our results are for the most part robust to just constraining our sample to rural villages, despite the 
much smaller sample size. See online Appendix L. 

7 We can check the quality of this data as follows. If we look at all the surveyed households (about nine per 
hamlet) and consider their relatives, we can ask what share of their kin were named by others when others listed 
these individuals as among the five richest, five poorest, or leaders. This number is 80 percent in our data. 
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from the Indonesian SUSENAS survey. Second, we asked households to  self-assess 
their own poverty status. Specifically, each household was asked “Please imagine 
a  six-step ladder where on the bottom (the first step) stand the poorest people and 
on the highest step (the sixth step) stand the richest people. On which step are you 
today?” Each respondent responded with a number from one to six. In Alatas et al. 
(2012), we show that when asked to assess the poverty status of others, Indonesian 
households use a concept that may more closely correspond to the  self-assessed 
welfare metric than to objective per capita consumption, which is why we include 
both in this study. We then construct an error rate for each household’s knowledge 
by computing the fraction of times that the surveyed household makes an error in 
the (eight choose two) comparisons in the poverty ranking exercise, where the right 
answer is either per capita consumption or the household  self-assessment. For exam-
ple, if the true rank of person  j  is one and of person  k  is seven, people who ranked  j  
above  k  in their own rankings would get credit for a correct answer, regardless of the 
distance between their ranking of person  j  and  k .8 The hamlet level error rate is then 
the mean over the nine households in the hamlet.

Network Data.—We construct undirected, unweighted networks from the familial 
and social group data for each of the 631 sampled hamlets. This is very unusual data, 
as most typical studies have closer to five independent networks and thus cannot 
make useful  cross-network comparisons.

To construct each network, we first construct edges between the households that 
we sampled and those that they identify as their family members. This fills in nine 
rows and columns in the adjacency matrix. However, while we only sampled nine 
households per hamlet, our data is considerably richer than that, because as men-
tioned above, for each surveyed household, we asked them to identify and list the  
relatives of the five wealthiest and five poorest households in their hamlet, as well as 
all the formal and informal hamlet leaders and their respective relatives.

While the households that are named here are  nonrandom, it provides us with 
a complete set of kin for a total of 68.3 percent of households in a median hamlet. 
Further, by the transitivity of kin, we can connect each pair of these relatives of 
a given household. In other words, if household  i  is named as being in the same 
extended family as household  j  , and household  j  is separately named—potentially 
by another respondent—as being in the same extended family as household  k  , we 
construct edge   (i, k)   in addition to   (i, j)   and   (j, k)  . Finally, for our sampled house-
holds, we also construct an edge between any two households that are registered as 
part of the same social group. We then take the union of these graphs.

In addition to having full kin data for all of the surveyed or named households 
(i.e., 68.3 percent of the network), we also have partial network data for others 
who were listed as related to someone who was either surveyed or named as poor, 
rich, or a leader. This is because for any  j  that we have not sampled, we know if it 
is connected to any sampled household or any named household. We can conduct 
a simple  back-of-the-envelope calculation to estimate what share of the potential 

8 If a respondent was unable to rank a household during the poverty ranking exercise (i.e., since he or she did not 
know members from the household or anything about their income level), we assigned this as an “error,” i.e., they 
were unable to correctly rank the households. 
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links  ij  that we could be missing in our data. Assume for a moment that we have 
complete data on 68.3 percent of households uniformly at random. This implies 
that we miss kin link data for pairs of households  ij  for only one-tenth of poten-
tial links, since    (1 − 0.683)    2  ≈ 1/10 . Thus, for about 90 percent of all pairs  ij  we 
should know if they are kin or not. This is consistent with the empirical frequency, 
where we can directly compute for which pairs  ij  do we definitively know if  ij  are 
kin or  ij  are not kin. In the median hamlet the share of missing data on such pairs is 
9.5 percent.9

These missing links are unlikely to undermine the credibility of our results. First, 
while regression analysis on partial samples of network data can generate biases due 
to  non-classical measurement error, Chandrasekhar and Lewis (2012) develops a 
graph reconstruction technique to deal with this issue. Our results are robust to their 
correction (described and shown in online Appendix H). Second, we observe that for 
a subset of the claims that we are interested in, such as the result on  first-order sto-
chastic dominance of a hamlet’s degree distribution, our results are underestimates 
since the direction of the bias is to attenuate coefficients.10 Finally, we conducted 
a series of robustness checks to look at the sensitivity of the results to missing kin 
data that we discuss in Section IVC (in particular, collecting network data for all 
households in ten randomly chosen hamlets in our data).

Importantly, all of our analysis assumes that the individuals who are part of the 
networks are fully described by their observables (including their network position). 
However, in practice, the networks—and individual network positions—are likely 
to be endogenously determined. For example, more central individuals are likely to 
be different on unobservable dimensions compared to less central individuals. These 
unobserved characteristics may in turn be correlated with what they know about 
others, and this may be a part of the reason why central people turn out to know 
more. Our approach in this paper is thus a descriptive one: we do not have random 
variation in network structure that would make network position uncorrelated with 
all possible unobservables. As a result, the claims we make here are  noncausal—we 
only ask whether the data can be rationalized by a natural model of network interac-
tion, and if that can teach us something about which communities are likely to know 
more about their wealth distribution. On the other hand, it is also worth noting that 
most network datasets are subject to the same limitation without having the great 
advantage of having over 600 independent networks (typical studies have closer 
to five) to work with as well as a measure of information for each of them, which 

9 Moreover, the data coverage is even better for the relevant parts of the network: if we ask household  i  to rank 
household  j  versus  k  , since we also randomly sampled  j  and  k  and know their complete kin networks, we would 
know for sure if  j  and  k  were connected at distance 1 or 2 (since we know all of  j ’s connections and all of  k ’s con-
nections, our data would tell us if  j  and  k  were connected of distance 2 or less). So if a relevant link is missing, we 
can infer that they are at least distance 3 or more. 

10 At least in the univariate case, note that, conditional on  sign-consistency, any standardized effect has to 
decrease even with  nonclassical measurement error provided the measurement error is uncorrelated with the 
structural error in the regression of interest. This covers the case when the value of the measurement error is 
correlated with the value of  x  itself, which is likely to be true in a network setting but assumed away under clas-
sical measurement error. Following the  Cauchy-Schwarz inequality it is easy to show that   β 0    ·   σ x    ≥ plim   β ˆ    σ  x – 

=  β 0       cov(x,  x – ) _______  σ  x –       as   σ x      σ  x –     ≥ cov(  x  i   ,    x –  i   ), where    β ˆ    is the estimated regression coefficient,   β 0    is the true value,  x  is the 

true regressor, and    x ̅    is the mismeasured regressor. Note that if the argument holds in the univariate case, it also 
holds for the multivariate case where covariates other than the covariate of interest are not measured with error, by 
the  Frisch-Waugh theorem. 
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makes our data ideal for carrying out the kind of cross-network comparisons we are 
interested in.

Aggregation of Data in  Community-Based Targeting.—Whether to assign the 
responsibility for “targeting”—the selection of beneficiaries to social programs 
aimed toward the poor—to local communities has become an important policy ques-
tion with increasing recognition of the challenges of accurately measuring house-
hold income. The data used in the paper was collected prior to an experiment in 
which we compared community targeting with the status quo in Indonesia, which is 
to use data collected by the central statistical system. Specifically, in each hamlet, 
the Central Statistics Bureau (BPS) and Mitra Samya, an Indonesian NGO, imple-
mented an unconditional cash transfer program, where a fixed number of households 
would receive a  one-time, Rp 30,000 (about $3) cash transfer. The amount of the 
transfer is equal to about 10 percent of the median beneficiary’s monthly per capita 
consumption, or a little more than one day’s wage for an average laborer. Each ham-
let was randomly allocated to one of three main targeting treatments: Proxy Means 
Test (PMT), Community, or Hybrid. In the PMT treatment, program beneficiaries 
were determined through a  regression-based formula that mapped easily observable 
household characteristics collected by the statistical system into a single index. In 
the community treatment, the hamlet residents determined the list of beneficiaries 
through a  poverty-ranking exercise at a public meeting. In the hybrid treatment, the 
community ranking procedure was done first, followed by a subsequent PMT verifi-
cation. Additional details of these three procedures can be found in online Appendix 
C and in Alatas et al. (2012).

Using intuitions from network theory on information aggregation, we can look 
at whether the network characteristics that are typically associated with a better 
informed population also predict where  community-based targeting does better. 
Following Alatas et al. (2012), we create two metrics to assess the degree to which 
these methods correctly assign benefits to poor households. First, we compute the 
rank correlation between the results of the targeting experiment and per capita con-
sumption. Second, we compute the rank correlation of the targeting experiment 
with respondents’  self-assessment of poverty, as reported in the baseline survey. 
To assess the degree to which different network structures affect the targeting out-
comes, we can examine whether the difference in these rank correlations between 
community/hybrid treatments (which use community information) and the PMT 
treatment (which does not) is greater in hamlets with network structures that should 
lead to better information transmission.

II. Sample Statistics and Information at the Household Level

In this section, we establish stylized facts to motivate our learning model 
(Section III). We first provide sample statistics to describe the knowledge envi-
ronment. Next, we explore how a household’s network position is correlated with 
their ability to rank others within the hamlet (Section IIA). Finally, we look at 
whether households are better at ranking those who are more connected to them 
(Section IIA). Note that these are descriptive regressions and not causal estimates.
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A. Sample Statistics

Table 1 reports descriptive statistics (online Appendix A provides more detailed 
definitions of each network variable). Panel A provides the statistics for the hamlet 
level variables, while panel B provides corresponding household level statistics. We 
report the variable means in column 1 and standard deviations in column 2.

The sampled hamlets are small, with an average of 53 households (panel A). 
The largest has 263 households, the smallest has 11, and the  inter-quartile range is 
 25–64. The number of connections per household, called degree in the network lit-
erature, averages 8.18. Networks exhibit significant clustering, with a mean of 0.42; 
this means that about 42 percent of pairs of an individual’s contacts are also linked 
to each other. The average path length is about 2, suggesting that two randomly 
chosen households will be separated by one household in between, conditional on 
there being a path that connects the two households. The networks have an average 
fraction of nodes in the giant component of only 0.51, which means that about half 
of the households are connected to each other through some chain of links.11

11 It is possible that the underlying network is completely connected. The fact that the share of nodes in the giant 
component is less than one may be due to the fact that we have sampled the network. If the true network was more 
dense, then a random sample from it is more likely to be completely connected in the sense that it is more likely 
that the researcher observes a path between any two nodes. If the true network was sparse, even if there was a giant 

Table 1—Descriptive Statistics

Mean Standard deviation
 (1) (2)
Panel A. Hamlet level
Number of households 53.04 27.31
Average degree 8.18 3.81
Variance of degree distribution 16.34 13.62
Average clustering coefficient 0.42 0.18
Fraction of nodes in giant component 0.51 0.24
Average path length 2.02 0.50
First eigenvalue 8.57 3.13
Inequality 1.02 0.39
Link density 0.10 0.11
Error rate (consumption) 0.52 0.19
Error rate (self-assessment) 0.46 0.22
Share don’t knows 0.19 0.22
Error rate given report (consumption) 0.36 0.48
Error rate given report (self-assessment) 0.27 0.45

Panel B. Household level
Degree 8.35 4.91
Clustering coefficient 0.64 0.30
Eigenvector centrality 0.23 0.14
Error rate (consumption) 0.52 0.23
Error rate (self-assessment) 0.45 0.26

Notes: Panel A provides sample statistics on the network characteristics of the 631 hamlets in the 
sample. It also provides information on the average level of competency in the hamlet in assess-
ing the poverty level of other households of the hamlet. Panel B provides equivalent sample sta-
tistics for the 5,633 households in the sample. For definitions see online Appendix A. The error 
rate variables count all “don’t know” answers as errors. The error rate given report variables are 
calculated after dropping all “don’t know” answers.
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Households struggle with making the comparisons of the households’ economic 
status. The mean hamlet error rate based on consumption is 0.52, while that based 
on the  self-assessment is about 0.46. However, there is substantial heterogeneity 
in the error rate across hamlets—the standard deviation for both variables is about 
0.2, which means that in the very best hamlets the error rate is as little as 0.1.12 
These levels need to be interpreted carefully, however, as part of what we are calling 
“error” is likely due to errors in our measure of consumption (Alatas et al. 2016). 
Under classical measurement error in the outcome variable, regression coefficients 
will be unaffected, so this is not a problem per se for the paper, but worth keeping in 
mind for interpreting the levels of these variables.

