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1. Introduction 
 

A significant understanding has emerged over the past few years that instrumental 

variable (IV) estimation of the simultaneous equation model can lead to problems of 

inference in the situation of “weak instruments,” which can arise when the instruments do 

not have a high degree of explanatory power for the jointly endogenous variable(s) or 

when the number of instruments becomes large.  The situation of limited information 

estimation of a single equation has been studied extensively in the presence of “weak 

instruments.”  These problems of inference in the weak instrument situation can arise 

when conventional (first order) asymptotic inference techniques are used.  In particular, 

conventional first order asymptotics can lead to a lack of indication of a problem even 

though significant (large sample) bias is present because estimated standard errors are not 

very accurate.  

A number of papers have recommended possible diagnostics for the presence of 

the problem, e.g. Shea (1997).  The usual form of the recommended diagnostics is to 

examine the 2R  or the associated F  statistic of the reduced form regression for the 

included endogenous variable(s).  A more refined recommendation is to consider the 

partial 2R   (or its associated F  statistic) after the predetermined variables have been 

partialled out of the equation being estimated.  Another approach has been to consider the 

statistic originally put forward by Anderson and Rubin (1949). While both approaches 

yield valuable information, the 2R  approach lacks a distribution theory and the rank 

condition test, in some sense, does not answer the question at issue of how well 

conventional asymptotic theory does in forming statistics for inference. 

In this paper, we take a new approach and use higher order asymptotic 

distribution theory to determine if the conventional first order IV asymptotics are reliable 

in a particular situation.  We recommend a new specification test for the IV estimators, 

and we concentrate initially on the 2SLS estimator since it is by far the most commonly 

used estimator.  Our new specification test takes the general approach as the specification 

test approach of Hausman (1978) and estimates the same parameter(s) in two different 

ways.  In particular, we compare the difference of the forward (conventional) 2SLS 

estimator of the coefficient of the right hand side endogenous variable with the reverse 

2SLS estimator of the same unknown parameter when the normalization is changed.  
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Under the null hypothesis that conventional first order asymptotics provides a reliable 

guide, the two estimates should be very similar.  Indeed, they have unitary correlation 

according to first order asymptotic distribution theory.  However, when second order 

asymptotic distribution theory is used, the two estimators will differ due to second order 

bias terms.  Our test subtracts off these bias terms and then sees whether the resulting 

difference in the two estimates satisfies the results of second order asymptotic theory.  If 

it does and the second order bias term is small, we do not reject the use of first order 

asymptotic theory.  Furthermore, the second order asymptotic theory may provide a more 

reliable basis for inference.  An added attraction of our approach is that it permits the 

econometrician to compare two estimates of a structural parameter, which will have a 

straightforward economic interpretation in many situations.  Thus, the econometrician 

can use economic knowledge to determine if the two estimates are very different or are 

close together in terms of the economic problem under study. 

If the new specification test rejects we then consider estimation of the equation by 

second-order unbiased estimators of the type first proposed by Nagar (1959).  We again 

consider forward and reverse estimation by the Nagar-type estimators to determine if the 

estimates are significantly different according to the new specification test.  If they are 

not significantly different we recommend estimation by LIML, which we demonstrate is 

the optimal linear combination of the Nagar-type estimators (to second order).  If the 

second specification test rejects or the two Nagar-type estimators differ substantially 

based on economic considerations, we conclude that neither set of estimates, 2SLS or 

LIML, may provide reliable results for inference in the particular situation. 

Lastly, we investigate the performance of Nagar-type second order bias corrected 

IV estimators. While these estimators and LIML can lead to improved performance, they 

may also not perform well in the weak instrument situation. Thus, we demonstrate that 

LIML need not be significantly better than 2SLS over a range of possible situations.  In 

particular, inferences based on LIML may not do well in the “weak instruments” 

situation.  While Rothenberg (1983) uses results of Pfanzagl and Wefelmeyer (1978, 

1979) to demonstrate that, under certain conditions, LIML is second order efficient, our 

specification test should help determine when reliable inference can be based on the use 

of LIML.  We also demonstrate the high degree of similarity for k -class estimators 
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between the approach of Bekker (1994) and the Edgeworth expansion approach of 

Rothenberg (1983). 

We analyze an empirical problem of a simultaneous equation specification of a 

demand equation. This type of model formed the original model consider by Haavelmo, 

who first demonstrated that least squares would lead to biased results. We find that the 

2SLS estimate of the demand elasticity is about 2 times larger than the least squares 

estimate.  We then reverse the regression using price as the left hand side variable and 

quantity as the right hand side endogenous variable.  The estimated elasticity increases, 

but the new specification test finds that the two estimates are close together enough so as 

not to reject the first order asymptotic results.  We then include many more instruments 

by interacting the cost instruments with the indicator variables for each origin-destination 

pair.  The estimated price elasticity decreases significantly in magnitude, back toward the 

least squares estimate.  When we run the reverse 2SLS estimation, we find that the 

estimate is about 6 times higher than then forward estimate.  Here our specification test 

easily rejects the use of the first order asymptotics.  Also, LIML does not do well in this 

latter situation. 

The previous literature on the presence of weak instruments begins with Nelson 

and Startz (1990 a and b) and Bound, Jaeger, and Baker (1995) who demonstrate the poor 

performance of IV estimators in the weak instruments situation.  Analysis of conditions 

when the weak instruments problem may exist are given by Hall, Rudebusch, and Wilcox 

(1996), Shea (1997), and Staiger and Stock (1997).  Improved inferential techniques are 

recommended by Startz, Nelson, and Zivot (1998), Wang and Zivot (1999), and Zivot, 

Startz, and Nelson (1999).  All of these approaches are essentially first order asymptotic 

approximation approaches in terms of recognizing the weak instruments problem and 

offering alternative approaches to inference. The second order asymptotic approach to 

inference and to estimation that we use was initiated by Nagar (1959) and has been used 

by a number of researchers.  We follow the particular second order approximation of 

Bekker (1994).   

While many different conclusions can be drawn in the weak instruments situation, 

we tend to recommend that the IV estimates, or even the “improved” IV estimates not be 

used when the specification test rejects (unless the two estimates are close together).  The 
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reason for this conclusion is that the IV estimators typically have significant bias in these 

situations when the specification test rejects which recommends against their use.  First 

order asymptotics assumes that no bias exists, but the second order approach can find 

significant bias depending on the underlying primitive conditions.  When this bias is 

present as demonstrated by the specification test, we believe that use of the IV estimates 

may lead to misguided conclusions.  

 

2. Model 
 

We begin with the simplest model specification with one right hand side (RHS) 

jointly endogenous variable so that the left hand side variable (LHS) depends only on the 

single jointly endogenous RHS variable.  In the class of models with only one RHS 

jointly endogenous variable, which is by far the most common specification used in 

econometrics, this model specification accounts for other RHS predetermined (or 

exogenous) variables, which have been “partialled out” of the specification.  Thus, we do 

not lose any generality by not including predetermined variables in the initial 

specification.  We demonstrate below how RHS predetermined variables may be included 

in the formulae and computations. 

We will assume that 

 
(2.1)  12121 vzyy +=+= πβεβ  

(2.2)  222 vzy += π , 

    
where ( ) K=2dim π . Thus, the matrix z  is the matrix of all predetermined variables, and 
equation (2.2) is the reduced form equation for 2y  with coefficient vector 2π .  We also 
assume homoscedastic normality: 
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We will consider the non-normal case later in the paper.  We use the following notation:  
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The simultaneous equation problem, which causes least squares to be biased, arises when 

0
2

≠vεσ .  This situation is what specification tests of the type proposed by Hausman 

(1978) and others test.   

 

3. Motivation 
 

A common finding in empirical research is that when 2SLS is used the coefficient 

estimate increases in magnitude from the OLS estimate. However, in finite samples under 

certain situations even when 2SLS is used on equation (2.1), bias remains because an 

estimate of 2π  from equation (2.2) is used, since the true parameters are unknown.  We 

now demonstrate how this result occurs. 

