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We begin with the simplest model specification with one right hand side (RHS)

jointly endogenous variable so that the left hand side variable (LHS) depends only on the

single jointly endogenous RHS variable.  This model specification accounts for other

RHS predetermined (or exogenous) variables, which have been “partialled out” of the

specification.2 We will assume that

(1) 12121 vzyy +=+= πβεβ

(2) 222 vzy += π ,

where ( ) K=2dim π . Thus, the matrix z  is the matrix of all predetermined variables, and
equation (2) is the reduced form equation for 2y  with coefficient vector 2π .  We also
assume homoscedasticity:
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I.  Bias in 2SLS and OLS

A common finding in empirical research is that when 2SLS is used the coefficient

estimate increases in magnitude from the OLS estimate. However, in finite samples under

certain situations even when 2SLS is used on equation (1), bias remains because an
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estimate of 2π  from equation (2) is used, since the true parameters are unknown.  We

now demonstrate how this result occurs.

Suppose that 2πz  is measured without error. Then, OLS of 1y  on 2πz  would be

unbiased. Instead, 2πz must be estimated, i.e., we have to rely on 2SLS. Let 2π̂  denote

the first stage OLS estimator. We have
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where 2
fR  is the 2R  in the first stage regression to obtain 2π̂ . It can be shown that:

( )( )[ ]
21 2221 ˆˆ v
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where [ ]nzzER ′≡ . Here, 
22vvK σ⋅  is the expectation of the term 22 vPv z′ , which is 

22vvσ

times a χ2- random variable with expectation equal to the dimension of the projection

matrix zP .

Therefore, we expect bias approximately equal to
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Equation (5) indicates that the bias is monotonically increasing in 
2vεσ  and K , but

monotonically decreasing in 2
fR . Conventional asymptotics, which lets ∞→n  keeping

DGP fixed, ignores the influence of 
2vεσ , K , and 2

fR .

For comparison purposes we calculate the bias of OLS.  We find approximately

that
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Note that in equation (5) the denominator typically becomes large as the sample size n

becomes large so that the bias of 2SLS decreases.  However, in the OLS bias equation (6)

the denominator does not change size as n increases so that the bias does not decrease.

Thus, 2SLS is consistent and OLS is inconsistent, as is well known.

II.  No Identification

We now use equation (5) to explore what happens in the unidentified situation of

.02 =π  The denominator of equation (5) becomes 
22vvK σ⋅ . Thus, when 02 =π ,

equation (5) predicts the bias of the 2SLS estimator to be approximately

(7) [ ]
22

2

2
vv

v
SLSbE

σ

σ
β ε≈−

In large samples the result holds in the limit without the necessity of assuming that the

stochastic disturbances are normal. Note that the bias does not decrease here as n

becomes large as it did in the last section.  This result is expected because without

identification we cannot find a consistent estimator of beta.

We now compare this 2SLS bias with the bias of OLS on equation (1) again

where no identification exists so that .02 =π  We use equation (6).  When 02 =π , the

denominator is equal to 
22vvσ . Thus, we find that the bias of OLS is the same as the bias

of 2SLS in the unidentified case of 02 =π :
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See Phillips (1989) for related results.

III.  Local Non-Identification

We now consider what happens when we are close to being unidentified so that

na=2π , where the vector a has dimension K. Thus, the reduced form coefficients are

“local to zero”.  Stock and Staiger (1997) refer to this situation as “weak instruments”.

We disagree somewhat with this terminology because the result of badly biased IV

estimators also depends on the value of covariance term in the numerator of equation (5)

as we discuss in Hahn and Hausman (1999).

With na=2π , equation (5) predicts the bias of 2SLS to be
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Equation (9) is an approximation to the asymptotic bias of 2SLS under the asymptotics

where na=2π . When K is sufficiently large, the difference between equation (9) and

the asymptotic bias is negligible. See Chao and Swanson (2000, Theorem 3.1 (c)).

On the other hand, equation (6) predicts the approximate bias for OLS to be:
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Comparison of (9) and (10) suggest that the bias of 2SLS is smaller than OLS as long as

K<n, a condition which will always be satisfied in practice.

We have considered three asymptotic approximation: (i) 02 ≠π  and fixed; (ii)

na=2π , 0≠a ; (iii) 02 =π . For the first two cases, our approximate bias formulae



predict that 2SLS has less bias than OLS. For the last case, our formulae predict that

2SLS has approximately equal bias as OLS.

IV.  Bias Corrected 2SLS

We can also use equation (5) to construct an approximately unbiased 2SLS

estimator.  While it first appears that we have only one equation (moment) and two

unknowns in β  and 
2vεσ , it turns out that this second parameter is a function of beta:
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Now we can solve for β  which is a linear equation. The derivation is:
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where 22/ yPyKM z′= , )/( KNMd −=  and zQyq 2′=′ .Thus we can solve for beta to

find a bias corrected estimator BCβ :

( ) ( )21 1/ˆˆ yqdyqdBC ′−′−= ββ

If we now consider the (approximate) bias of the estimator we find it to be zero by

construction. Thus, the estimator is approximately unbiased as claimed.

This estimator turns out to be the same as Nagar’s estimator (EMA 1959), which

was derived in a considerably more difficult manner using a higher order expansion

approach.  This equivalence can be seen from:
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Unfortunately, the estimator has no moments, and performs poorly when the model is

nearly non-identified. 3  This poor performance follows by noting that the denominator is

zero when .02 =π  The Nagar estimator “blows up” in this situation in contrast to the

2SLS estimator, which is inconsistent but has its moments existing.  For near non-

identification, the Nagar estimator similarly works poorly because the non-existence of

moments from the denominator being near zero leads to poor results in many situations.

Hahn, Hausman, and Kuersteiner (2001) give Monte Carlo results that demonstrate the

poor performance of the Nagar estimator in this situation.  Thus, the Nagar estimator is

not very useful in the situation where 2SLS has substantial bias.  Hahn, Hausman, and

Kuersteiner (2001) explore alternative estimators to use in this situation.
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