Many households refuse to make certain comparisons: the rate of reporting “do 
not know” is 0.19. This suggests that the appropriate model should account for this 
aspect of reality. Even when reporting, the individual error rate is still high: 0.36 and 
0.27 for consumption and  self-assessment.

Panel B provides corresponding sample statistics at the household level. It is 
worth noting that these networks exhibit a high clustering coefficient; the average 
clustering coefficient is 0.64.

Network Position of those Ranking Others.—We first ask whether more central 
individuals have a lower error rate in ranking other households. In Tables 2 and 3, 
we estimate

(1)  Erro r  ir   =  β 0   +  W  ir  ′    β 1   +  X  ir  ′   δ +  $ r   +  ϵ ir   ,
where  i  is the household doing the ranking,  r  is a hamlet,  Erro r  ir    is household  i ’s 

error rate in ranking (the share of the   ( 8  
2
 )   comparisons that  i  categorizes incorrectly) 

or its rate of not knowing at least one of the households in the ranked pair,   W ir    are 
 i ’s network characteristics,   X ir    are demographic characteristics,   $ r    is a hamlet fixed 
effect, and   ϵ ir    is the error term.

We consider several network characteristics: degree (columns 1 and 5), which is 
the number of links to other households; the clustering coefficient (columns 2 and 
6), which is the fraction of a household’s neighbors that are themselves neighbors; 
and eigenvector centrality (columns 3 and 7), which is a measure of the node’s 
importance, defined recursively, to be proportional to the sum of the importance lev-
els of her neighbors. Detailed definitions are included in online Appendix A. In col-
umns 4 and 8, we estimate the effect of each of these three network characteristics, 
conditional on one another. Columns  1–4 do not include hamlet fixed effects (  $ r   ) 
and columns  5–8 add hamlet fixed effects in order to sweep out any  cross-network 
average differences and focus just on  within-network differences in position. Since 
network position may be correlated with other household characteristics, we also 
explore whether the results are sensitive to controlling for ranker demographic char-
acteristics,   X ir    ; these include log consumption, years of education of the respondent, 

component, sampling the network could make these paths break in the observed graph thereby reducing the share 
of nodes in the giant component. 

12 The fifth percentile for these variables are 0.254 and 0.138, respectively. 
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and dummy variables that indicate whether the household is a formal or informal 
leader within the village, is from an ethnic minority, is from a religious minority, and 
whether the respondent is female. Table 2 reports the results with no covariates (i.e., 
constraining  δ  to be zero) and Table 3 reports results with covariates.

Overall, being a more connected household is associated with a lower error rate in 
ranking other households. Using consumption as the measure of the truth (panel A 
of Table 2), the bivariate regressions (columns  1–3) show that households that have 
a higher number of links with other households in the network (degree), that have 
more interwoven social neighborhoods (clustering), and households that are a more 
important node in the network (eigenvector centrality) are less likely to make errors 
in ranking others. Conditional on each other, we find that a one standard deviation 
increase in average degree is associated with a 5.5 percentage point (pp) drop in the 
household’s error rate and similarly a one standard deviation increase in the clus-
tering coefficient is associated with a 1.4 pp decrease (column 4). Including hamlet 
fixed effects, degree (column 5) and eigenvector centrality (column 7) continue to 
predict a household’s error rate (both at the 1 percent level), but clustering is no 

Table 2—The Correlation between Household Network Characteristics and the Error Rate in 
Ranking Income Status of Households (No Controls)

 (1) (2) (3) (4) (5) (6) (7) (8)
Panel A. Consumption metric, error rate
Degree −0.0107 −0.0111 −0.00285 −0.00189

(0.00112) (0.00140) (0.000710) (0.00115)
Clustering −0.0641 −0.0511 −0.0128 −0.00970

(0.0147) (0.0136) (0.00889) (0.00980)
Eigenvector centrality −0.173 0.0605 −0.0859 −0.0399

(0.0377) (0.0484) (0.0232) (0.0379)
R2 0.051 0.007 0.010 0.055 0.667 0.666 0.667 0.667

Panel B. Self-assessment metric, error rate
Degree −0.0133 −0.0144 −0.00388 −0.00282

(0.00126) (0.00160) (0.000715) (0.00121)
Clustering −0.0623 −0.0499 −0.00415 −0.00124

(0.0163) (0.0148) (0.0100) (0.0109)
Eigenvector centrality −0.184 0.106 −0.104 −0.0427

(0.0421) (0.0545) (0.0248) (0.0408)
R2 0.064 0.005 0.009 0.068 0.674 0.672 0.674 0.674

Panel C. Share of don’t knows
Degree −0.0130 −0.0143 −0.00305 −0.00153

(0.00124) (0.00158) (0.000672) (0.00115)
Clustering −0.0390 −0.0375 0.000603 0.00339

(0.0180) (0.0165) (0.0111) (0.0122)
Eigenvector centrality −0.159 0.110 −0.0950 −0.0622

(0.0434) (0.0547) (0.0258) (0.0415)
R2 0.066 0.002 0.007 0.070 0.719 0.717 0.719 0.719

Hamlet fixed effect No No No No Yes Yes Yes Yes

Notes: This table provides estimates of the correlation between a household’s network characteristics and its abil-
ity to accurately rank the poverty status of other members of the hamlet. The sample comprises 5,649 households. 
The mean of the dependent variable in panel A (a household’s error rate in ranking others in the hamlet based on 
consumption) is 0.52, while the mean of the dependent variable in panel B (a household’s error rate in ranking oth-
ers in the hamlet based on a household’s own self-assessment of poverty status) is 0.46. The mean of the dependent 
variable in panel C (what fraction of others does a household report “don’t know” about) is 0.19. Standard errors 
are clustered by hamlet and are listed in parentheses.



1676 THE AMERICAN ECONOMIC REVIEW JULY 2016

 longer significant. When all three measures are included in column 8 with hamlet 
fixed effects, magnitudes remain similar to the bivariate cases with fixed effects, 
but we are no longer able to detect a statistically significant relationship. Similarly, 
as panel B illustrates, households that are more connected also have an easier time 
ranking other households in terms of their  self-assessment. The coefficient estimates 
of all models are similar across panels A and B, both in terms of sign and magnitude. 
It is worth noting that the inclusion of hamlet fixed effects systematically leads to 
a decline in the coefficient magnitude—a fact borne out in the simulations that we 
discuss below as well (see online Appendix Tables E1 and E2). This suggests that 
 network-level effects may be important for information aggregation, a subject we 
explore in much more detail below.

In panel C, we study the relationship between willingness to report another’s 
wealth and network characteristics. Is a more central individual more likely to receive 
information and therefore less likely to declare that she doesn’t know the answer? 
A one standard deviation increase in the degree of an individual is  associated with a 

Table 3—The Correlation between Household Network Characteristics  
and the Error Rate in Ranking Income Status of Households (Controls)

 (1) (2) (3) (4) (5) (6) (7) (8)
Panel A. Consumption metric, error rate
Degree −0.00874 −0.00889 −0.00217 −0.00133

(0.00106) (0.00134) (0.000695) (0.00111)
Clustering −0.0596 −0.0481 −0.0125 −0.00964

(0.0137) (0.0133) (0.00876) (0.00969)
Eigenvector centrality −0.153 0.0367 −0.0689 −0.0351

(0.0360) (0.0472) (0.0230) (0.0370)
R2 0.074 0.048 0.050 0.077 0.671 0.670 0.671 0.671

Panel B. Self-assessment metric, error rate
Degree −0.0104 −0.0111 −0.00302 −0.00212

(0.00120) (0.00155) (0.000699) (0.00118)
Clustering −0.0562 −0.0458 −0.00398 −0.00136

(0.0149) (0.0143) (0.00976) (0.0107)
Eigenvector centrality −0.155 0.0700 −0.0819 −0.0361

(0.0398) (0.0529) (0.0243) (0.0398)
R2 0.102 0.070 0.072 0.104 0.679 0.678 0.679 0.679

Panel C. Share of don’t knows
Degree −0.0106 −0.0114 −0.00235 −0.00090

(0.00115) (0.00149) (0.000663) (0.00113)
Clustering −0.0395 −0.0358 −0.000466 0.00296

(0.0169) (0.0161) (0.0109) (0.0119)
Eigenvector centrality −0.145 0.0719 −0.0783 −0.0596

(0.0402) (0.0526) (0.0254) (0.0406)
R2 0.106 0.066 0.070 0.108 0.723 0.722 0.723 0.723

Hamlet fixed effect No No No No Yes Yes Yes Yes

Notes: This table provides estimates of the correlation between a household’s network characteristics and its ability 
to accurately rank the poverty status of other members of the hamlet, controlling for the household’s characteris-
tics including leadership status, consumption, education, minority status, religion, respondent gender. The sam-
ple comprises 5,646 households for panels A and B, and 5,333 for panel C. The mean of the dependent variable in 
panel A (a household’s error rate in ranking others in the hamlet based on consumption) is 0.52, while the mean of 
the dependent variable in panel B (a household’s error rate in ranking others in the hamlet based on a household’s 
own  self-assessment of poverty status) is 0.46. The mean of the dependent variable in panel C (what fraction of 
others does a household report “don’t know” about) is 0.19. Standard errors are clustered by hamlet and are listed 
in parentheses.
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6.4 or 1.5 pp decrease in the likelihood of reporting “don’t know” (without or with 
hamlet fixed effects, respectively) in the bivariate regressions. Recall that the mean 
of “don’t know” is 0.19, which indicates that these effects are large. A similar result 
is true for eigenvector centrality.

The results are robust to two key changes in specification. First, including the con-
trol variables in Table 3 does not alter the findings, suggesting that the results are 
not driven by these observable household demographic characteristics. Nonetheless, 
from now on, we always include the demographic control variables unless otherwise 
specified.13 Second, we also explore these relationships excluding the cases where 
individuals claim they do not know (online Appendix D). The results are similar to 
the main specification, implying that even when individuals decide to venture a guess, 
they are still more likely to get it right if they are more connected within the network.

Connections Between Ranker and Rankee.—The preceding analysis explored 
how one’s network position affected her accuracy in ranking others. In Table 4, we 
now explore whether the ranker is more accurate when he is more connected to the 
households that he is ranking; i.e., does household  i  do a better job of ranking nodes  
j  versus  k  if the pair is closer to  i ? To measure distance on the network, we use the 
shortest path length. The distance between  i  and  j  is denoted  d (i, j) . Many nodes can-
not be connected by any path; by convention, the distance between them is infinite. 
We use the average inverse distance between  (i, j)  and  (i, k) :    1 _ 2   (  1 _ 

d (i, j)    +   1 _ 
d (i, k)   )   , 

which scales to a measure of closeness in   [0, 1]  . Specifically, we estimate

(2)  Error   ijkr   =  β 0   +  W  jkr  ′    β 1   +  X  ijkr  ′   δ +  $ r   +  ν i   +  ϵ ijkr   ,
where  Erro r  ijkr   = 1 {i ranks j versus k incorrectly}  ,   W jkr    are the average network 
characteristics of the households being ranked (   j  and  k ), and   X ijkr    are the covariates. 
The sample is all  i  ,  j , and  k  in hamlet  r  such that  j < k  ,  j ≠ i  ,  k ≠ i . In column 1 of 
Table 4, we show the basic correlations between the error rate and average inverse 
distance from  i  to  j  and  k  , conditional on the same set of demographic covariates as 
above (log consumption, education, etc.) for both ranker  i  and the average for ran-
kees  j  and  k . In column 2, we introduce additional network characteristics (average 
degree, average clustering coefficient, and average eigenvector centrality, where the 
average is across the two people being ranked). In columns 3 and 4, we include ham-
let fixed effects (  $ r   ) and ranker fixed effects (  ν i    ,), respectively. All standard errors 
are clustered by hamlet.