Suppose that 2πz  is measured without error. Then, OLS of 1y  on 2πz  would be 

unbiased. Instead, 2πz must be estimated, i.e., we have to rely on 2SLS. Let 2π̂  denote 

the first stage OLS estimator. We have 
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regression to obtain 2π̂ . Therefore, we expect bias approximately equal to 
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We acknowledge that the denominator of equation (3.2) is random so we have only an 

approximation, but we justify the expression subsequently on the basis of the asymptotic 

approximations that we carry out. We make some observations. Other things being equal, 

• Bias is a monotonically increasing function of
2vεσ . 

• Bias is a monotonically increasing function of K . 

• Bias is a monotonically decreasing function of 2
fR . 

Note that conventional asymptotics, which lets ∞→n  keeping DGP fixed, ignores the 

influence of 
2vεσ , K , 2

fR .  

 

3.2 Forward and Reverse Regressions 
 

Let  
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denote forward and reverse 2SLS estimates, where iy2ˆ  and iy1ˆ  are the results of 

orthogonal projections onto the subspace spanned by z . They are based on moment 

restrictions  
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It can easily be shown that, under conventional (first order) asymptotics, 
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which implies that the forward and reverse estimates are perfectly correlated, i.e. the two 

estimates are exactly the same in a given sample up to first order asymptotics.  

Empirically, the authors have observed that the forward and reverse 2SLS estimates can 

differ by large amounts numerically even with quite large samples, which by equation 

(3.2) implies that in these situations conventional first order asymptotics may not provide 

a particularly good guide to the actual sample situation in question.  We use this 

observation and implication of equation (3.2) to provide an approach that attempts to 

determine when conventional first order asymptotics can be relied on, or when alternative 

approaches need to be employed. 

 

4. Bekker’s (1994) Asymptotics: Is It Sensible? 
 

Since conventional first order asymptotics do not necessarily provide a reliable 

guide, we need to use a different approach to the asymptotics.  We explore the approach 

of Bekker (1994) and see whether his approach to asymptotic expansion captures the 

main features of the bias in the estimators that concern us.  We assume as in Bekker 

(1994) that 

 

(4.1) α→
n
K  and Θ=′′ 22

1 ππ zz
n

. 

 
Below, we examine whether his asymptotics captures our motivation. 

It can be shown that1  
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1 See Bekker (1994, p.663). 
2 See Bekker (1994). 
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Using the fact that 2212 βωωσ ε −=v , we may rewrite equation (4.2) as 
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which coincides with equation (3.2) and justifies our approximation result with the 

addition of the parameter α .  

 

5. A Specification Test based on Forward and Reverse 2SLS 
 

We now turn to the main contribution of the paper.  We attempt to provide an 

answer to the question: When can you trust the conventional first order asymptotics given 

the well-documented problems of the first order asymptotic approximation in certain 

cases?  As our derivations demonstrate above, the 2SLS bias depends on 3 factors: the 

covariance of the stochastic terms in equations (2.1) and (2.2), the 2R  of the reduced 

form equations, and the parameter α  which depends on both K  and n .  Thus, no simple 

single statistic, e.g. the 2R  of the reduced form equation (or the associated F  statistic), 

seems likely to be sufficient to answer the question of how well the conventional 

asymptotic approximation is doing in a particular situation.   

Instead we turn to one of the basic ideas of the specification test approach of 

Hausman (1978) and estimate the same parameter, β , in two different ways.  If the 

difference between the estimates is small, one will not reject the underlying assumption 

of the model specification.  If the difference is large, one will come to the opposite 

conclusion.  Here a possible approach is to use the forward and reverse 2SLS estimates 

and see how far apart they are.  Thus, the specification test will be used in model 

specifications with overidentification, but this situation holds in most instances.  An 

“economic sense” of the difference of the two estimates can be gained because in many 

cases the econometrician will know how big a change in the true coefficient β  is 

important, since the parameter will have a marginal interpretation.   

To do a statistical test, we need to determine the variance of the difference of the 

two estimates.  Here first order asymptotics will not suffice, since because the forward 
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and reverse coefficient estimates have unit correlation, the variance of the difference of 

the two estimates will be zero when a first order asymptotic approximation is used.  Thus, 

we turn to second order asymptotic approximations, which were pioneered by Nagar 

(1959) and have been used since by Kadane (1973), Sargan (1976), Rothenberg (1983), 

and numerous other authors. 

Note that the probability limit of the difference between the two possible 

estimators of β  is equal to 

 

(5.1) ( )
( )( )1222

2 det
αωβαω

ασα ε

+Θ+Θ
Ω+Θ−=B . 

 
Bekker (1994, eq. (4.7)) shows that 2SLS is asymptotically normal. Therefore, 

( )Bcbn SLSSLS −− 22 1  is also asymptotically normal. Because we do not know B  in 

general, we would like to deal with an asymptotic result of the form 
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where B̂  is a n -consistent estimator of B . 

 In terms of a formal null hypothesis we test   
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where we are taking the plim relative to the usual (higher order) asymptotic 

approximation.  If we reject 0H  we decide that the usual first order inference based on 

the asymptotic normal approximation to the 2SLS estimator is not sufficiently accurate to 

be used.  Two primary reasons exist for a rejection.  First, the orthogonality assumptions 

of the instruments may be false.  The traditional Sargan test of overidentifying 

restrictions also tests this assumption, but it is well known to have poor size properties.  

Our Monte Carlo results demonstrate that the new specification test has considerably 

better size properties than the Sargan test.  Alternatively, a rejection may occur because 
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the finite sample properties of the first order asymptotic approximation are not 

sufficiently accurate (weak instruments) in the current situation to be used. 

 B̂  will be a n consistent estimator of the difference of the biases. Let zP  and 

zM  denote the projection matrices onto the column space spanned by z  and its 

orthogonal complement. It can be shown that 
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and α̂  is any consistent estimator for α . We may therefore use  
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By the delta method based on Lemma 1 in Appendix A.1, it can be shown that 
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Thus, we compare the difference of the forward 2SLS estimator and the reverse 2SLS 

estimator after subtracting off the bias term, which arises to the second order of 

approximation. Thus, the specification test takes the form of an asymptotic t  statistic: 

 

(5.7)  5.0ˆ

ˆ

w
dm = ,   

 
where d̂  is the LHS of Theorem 5.1, and ŵ  is a consistent estimate of the variance in 

Theorem 5.1.  We discuss later how to estimate this variance term. 

 

6. A Specification Test based on Nagar-Type Estimators 
 

We also explore an alternative approach, which is closely related to comparing 

the forward and reverse 2SLS estimators.  Nagar (1959) calculated the second-order bias 

of the 2SLS (and other k  class) estimators.  He demonstrated how to bias-adjust these 

estimators to second order.  Thus, we can estimate Nagar-type bias corrected IV 

estimators and then again compare forward and reverse bias-corrected estimators.  The 

estimates should be very similar if the asymptotic approximations are sufficient for the 

particular simultaneous equation model specification.  Thus, we follow a similar strategy 

as in the last section, but here we use bias-corrected forward and reverse regression 

estimators.  

We use the B2SLS estimator of Donald and Newey (1998) to estimate the 

forward and reverse regressions.  Note that this estimator is a k  class estimator and is a 

member of the Nagar class of estimators.  The forward IV estimator of β  is: 
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We can also estimate β  by the reverse IV specification: 
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By the delta method based on Lemma 1 in Appendix A.1, we can show that 

 
Theorem 6.1: 

( )






































Θ
+

−
+

ΘΘ
+

−
+

Θ

Θ
+

−
+

ΘΘ
+

−
+

Θ→










 ′−
′








22

2222

2

22

2

22

2

2222

111221

122122

11

11,0,1,

β
σσσ

α
ασ

β
σσσσ

α
ασ

β
σσσσ

α
ασσσσ

α
ασ

ββ
εεεεεεε

εεεεεεε

vvvvvv

vvvvvv

N
c

bn

. 

 

We will use Theorem 6.2 below to compare the forward and reverse bias adjusted 

estimators of β  to form a test of the model specification. 

We may want to consider linear combinations of b  and c1  for improved 

inference. It can easily be shown that the asymptotic variance, to second order, for the 

optimal linear combination is given by 
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which coincides with the asymptotic variance of LIML as derived by Bekker (1994, eq. 

(4.7)). Therefore, we may interpret LIML as an optimal linear combination of bias 

corrected forward 2SLS and reverse 2SLS. LIML is also known to be median unbiased 

for normal distributions of the stochastic disturbance of equation (2.1), as shown by 

Anderson (1977), and, more generally, for symmetric distributions of the stochastic 

disturbance of equation (2.1), by Rothenberg (1983).  Thus, the optimality results of 

Pfanzagl and Wefelmeyer (1978, 1979) are applicable to claim that the resulting LIML 

estimator is admissible, while other k  class estimators are inadmissible unless λ  in the 

estimator definition above has a coefficient of unity.   

We now calculate our second specification test by comparing the forward and 

reverse B2SLS estimators.  Note that no bias correction needs be made as in Theorem 5.1 

and in the first specification test since our estimators here have no bias to second order.  

The variance of the difference of the estimators thus has a very simple form.  As a 

consequence of Theorem 6.1, we obtain  
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Our second specification test has the form of an asymptotic t  statistic: 
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where the numerator is the difference of the two estimators multiplied by 21n  and the 

denominator is the square root of the variance term in Theorem 6.2.  We subsequently 

discuss how to consistently estimate the variance term. 

 We now compare the two specification tests, which are based on the 2SLS 

estimator and the Nagar-type estimator.  We find that the two tests have unitary 

correlation asymptotically using Bekker asymptotics. 

 

Theorem 6.3: 
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Proof:  See Appendix A.2. 
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Having established the asymptotic equivalence of the two tests, we now examine the 

robustness of our result to departures from normality under conditions adopted by Donald 

and Newey  (1998).  We impose a symmetry assumption: 
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It can be shown that:  

 

Theorem 6.4: Suppose that equation (4.1) and Conditions (7.1) and (7.2) hold true.  The 

approximate variance of ( )cbn 1−  equals 

 
( ) [ ] ( )

22

224
1

2
1

22

22

22 3
11

1
1
2

Θ
−




















−
−







−
+

Θ−
∑ =

β
σε

α
α

αβ
σ

α
α εε i

n

i i E
n

d
, 

where id  for ni ,...,1= denote diagonal elements of zP . 

Proof: See Appendix A.3. 

 

In typical applications, the second term of this expression is expected to be small3 

compared to the first term unless the kurtosis of the distribution is extremely large. Thus, 

the approximation should work well in the symmetric case, expect for extreme 

departures, as our subsequent Monte Carlo experiments demonstrate where we use a t-

distribution to allow for the non-normal situation. 
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7. Similarity of Bekker’s (1994) Asymptotics to the Edgeworth 
Expansion for k-Class Estimators 
 
In this section, we demonstrate that the relevance of Bekker’s (1994) asymptotic 

approximation is not necessarily confined to the case where nK=α  is large. Given that 

Bekker’s alternative limiting distribution is driven by the assumption that the number of 

instruments grows to infinity as a function of the sample size, his approximation may 

seem of limited applicability when the number of instruments is ‘small.’ We demonstrate 

that Bekker’s approximation is in fact quite similar to the second order Edgeworth 

expansion with symmetrically distributed errors. Unlike the Edgeworth expansion based 

approximation, Bekker’s approximation produces limiting normal distributions, which 

causes the resulting tests to be quite convenient. Normal approximations turn out to be 

quite reasonable approximations as supported by our Monte Carlo simulation discussed 

in Section 12.  

 Rothenberg (1983) computes higher order moments of k-class estimators. For 

symmetrically distributed errors, it can be shown by Rothenberg (1983, Theorem 2) that 

( )β−SLSbn 2  has an (approximate) mean 

 

(7.1)  
( )

n

K v

Θ

−
2

2 εσ
, 

 
which predicts that the mean of SLSb2  is approximately equal to 

 

(7.2)   
Θ

+ 2vεσ
αβ . 

 
Observe that equation (7.2) is similar to the probability limit (4.2) of 2SLS under 

Bekker’s asymptotics except that equation (4.2) uses 22αω+Θ  as the denominator of the 

bias. As for LIML, using an Edgeworth expansion we find that ( )β−LIMLbn  has an 

(approximate) mean  
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(7.3)  ( )1
2

o
n

=
Θ

− εσ
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and (approximate) variance 
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which is similar to the Bekker-based result we derived for LIML in equation (6.1), except 

the approximating factor ( )αα −1  in equation (6.3) has changed to α   in equation (7.4).  

As for the (forward) k-class estimator b  considered by Donald and Newey (1998), using 

an Edgeworth expansion it can be shown that ( )β−bn  has (approximate) mean 0, and 

(approximate) variance 

 

(7.5)  ( ) 2
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n
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Notice that equation (7.5) again agrees with a Bekker-based asymptotic variance of the 

Donald-Newey estimator in Theorem 5.1 except that, again, Rothenberg’s Edgeworth 

correction terms are of order α , whereas Bekker’s correction terms are of order 

( )αα −1 . These results suggest that Bekker’s asymptotic approximation can be 

interpreted as a convenient method of Edgeworth expansion with wider applicability than 

might be thought considering Bekker-type asymptotics in isolation. 

 Bekker-type asymptotics or Edgeworth expansions do not always provide 

reasonable approximation to finite sample distribution of IV estimators. First of all, it 

should be noted that variance predicted by the Edgeworth expansion is not always 

guaranteed to be positive. It can be shown that the (approximate) variance of 

( )β−SLSbn 2  calculated by Rothenberg (1983, Theorem 2) is equal to 
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(7.6)  ( ) .
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Observe that equation (7.6) is smaller than equations (7.4) or (7.5), which suggests that 

the variance of 2SLS is smaller than that of a Nagar-type estimator or LIML.4 We could 

not tell whether Bekker’s asymptotics predicts the same pattern of variances. There is 

good reason to believe that equation (7.6) may be overly optimistic about the variance of 

2SLS in certain situations: It is not difficult to come up with a parameter combination 

such that equation (7.6) is negative, especially when the first stage 2
fR , and hence Θ , is 

extremely small which can correspond to the “weak instrument” situation. Because 

Bekker’s asymptotic variance of ( )β−SLSbn 2  is based on the delta method, it is 

guaranteed to be nonnegative. Therefore, Bekker’s asymptotics may be interpreted as a 

way to fix such undesirable predictions of Edgeworth expansions in extreme situations.5  

However, a further caution should be recognized when using either Bekker’s asymptotics 

or Edgeworth expansions for LIML or Nagar-type estimators. Neither LIML nor Nagar-

type estimators possess finite sample second moments.6  Thus, the performance of the 

asymptotic approximations may vary depending on sample size and whether a “weak 

instruments” situation is present.  We explore this possibility in Section 11 where we 

perform Monte Carlo experiments.  