Average inverse distance is highly predictive of ranking accuracy. Using con-
sumption as the measure of truth (panel A), if both  j  and  k  are at distance 1 from  i  
as compared to each being distance  3  from  i  , then household  i  is 2.5 to 3.8 percent-
age points less likely to rank them incorrectly. These results are generally robust 
to including hamlet fixed effects (columns  3–4). However, we lose considerable 
power with ranker fixed effects (column 4), although the sign and magnitudes of 
the coefficients are generally similar to column 3. Using  self-assessment as the truth 

13 For regressions that study  within-hamlet variation, we present tables both with and without demographic 
control variables. When we look at across hamlet regressions, versions without are in online Appendix F. 
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(panel B), the average reachability and inverse distance predicts the error of the 
ranked pairs with demographic controls and hamlet fixed effects (column 3). Again, 
when controlling for ranker fixed effects (column 4), the effect of average inverse 
distance is no longer significant.

In panel C, we look at how the distance of  i  from nodes  j  and  k  that are being 
ranked influences  i ’s propensity to declare “don’t know.” Again, we find that if the 
ranker is at distance 1 to each of the rankees, as opposed to distance 3 then the 

Table 4—The Correlation between Inaccuracy in Ranking a Pair of Households  
in a Hamlet and the Average Inverse Distance to Rankees

 (1) (2) (3) (4)
Panel A. Consumption metric, error rate
Average inverse distance −0.0574 −0.0380 −0.0222 −0.0158(0.00846) (0.00834) (0.00571) (0.0127)
Average degree −0.00501 0.00243 0.00258

(0.00176) (0.00318) (0.00323)
Average clustering coefficient 0.00181 0.0326 0.0338

(0.0256) (0.0275) (0.0279)
Average eigenvector centrality 0.0464 −0.0856 −0.111(0.0674) (0.0923) (0.0954)
R2 0.007 0.011 0.137 0.202

Panel B. Self-assessment metric, error rate
Average inverse distance −0.0664 −0.0390 −0.0219 −0.00629(0.00952) (0.00918) (0.00601) (0.0137)
Average degree −0.00614 0.00009 −0.000375(0.00194) (0.00340) (0.00349)
Average clustering coefficient −0.0354 0.00674 0.00838

(0.0275) (0.0304) (0.0304)
Average eigenvector centrality 0.111 0.0420 0.00617

(0.0758) (0.105) (0.108)
R2 0.009 0.019 0.166 0.247

Panel C. Share of don’t knows
Average inverse distance −0.0737 −0.0414 −0.0280 −0.00756(0.00950) (0.00992) (0.00707) (0.0132)
Average degree −0.00961 −0.00257 −0.00270(0.00212) (0.00309) (0.00309)
Average clustering coefficient −0.0298 −0.0132 −0.0144(0.0307) (0.0288) (0.0286)
Average eigenvector centrality 0.129 0.0881 0.0232

(0.0825) (0.0985) (0.105)
R2 0.019 0.061 0.330 0.443

Demographic controls No Yes Yes Yes
Hamlet fixed effects No No Yes Yes
Ranker fixed effects No No No Yes

Notes: This table provides an estimate of the correlation between the accuracy in ranking a pair of households in 
a hamlet and the characteristics of the households that are being ranked. In panel A, the dependent variable is a 
dummy variable for whether household i ranks household j versus household k incorrectly based on using consump-
tion as the metric of truth (the sample mean is 0.497). In panel B, the self-assessment variable is the metric of truth (the sample mean is 0.464). The sample is comprised of 104,417 ranked pairs in panel A, 103,453 in panel B, and 
104,930 in panel C. In panel C, the dependent variable is a dummy variable for whether household i does not know 
household j or household k. Demographic covariates are as in Table 3, averaged for households j and k. Standard 
errors are clustered by hamlet and are listed in parentheses.
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ranker is anywhere from 2.8 to 4.9 pp less likely to declare a don’t know in the 
assessment of one of the ranked parties.14

Summary of Results thus far and Outline of Subsequent Approach.—In short, 
we find that, both with and without conditioning on observable demographic char-
acteristics, (i) more central households are more likely to rank other households 
rather than say they don’t know; (ii) more central households are less likely to guess 
incorrectly; (iii) households are more likely to guess rather than say they don’t 
know when they are closer in the network to the people that they are ranking; and 
(iv) households are less likely to make ranking mistakes the smaller the distance in 
the network to the people they are ranking.15

We use this description of the environment to motivate a novel (though straight-
forward)  quasi-Bayesian model of social learning (Section III). Since we, the 
researchers, ask a household  i  to assess the wealth   w  j, t    of some household  j  in period  
t  , the model deals with characterizing  i ’s estimates of   w  j, t    , given  i ’s history of obser-
vations. We assume that household wealth can change over time. Agents are try-
ing to learn about this, but it takes time before they hear about shocks to a distant 
household’s wealth, since this information needs to travel through the network. 
Moreover, every time an individual transmits information to her neighbor, a little 
bit of noise gets added (communication is noisy). As a result, if  i  and  j  are close in 
the network, then  i  will learn newer (therefore more predictive) information about  
j ’s wealth more quickly and with less noise. The model individuals use to aggre-
gate this information is exactly Bayesian for certain special classes of networks, 
but simpler and less computationally demanding for others. The deviations from 
Bayesian learning of this model are consistent with evidence from laboratory exper-
iments (Chandrasekhar, Larreguy, and Xandri 2012). We then take the model to the 
data and estimate structural parameters of the model using moments obtained using 
 within-village variation.

In Section IV, we simulate the learning process on our networks in order to gen-
erate predictions about the relationship between the network structure in a hamlet 
and the average  error-rate in predicting wealth. We then estimate these relationships 
in our actual data and observe whether the actual empirical results appear qualita-
tively similar to the theoretical predictions and are thus potentially consistent with 
the model. It is worth noting that fitting the model using  within-village variation 
does not automatically imply that the model would be successful in explaining the 
 cross-village variation. This is due to the complexity of the relationship between 
individual level information transmission and its overall aggregation through the 
network, which is what our model is meant to help with.

14 In panels A and B,  nonresponse is always coded as error. Even when we drop households that are not ranked, 
the ranking is more likely to be correct when the ranker and rankee are more closely connected (online Appendix 
Table D3). 

15 This evidence suggests that a story of social learning is plausible. However, it is also possible that alternative 
stories may explain these patterns. For example, it is possible that more central individuals are more likely to know 
people and learn about them directly (from talking to or observing them). In this case, they would be learning indi-
vidually about other individuals, but not necessarily passing along information to others. They would just be more 
likely to meet others and the network would be describing a meeting process. 
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Finally, we explore whether the networks that we predict to spread information 
better do better in a real policy settings where aggregate information is required 
(Section V).

III. Model, Estimation, and Simulation Results

A. Model Overview

We build a parsimonious model that relates network characteristics to informa-
tion diffusion, capturing the key features of the environment discussed above:

 (i) Individuals who are more socially proximate to those they are ranking are 
more likely to correctly rank them.

 (ii) More central individuals in the network are more likely to correctly rank 
others.

 (iii) Individuals often report that they don’t know, implying that their posteriors 
may be too imprecise to be worth reporting.

 (iv) When individuals claim that they know, they are still often wrong. In other 
words, being willing to speak does not necessarily mean that they know that 
they received a perfect signal of the truth.

 (v) Individuals further away from those being ranked are more likely to say that 
they do not know.

A natural model for capturing these attributes is one where individuals learn about 
the wealth of others through communication on a social network. We assume that 
individuals receive information from others and make some judgment about the 
quality of that information before deciding whether to report it. We outline the key 
aspects of the model here; the next section writes down the model formally.

More specifically, each individual  j  has a wealth,   w  j, t    , that evolves stochastically 
over time. Each period,  j  transmits a noisy signal about his current wealth to every-
one that he is connected to.16 Each person  i  in the network also passes, with noise, 
some information they received about  j  in the previous period, to everyone that  i  is 
connected to. Person  i  also receives signals about  j  from anyone he is connected to 
who has such a signal, and updates his beliefs accordingly, and so on. This means 
that the further an individual  i  is from  j  , the noisier his information about  j  will be 
because it will have passed through more steps en route and acquired noise at each 

16 One may wonder why people get into conversations about each other’s wealth. The primary motive may be 
as simple as a desire to gossip. Some reflection on conversations one engages in surely illustrates that individuals 
talk about others’ purchases and so on. They may also be interested in their status relative to those of their peers, 
in which case it is possible that people may try to hide their consumption from others. However, that should reduce 
the advantage of central people, since they are the ones who are most likely to spread that information. This is the 
subject of Banerjee et al. (2012) who study information diffusion in a rival setting. 
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stage, and also because the information it is based on is older and therefore does not 
incorporate more recent changes to  j ’s wealth level.

The two key issues here are what part of  j ’s information gets passed on and how 
different pieces of information get aggregated. To see why it may not make sense to 
require that all of the information be passed on, note that people typically receive 
information in a given period from multiple pathways, some of which is outdated. 
We assume that people only pass on the most  up-to-date information they receive. 
Moreover, we assume that for any given person  j  in the network, everyone in the net-
work knows the distance from all their neighbors to  j  (as measured by the shortest 
path through the network) and passes on just the report that came from the person 
closest to  j  (or if there are many such people, the average of their reports).17 Under 
the assumption that both the rule for passing and the fact that everyone knows the 
shortest distance to any other network member are common knowledge within the 
network, members can always identify the latest information that they have and this 
is what they pass on. Intuitively, one can think of this as “gossip”—people are only 
excited to pass on the latest tidbit of information.

We also assume that people do not find it worth their while to pass on stale infor-
mation. If their information is sufficiently outdated, people do not pass it on (i.e., 
they do not pass the information on to other households, and they would say they 
“don’t know” anything about  j  if asked in a survey).

In terms of aggregation of information, assuming that people are fully Bayesian 
in this context may be somewhat unrealistic. Full Bayesian aggregation requires 
people to properly weight all the various alternative pathways through which the 
information could have reached them, taking into account the fact that different 
pieces of information may have come from the same ultimate source (and have 
passed through many of the same nodes before they diverged and followed different 
paths) and therefore may be subject to correlated errors. And, it is not enough to do 
this for just the current signals—since signals are noisy, a Bayesian accounts for all 
signals, past and present, and correctly averages them. To give a sense of scale to 
this computation, note that enumerating all such paths is # P-complete and a random 
graph with  n  nodes and edges with probability   p  n    has an expected number of paths 
between nodes 1 and  n  given by   (n − 2)  !  p  n  n−1 e (1 + o (1) )   , which is potentially 
an enormous number (Roberts and Kroese 2007). In our data, with an average of 
52 nodes and   p  n   = 0.1  , there would be in expectation 82,674,076,879,277 paths 
between individuals  i  and  j . Why would anyone go through such a difficult exercise 
in order to answer a surveyor’s question?18

17 This is formally equivalent to a different assumption, namely that each individual is passing on their report as 
well as the date that the report refers to. 