 

 

 

                                                           
4 The bias of 2SLS is larger, which leads to the optimality results of Rothenberg (1983). 
5 The fact that Edgeworth expansion predicts a smaller variance for 2SLS suggests that if the bias of 2SLS 
is negligible 2SLS may dominate both Nagar-type estimators and LIML under reasonable loss functions. In 
Section 11, we investigate such a potential outcome by Monte Carlo simulation. 
6 See Mariano and Sawa (1972). As for the forward Nagar estimator, it does not even possess first moments 
as established by Sawa (1972).  It can be demonstrated that the Donald-Newey estimators that we consider 
here have similar moment properties to the Nagar estimator. 
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8. Estimation of Asymptotic Variance Terms and Included 
Predetermined Variables 
 
 In this section we consider some practical consideration for application of the new 

specification test.  For the first specification test, we need to estimate the asymptotic 

variance 

 

(8.1) 
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We use consistent estimates for the unknown parameters and follow Bekker and use 

)1/()1(ˆ −−= nKα .  Using Lemma 1 in Appendix A.1, we can show that a consistent 

estimator for asymptotic variance is given by 
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For the second specification test, we need to estimate the asymptotic variance 
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By the same calculation, a consistent estimator is given by 
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In either of the variance estimates of equations (8.2) and (8.4), a different consistent 

estimator other than LIML can be used, with no change in the distribution of the 

estimated test statistic. 
We have so far assumed that a single jointly endogenous RHS variable exhausts 

the list of explanatory variables. The results we have derived are fully general with 
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respect to the inclusion of predetermined variables in equation (2.1). We demonstrate that 

our procedure would need to be modified if equations (2.1) and (2.2) are understood to be 

equations where included exogenous variables are partialled out.  

Suppose that the full model is 

 

(8.5)  
iiii

iiii

VZZY
ZYY

22212

121

+′+′=
Ε+′+=

πφ
γβ

  

 
where iZ1  is a 1k  dimensional vector of included predetermined variables in equation 

(8.5)  and iZ 2  is a K  dimensional vector containing all other  predetermined variables.  

Let 
1ZM  denote the projection operator partialling iZ1  out of equation (8.5), and let 

equations (2.1) and (2.2) be understood to be the resultant expression: Let jY  denote a 

column vector consisting of jiY . Define 1Z , 2Z , Ε , and 2V  similarly. With  

 

(8.6)  ,,,,, 2222211 11111
VMvMZMzYMyYMy ZZZZZ =Ε==== ε  

 

we obtain equations (2.1) and (2.2) premultiplying equation (8.5) by 
1ZM . 

 As usual with partialling out with projection matrices a convenient computational 

procedure follows where we  

• Regress 1Y  and 2Y  on 1Z .  Obtain residuals, and label them 1W  and 2W . 

• Regress 1Y  and 2Y  on 1Z  and 2Z . Obtain residuals, and label them 1
~W  and 2

~W . 

• Let 111
~ˆ WWy −≡  and 222

~ˆ WWy −≡ . 

• Compute 2222 ˆˆ yyyPy z ′=′ , 1212 ˆˆ yyyPy z ′=′ , 1111 ˆˆ yyyPy z ′=′ , 2222
~~ yyyMy z ′=′ , 

1112
~~ yyyMy z ′=′ , 1111

~~ yyyMy z ′=′ , and plug into equations  (6.1), (8.2), and (8.4). 

 

As for K  in equations (6.6), (8.2), and (8.4), we may conservatively use 

( ) ( )ii ZZK 21 dimdim += , although ( ) ( )ii ZzK 2dimdim ==  may also be a reasonable 

choice.  Note also that one may want to adjust the sample size in the above equations to 
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1
* knn −=  to take account of the loss of degrees of freedom from partialling out the iZ1  

variables. 

 

9. Additional RHS Jointly Endogenous Variables 
 
 To this point in the paper, we have only considered the situation of one RHS 

jointly endogenous variable, which is by far the most common situation encountered in 

empirical application of IV estimators (e.g. 2SLS).  We now extend the model 

specifications to allow for additional RHS jointly endogenous variables.  We first derive 

the second specification test for 2 RHS jointly endogenous, which demonstrates how to 

generalize our results to 21 >r  RHS jointly endogenous variables.  We then consider the 

first specification test in a similar situation. 

 We extend our original simultaneous model specification of equations (2.1) and 

(2.2) to the situation of 2 RHS jointly endogenous variables: 

 
(9.1)  133221 εββ ++= yyy  

(9.2)  
333

222

vzy
vzy

+=
+=

π
π

   

 
where we use the same matrix and vector notation as before.  We consider estimation of 

2β  and 3β  in equation (9.1) by use of the Donald and Newey (1998) B2SLS estimator. 

We will refer to the estimator as ( )11,cb .  Changing the normalization we could also 

estimate ( )232 ,1 βββ −  or ( )323 ,1 βββ − .  Thus, we would have three potential 

estimators for ( )32 , ββ .  The question would naturally arise of how to combine these 

potential estimators to achieve the most powerful specification test of a given size. 

 However, as we demonstrate in Appendix B.2, it turns out that we cannot stack 

the estimates to derive a more powerful test since the asymptotic variance matrix of the 

three tests is singular. To be specific, the asymptotic variance matrix has rank equal to 

one.  Thus, all tests based on a single difference will have the same operating 

characteristics, and a more powerful test cannot be derived using additional differences 
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(contrasts).  Thus, we will use the estimator 21 1 bb − , where 21 b  is the estimator 

derived from application of B2SLS (or another Nagar-type estimator) to the equation: 
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1 ε
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In Appendix B.2, we derive a consistent estimate of the asymptotic variance of the scaled 

difference of the two estimators ( )21
21

3 1 bbnd −≡  to be  
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As before, other Nagar-type estimators may replace LIML estimators in the above 

formula.  The specification test will take the form: 

 

(9.5)  5.0
3

3
3 ˆ

ˆ

w
dm = , 

 
where 3ŵ  is the estimated variance in the above equation. 

 Having developed a specification test based on Nagar type estimators for the case 

of additional RHS jointly endogenous variables, we develop another specification test 

based on 2SLS estimators for additional RHS jointly endogenous variables. Let 1,2SLSb  

and 2,2SLSb  denote the 2SLS versions of 1b  and 2b . Again we need to subtract off a bias 

term which is the n -consistent estimate Ĉ  of plim 1,2SLSb  - plim 2,2SLSb .  In Appendix 

B.3, we demonstrate that  

 

(9.6)  
21
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where 
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Here we use the notation ( )ααλ ˆ1ˆ −= , jkkzj AyPy =′  and jkkzj ayMy =′  for j,k = 1,2,3.  

 

 Theorem 9.1: 

  
( )






 Θ−ΘΘΘ
•

−
→−−

2
2

1
2

2
23

2
332233

22
1

2,21,2
)(

1
2

,0)ˆ(
QQ

VarNCbbn i
SLSSLS α

εα
  

where 

23
22

232323
2

3322
2

3322332233221 2 ωαωαωωααωωα −Θ−Θ−+Θ+Θ+ΘΘ=Q ,

1323
2

3323323232

132323
2

23312
2

23333223321233332222

ωωαωαβωαβ
ωαβωωαωαβωαβωαβ

+Θ+Θ+

Θ+Θ+−Θ−Θ−Θ−ΘΘ−=Q

 

 Proof: See Appendix B.3. 

 

Also, in Appendix B.3 we demonstrate that the two test statistics based on the Nagar 

estimator and the 2SLS estimator have unitary correlation under Bekker asymptotics.  

Thus, a similar result holds that all tests based on a single difference of the 2SLS 

estimators will have the same operating characteristics.  We also derive a consistent 

estimate of the asymptotic variance for the test statistic derived in the theorem.  Thus, we 

have generalized the specification tests to additional RHS endogenous variables and find 

the result that any single difference of the estimators provides a test that cannot be 

improved upon. 
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 Inclusion of exogenous and predetermined variables in the specification as in 

equation (8.5) in Section 8 raises no new complications.  The partialling-out methodology 

we used in Section 8 is directly applicable to the current situation with 2 (or more) RHS 

jointly endogenous variables.  The new jointly endogenous variable, 3Y , is partialled out 

by regressing 3Y  on 1Z .  All other formulae follow as before, and the above variance 

formula can be used on the partialled out variables to form the second form of our 

specification test.  

 

10. An Empirical Example 
 

We analyze an empirical example of a simultaneous equation specification of a 

demand function.  This type of specification is the original type of problem studied by 

Haavelmo, who demonstrated that least squares lead to bias results.  The left hand side 

variable of the first specification represents movements of a homogenous bulk chemical 

commodity measured in log of ton miles.  Data were collected on approximately 50 

origin-destination (OD) pairs over a 33 month period.  Each data point is an individual 

freight movement.  As right hand side variables, we include the log of the price of the 

movement which is a jointly endogenous variable, a measure of economic activity, and 

OD indicator variables which change each year to allow for fixed effects for OD pairs.  