18 Note that we are not saying that Bayesian learning on a network always requires doing all these calculations. 
For example, if individuals always pass on their entire information sets, the computations would be simpler—the 
cost is that they would have to keep track of and communicate a much larger and  fast-growing object. An alternative 
possibility is suggested by recent work by Mossel and Tamuz (2010), who study a context where all agents receive 
signals, and show that the  decision maker can compute the Bayesian beliefs using an algorithm that is polynomial 
in  n  , the number of nodes in the network. However, this computation requires that everyone knows the entire graph, 
which is not particularly realistic. It remains to be seen in what way this result extends to settings where the graph is 
not known. Moreover, even if it turns out that the required computation is easier than we think, it may well be harder 
than what people want to undertake—based on both lab experimental evidence (see Chandrasekhar, Larreguy, and 
Xandri 2012) and field evidence (Bai et al. 2014). 
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We therefore adopt the following approach. The  decision maker treats the signals 
that he receives as if they were independent (conditional on the truth) and applies 
Bayes’ rule, under the potentially incorrect assumption about independence. Since 
the weight given to each signal only depends on its precision, which in turn depends 
on the distance to the source, our previous assumptions about the knowledge of 
distance and the passing of only the latest information are sufficient to allow the 
 decision maker to compute the weights. With normal distributions for the evolution 
of wealth and noise, the  decision maker’s aggregation rule is a Kalman filter.

This set of assumptions vastly simplifies the  decision maker’s problem. Instead of 
keeping track of an exponential number of paths (i.e., 82 trillion paths for the typical 
node in our data), the average node receives just   p  n   n  signals in each period, each of 
which has a precision given by its distance from the source. To get a sense of the 
magnitude of this number, note that in our data the average degree is eight. The inde-
pendence assumption is also, arguably, more realistic; failure to properly account 
for the correlation between signals appears to be one of the more consistent ways in 
which people deviate from the fully Bayesian behavior in laboratory experimental 
settings (Chandrasekhar, Larreguy, and Xandri 2012) as well as in more recent field 
experiments (Bai et al. 2014).19

In Section IIIB, we outline the formal setup of the model. In  Section IIIC, we 
then discuss the model’s properties, including how it differs from a  fully-optimizing 
Bayesian model.

B. Model Setup

 n  individuals are arranged in an unweighted, possibly directed, graph  G =  (, )   
consisting of a set of vertices    and edges   . If  ij ∈   , then  i  is linked to  j  , and if  
ij ∉   , then  i  is not linked to  j . Let   N  i    denote the neighborhood of node  i  , with  j ∈  N  i    
meaning that  ij ∈  . The model applies to directed graphs, where information flows 
along (directed) edges. In our application we consider undirected graphs, namely 
information always flows both ways. We will not assume that agents know the full 
network structure. Agents only need to know the distance from each of their neigh-
bors to the source of information, which is much easier to have learned. We discuss 
this below.

We model people’s wealth as an evolving stochastic process in discrete time. 
Specifically, every individual  j  has wealth that evolves according to an AR(1) process,

   w  j, t   = ρ w  j, t−1   + c +  ϵ j, t  , 
with   ϵ j, t   ∼   (0,  σ  ϵ  2 )   that are independent across  j  and  t . All households know the 
fundamental parameters  ρ  ,  c  , and   σ  ϵ  2   , and this is common knowledge.

19 Indeed this is one of the arguments routinely used in favor of a DeGroot model, in which agents simply take 
an average of their neighbors’ opinions, over the full Bayesian model (DeGroot 1974; DeMarzo, Vayanos, and 
Zwiebel 2003; Golub and Jackson 2012). DeGroot learning is a simply weighted averaging with exogenously given 
weights. Individuals start with a belief about the state of the world. They then look at their neighbors’ beliefs from 
the previous period, they average the opinions using fixed weights and form a new opinion which is then passed into 
all the neighbors so that the process continues. One interpretation of our model is as an extension/refinement of a 
DeGroot model where we  micro-found the  time-varying weights. 
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In what follows, we fix a given node  j  about whose wealth the remainder of the 
nodes are learning. Individuals  i ∈   \ {   j}  have beliefs over   w  j, t    that are informed 
by social learning. At period  t  , given the entire history of information that  i  has 
ever received from her neighbors,  i  has beliefs about   w  j, t    given her information set. 
At  t = 0  , every individual has a prior, which is a normal distribution given by the 

invariant distribution:    (  c _ 1 − ρ   ,    σ  ϵ  2  _ 
1 −  ρ   2   )  .

The model will have a transmission error at every step when an individual speaks 
to another individual. For instance, when  l  communicates with  i  in period  t  ,  l  may be 
passing information about   w  j, r    for some  r < t . This communication is disturbed by 
some   u  r  l↦i  . We will assume that every   u  r  l↦i   is independently and identically distrib-
uted according to    (0,  σ  u  2 )   which again is known to all agents.

To preview the remainder of the setup, recall that we have fixed  j  and every-
one learns about  j ’s wealth, which evolves over time. In every period  t  , for every 
pair of agents  l  and  i  that are linked,  l  sends at most one piece of information 
about  j ’s wealth to  i .20 This information is a noisy signal about  j ’s wealth at time 
 r < t  ,   w  j, r   . This corresponds to the period that is the newest piece of information that  
l  has about  j  , and therefore this implies that  r = t − d (l, j)   since it takes that many 
steps for information to come from  j  to  l . Because we will assume that individuals 
only pass on information if they are certain enough about it, an immediate result is 
that it is equivalent to write the model such that agents only pass on information if 
they are close enough to the source, since the degree to which information is dis-
torted is exactly proportional to the distance it has traveled.

We now formally define the communication protocol. At period  t  we look at what 
node  i  receives from others and we consider her updating problem:

Signals from the Source  j .—Every period, the source  j  generates a signal about her  
t − 1  wealth that she transmits to each of her neighbors,  i ∈  N  j   :
   S  t−1  j↦i  =  w  j, t−1   +  u  t−1  j↦i . 

Signals from an Arbitrary Node  l  to  i .—Every period, a node  l  noisily transmits 
the most recent piece of gossip she has heard about  j ’s wealth to each of her neigh-
bors. The noise is independent across transmissions:

 k   ∗  :=  k   ∗  (l, j)   be the neighbor of  l  that is closest to  j .21 The signal that  l  
received from   k   ∗   the previous period is what will then be passed on.

20 To be clear, one way to interpret this is that in the beginning,  j ∈  N i    tell each of their neighbors that they are 
distance 1 from  i . Then those who are neighbors of  j ∈  N i    that are not neighbors of  i  tell their neighbors that they 
are distance 2 from  i  and so on. Within a number of periods smaller than the diameter of the network, every agent 
will know the distance of all her neighbors from the source. And then subsequent to this, only wealth estimates are 
passed on. A richer version, as suggested by a referee, is that each period an agent is reporting their estimate and 
the date associated with the estimate. These are mathematically formally equivalent and we do not take a stance 
on interpretation. Note that in either case, the information demands placed on agents are considerably less than 
knowing the entire network. 

21 For presentation purposes we assume this is unique. If it is not unique, and there are two or more such closest 
signals, then we assume that  l  passes the average. 
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l  is sure enough about the quality of this information. An 
immediate consequence of this assumption is that we can write that there exists 
some threshold  τ  such that if  d ( k   ∗ , j)  ≤ τ  , then  l  passes information to each of 
her neighbors. If  d ( k   ∗ , j) >τ  , then no information is passed.

l  passes information, it is

   S  t−d (l, j)   l↦i   =  S  t−1−d ( k   ∗ , j)    k   ∗ ↦l   +  u  t−d (l, j)   l↦i  . 

 Notice that   S  r  l↦i   denotes the information about  j ’s wealth at time 
 r  (i.e.,   w  j, r    ) that  l  passes on to  i  at time  t . In the above  r = t − d (l, j)   , since it 
takes  d (l, j)   periods for the information to come from the source  j  to node  l .

Forming a Posterior.— i ∈   \ {  j}   forms a posterior about   w  j, t    by using a Kalman 
filter on her historical data which is all information that has ever been passed to her 
from her neighbors at any period in the past. This is a vector

   s   i, t  =  ( s  1  i, t , … ,  s  t−d (j, i)   i, t  )  ,

where the signals that  i  has about   w  j, r    at period  t  , denoted  
  s  r  i, t   , can be constructed from the signals that  i  has received in various peri-
ods from her neighbors when they transmitted period  r  information to  i  , 
  { S  r  l↦i  : l ∈  N  i  ,  r ≤ t − d (l, j) }  . This is simply   s  r  i, t  =  ∑ l∈ N  i        ω l, r, t, i   ⋅  S  r  l↦i   , where 
the weights are the appropriate  precision-based weights, defined below.

A Kalman filter uses the entire history of (noisy) signals   s   i, t   to help predict 
  w  j, t   . Essentially, each signal provides information about the current value   w  j, t    since 
the entire observed history is measured with noise. Notice that because agent  i  may 
be receiving signals from her neighbors at varying distances from the source, the 
information she has about  j ’s wealth at some given past period  r  can vary over 
time.22 We discuss this in greater detail below and in online Appendix B.

The signal vector can be treated as a collection of independent draws (conditional 
on the wealth sequence) with

   s  r  i, t  ∼  ( w  j, r  ,  σ  r, t, i  2  )  ,

where  i ’s  t th period set of signals about   w  j, r    can only come from neighbors that are 
close enough to  j . This is because only neighbors of  i  that are within  t − r − 1  steps 
of  j  can reveal an estimate of   w  j, r    to  i  by period  t . Every time the signal is transferred 
across individuals, it is disturbed by a shock with variance   σ  u  2   , leading to a variance 
of   σ  u  2  · d (l, j)  .

22 That is,   s  r  i, t   need not be equal to   s  r  i, t−1   since at period  t  individual  i  could have received a signal from some 
other neighbor at a further distance about   w  j, r    , which now updates   s  r  i, t−1   to   s  r  i, t  . 
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In this case, we can compute  i ’s period  t  variance of its signal about   w  j, r    as

   σ  r, t, i  2   =   ∑ 
l∈ N i  

     ω  l, r, t, i  2   ·  σ  u  2  d (l, j) , 

where   ω l, r, t, i   =   1 {t − r ≥ d (l, j)  + 1} / [ σ  u,  2  d (l, j) ]    ______________________    ∑ k∈ N i       1 {t − r ≥ d (k, j)  + 1} / [ σ  u  2 d (k, j) ]     is the weight that  i  puts on 

 l ’s estimate of   w  j, r    in period  t .

Given   s   i, t   , node  i  applies the Kalman filter to obtain the posterior mean and variance 
over   w  j, t   .
This model is actually much simpler than it might seem. Each individual has some 
signals about how wealthy  j  was in each period in the past. When  i  receives some 
incremental information about  j ’s wealth in any period, she updates it using a stan-
dard Bayesian updating rule treating signals as independent, but weighting the infor-
mation optimally according to precision, which depends only on distance from the 
source, and then combining them to make an optimal prediction about  j ’s wealth 
today.

Figure 1 illustrates the model using simulations. We consider a network of 
20 nodes arranged on a directed line, where all nodes are attempting to track 
node 1’s wealth. Panel A shows the predictions of 1’s wealth by other nodes, over 
time. Nodes that are closer to the source are  better able to estimate the current period 
wealth. Panel B depicts the posterior variance for several nodes. In panel C we show 
the correlation of a node’s estimate of 1’s wealth with the true value, by distance 
to the source. Panel D shows that for the chosen parameters, only four nodes speak 
and, as node five’s posterior variance is above the threshold, nodes  5–20 do not 
speak in the learning process.