We also used a trucking price index variable, which was assumed to be predetermined.  

Altogether, we have 132 right hand side variables, one of which is jointly endogenous.  

As instruments for the jointly endogenous variable we use the log of a short run marginal 

cost variable for the appropriate movements of the bulk commodity, which is available 

for each shipment.7  The other instrumental variable that we use is the monthly price 

index for diesel fuel.   

 In Table A in the first column we give the estimated price elasticity (and an 

estimate of the first order asymptotic standard error) along with the estimated standard 

error and the 2R .  Note that the price elasticity estimate is –1.36 (.147) and is estimated 

quite precisely.  The 2R  is also quite high at .962.  In column 2 we use the conventional 

                                                           
7 While these data are accounting data that unlikely to be true measures of marginal cost, potential errors in 
variables in instruments do not create a problem in instrumental variable estimation under the usual 
assumptions.  See Hausman (1977). 
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2SLS estimator.   The estimated price elasticity increases in magnitude to –2.03 (.465) 

which is the expected outcome given the expected direction of the simultaneous equation 

bias of least squares.  Again, we find a relatively small estimated standard error.  When 

we consider possible diagnostics, we find that the 2R  of the reduced form is 0.941 with 

an F  statistic of 154.5.  The 2R  of the reduced form model after all of the predetermined 

RHS  variables of the structural equation have been partialled out is .093 with an 

associated F  statistic of 74.6.  While the partialled out model has a lower 2R  and F  

statistic, as expected, they do not indicate a problem according to rules of thumb 

previously put forward in the literature. 

 We now interchange the jointly endogenous variable and put price on the LHS 

and quantity on the RHS.  The results are given in Column 3 of Table A.  We use the 

same instruments and find our estimate of 
c
1  to be -0.433 (.094) so the reverse estimate 

of the price elasticity is –2.31 (.500) so that the difference between the forward and 

reverse estimates of the price elasticity is 0.275.  The question is whether these estimates, 

which should be exactly the same under first order asymptotics, are different enough to 

reject the conventional first order asymptotic approach.   

Using the second order approximation of equation (6.6), we estimate the 

difference in the bias of the two estimators to be -.0012, which is quite small.  We then 

use equation (8.1) to calculate the variance and estimate our specification test statistic to 

be: 

 

(10.1)  85.1
43.5
03.10

ˆ

ˆ
5.0 ===

w
dm . 

 
Thus, up to a second order asymptotic approximation we do not reject the first order 

asymptotic approach or the associated estimators. 

 We now use the Nagar-type estimator of Donald and Newey in columns four and 

five.  Here we find the same estimates in the forward and reverse direction because the 

degree of overidentification is 1.  Using Theorem 2 to form the specification test, we find 

it to be 1.82, which is very similar to our previous estimate.  Lastly, we find the LIML 
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estimate to be –2.05 (.469), which does lie between the forward and reverse estimates, as 

expected, but note that it is quite close to the forward 2SLS estimate. 

 We now increase the number of instruments by 131 by interacting the cost 

instrumental variable with the corresponding OD indicator variables.  This new variable 

allows for unobserved cost differences across the different OD pairs.  The results are 

given in Table B.  The first column has the forward 2SLS estimate of –1.24 (.194) which 

has decreased significantly in magnitude back towards the least squares estimate from 

Table B of –1.36.  A situation of weak instruments may well be present.  The 2R  of the 

reduced form is 0.972.  The 2R  of the reduced form for the partialled out model is .219 

with an associated F  statistic of 2.79, which gives little indication of a weak instruments 

problem.  

In the second column of Table B we present the reverse 2SLS estimate of –8.01 

(.789), which is approximately 6.5 times higher than the forward 2SLS estimate.  The 

difference between the two estimates of –6.77 would likely be considered significant, on 

economic terms, by most researchers.  Here the 2R  of the reduced form of the partialled 

out model is .038 with an associated F  statistic of .280, which could indicate that a 

“weak instruments” problem exists according to rules of thumb put forward in the past 

literature.  The difference in second order bias terms is estimated to be -.041, much 

smaller than the actual difference in the forward and reverse estimates.  The test statistic 

is estimated to be  

  

(10.2)  21.14
4.17
3.247

ˆ

ˆ
5.0 ===

w
dm . 

 
Thus, the specification term rejects the conventional first order asymptotic approach, and 

we would recommend that the estimates not be used. 

In columns 3 and 4 of Table B we present the Nagar-type bias corrected forward 

and reverse IV estimates recommended by Donald and Newey.  The forward estimator is 

now –1.21 (.194), while the reverse estimator is –4.64 (.293).  While some improvement 

has been made, the two estimates still differ by a large amount.  The specification test is 

estimated to be 5.78, which again rejects.  Lastly, the LIML estimate is –1.18 (.211), 

which, again, is quite close to the forward regression.  Thus, we do not recommend the 
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use of LIML in the weak instrument situation when the forward and reverse Nagar-type 

estimators differ significantly because it often has a significant asymptotic bias, as 

indicated in this example and in other empirical examples we have investigated.  

We conclude that in a real world example that the IV estimators can perform 

poorly in the weak instrument situation.  Using the forward and reverse estimate seems to 

give a convenient metric to analyze the performance of the estimators.  The specification 

tests we have proposed also work as we would expect.  We now turn to some Monte-

Carlo results to explore further the performance of the tests. 

 
11. Monte Carlo Experiments 
 

We generated data from the model specification 
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Here, 2~
fR  denotes the theoretical 2R  in the first stage regression. We use following 

parameter combinations: 
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We examined performance of our tests by 5000 Monte Carlo replications. We 

used a range of instruments from 5-30, sample sizes of 100-10,000, and a range of 
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covariances (correlations) where we vary the 2~
fR  of the reduced form regression.8   

Because of space limitations we only report some or the results here with other results 

reported on a website.9  Columns (a) and (b) report the actual size of the test based on 

forward and reverse 2SLS with 10% and 5% nominal sizes. The actual sizes of the test 

are generally quite close to the nominal sizes, with only a small falling off above the 

nominal size when the number of instruments becomes large and the 2~
fR  becomes quite 

low (.001). Columns (c) and (d) report actual biases of forward and reverse 2SLS 

estimators, and column (e) reports the expected value of B̂ . The estimates of the 

difference of second order bias terms are typically quite accurate, although when the 

expected difference of biases becomes quite large, the estimates can vary by quite a lot.  

However, in these situations, the test statistic should still work well because the presence 

of a large expected bias (even if not measured totally accurately) will alert the 

econometrician to the dangers of using 2SLS, or other IV estimators, in this situation. 

Importantly, the estimates of the expected value of B̂ appear to do a good job of 

indicating the presence of “weak instruments,” e.g. column (e) in Table 3 with “weak 

instruments” compared to column (e) of Table 4 where the instruments are better because 

the R2 of the reduced form equation is much higher. Thus, the second order asymptotic 

approach seems to provide a useful tool to indicate when the “weak instrument” problem 

is present. 

Columns (f) and (g) report the actual size of the traditional test of 

overidentification (based on forward 2SLS) with nominal sizes equal to 10%, and 5%.10 

The conventional test of overidentification, based on the forward 2SLS estimates, does 

not perform well in a large variety of situations, as has been noted numerous times in the 

previous literature.  As shown in Tables 1 and 2 the conventional test of 

overidentification often has actual size of above 0.3, when the nominal size is smaller 

                                                           
8 We set the values of β such that Var(ε)=1. 
9 http://web.mit.edu/jhausman/www/ 
10 We use 2Rn ⋅  of the regression of the forward 2SLS residuals on instruments as the test statistic. 
Because forward and reverse 2SLS should be perfectly correlated under conventional asymptotics, tests of 
overidentification based on forward and reverse 2SLS should have the same operating characteristics if 
conventional asymptotics provides reasonable approximations to sampling distributions of various IV 
estimators. 
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than 0.1. Note that when the 2~
fR  of the reduced form becomes high, the test of 

overidentification has approximately the correct size. When the number of instruments 

begins to increase, the size performance of the test of overidentification falls off again.  

When the number of instruments becomes quite large (30) in Tables 1 – 4, the actual size 

of the conventional test of overidentification becomes abysmally large, sometimes 

exceeding 0.5 in the low 2~
fR  situation. Thus, we conclude that the second order 

asymptotic approximations work considerably better than the conventional first order 

asymptotic approximations when applied to the 2SLS estimator.  

Columns (h) and (i) report results for cases where we consider the Nagar-type 

bias corrected estimator. We find that the actual size of the new specification test based 

on Donald and Newey’s estimator with 10% and 5% nominal sizes again approximates 

the nominal size quite well with no tendency to be too large a size for the test. Columns 

(m) and (n) report the actual size of the traditional test of overidentification (based on 

Donald and Newey’s forward estimator) with nominal sizes equal to10% and 5%.11 

While the use of the Nagar-type estimator improves the traditional test of 

overidentification, the conventional test of overidentification sometimes has an actual 

size of above 0.2, when the nominal size is smaller than 0.1. Note that when the 2~
fR  of 

the reduced form becomes high, the test of overidentification has approximately the 

correct size once again.  

Also, note that in columns (j)-(l) where we report the means biases of the Nagar-

type and LIML estimators, the mean bias of the Donald-Newey (Nagar-type) estimators 

and LIML estimators occasionally are found to be very large.  This finding results from 

the non-existence of finite sample moments of Nagar-type and LIML estimators that we 

discussed in Section 7. These results should be a caution about using Nagar-type or 

LIML estimates even with the second order asymptotic approximations without further 

investigation or specification tests in a given empirical problem. 

Table 5 report Monte Carlo results in some “extreme cases” where the number of 

instruments is large, K = 30, and the 2~
fR  of the reduced form is low. Instead of calibrating 

                                                           
11 We  use 2Rn ⋅  of the regression of the residuals from Donald and Newey’s forward estimator on 
instruments as the test statistic. 
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2vεσ  keeping 1
2

== vσσ ε  and varying β , we calibrated ( )2112 ,Cov vv=ω  as well as β  

keeping 1
21

== vv σσ , thereby varying 12,
2 1

2112
ωββσσσ ε ⋅−=−= vvvv  to a much greater 

extent than in previous Tables 1 - 4. The actual sizes of the new specification test in 

columns (a)-(b) and (h)-(i) are again close to the nominal sizes, although in a few cases 

the test based on the Nagar-type estimator does have too large size.  However, these 

results should be compared to the traditional test of overidentification based on 2SLS in 

columns (f) and (g) where the actual sizes always exceed 0.85, even though the nominal 

size is 0.10!  Similarly, the traditional tests of overidentification based on the Nagar-type 

estimators in columns (m) and (n) do better, but they still exceed the nominal size by 

factors of 2 to 5.    These results, along with the second order bias estimates of column 

(e), which are again successful in indicating the presence of “weak instruments,” 

demonstrate that tests based on the second order asymptotic approximations do 

considerably better than tests based on the conventional first order asymptotic 

approximations in these extreme situations. 

As we discussed in Section 7, Edgeworth expansions predict smaller variances for 

2SLS than for LIML.  In Table 6, we compare 2SLS and LIML when the bias of 2SLS is 

negligible and 2~
fR  is small. In all cases, 2SLS dominates LIML under mean square error 

loss. This result is not surprising because LIML does not possess second moments.  

However, the dispersion of LIML around β measured in the interquartile range or 

interdecile range is much larger than that of 2SLS.12  We conclude that Bekker’s 

asymptotics may be a poor approximation when 2~
fR  is extremely small, which leads to 

the suggestion of using the specification test to help determine the usefulness of second 

order asymptotics in a given situation. 

In Table 7 we repeat Table 1 for the non-normal case.  We use a log normal 

distribution for the RHS variable standardized with mean zero and variance one, and the 

stochastic disturbance has a t distribution with 12 degree of freedom, again standardized 

to have mean zero and variance one.  A comparison of Table 7 with Table 1 shows that 

the new specification test continues to perform well with the actual sizes of the tests in 

                                                           
12 The fact that 2SLS does better than LIML suggests that 2SLS should be used for Hausman tests of 
endogeneity of regressors. 
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columns (a)-(b) and columns (h)-(i) quite close to the nominal sizes.  The nR2 of the test 

of overidentification in columns (f)-(g) performs more poorly than in Table 1 and we 

again find some evidence of a “moments problem” for the Nagar type estimator.  These 

results carry over to the other Monte Carlo experiments for the non-normal situation, and 

we report the results on the website. 

 

12. Conclusions 
 

Using the forward and reverse 2SLS estimates to test for weak instruments to 

form a specification test seems to be a helpful approach.  We use a second order 

asymptotic approximation to form a test statistic to see if the conventional first order 

asymptotic approach is accurate enough to provide reliable inferences.  The first order 

asymptotics implies that the two estimates should be the same, while the second order 

asymptotic approach allows for different biases in the two estimators.  The 

econometrician can also consider the estimates and see whether the difference in the 

estimates is large in economic terns relative to what would be expected. The test statistic 

is straightforward to compute using existing econometric software to calculate the 2SLS 

estimators, Nagar-type estimators, and LIML as well as the partialled out models.   

While giving guidance to inference is often subjective based on the 

econometrician’s beliefs, we suggest the following approach.  We suggest that the new 

specification test of equation (5.7) based on forward and reverse 2SLS be done.  If the 

2SLS estimates are close and the estimate of the bias term B̂  from equation (5.6) is 

small, the conventional first order asymptotics may be used, and the 2SLS estimates 

should be all right.  If the test rejects or the estimated bias term is large, we then suggest 

using Nagar-type estimates to perform the second specification test based on equation 

(6.4).  If the forward and reverse estimates are close and the specification test does not 

reject, we suggest using LIML, which is the optimal combination of the two estimators.13  

If the test rejects, we do not suggest using these estimates as either a failure of the 

orthogonality conditions or an extreme situation of “weak instruments” is likely to be 

                                                           
13 If the LIML estimate differs markedly from the forward and reverse Nagar-type estimates, the LIML 
estimate should not be used because the problem of the absence of finite sample moments may well be 
present.   
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present.  If the Nagar-type forward and reverse estimates are not close but the 

specification test does not reject, a decision cannot typically be made based on the new 

specification test. 

Our approach can be generalized when more than one jointly endogenous variable 

is on the right hand side of the model specification.  Two variables can be interchanged 

as before to provide forward and reverse estimates.  Second order asymptotic theory is 

again used to form the associated distributions of the second order distributions for the 

bias terms and for the specification tests.  We derive the rather unexpected result that 

only one set of differences provides the optimal specification test. We expect to extend 

our results to 3 or more RHS jointly endogenous variables in the near future. 
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Table A: Estimates with 1452 Observations, 134 Predetermined Variables and 136 
Instruments.  002.ˆ =α  
 
   Least  2SLS     2SLS    Nagar   Nagar  
   Squares Forward Reverse Forward Rev. 
        
 
1.  Price elasticity -1.36  -2.03  -2.31  -2.03  -2.31 
   (.147)  (.465)  (.500)  (.465)  (.502) 
 
2.  Standard Error .301  .303  .133  .303  .133 
 
3.  R2   .962  -----  ----  ----  ---- 
 
 

Reduced Form Regressions 
 
4.  Standard Error   .053  .308 
 
5.  R2     .941  .960 
 
6.  F statistic    154.5  234.1 
 
 

Partialled Out Reduced Form Regression 
 
7.  Standard Error   .016  .037 
 
8.  R2     .093  .012 
 
9.  F statistic    74.6  8.54 
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Table B:  Estimates with 1452 Observations, 134 Predetermined Variables and 266 
Instruments  092.ˆ =α  
 
   Least   2SLS    2SLS    Nagar   Nagar  
   Squares Forward Rev.  Forward Rev. 
 