C. Discussion of Properties and Assumptions

We adopt the independence assumption and Kalman filter because it exactly rep-
licates full Bayesian learning under the assumption that the different signals that 
each  decision maker receives are statistically independent, conditional on the truth, 
yet it is dramatically computationally simpler on more general networks. The fol-
lowing result makes the equivalence with Bayesian learning precise:

PROPOSITION 1: For any directed graph where the source  j  is the root and every  i  
node is connected to the source only through independent paths,  i ’s learning process 
about  j  is fully Bayesian under our above model.

PROOF:
It is clear that for any node  i  with  d (i, j)  > τ  , since node  i  receives no signals, the 

node retains her prior, which is the correct Bayesian computation. For the remainder 
of the proof, consider  d (i, j)  ≤ τ .

First, consider the case of a directed tree with the source, node  j  , being the root. 
Let  i  be a node with  d (i, j)  = q ≤ τ . Note there is exactly one path from  j  to  i . It 
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is useful to denote  j=1  , the first node, and then label nodes in sequence  1, … , n  , 
where node  i − 1  communicates to node  i . Then a generic node  i  receives a  q  period 
lagged signal about   w  j, t    ,   S  t−d (i−1, j)   i−1↦i    in the previous notation, that has been disturbed 
by the equivalent of noise distributed    (0, q σ  u  2 )  . Thus, the problem can be recast as 
an agent  i  making a prediction about state   w  j, t    given a history of signals   s  0  i, t , … ,  s  t−q  i, t    , 
where in this case   s  κ  i, t  =  S  κ  i−1↦i   for any period  κ ≤ t − d (i, j)  . In such a linear sys-
tem with normal disturbances, the Bayesian belief about a state given a history is 
given by the Kalman filter (Kalman 1960; Masreliez and Martin 1977). Note that 
this is exactly the computation which is done in our model.

For a case where  i  has  L  independent paths from node  j  , with   q  l   =  d  l   (i, j)  ≤ τ  
for  l ∈  {1, … , L}   , the computation is as follows. Let  q =  min  l      { q  l  }  . In period  t  , an 
individual has information   s  0  i, t ,...,  s  t−q  i, t    , where   s  κ  i, t   are computed using the period  κ  
signal along each independent path. Again this generates a sequence of Kalman 
filters, indexed by  t . That is, the Bayesian prediction of   w  j, t    given the signal 
sequence   s  0  i, t , … ,  s  t−q  i, t    is given by a Kalman filter and prediction. By definition, this 
is exactly the computation that our agents do in the model. ∎
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Figure 1. Model Plot with ρ = 0.83,   σ  u  
2   = 1, τ = 4

Notes: Simulations for a directed line with  n = 20  nodes where individuals are learning about node 1’s wealth and 
parameters are  ρ = 0.83  ,    σ  u  

2   = 1, τ = 4. Panel A shows the predictions    w ˆ    t,i  
j
    (posterior mean) by agents  i . Panel B 

depicts the posterior variance. Panel C shows the correlation of    w ˆ    t,i  
j
     with   w  t  

j   by distance d( j, i). All individuals 
beyond the cutoff distance to not speak and have zero correlation mechanically. Panel D shows the number of indi-
viduals speaking per period.
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The set of networks covered by Proposition 1 includes direct lines, more gener-
ally directed trees, as well as other configurations. For instance, see the networks 
in Figure 2, panels A, B, and C. Of these, Figure 2, panel C depicts a graph with 
arbitrarily long but independent paths that lead from the source to other nodes.

To highlight where our model deviates from the full Bayesian case, consider 
Figure 2, panel D. We see that a signal from  A  passes through  B  and whatever trans-
mission error takes place there is therefore propagated through all  n  subsequent paths 
before arriving at  C . Under our model,  C  processes the information as if she is in the 
graph depicted in Figure 2, panel B. This comes from the (incorrect) assumed inde-
pendence of the paths where she only accounts for the vintage of the information.

In sum, the case for our simplifications from the full Bayesian model is that 
it (i) requires very limited knowledge of the network structure; (ii) requires lim-
ited amount of communication; (iii) allows for confidence and  self-censoring; and 
(iv) coincides exactly with the Bayesian model for a class of network structures. 
Additionally, the deviations from Bayesian learning in this model are familiar in the 
social learning literature: agents do not properly account for  double-counting, just 
as in DeGroot classes of models.

D. Model Estimation

Here we briefly outline the estimation procedure (further details are provided 
in online Appendix B). We use data from the Indonesian Family Life Survey to 
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estimate  ρ  , the AR(1) coefficient on wealth.23 From our survey data, we estimate  c . 
We also estimate   σ  ϵ  2   from our survey data. Note that the AR(1) model implies the 

relationship  var [w]  =    σ  ϵ  2  _ 
1 −  ρ   2    . We use data on wealth to estimate  var [w]   , and then 

estimate   σ  ϵ  2   using the previous relationship and the estimate for  ρ .

Given these parameters, we use the simulated method of moments to estimate 
the key model parameters:   σ  u  2   (the noise term for passing information) and  τ  (the 
threshold distance to the source, beyond which people stop transmitting information 
about the source). We use the following  within-village moments:

 (i) The correlation of whether  i  ranks  j  versus  k  correctly with    1 _  
d (i, j)  + d (i, k)    .

 (ii) The correlation of the eigenvector centrality of  i  with how many don’t knows  
i  reports.

Our estimation of the model imposes the additional assumption that the rule that 
people use to decide whether to pass on a signal is the same as the rule they use to 
decide whether to report to us.24

The parameter values from the estimation are shown in Table 5. For ease of inter-

pretation, we present a normalization of the first parameter,  α : =   σ  u  2  _  σ  ϵ  2    . We estimate it 

as   α ˆ   = 0.397 . This means that the transmission error is  two-fifths of the size of the 
structural wealth shocks. However, the standard errors are such that  α = 0.5  would 
be a reasonable estimate of the transmission error to structural shock ratio. We also 
find that   τ ˆ   = 4 . This means that a node connected to source will tend to have heard 

23 We use the  1993–1997 and  2000–2007 periods to estimate  ρ  , avoiding the  1997–2000 period where  ρ  was 
likely much lower due to the Asian Financial Crisis. Doing so does not substantially affect the main conclusions 
of the exercise. 

24 This assumption makes sense in the environment of our model since we would expect the respondents to be at 
least as willing to speak when we ask them as they are when they are actually volunteering information. Moreover, 
the decision to pass on information depends on their latest signal’s quality; the decision to answer our question 
should depend on the quality of their overall information, which is higher. On the other hand, someone ( i ) who is 
further away from the source (  j ) than   k   ∗ (i, j)  + 1  gets no signals and has nothing to pass on. Therefore, the only 
choice is whether to set the cutoff for reporting to the survey at   k   ∗ (i, j)  or at   k   ∗ (i, j)  + 1.  We set it at   k   ∗ (i, j)  on the 
grounds that this likely does not make any significant difference; it is also simpler to assume that households use 
the same rule when passing information as when they respond to the survey. 

Table 5—Structural Parameters

α 0.397
(0.1344)

τ 4
(1.0026)

Notes: Standard errors computed using 
1,000 simulations of Bayesian bootstrap, as 
described in online Appendix B. The boot-
strap weighs every network by a mean- 
normalized exponential random variable, 
which is equivalent to drawing 631 hamlets 
with replacement when computing the objec-
tive function.
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some information about the source, since there are likely to be paths of distance less 
than four to the source (the average path length, conditional on being connected, is 
2.02). However, the standard errors are such that anywhere from three to six would 
be reasonable parameter estimates.

Given the estimated parameters, we generate simulations from the model. We 
generate 50 samples of draws of the  wealth-learning process and then ask whether 
our motivating observations—that more central individuals know more and that 
individuals know less about others the further they are—are borne out in the sim-
ulations. Specifically, we rerun the same regressions as in Tables 2, 3, and 4 using 
the simulated data from the model; the results are provided in panel C of online 
Appendix Tables E1, E2, and E3 of each respective table. By and large, the results 
confirm our intuition. Households that have a higher degree are associated with 
lower error rates, households that have higher clustering are associated with lower 
error rates, and households that are more eigenvector central are associated with 
lower error rates (panel C of Tables E1 and E2). We find that inverse distance is 
correlated with a reduction in the error rate (panel C of Table E3).

E. Simulation Results at the Network Level: Numerical Propositions

A key question we wish to ask of the model is how  network-level characteristics 
affect information diffusion across the network. We start from the analytical result 
in Jackson and Rogers (2007b) showing that if network  I ’s degree distribution and 
neighbor degree distribution  first-order stochastic dominates network  J ’s degree 
distribution and neighbor degree distribution, respectively, then in steady state of 
a  mean-field approximation to the matching process described above, network  I  
should have a higher equilibrium information rate than network  J .25

Jackson and Rogers (2007b) was the first result to note that under some regularity 
conditions, networks that are more diffusive in the sense of first-order stochastic 
dominance of the distribution of agents links should have more information diffused 
in the equilibrium. In more layman’s terms, “If we look at two networks  A  and  
B  , which has more diffusion and can we tell based on the distribution of links in 
the network (the degree distribution)?” This is an important and sensible question 
because it asks if the basic trait involved in learning the distribution of how many 
links one has to their learning partners will tell us something about whether a com-
munity has more diffusion than another. Jackson and Rogers (2007b) noted that 
this was a particularly difficult question to study on a fixed network, but by moving 
to a random matching model, they were able to simplify the analytics to be able to 
generate a suggestive answer.

This result, however, unfortunately cannot be directly applied to our context for 
at least two reasons. First, their model uses a  mean-field approximation to a match-
ing process, which itself tries to approximate a contagion process, to gain analytic 
tractability. However, we are precisely interested in the cases where the  mean-field 

25 The neighbor degree distribution is the empirical cdf of the number of links a neighbor has, taken over all 
neighbors as we count over all nodes. Stochastic dominance was determined at the decile level. If the distribution 
function for the degree of hamlet  I  was weakly lower than  J  at all deciles (and was strict for at least one), then we 
say that  I  dominates  J . 
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approximation may not be apt, i.e., where we do not believe that all local neighbor-
hoods essentially contain the same average information as the global average. The 
approximation does not work well when, for example, nodes vary systematically 
in the proportion of neighbors who have information, which is likely to be true in 
our case (this is presumably why the network position matters for accuracy of the 
ranking). Second, to rank two households, each node needs to have two pieces of 
information, whereas there is only one piece of evidence to learn in Jackson and 
Rogers (2007b).

We therefore use the numerical simulations of our model to examine whether we 
should expect the equivalent result to hold in our context (see online Appendix B 
for details). We generate     ‾ Error    ijkr  SIM  , the average error rate from our simulations of  i  
ranking  j  versus  k  in hamlet  r , via the aforementioned simulation process. By aver-
aging over pairs  j, k  , we construct individual level simulated error rates     ‾ Error    ir  SIM   , 
and then we construct hamlet level error rates (    ‾ Error    r  SIM   for hamlet  r ) by averaging 
over the individual level error rates.

Our main outcome variable of interest is a dummy equal to one if     ‾ Error    I  SIM  
>    ‾ Error    J  SIM   , and zero otherwise. We regress this variable on whether  I  stochasti-
cally dominates  J  or vice versa,

(3)  1 {   ‾ Error    I  SIM  >    ‾ Error    J  SIM }  =  β 0   +  β 1  1 {I  ≻ FOSD   J}  +  β 2  1 {J ≻ FOSD   I} 
 +  X  IJ  ′   δ +  ϵ IJ  . 
We include fixed effects for geographically clustered groups of hamlets,  hamlet-level 
control variables, and specify  two-way clustered standard errors, for hamlet  I  and 
hamlet  J .26 The results, which are reported in Table 6, suggest that the Jackson and 
Rogers (2007b) pattern holds in our context. Since stochastic dominance is a partial 
ordering, the omitted category in columns 1 and 3 is the  noncomparable groups of 
hamlets. In columns 2 and 4 we focus only on comparable hamlet pairings, in which 
case we only include a dummy  1 {I  ≻ FOSD   J}  . We find that if  I  dominates  J  (instead of 
vice versa), there is a 25 pp decrease in the probability that  I  has a larger error rate 
than  J —a large effect relative to a mean of 0.5 (by construction).