 
1.  Price elasticity -1.36  -1.24  -8.01  -1.21  -4.64 
   (.147)  (.194)  (.789)  (.194)  (.293) 
 
2.  Standard Error .301  .301  .060  .317  .080 
 
3.  R2   .962  -----  ----  ----  ---- 
 
 

Reduced Form Regressions 
 
4.  Standard Error   .038  .295  
 
5.  R2     .972  .967 
 
6.  F statistic    154.2  130.5 
 
 

Partialled Out Reduced Form Regression 
 
7.  Standard Error   .016  .038 
 
8.  R2     .219  .027 
 
9.  F statistic    2.79  .280 



Appendix

A One Endogenous Regressor

A.1 A Technical Lemma

Lemma 1 Assume that K
n ! ® + o

¡
n¡1=2

¢
, and that ¼02z0z¼2=n is ¯xed at £. Let S ´ U 0PzU and

S? ´ U 0MzU . We then have

p
n

0BBBBBBBBB@
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where ¤ and ¤? denote symmetric 3£ 3 matrices such that

¤1;1 = 4!11£¯
2 + 2®!211

¤1;2 = 2!11£¯ + 2¯
2£!12 + 2®!11!12

¤1;3 = 4¯£!12 + 2®!
2
12

¤2;2 = !11£+ ¯
2£!22 + 2£!12¯ + ®!11!22 + ®!

2
12

¤2;3 = 2!22£¯ + 2£!12 + 2®!22!12

¤3;3 = 4!22£+ 2®!
2
22

and

¤?1;1 = 2 (1¡ ®)!211
¤?1;2 = 2 (1¡ ®)!11!12
¤?1;3 = 2 (1¡ ®)!212
¤?2;2 = (1¡ ®)!11!22 + (1¡ ®)!212
¤?2;3 = 2 (1¡ ®)!22!12
¤?3;3 = 2 (1¡ ®)!222

Proof. Let U ´
h
y1 y2

i
, M ´ [¯ ¢ z¼2; z¼2] = z¼2 (¯; 1), and V ´ U ¡M . Note that the rows of

V are i.i.d. normal with zero mean and variance . Using Bekker (1994, Lemma 2), we obtain

E [U 0PzUa] = (¯; 1)
0
¼02Z

0Z¼2 (¯; 1)a+Ka; E [U 0MzUa] = (n¡K)a:

The conclusion follows by combining this observation with Bekker (1994, Lemma 1) along with the fact

S and S? are independent of each other due to normality.
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A.2 Proof of Theorem 6.3: Asymptotic Equivalence of Two Tests

Because b®
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1¡® + op
³
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´
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1¡ K¡2
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of generality assume that b®
1¡b® = ¸ for the asymptotic argument. For simplicity, we will rewrite A1 =

1
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0
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1
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0
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1
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0
2My2. Observe that
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The numerators on the far RHS in (A.2) and (A.3), i.e., A22¡A1A3+b¥ and (A2 ¡ ¸a2)2¡(A1 ¡ ¸a1) (A3 ¡ ¸a3)
are identical. Call it z. Using Theorem 6.2 and (A.1), we can show that
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Combining (A.4) with (A.1), we obtain
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A.3 Proof of Theorem 6.4: Higher Order Approximation with Nonnormal

Error

We adopt the same structure of argument as in Donald and Newey (1998). Our proof is much simpler

due to explicit use of Bekker's assumption that 1
n¼

0
2z
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³

1p
n

´
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the normalized di®erence of the two Nagar type estimators
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Derivation of the second equality in (A.8) uses Bekker (1994, Lemma 1), which implies
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1 Derivation of the second equality in (A.9) used the usual Central

Limit Theorem. Similarly, we have
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The second equalities in (A.10) and in (A.10) are derived by the same argument as in the derivation of

those in (A.8) and (A.9). Using the expansion
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Combining (A.12) and (A.13), we obtain an approximation to (A.5):
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Using Bekker (1994, Lemma 1) and Condition (6.1), it can be shown that
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from which we obtain the desired conclusion.

B Two Endogenous Regressors

It can be seen that (¯2; ¯3) can be estimated by Donald and Newey's (1998) B2SLS applied to

y1i = ¯2y2i + ¯3y3i + "1i:

We will call such estimator (b1; c1). Similarly,
³
1
¯2
;¡¯3

¯2

´
and

³
1
¯3
;¡¯2

¯1

´
can be estimated by B2SLS

applied to

y2i =
1

¯2
y1i +

µ
¡¯3
¯2

¶
y3i + "2i; and y3i =

1

¯3
y1i +

µ
¡¯2
¯1

¶
y2i + "3i:

We will call such estimators (b2; c2), and (b3; c3). Note that we have three estimators for (¯2; ¯3): (b1; c1),³
1
b2
;¡ c2

b2

´
,
³
¡ c3
b3
; 1b3

´
.

B.1 A Technical Lemma

Utilizing Bekker (1994, Lemma 2) again, we can establish that

Lemma 2

p
n

0BBBBBBBBB@
1

n

0BBBBBBBBB@

y01Pzy1
y01Pzy2
y01Pzy3
y02Pzy2
y02Pzy3
y03Pzy3

1CCCCCCCCCA
¡

0BBBBBBBBB@

¡
¯22£22 + 2¯2¯3£23 + ¯

2
3£33

¢
+ ®!11

(¯2£22 + ¯3£23) + ®!12

(¯2£23 + ¯3£33) + ®!13

£22 + ®!22

£23 + ®!23

£33 + ®!33

1CCCCCCCCCA

1CCCCCCCCCA
5



and

p
n

0BBBBBBBBB@
1

n

0BBBBBBBBB@

y01Mzy1

y01Mzy2

y01Mzy3

y02Mzy2

y02Mzy3

y03Mzy3

1CCCCCCCCCA
¡

0BBBBBBBBB@

(1¡ ®)!11
(1¡ ®)!12
(1¡ ®)!13
(1¡ ®)!22
(1¡ ®)!23
(1¡ ®)!33

1CCCCCCCCCA

1CCCCCCCCCA
are independent of each other, and asymptotically normal with zero mean and variances equal to ¤ and

¤?, which are summarized below in Tables A.1 and A.2.

B.2 Nagar Based Speci¯cation Test

Applying the delta method, we can ¯nd that
p
n
³
b1 ¡ 1

b2
; c1 ¡¡ c2

b2
; b1 ¡¡ c3

b3
; c1 ¡ 1

b3

´0
is asymptotically

normal with zero mean and variance equal to 2®Var("1i)
2

1¡® times2666664
£33

2

¯22(£22£33¡£23
2)2

¡ £23£33

¯22(£22£33¡£23
2)2

¡ £23£33

¯2¯3(£22£33¡£23
2)2

£22£33

¯2¯3(£22£33¡£23
2)2

¡ £23£33

¯22(£22£33¡£23
2)2

£23
2

¯22(£22£33¡£23
2)2

£23
2

¯2¯3(£22£33¡£23
2)2

¡ £22£23

¯2¯3(£22£33¡£23
2)2

¡ £23£33

¯2¯3(£22£33¡£23
2)2

£23
2

¯2¯3 (£22£33¡£23
2)2

£23
2

¯32(£22£33¡£23
2)2

¡ £22£23

¯32(£22£33¡£23
2)2

£22£33

¯2¯3(£22£33¡£23
2)2

¡ £22£23

¯2¯3(£22£33¡£23
2)2

¡ £22£23

¯32(£22£33¡£23
2)2

£22
2

¯32(£22£33¡£23
2)2

3777775 :

With some tedious algebra, it can be shown that the above asymptotic variance matrix is singular:

Postmultiplying the asymptotic variance byµ
£23
£33

; 1; 0; 0

¶0
;

µ
¡¯2£22
¯3£33

; 0; 0; 1

¶0
; or

µ
¯2£23
¯3£33

; 0; 1; 0

¶0
;

we obtain zero. Therefore, we cannot stack the estimates to derive a more e±cient test since all tests

based on a single di®erence will have the same operating characteristics. This implies that the test can

be applied only to one component of
³
b1 ¡ 1

b2
; c1 ¡¡ c2

b2
; b1 ¡¡ c3

b3
; c1 ¡ 1

b3

´0
, say b1¡ 1

b2
. It is to be noted

that the asymptotic variance of such a test is given by 2®Var("1i)
2

1¡®
1

¯22
³
£22¡£23

2

£33

´2 . Observe that Var ("1i)
and ¯2 can be estimated consistently utilizing the consistency of LIML. Also note that

plim

" b£22 b£23b£23 b£33
#
´ plim

Ã
1

n¡ 2

"
y02
y03

#
Pz [y2; y3]¡ b®

1¡ b® 1

n¡ 2

"
y02
y03

#
Mz [y2; y3]

!

=

"
£22 £23

£23 £33

#

for any consistent estimator b® of ®. We may therefore estimate the asymptotic variance consistently by
2
K ¡ 1
n¡K

³Pn
i=1 (y1i ¡ ¯2LIMLy2i ¡ ¯3LIMLy3i)

2
´2

¯22LIML

µ
y02Pzy2 ¡ K¡1

n¡K y
0
2Mzy2 ¡ (y

0
2Pzy3¡K¡1

n¡K y
0
2Mzy3)

2

y03Pzy3¡K¡1
n¡K y

0
3Mzy3

¶2 :

6



Table A.1: ¤

¤11 4!11
¡
¯22£22 + 2¯2¯3£23 + ¯

2
3£33

¢
+ 2®!211

¤12
!11 (¯2£22 + ¯3£23) + !12

¡
¯22£22 + 2¯2¯3£23 + ¯

2
3£33

¢
+!11 (¯2£22 + ¯3£23) + !12

¡
¯22£22 + 2¯2¯3£23 + ¯

2
3£33

¢
+ ® (!11!12 + !11!12)

¤13
!11 (¯2£23 + ¯3£33) + !13

¡
¯22£22 + 2¯2¯3£23 + ¯

2
3£33

¢
+!11 (¯2£23 + ¯3£33) + !13

¡
¯22£22 + 2¯2¯3£23 + ¯

2
3£33

¢
+ ® (!11!13 + !11!13)

¤14 4!12 (¯2£22 + ¯3£23) + 2®!
2
12

¤15 2!13 (¯2£22 + ¯3£23) + 2!12 (¯2£23 + ¯3£33) + 2®!12!13

¤16 4!13 (¯2£23 + ¯3£33) + 2®!213

¤22
!11£22 + !22

¡
¯22£22 + 2¯2¯3£23 + ¯

2
3£33

¢
+2!12 (¯2£22 + ¯3£23) + ®

¡
!11!22 + !

2
12

¢
¤23

!11£23 + !23
¡
¯22£22 + 2¯2¯3£23 + ¯

2
3£33

¢
+ !12 (¯2£23 + ¯3£33)

+!13 (¯2£22 + ¯3£23) + ® (!11!23 + !12!13)

¤24
!22 (¯2£22 + ¯3£23) + !12£22 + !22 (¯2£22 + ¯3£23)

+!12£22 + ® (!22!12 + !22!12)

¤25
!22 (¯2£23 + ¯3£33) + !13£22 + !12£23

+!23 (¯2£22 + ¯3£23) + ® (!22!13 + !12!23)

¤26 2!23 (¯2£23 + ¯3£33) + 2!13£23 + 2®!13!23

¤33
!11£33 + !33

¡
¯22£22 + 2¯2¯3£23 + ¯

2
3£33

¢
+2!13 (¯2£23 + ¯3£33) + ®

¡
!11!33 + !

2
13

¢
¤34 2!23 (¯2£22 + ¯3£23) + 2!12£23 + 2®!12!23

¤35
!33 (¯2£22 + ¯3£23) + !12£33 + !13£23

+!23 (¯2£23 + ¯3£33) + ® (!33!12 + !13!23)

¤36
!33 (¯2£23 + ¯3£33) + !13£33 + !33 (¯2£23 + ¯3£33)

+!13£33 + ® (!33!13 + !33!13)

¤44 4!22£22 + 2®!222

¤45 !22£23 + !23£22 + !22£23 + !23£22 + ® (!22!23 + !22!23)

¤46 4!23£23 + 2®!
2
23

¤55 !22£33 + !33£22 + 2!23£23 + ®
¡
!22!33 + !

2
23

¢
¤56 !33£23 + !23£33 + !33£23 + !23£33 + ® (!33!23 + !33!23)

¤66 4!33£33 + 2®!233

7



Table A.2: ¤?

¤?11 2 (1¡ ®)!211
¤?12 (1¡ ®) (!11!12 + !11!12)
¤?13 (1¡ ®) (!11!13 + !11!13)
¤?14 2 (1¡ ®)!212
¤?15 2 (1¡ ®)!12!13
¤?16 2 (1¡ ®)!213
¤?22 (1¡ ®) ¡!11!22 + !212¢
¤?23 (1¡ ®) (!11!23 + !12!13)
¤?24 (1¡ ®) (!22!12 + !22!12)
¤?25 (1¡ ®) (!22!13 + !12!23)
¤?26 2 (1¡ ®)!13!23

¤?33 (1¡ ®) ¡!11!33 + !213¢
¤?34 2 (1¡ ®)!12!23
¤?35 (1¡ ®) (!33!12 + !13!23)
¤?36 (1¡ ®) (!33!13 + !33!13)
¤?44 2 (1¡ ®)!222
¤?45 (1¡ ®) (!22!23 + !22!23)
¤?46 2 (1¡ ®)!223
¤?55 (1¡ ®) ¡!22!33 + !223¢
¤?56 (1¡ ®) (!33!23 + !33!23)
¤?66 2 (1¡ ®)!233

B.3 2SLS Based Speci¯cation Test

It can be shown that

b1 ¡ 1

b2
=
N1
D1

¡ N2
D2
; b2SLS;1 ¡ 1

b2SLS;2
=
n1
d1
¡ n2
d2
;

and

d1d2

µ
n1
d1
¡ n2
d2
¡ bC¶ = D1D2µN1

D1
¡ N2
D2

¶
Note that, by design, the two test statistics would have unitary (asymptotic) correlation. Furthermore, the

asymptotic variance of 2SLS based test would be equal to
¡
plim 1

nD1 ¢ plim 1
nD2

¢± ¡
plim 1

nd1 ¢ plim 1
nd2

¢
times the asymptotic variance of the corresponding Nagar based test. Because plim 1

nD1 = £22£33¡£223,
plim 1

nD2 = ¡£33¯2£22 + ¯2£223, and because the asymptotic variance of the Nagar based test is equal
to 2®Var("1i)

2

1¡®
1

¯22
³
£22¡£23

2

£33

´2 , we can conclude that the asymptotic variance of the 2SLS based test is
equal to

2®Var ("1i)
2

1¡ ® ¢ £233
¡
£22£33 ¡£223

¢2¡
plim 1

nd1
¢2 ¡

plim 1
nd2

¢2 ;
where

plim
1

n
d1 = £22£33 +£22®!33 + ®!22£33 + ®

2!33!22 ¡£223 ¡ 2£23®!23 ¡ ®2!223;

plim
1

n
d2 = ¡£33¯2£22 ¡£33®!12 ¡ ®!33¯2£22 ¡ ®!33¯3£23 ¡ ®2!33!12
+ ¯2£

2
23 +£23®!13 + ®!23¯2£23 + ®!23¯3£33 + ®

2!23!13:

As for the estimator of the asymptotic variance, we can simply use
D2
1D

2
2

d21d
2
2
times a consistent estimator for

the asymptotic variance of the Nagar based test.

8
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