We can also apply the same methodology to examine the predictions of the model 
regarding the role of other fundamental network characteristics. We choose six stan-
dard measures used in various related, but otherwise different, models—network 
size, average degree, average clustering, first eigenvalue of adjacency matrix, link 
density, and fraction of nodes in giant component—and simulate how they affect 
diffusion within our estimated model.

These measures are described at length in Jackson (2008). The average degree is 
an obvious and basic measure for a diffusion process, since it captures the average 
number of links. Similarly, the density of the links, which is the average degree 
scaled by the size of the network, captures the probability that a randomly chosen 
node is linked to another randomly chosen node in the network. Basic intuition 

26 Specifically, we include fixed effects for the stratification group from the Alatas et al. (2012) experiment. 
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 suggests that higher linking rates may correspond to higher learning probabilities, 
an idea which is articulated more formally in Bollobás et al. (2010).27

Another important feature that could be relevant for learning is the correlation 
of links. A basic way to capture this is using the average clustering in the network, 
which measures the share of a nodes’ neighbors that are themselves linked (Jackson 
2008; Jackson,  Rodriguez-Barraquer, and Tan 2012). More correlated links can 
 re-enforce beliefs and present a divergence between  rule-of-thumb and Bayesian 
learning (DeMarzo, Vayanos, and Zwiebel 2003; Gale and Kariv 2003; Golub and 
Jackson 2012; Chandrasekhar, Larreguy, and Xandri 2012), since Bayesian agents 
will have to undo correlation in signals that emerge through clustering.

Moreover, because information flows along paths, a natural measure to include is 
the average of path lengths in the network (Albert and Barabási 2002; Jackson 2008; 
Golub and Jackson 2012).

Finally, we include the fraction of nodes in the giant component. A  well-understood 
empirical regularity is that there exists a path between many (if not most) pairs of 
nodes and therefore most nodes are part of a very large component called the giant 
component (Albert and Barabási 2002; Jackson and Rogers 2007a; Jackson 2008; 
Bollobás et al. 2010). Mechanically, in a  learning-on-networks model, if two nodes 
are not part of the same component there cannot be any direct or indirect exchange 
of information, since there is no path of information from one node to the other.

As discussed above, we generate     ‾ Error   ijkr    via the aforementioned simulation 
process and we then construct hamlet level error rates by averaging over the individ-
ual level error rates     ‾ Error    ir  SIM  .

27 Bollobás et al. (2010) build on these intuitions formally for a specific class of models called percolation 
models. Let   λ 1   (G)   be the maximal/first eigenvalue corresponding to the adjacency matrix of  G . The idea here is 
that every link is activated, independently, with probability  q . Then a random node receives a piece of information 
that is transmitted through the network along activated links. They show that if the transmission probability  q  is high 
enough, specifically  q ≥ 1/ λ 1   (G)   , then almost all nodes will become informed. This is because   λ 1   (G)   is a general 
notion of density, weighting both direct links and indirect paths, so we hypothesize that this should be positively 
associated with learning. 

Table 6—Numerical Predictions on Stochastic Dominance

 (1) (2) (3) (4)
 I  ≻ FOSD   J −0.129 −0.246 −0.137 −0.246(0.0160) (0.0242) (0.0161) (0.0245)
 J  ≻ FOSD   I 0.115 0.123

(0.0175) (0.0174)
Observations 193,753 143,161 193,753 143,161

Noncomparable Yes No Yes No
Demographic controls No No Yes Yes
Stratification group FE Yes Yes Yes Yes

Notes: In these regressions, the outcome variable is a dummy for whether the error rate of ham-
let I exceeds the error rate of hamlet J. When included, demographic controls are differences 
between the standard controls for hamlets I and J. The controls include consumption, education, 
PMT score, agricultural share, education of household head and hamlet head, rural/urban, log 
hamlet size, and inequality. Results for error rates using simulated data, as described in online 
Appendix B. Standard errors in parentheses, two-way clustered at I and J. 
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Given these  simulation-based hamlet level error rates, we estimate

(4)     ‾ Error    r  SIM  =  β 0   +  W  r  ′    β 1   +  X  r  ′   δ +  ϵ r   ,
where     ‾ Error    r  SIM   is the average error rate in hamlet  r  from the simulations and   W r    
is a vector of graph level statistics including average degree, average clustering, the 
number of households in the hamlet, first eigenvalue, link density, and fraction of 
nodes in giant component. Together with the set of  hamlet-level covariates   X r    , we 
include many potentially correlated network variables in the specification of the 
regression model. It is not ex ante obvious that the conditional correlations of net-
work features with the outcome variable will behave the same as the unconditional 
correlations, and so this is also where our numerical simulations can guide us.

As shown in Table 7, when the network characteristics are included one by one, 
most of the network statistics of interest have significant effects on the error rate and 
they all go in the “intuitive” direction: there are lower error rates in hamlets where 
the average degree is higher, clustering is higher, the first eigenvalue of adjacency 
matrix is larger, the link density is higher, and there are more households in the giant 
component. The inclusion of hamlet level covariates make no difference (see online 
Appendix F, Table F1).

When we jointly estimate the relationship of all of these network variables with 
the error rate, we observe some  counterintuitive patterns (column 7). In particular, 
while most of the effects remain significant, average degree and average clustering 
now have the “wrong” sign. This could either mean that the actual partial correlation 
of these two variables with the error rate in the types of networks we examine is 
actually positive in our model once we condition on the other network statistics; or 
it is the case that even with more than 600 hamlets, we do not have enough indepen-
dent variation to properly estimate these effects separately when included together 
in the same regression (the first eigenvalue has a correlation of 0.88 with average 
degree in our data).28 A proposed explanation goes as follows. Holding the first 
eigenvalue fixed, raising the average degree involves removing central links at the 
expense of adding less central links. It could be the case a priori that the marginal 
link added is less valuable than the one removed in this thought experiment.29 The 
more general  take-away is that partial correlations conditional on other network 
statistics are complicated.

IV. Cross-Hamlet Comparisons

We now explore how  network-level characteristics are related to diffusion through 
the network in the actual data, and compare how the actual diffusion patterns across 
networks compare to the model predictions. We begin by exploring empirically 
whether Jackson and Rogers’ (2007b) result on stochastic dominance extends to 

28 A natural worry is that average degree, number of households, and link density (which amounts to average 
degree over number of households) may be generating too much collinearity. However, conditional on the other 
covariates in column 7, omitting link density makes no difference to the “wrong” sign that degree takes on in the 
regression. It appears, instead, that conditioning on the first eigenvalue and clustering leaves average degree to not 
matter in an obvious way. A table documenting this is available upon request. 

29 We thank a referee for pointing this out. 



1693ALATAS ET AL.: NETWORKS AND INFORMATION AGGREGATIONVOL. 106 NO. 7

our environment, and then more generally examine the role of other fundamental 
network characteristics.

A. Stochastic Dominance Results

The first  cross-network comparison we carry out is based on the Jackson and 
Rogers (2007b) prediction about  first-order stochastic dominance of the degree dis-
tribution being related to better aggregation of information. To our knowledge, this 
prediction has not been empirically documented before due to data limitations. In 
order to do so, one needs a large sample of independent networks combined with 
data on information diffusion, which we have here given data from 631 hamlets.30

In Table 8, we estimate the same specifications as in Table 6, but now in the actual 
data. Specifically, we estimate a regression of whether the error rate of the hamlet  I  
exceeds the error rate of hamlet  J    (1 {   ‾ Error   I   >    ‾ Error   J  } )   on dummy variables that 
indicate whether hamlet  I  stochastically dominates hamlet  J  ( 1 {I  ≻ FOSD   J}  ) and 
vice versa ( 1 {J  ≻ FOSD   I}  ),
(5)  1 {   ‾ Error   I  >   ‾ Error   J  } = β 0  + β 1   · 1 {I  ≻ FOSD   J} + β 2   · 1 {J  ≻ FOSD   I} + X IJ  ′  δ+ ε IJ  . 

30 Note also that in addition to being interesting in its own right, focusing on stochastic dominance has a major 
advantage in our context. Working with a sampled graph, rather than the full network, may result in biases that could 
lead us to end up with estimates of the effects of network characteristics that are biased to the point of having the 
wrong sign. An advantage of working with FOSD is that while there may be attenuation bias in our estimates, we 
would not expect a sign reversal ( sign-switching would be possible only when over half of the categorizations of  I  
dominating  J  become flipped due to sampling, which is very unlikely to happen). As such, our results would provide 
a lower bound of the predictive capabilities of the network. 

Table 7—Numerical Predictions on Correlation between Hamlet Network Characteristics and 
Hamlet Level Error Rate

 (1) (2) (3) (4) (5) (6) (7)
Average degree −0.0218 0.0383

(0.00321) (0.0101)
Average clustering −0.255 0.284

(0.0508) (0.0977)
Number of households 0.000409 3.52e-05

(0.000227) (0.000312)
First eigenvalue   λ 1  (G) −0.0183 −0.0290(0.00260) (0.00455)
Fraction of nodes in giant −0.330 −0.549
 component (0.0397) (0.0663)
Link density −0.334 −0.251(0.0670) (0.100)
R2 0.605 0.579 0.547 0.613 0.642 0.571 0.692

Notes: This table reports the relationship between hamlet network characteristics and the error rate in ranking  others 
in the hamlet. Columns 1–6 show univariate regressions, while column 7 reports the results from a multivariate 
regression. Demographic covariates include consumption, education, PMT score, agricultural share, education of 
household head and hamlet head, urban dummy, log hamlet size, stratification group FE, and inequality. The sam-
ple comprises 631 hamlets. Results for error rates using simulated data, as described in online Appendix B. Robust 
standard errors in parentheses.
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The omitted category is when hamlet  I ’s and hamlet  J ’s degree distribution are not 
comparable. We can also estimate regressions where we drop hamlets that are not 
comparable,

(6)  1 {   ‾ Error   I   >    ‾ Error   J  }  =  β 0   +  β 1   · 1 {I  ≻ FOSD   J}  +  X  IJ  ′   δ +  ϵ IJ  . 

Column 1 presents the results from estimating equation (5), while column 2 pres-
ents the results from estimating equation (6). For both models, as above, we include 
stratification group fixed effects, estimate with OLS, and specify  two-way clustered 
standard errors, for hamlet  I  and hamlet  J . We compute error rates with consump-
tion as the measure of truth (panel A) and with  self-assessment as the measure of 
truth (panel B). Columns 3 and 4 report results from the first two columns adding 
 sociodemographic controls.

The results validate the model’s implications that are provided in Table 6: if a 
hamlet’s degree distribution  first-order stochastic dominates another hamlet’s distri-
bution, it will have lower error rates in ranking the income distribution of the hamlet 
(for both measures of truth). Specifically, as panel B, column 2 shows, if hamlet  I  
dominates  J  , then  I  has on average a 17 pp lower error rate than  J  (significant at the 
1 percent level). In columns 3 and 4 we add  sociodemographic controls, including a 
measure of  hamlet-level inequality; the results are robust and the coefficients remain 
stable.

Table 8—Empirical Results on Stochastic Dominance

 (1) (2) (3) (4)
Panel A. Consumption metric
 I  ≻ FOSD   J −0.0935 −0.136 −0.0875 −0.119(0.0193) (0.0298) (0.0191) (0.0281)
 J  ≻ FOSD   I 0.0465 0.0474

(0.0184) (0.0178)
Observations 200,028 148,090 200,028 148,090

Panel B. Self-assessment metric
 I  ≻ FOSD   J −0.100 −0.170 −0.0756 −0.123(0.0177) (0.0264) (0.0180) (0.0260)
 J  ≻ FOSD   I 0.0730 0.0587

(0.0168) (0.0167)
Observations 200,028 148,090 200,028 148,090

Noncomparable Yes No Yes No
Demographic controls No No Yes Yes
Stratification group FE Yes Yes Yes Yes

Notes: In these regressions, the outcome variable is a dummy for whether the error rate of 
hamlet I exceeds the error rate of hamlet J. When included, demographic controls are differ-
ences between the standard controls for hamlets I and J as in Table 6. Panel A presents results 
for error rates using the consumption metric. Panel B presents results for error rates using the 
 self-assessment metric. Standard errors in parentheses, two-way clustered at I and J. 
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B. General  Cross-Hamlet Results

We now present the general hamlet level regression. Our theoretical benchmark 
is given by the numerical simulations from Table 7. We present analogous reduced 
form analysis in Table 9. In columns 1 to 6, we present the univariate regressions, 
while in column 7 we present the multivariate regression.31

The results look very similar whether we use the consumption or the  self-assessment 
metric. The univariate regressions match up quite closely with our numerical pre-
dictions: whenever both the simulated and actual coefficients are significant (which 
is most of the time), they always have the same sign. For instance, an increase in 
the average degree of the hamlet is associated with a lower error rate (column 1), 
an increase in the average clustering coefficient is associated with a lower error rate 
(column 2), and an increase in the number of households is associated with the error 
rate (column 3). In addition, as seen in column 4, panel A, a higher first eigenvalue 

31 See Appendix F, Table F2 for the version without covariates. 

Table 9—Empirical Results on Correlation between Hamlet Network Characteristics  
and Hamlet Level Error Rate

 (1) (2) (3) (4) (5) (6) (7)
Panel A. Consumption metric
Average degree −0.00909 0.0231

(0.00367) (0.0118)
Average clustering −0.243 −0.279

(0.0683) (0.118)
Number of households 0.000762 0.000503

(0.000398) (0.000428)
First eigenvalue   λ 1  (G) −0.00612 −0.0118

(0.00283) (0.00678)
Fraction of nodes in giant −0.179 −0.141
 component (0.0491) (0.0714)
Link density −0.134 0.138

(0.0955) (0.141)
R2 0.250 0.267 0.249 0.248 0.265 0.245 0.279

Panel B. Self-assessment metric
Average degree −0.0127 0.0117

(0.00326) (0.0125)
Average clustering −0.311 −0.321

(0.0640) (0.113)
Number of households 0.00118 0.000667

(0.000419) (0.000455)
First eigenvalue   λ 1  (G) −0.00625 −0.00531

(0.00234) (0.00646)
Fraction of nodes in giant −0.223 −0.106
 component (0.0461) (0.0831)
Link density −0.233 0.204

(0.0751) (0.135)
R2 0.316 0.337 0.319 0.308 0.332 0.311 0.340

Notes: This table provides hamlet network characteristics and the error rate in ranking others in the hamlet. 
Columns 1–6 show the univariate regressions, while column 7 provides the multivariate regressions. Demographic 
covariates include consumption, education, PMT score, agricultural share, education of household head and ham-
let head, urban dummy, log hamlet size, stratification group FE, and inequality. The sample comprises 631 hamlets. 
Panel A presents results for error rates using the consumption metric. Panel B presents results for error rates using 
the self-assessment metric. Robust standard errors in parentheses.
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of the adjacency matrix is associated with a considerable reduction of the error rate 
(a one standard deviation increase is associated with a 1.9 pp drop in error rate). 
Column 5 shows that a higher fraction of nodes being in the giant component is 
associated with an extremely lowered error rate. As expected, column 6 shows that 
a higher density of links corresponds to a lower error rate.

Including all network variables in the regression model (column 7), we once 
again find a good match between the actual and simulated results in terms of sign. 
Strikingly, higher average degree appears to be a positive and significant predictor of 
error rate (higher degree means more errors) across both our reduced form and sim-
ulated results in this column (significant for consumption and in the simulations).

The first eigenvalue of the adjacency matrix and the fraction of nodes in the giant 
component both come out negative (significantly in panel A), exactly as our sim-
ulations would have had us expect and confirming intuitions from Bollobás et al. 
(2010), among others. The one exception is clustering, which comes in with the 
“right” sign in the data, but was positive in the simulations.32, 33

C. Sampled Networks and Robustness of our Results

Since our network data is sampled rather than based on a census of the hamlet, 
there is some potential for bias. As discussed above, because we asked households to 
name a series of other households (rich, poor, and leaders) and all of their relatives, 
we have complete  kinship data (that means the entire row of the adjacency matrix) 
on 68.3 percent of households in a median hamlet, which corresponds to knowing 
about 90 percent of the potential kin links. We have less information on the network 
of social interactions, but note that among our surveyed households 57 percent of 
their social links are kin. However, we now use a number of techniques to explore 
the robustness of our results to the sampling strategy.

First, using techniques developed in Chandrasekhar and Lewis (2012), we esti-
mate a model of link formation based on the observed part of the network and use it 
to predict what we would find if we had the missing data. Specifically, we estimate 
a model of network formation using the randomly sampled component of the data 
and then use the estimated model to integrate over the missing link data (both kin 
links and social links). A detailed description and the results from this exercise are 
presented in online Appendix H; the key findings from the paper remain intact when 
we apply this correction.

Second, we returned to the field in 2015 and collected new (complete, subject to 
recall errors) kinship data in ten hamlets.34 First, we augment our old network data 

32 A natural worry is that this may be due to sampled network data. The true process takes place on an unob-
served network; we sampled from this network and fit a process that takes the sampled network data as if it was the 
full network. Online Appendix H shows that by generating the data under the model, sampling the network data, 
and then running analogous regressions, we are unable to overturn this feature. 

33 Another proposed explanation could be that this teaches us a divergence of theory from reality. Under the 
model, with high clustering, many good signals that are received are not passed since it is not of the most recent 
vintage. However, less information is lost this way when clustering is low, holding average degree fixed. Thus, the 
sign switch can be consistent with individuals sharing more than just the latest signal available. We thank a referee 
for this comment. 

34 That is, we were able to obtain a complete as possible list of each household’s kin from the village leader, but 
there are errors in this process. For already surveyed households, only one-third of kin are identified (type II errors 
are 0.67) and type I error rate is about 0.25. 
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with this list of new relationships. We then  re-estimate the  within-village regressions 
using this augmented data and show that the results look qualitatively similar to our 
original  within-village regressions on this sample of ten hamlets. Next, we conduct 
a similar exercise, but in this case we use the augmented data only for nodes that 
appear in our original data. That is, we take the 2015 data, but erase all links that 
we would not have observed had we used our original 2007 sampling scheme. This 
holds the data fixed, but just varies the sampling scheme. The results are very simi-
lar, confirming that our particular sampling of nodes is not driving the results. These 
results are presented in online Appendix I.

Third, in online Appendix J we explore what would happen to our results if we 
had even less network data. To investigate this, we conduct two exercises. First, we 
drop 25 percent of links uniformly at random. We then carry out the exact same 
exercises as in the paper and the results, reported in online Appendix J.J1, remain 
quite similar. Second, we drop two of the eight randomly sampled households at 
random and then erase the corresponding links. We also drop all the information 
these surveyed households provided: the kin of the five poorest, five richest, and 
elites that they gave us in response to our survey. Again we carry out the exact same 
exercises as in the paper and the results, reported in online Appendix J.J2, remain 
quite similar. This suggests that our results are not driven by the fact that we sam-
pled a relatively small number of households.

Finally, we  re-run all our analysis only for small hamlets, where our sampled 
households comprise a greater share of the network; again, as seen in online 
Appendix K, we find similar results to our main tables.

The combination of these four exercises strongly suggests that our results are 
likely to be robust to the fact that our network data is sampled.

V. Application: Targeting

In this section, we investigate whether network characteristics predict the qual-
ity of  real-world decisions that rely on communal information. We examine the 
targeting experiment discussed in Section IC. In particular, we check whether 
 community-based targeting, where a subset of community members allocate funds 
to poor households, is relatively more effective than  proxy-means testing (PMT) at 
identifying the poor in networks that we expect to be better at diffusing information 
about poverty. If communities efficiently aggregate information, we would expect 
that this would be the case, since  community-based targeting utilizes local informa-
tion and the findings thus far have shown that better networked communities hold 
more accurate information. However, just because the community members have 
more information in certain communities does not necessarily mean that this will 
translate into more accurate targeting decisions.

We estimate regressions of the form

(7)    y  r   = α +  β C  1 {r ∈ C}  ·  ρ r   +  β H  1 {r ∈ H}  ·  ρ r   +  τ c  1 {r ∈ C} 
 +  τ h  1 {r ∈ H}  + γ  ρ r   +  ϵ r  ,  
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where   y  r    is the rank correlation between the poverty assessments generated by the 
program and the benchmark of true poverty (either based on per capita consumption 
or based on the  self-assessment),  1 {r ∈ C}   and  1 {r ∈ H}   are dummies for the exper-
imental assignment of hamlet  r  to either the community or the hybrid treatment (the 
omitted category is PMT), and   ρ r    is a measure (discussed below) of how diffusive 
a network is. We are mostly interested in   β C    , which is the pure  community-driven 
targeting treatment, and, to a lesser extent,   β H    (since in the hybrid, the community’s 
information is partially verified by the PMT). Given that higher   ρ r    indicates that a 
network is better at spreading information, we expect that   β C   > 0 . In other words, 
we expect  community-based targeting to perform better relative to a  proxy-means 
test when networks are more diffusive.

We take two approaches to computing   ρ r   . In Table 10, to compute   ρ r    we first 
use a  principal-components approach to aggregate the six measures of network 
diffusiveness from Table 7: average degree, clustering, first eigenvalue, num-
ber of households, link density, and fraction of nodes in the giant component. We 
then take the first principal component vector corresponding to the data matrix 
of these six network attributes and define   ρ r   =  ∑ k=1  6     v  k    W  k, r    , where   v  k    are the 
entries of the principal component vector and   { W  k, r  } k    are the six network features 
for hamlet  r . For ease of interpretation, we normalize the regressor by percentile  
in the sample.

Network diffusiveness as measured in this way appears to predict whether com-
munities are more effective than a proxy means test at classifying individuals based 
on  self-assessed poverty, but not based on consumption (Table 10). Panel A shows 
that   β C    and   β H    are not distinguishable from zero when we take   y  r    to be the rank cor-
relation using consumption data, i.e., we do not observe that community targeting 
is more accurate in more diffusive communities relative to the PMT (columns  2–5 
of panel A of Table 10). However, when we take   y  r    to be the rank correlation using 
 self-assessment data, we find positive and significant estimates of   β C    and   β H    (col-
umns  2–5 of panel B). Conditional on community targeting, going from the twen-
ty-fifth to seventy-fifth percentile in diffusiveness corresponds to a 0.112 increase 
in the rank correlation of the targeting outcome with the  self-assessment benchmark 
(which has a mean of 0.4) relative to the PMT (column 4, panel B). Not surpris-
ingly, when we pool the treatments, in column 6, the relationship persists. The fact 
that   ρ r    only matters for the effectiveness of community targeting when assessed 
using  self-assessment is consistent with the experimental findings in Alatas et al. 
(2012). That paper also showed that, in general, community meetings increased the 
rank correlation with  self-assessment, but not with per capita consumption, relative 
to the traditional approach of using a PMT for targeting. The results here show that 
the impact of the community treatments on improving the correlation of targeting 
outcomes with  self-assessed poverty status is considerably stronger in hamlets with 
more diffusive network characteristics.

A second approach is to use the model and simulations from Section III to com-
pute   ρ r   . Specifically, we use the average simulated correct ranking rate for a hamlet,  
1 −    ‾ Error    r  SIM   , as a measure of its diffusiveness since, by definition, networks that 
are better at spreading information should exhibit lower error rates. Table 11 then 
replicates the exercises in Table 10, but now uses the percentiles of  1 −    ‾ Error    r  SIM   
as a measure of diffusiveness of the network. Again for ease of interpretation we 
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normalize   ρ r    by percentile in the sample. We find that community targeting dif-
ferentially works better when a hamlet has lower error rates when measured 
using  self-assessment. Going from the twenty-fifth to the seventy-fifth percentile 
of   ρ r    , conditional on community targeting, corresponds to a 0.13 increase in the rank 
 correlation of the targeting outcome with the  self-assessment benchmark, relative to 
the PMT (column 4, panel B).35

35 We note that in panel B of both Tables 10 and 11, a more diffusive network is correlated with worse target-
ing under PMT when measured by the correlation with  self-assessment. In fact, we can show that the covariance 

Table 10—Rank Correlation on Targeting Type Interacted with Diffusiveness (Principal Component)
(1) (2) (3) (4) (5) (6)

Panel A. Rank correlation consumption:
Community × Diffusiveness −0.0827 −0.0838 −0.0978 −0.0970(0.117) (0.117) (0.121) (0.124)
Hybrid × Diffusiveness −0.0619 −0.0646 −0.0855(0.113) (0.113) (0.122)
Community −0.0563 −0.0209 −0.0169 −0.0144 −0.0110(0.0321) (0.0632) (0.0631) (0.0655) (0.0660)
Hybrid −0.0627 −0.0331 −0.0288 −0.0132(0.0330) (0.0658) (0.0662) (0.0739)
Diffusiveness −0.0367 −0.0111 0.0390 0.0546 0.0386

(0.0755) (0.0783) (0.0947) (0.107) (0.0944)
(Community or Hybrid) × −0.0898
 Diffusiveness (0.102)
(Community or Hybrid) −0.0145(0.0582)
R2 0.014 0.014 0.017 0.095 0.151 0.094

Panel B. Rank correlation self-assessment:
Community × Diffusiveness 0.249 0.247 0.224 0.208

(0.112) (0.112) (0.118) (0.120)
Hybrid × Diffusiveness 0.245 0.241 0.225

(0.111) (0.112) (0.117)
Community 0.111 −0.0169 −0.00877 0.00158 0.00699

−0.0324 (0.0674) (0.0668) (0.0705) (0.0719)
Hybrid 0.0851 −0.0446 −0.0366 −0.0284(0.0334) (0.0678) (0.0681) (0.0736)
Diffusiveness −0.205 −0.151 −0.147 −0.144 −0.144(0.0789) (0.0818) (0.101) (0.111) (0.101)
(Community or Hybrid) × 0.22
 Diffusiveness (0.102)
(Community or Hybrid) −0.0106(0.0623)
R2 0.033 0.029 0.043 0.127 0.161 0.125

Stratification group fixed effects No No No Yes Yes Yes

Demographic covariates No No No Yes Yes Yes

Notes: The outcome variable is the rank correlation. Panel A presents rank correlation using the consumption met-
ric. Panel B presents rank correlation using the self-assessment metric. Diffusiveness is the percentile of the pre-
dicted value based on the first principal component vector of the covariance matrix of the network characteristics 
described in Table 7. Demographic covariates include consumption, education, PMT score, agricultural share, edu-
cation of household head and hamlet head, urban dummy, log hamlet size, stratification group FE, and inequality. 
Robust standard errors in parentheses. 



1700 THE AMERICAN ECONOMIC REVIEW JULY 2016

Taken together, the findings show that the network structure and our learning 
model not only accurately predict how information spreads, but are also useful 
in understanding how real decisions are made using that information. A natural 

between consumption based wealth ranking and  self-assessment based wealth ranking decreases as we look at 
more diffusive hamlets. Therefore, it seems that high   ρ r    hamlets make the  self-assessment based notions of poverty 
harder to detect by conventional means. However, it seems that the community does know more about who is poor 
by this criterion; as the community also puts weight on this criterion, the community pulls the outcome closer to 
the  self-assessment metric. 

Table 11—Rank Correlation on Targeting Type Interacted with Diffusiveness (1 − Simulated Error Rate)
(1) (2) (3) (4) (5) (6)

Panel A. Rank correlation consumption:
Community × Diffusiveness 0.172 0.146 0.117 0.143

(0.108) (0.115) (0.118) (0.122)
Hybrid × Diffusiveness 0.0506 −0.0177 −0.0298(0.106) (0.114) (0.115)
Community −0.0563 −0.137 −0.131 −0.120 −0.129(0.0321) (0.0625) (0.0655) (0.0678) (0.0693)
Hybrid −0.0627 −0.0822 −0.0507 −0.0381(0.0330) (0.0582) (0.0611) (0.0630)
Diffusiveness −0.0909 −0.0298 −0.0386 −0.0616 −0.0383(0.0720) (0.0880) (0.0896) (0.0955) (0.0895)
(Community or Hybrid) × 0.0385
 Diffusiveness (0.100)
(Community or Hybrid) −0.0759(0.0550)
R2 0.014 0.017 0.086 0.093 0.151 0.090

Panel B. Rank correlation self-assessment:
Community × Diffusiveness 0.260 0.271 0.269 0.312

(0.117) (0.123) (0.126) (0.130)
Hybrid × Diffusiveness 0.147 0.153 0.123

(0.120) (0.124) (0.124)
Community 0.111 −0.0159 −0.0250 −0.0223 −0.0494(0.0324) (0.0659) (0.0677) (0.0696) (0.0719)
Hybrid 0.0851 0.0220 0.0163 0.0357

(0.0334) (0.0636) (0.0663) (0.0674)
Diffusiveness −0.215 −0.191 −0.193 −0.199 −0.192(0.0843) (0.100) (0.103) (0.113) (0.103)
(Community or Hybrid) × 0.192
 Diffusiveness (0.109)
(Community or Hybrid) 0.00892

(0.0590)
R2 0.033 0.045 0.111 0.131 0.171 0.128

Stratification group fixed effects No No No Yes Yes Yes
Demographic covariates No No No Yes Yes Yes

Notes: The outcome variable is the rank correlation. Panel A presents rank correlation using the consumption met-
ric. Panel B presents rank correlation using the self-assessment metric. Diffusiveness is the percentile of (1 − simu-
lated error rate), as described in online Appendix B. Simulated error rate is the expected predicted value of the error 
rate in a hamlet under the estimated parameters of the diffusion model. Demographic covariates include consump-
tion, education, PMT score, agricultural share, education of household head and hamlet head, urban dummy, log 
hamlet size, stratification group FE, and inequality. Robust standard errors in parentheses.
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question arises here. If the policy-relevant question is how to identify villages that 
have high diffusiveness, one could think of this as a pure prediction exercise. From 
that perspective, the network learning model is one potential approach to predic-
tion, but whether it predicts better than the principal component measure, or even 
 non-network variables, is an empirical question. In fact for such a problem one 
could just use machine learning to predict which villages have characteristics such 
that community targeting is likely to work well. If the idea was to do policy only in 
Indonesia in this way, that is, if we were drawing data from the same distribution, 
this would be the right approach.

However, there are several reasons why it is useful to see whether the 
 model-predicted diffusiveness correlates with information aggregation. First, it 
gives us greater confidence in the degree to which the model well describes the dis-
tribution of information in the community since community targeting cannot work 
well without good social learning. Second, the relationship between information 
aggregation and network statistics could potentially depend on the network struc-
ture, and if so, the model is likely to perform better than machine learning when 
extrapolating out of sample. One could imagine a distribution of differently shaped 
networks where more dense networks in that sample had less information aggre-
gation, and the model would tell us precisely why this is the case. So though it 
turns out that the relationship between the principal component of standard network 
statistics and the  model-predicted diffusiveness are highly correlated, it did not nec-
essarily have to be that way. This is an outcome, but not something that we knew 
would be true going in.

Our findings point to a need for further work to think about which network char-
acteristics are the most useful for these purposes and how to  cost-effectively obtain 
relevant network data (since the  data-collection process may be expensive). There 
are several options available to researchers and policymakers. First, they can ask a 
simple question of prediction: is it the case that given a vector of observables from 
a standard data source (e.g., a census), policymakers can predict which networks 
are organized in a manner that encourages diffusion? These are likely to be the 
communities where  community-based targeting would work as opposed to using a 
 proxy-means test. This approach would work particularly well in an environment 
where policymakers get multiple rounds of data from the same distribution. Second, 
they could pursue an avenue along the lines of work by Banerjee et al. (2014)—
making use of the fact that individuals in the network may have knowledge about the 
features of the network structure. Banerjee et al. (2014) show that if asked to name 
the person who would be best to initially inform in order to spread information, 
individuals name a small set of villagers who turn out to be eigenvector central in 
the network. Along these lines, one could imagine other simple questions that could 
be added to a standard survey with the goal of extracting knowledge of network 
organization from network members themselves. Finally, one could explore whether 
relevant network data—membership in social groups and/or kinship information—
can be obtained directly from a village or  sub-village head. This would also be 
considerably cheaper than surveying many members of the community and could 
be of great policy value.



1702 THE AMERICAN ECONOMIC REVIEW JULY 2016

VI. Conclusion

In the real world, the state that agents are learning about may change over time, 
individuals may draw signals with heterogeneous quality, and agents may be selec-
tive in their conversations: they may choose not to pass on information if they 
are not sure enough. Therefore, in this paper, we develop a descriptively realistic 
 quasi-Bayesian model of learning on a network in this sort of complex environment. 
We then use the model to study how information about poverty status is transmitted 
within the network. Though not analytically tractable, the model is easily estimable 
and simulative, giving us insights into how network structure relates to information 
aggregation.

We estimate the model from the data and use the estimated model to predict the 
relationship between a village’s network characteristics and how information on 
poverty status is aggregated within the village. Evaluating the model at the estimated 
structural parameters, we find that the transmission error is significant, though not 
enormous relative to the variation in wealth. In fact, for a pair at the average dis-
tance, the variance of the transmission error is about one-fifth the variance of the 
subject’s wealth. However, this also gives us a window into when reluctance to pass 
on information kicks in. In our model, when one has information where the vari-
ance of the noise is over 40 percent compared to the variance of wealth, the agent 
is unwilling to pass on the information whatsoever. An interesting avenue for future 
research would be to understand more about the limiting properties of learning pro-
cesses when agents are reluctant to speak.

We then compare our predictions with empirical evidence from a unique  data-set 
of 631 villages, where we have both detailed social network data and measures of 
how accurately households can describe the poverty status of other households. The 
empirical results match up nicely with the model predictions: the characteristics 
that predict better information aggregation in the model also do so in the data and 
they have similarly signed relationship in both. For example, we provide evidence 
supporting the Jackson and Rogers (2007b) claim that if a network’s degree distri-
bution  first-order stochastic dominates another’s distribution, it will have overall 
lower error rates in ranking the income distribution of the hamlet.

Finally, we show that the network characteristics can help predict where policies 
that rely on information diffusion are likely to be effective: for example, we show 
that  community-based targeting appears more effective than a more traditional, 
 data-driven approach in areas where networks are more diffusive. The results are 
encouraging because they suggest the possibility of using standard network statis-
tics to predict whether in a particular context we would expect effective information 
aggregation, or conversely, whether some outside intervention will be needed to 
supplement information flows through the network. Moreover, the results give us 
some confidence that we are not very far off in using simple social learning models 
to study communications in networks.
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